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Abstract

Computational model simulations have been very fruitful for
gaining insight into how the systematic structure we observe
in the world’s natural languages could have emerged through
cultural evolution. However, these model simulations operate
on a toy scale compared to the size of actual human vocabu-
laries, due to the prohibitive computational resource demands
that simulations with larger lexicons would pose. Using com-
putational complexity analysis, we show that this is not an im-
plementational artifact, but instead it reflects a deeper theo-
retical issue: these models are (in their current formulation)
computationally intractable. This has important theoretical im-
plications, because it means that there is no way of knowing
whether or not the properties and regularities observed for the
toy models would scale up. All is not lost however, because
awareness of intractability allows us to face the issue of scal-
ing head-on, and can guide the development of our theories.

Keywords: language evolution, agent-based modeling, iter-
ated learning, computational complexity, intractability

Introduction

Since all models are wrong
the scientist must be alert
to what is importantly wrong

Box (1976, p. 792)

Human language is perhaps the paradigm example of a so-
phisticated cognitive phenomenon which is shaped by the
constraints of both biological and cultural evolution. Com-
putational modelling and agent-based simulations are indis-
pensable for developing theories of language evolution, af-
fording a window into the complex and intertwined dynamics
of biological inheritance, cultural transmission, and individ-
ual development and learning (Kirby, 2017; Kirby, Griffiths,
& Smith, 2014; A. D. M. Smith, 2014; K. Smith, 2018); dy-
namics that are by their nature impossible to directly observe.
However, to make the simulations computationally feasible,
models are simulated for toy-sized languages, often consist-
ing of only a handful of words. At first glance, this practice
makes sense and important insights have been gained in this
way. For instance, the finding that compositional structure
can emerge from a trade-off between how well a language
can be learned and how much it can express (Kirby, Tamariz,
Cornish, & Smith, 2015). Yet, findings such as these, which
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correspond with one’s intuitions and empirical observations,
can draw attention away from discrepancies between model
and reality. While some discrepancies might be irrelevant,
others may hide important truths (cf. the quote from Box,
1976).

Here, we investigate the theoretical importance of one such
discrepancy: models and simulations of language evolution
operate on a scale that is virtually microscopic compared to
the ecological scale on which we observe the properties of
natural languages (Fig. la). Running simulations on eco-
logical scales (e.g. tens of thousands of words) is simply
impossible due to the prohibitive computational resource de-
mands that such simulations pose (Fig. 1b).! This raises an
important question: are these prohibitive computational re-
source demands an artifact of state-of-the art implementa-
tions, or is it possible that they reflect a deeper theoretical
issue, namely that the computational problems which we as-
sume to be solved by the simulated agents (and by extension
people) are in fact intractable? If the latter is the case, it will
not simply be a matter of waiting for more powerful comput-
ers to run the simulations. Intractable models are fundamen-
tally impossible to compute for anything but small inputs by
any system, be it digital (Arora & Barak, 2009), human (van
Rooij, Blokpoel, Kwisthout, & Wareham, 2019) or evolution
(Rich, Blokpoel, de Haan, & van Rooij, 2020). Hence, there
is no way of knowing whether or not the properties and regu-
larities observed for the toy models would scale up.

The first step in addressing this question is to evaluate the
tractability of theories of language evolution. To do so, we

ITo illustrate, running a simulation for toy languages with, say
50 words, and only 25 referents they can talk about, learners need

to consider all 2°°%25 about 1.9 x 10376, possible languages (see
Fig. 1b). Even if each individual neuron could evaluate a million
languages per second, and we have seven billion people evolving
at a rate of 1 generation per year for 20 million years, only 4.42 x

10*? languages could have been evaluated by the entire evolutionary
process. Yet, that is still less than 1/10 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
of all possible languages.



use computational complexity theory, a tool which allows us
to assess the tractability of computational problems in a math-
ematically well-specified way, and that has been applied to
models of cognition, communication and evolution (Blokpoel
et al., 2012; Rich et al., 2020; van Arkel, Woensdregt, Dinge-
manse, & Blokpoel, 2020; van Rooij et al., 2011). In this
paper, we formalize a model of cultural language evolution
that is abstract, yet sufficiently compatible with existing the-
ories. Then, using computational complexity analysis, we
prove that this model is intractable, and hence fundamentally
cannot scale beyond the toy domain. When a model is found
to be intractable, this shows that there is a mismatch between
theory and empirical observation, because empirical observa-
tion shows us that cultural evolution of language in humans is
clearly possible. As illustrated in Figure 1a, the relation be-
tween the computational theory (as formalized in the model),
and the empirical phenomena of language evolution on an
ecological scale, cannot be drawn, because the computational
theory fundamentally cannot scale up to an ecological scale
if it is intractable.

Importantly, we see our analysis as a theoretically con-
structive contribution. When first encountered, the hard limits
of computational theories of language evolution may present
a somewhat sobering prospect, but this is not our intended
message. Quite the contrary: a focus on tractability creates an
opportunity to address issues of scaling head-on, such that it
guides the development of our theories. Moreover, tractabil-
ity itself may well constitute a previously overlooked con-
straint on the evolutionary process, whether biological or cul-
tural; in the Discussion we reflect on how future work can
address these issues.

Models of language evolution

The multi-faceted nature of language—both internal and ex-
ternal, cognitive and conventional, biological and cultural—
has inspired evolutionary accounts which, while insightful,
do not typically lend themselves to analytic solution. Com-
putational approaches, on the other hand, provide the flex-
ibility needed to explore new hypotheses and their conse-
quences: once recognised, such techniques became a ma-
jor driver of innovation in the field. In the initial flurry of
computational work, this same flexibility led to the adoption
of diverse theoretical paradigms—ranging from evolutionary
game theory (e.g. Nowak, Plotkin, and Krakauer, 1999) to
embodied interacting robotics (e.g. Steels, 2003)—and cog-
nitive architectures such as associative learning (e.g. Skyrms,
2010), through neural network models of varying complexity
(e.g. Barr, 2004), up to Bayesian learners (e.g. Griffiths and
Kalish, 2007). Over time, Bayesian models—with their ab-
straction over the implementational details of other models of
learning—have become especially popular. In particular, the
iterated learning model (Kirby, 2001, 2017; A. D. M. Smith,
2014; Kirby et al., 2014), our primary focus here, has gained
much from this gradual shift towards abstraction.

The iterated learning model captures the process of cul-
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(a) Cultural evolutionary explanations of language design.
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(b) Exponential sized hypothesis space.

Figure 1: Top: The explanandum is how the process of cul-
tural evolution of language leads to the properties of natu-
ral languages that we observe on an ecological scale (green
box). When those same language properties are observed
on a smaller scale as the outcome of iterated learning ex-
periments with human participants, this is taken to capture
something real about what happens over cultural evolution-
ary time (Tamariz & Kirby, 2016; Tamariz, 2017). Computa-
tional models are used to formally explain the cognitive and
evolutionary processes involved. Theories explain observa-
tions, so explanations can go from top to bottom in this fig-
ure, not from left to right. Toy-scale models, however, do
not obviously ecologically scale, due to combinatorial explo-
sions. Bottom: The search spaces involved in language learn-
ing are astronomical. For example, with signal-referent map-
pings (represented by the matrices) each mapping can exist

or not (two options). All possible combinations of mappings
leads to o#signals x#referents.

tural evolution, in which one learner (or generation of learn-
ers) acquires a behaviour by observing it in another individ-
ual, who has themselves acquired it in the same way (see Fig.
2). Computational modelling work using the iterated learn-
ing model has allowed researchers to investigate how the sys-
tematic structure that we observe in natural languages across
the world might have emerged as a result of the process of
cultural transmission (with learning being an integral part of
the process) in combination with pressures arising from com-
munication. This work has led to important insights about



the emergent properties of language that can arise purely as
a result of the process of cultural evolution, without having
to appeal to nativist explanations for where the systematic
structure we find in the world’s natural languages comes from
(Kirby, 2017; K. Smith, 2018).

Early computational work on the iterated learning model
used many different architectures for learning, including neu-
ral networks, exemplar learning, and symbolic grammar-
induction (see Kirby, 2017; A. D. M. Smith, 2014; Kirby
et al., 2014 for reviews). More recent work, however, has
favoured a Bayesian approach (from its first incorporation
in iterated language learning by Griffiths and Kalish, 2007).
For the purposes of the iterated learning model, the Bayesian
paradigm is doubly attractive: both for its traditional virtues,
i.e. an agnosticism over under-specified mechanisms, but
also the increase it brings in terms of transparency and in-
terpretability for a key feature of the iterated learning model,
i.e. a neat specification of innate learning biases, and a way
to explore their cumulative effects on the cultural evolution-
ary process (Kirby, 2017).

We focus our analysis on iterated learning models that use
Bayesian inference as the model of learning, as they represent
a useful abstraction over other models. We furthermore focus
on models that use signal-meaning mappings (i.e. a lexicon)
as the model of language. This is by no means the only type
of model of language that is used in iterated Bayesian lan-
guage learning models (see for example Thompson, Kirby,
and Smith, 2016, for more abstract characterisations of what
constitutes a language). However, we believe that those mod-
els that incorporate language at the level of signal-meaning
mappings (i.e. lexicons) consider core structural features of
natural language that cannot be captured on a more abstract

Language Learning

out of all possible languages
L1 L2 =+ Ln and given the

observed data, find the most
probable language: |;

Language
Learning

Language
Learning

Language Evolution

Figure 2: The iterated Bayesian language learning model sim-
ulates the cultural evolution of languages. Language Evolu-
tion consists of a transmission chain, where agents from one
generation produce utterances (output) that serve as data (in-
put) for the next generation. Thus, each agent learns their
language from data that was produced by (an)other agent(s),
who themselves learned their language in the same way. We
focus on Bayesian inference as a model of Language Learn-
ing, which consists of finding the language that is most prob-
able given the learner’s bias and the data they observed.
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level (Kirby et al., 2015; Brochhagen, Franke, & van Rooij,
2018; Woensdregt, Cummins, & Smith, 2020). Below, we
aim to formalize a common core of most language evolution
and learning models.

Computational-level model of language evolution

We formalize language evolution—qua iterated Bayesian lan-
guage learning—at the computational level with minimal as-
sumptions (Marr, 1982). This high level of abstraction has the
benefit of affording the analysis of computational complexity
in a mechanism agnostic manner (see next section) and relat-
ing our findings to different theories in terms of their intrinsic
computational resource demands. For example, if theory X
is a special case of theory Y, then the latter will require the
same amount of computational resources or more than the
first. That means that any theory of language evolution that
subsumes the theory we propose here will again minimally
require the same amount of computational resources or more.

In the formalization, we assume that, from one generation
to the next, cultural parents produce linguistic behaviour that
is learned from by the next generation. Learning consists of
finding the language and agent type from a hypothesis space
of possible languages and agent types that are most probable
given the learner’s observations and bias. We further add the
possibility for production error and a fitness function (see e.g.
Brochhagen et al., 2018; Woensdregt et al., 2020 for models
that combine Bayesian iterated learning with fitness-based se-
lection).

We model language as a mapping between a set of signals
S and a set of referents R, often called a lexicon (see e.g.
Brochhagen et al., 2018; Woensdregt et al., 2020). Agents
can be of any arbitrary type T (e.g. pragmatic communicators
vs. literal communicators; Brochhagen et al., 2018). We as-
sume here Bayesian agents, hence the production model takes
the form of a conditional probability distribution over signals
given a referent, lexicon and agent type Pr(s | ,/,z). Com-
bined with a production error function € € [0, 1]:

Pr(s | 5,) = {1 ¢

&
IS|—1

ifs,-:sj (1)

otherwise

The parents produce signals according to the following con-
ditional distribution:

Pr.(s|nlt) = Z Pr(s | s;)Pr(s; | r,1,t) 2)

si€S

Given a fixed production model, learners need to search the
hypothesis space H which consists of any combination of
agent type t € T and lexicon [/ € L possible. Here, the set
of all possible lexicons is defined implicitly by all logically
possible mappings from S to R. Parent agents a € A are de-
fined by a lexicon and agent type (/,¢#). Each parent has a
fitness f(a), and a list of referential intentions I, = (r,...)
with r € R each to be transmitted once to a subset of children
in the next generation.



Children ¢ € C have an individual learner bias Pr.(H) to-
wards (parts of the) hypothesis space. The parent agent’s fit-
ness f : A — Z determines how many learners from the next
generation will receive their output as input. The probability
of a child learning from cultural parent a € A is relative to the
parent’s normalized fitness:

Pr(a) = <Y )

ZaGA f((l)

If all agents in a generation have the same fitness, Pr(A) will
be a uniform distribution, leading to random pairings between
parents and children.

Borrowing notation from theoretical computer science,
we specify the computational-level models as functions (i.e,
input-output mappings; see van Rooij et al., 2019). Here, in-
put specifies all the information (internal or external) that is
relevant to the model (not to be confused with what counts
as input for an agent inside the model). We can now formal-
ize a computational-level model of one generation of cultural
language evolution as follows:

CULTURAL LANGUAGE EVOLUTION

Input: A set of signals S, referents R and agent types T'.
A production model Pr(s | r,,#). A population of parent
agents A, and a population of child agents C. For each
parent a € A a list of referential intentions I, = (r,...). A
production error function €, a fitness function f: A — Z
and for each child a learner bias Pr.(H).

Output: For each child ¢ € C a lexicon and agent type
(I.,t.) learned from a parent a = (,,t,) where a is sam-
pled from Pr(a):

(lest

lc c)
LANGUAGE LEARNING(S,R, T, Pr(s | r,1,t),Pr.(H),0,)

Here, O, denotes the signal-referent pairs transmitted
(but subject to production error) by the parent a (i.e.
what serves as observations to the child):

O, ={(s,r)|r e}

Here s is sampled from the production model
Pre(s | nls,ta).

CULTURAL LANGUAGE EVOLUTION assumed agents can
learn language. To complete the formalization, a model of
language learning is necessary.

LANGUAGE LEARNING

Input: A set of signals S, referents R and agent types
T. A production model Pr(s | r,/,¢) and a learner bias
Pr(H) = Pr(l,7). Finally, a set of transmitted signal-
referent pairs O = {(s,r),... }.

Output: A language and agent type (I,7) € H that max-
imizes the probability of all observations O being trans-
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mitted by a parent with lexicon / and type #:

Pe(l,t|0)= [] Pr(h|s,r)
(s,r)€0

o< H Pr(s | rl,1)Pr(l,t)

(s,r)€O

Computational complexity analyses

Using complexity-theoretical proof techniques (Arora &
Barak, 2009; van Rooij et al., 2019) we assessed the tractabil-
ity of LANGUAGE LEARNING and CULTURAL LANGUAGE
EVOLUTION. We adopt here the mathematical notion of NP-
hardness as formalisation of intractability in a mechanism
agnostic way. If an input-output mapping (e.g. function,
problem, or computational-level model) is NP-hard, then
there provably cannot exist any polynomial-time algorithm
for computing it (assuming the famous P % NP conjecture,
Fortnow, 2009). This means that every algorithm comput-
ing an NP-hard input-output mapping requires intrinsically
non-polynomial (e.g. exponential) time, which is generally
intractable for all but small (‘toy’) inputs for any mechanism
or process—natural or artificial—according to the Invariance
thesis (Frixione, 2001; Aaronson, 2005).

While (in)tractability claims in the cognitive science liter-
ature are often made based on intuitions, knowing whether or
not a problem is really intractable (NP-hard) requires mathe-
matical proof. This is especially important because intuitions
about intractability are regularly mistaken (van Rooij, Evans,
Miiller, Gedge, & Wareham, 2008; van Rooij et al., 2019).2
Below we state the main theorems derived from our compu-
tational complexity analyses using proof techniques such as
polynomial-time reductions. For details we refer the reader
to the online supplementary materials: https://osf.io/
bhjge/

Theorem 1. LANGUAGE LEARNING is NP-hard.

Theorem 1 establishes that LANGUAGE LEARNING cannot
be computed in polynomial time by any algorithm and hence
when its input size grows, the time needed to transform the in-
put to corresponding output grows to unrealistic proportions.

Theorem 2. LANGUAGE LEARNING is NP-hard even when
there is only one observation |O| = 1 and there is only one
agent type |T| = 1 and the learner bias Pr(H) is polynomial-
time computable and the production model Pr(s | r,1,t) is
polynomial-time computable.

Theorem 2 shows that LANGUAGE LEARNING cannot be
computed in polynomial time, even under severe restrictions.
This means that the hardness is not hiding in the production

2For instance, it may seem—since we are dealing here with
Bayesian models—that intractability is obviously implied by other
known results (Abdelbar & Hedetniemi, 1998; Chickering, 1996;
Kwisthout, Wareham, & van Rooij, 2011; Shimony, 1994). This in-
tuition would be mistaken however. The models analyzed here are
special cases of Bayesian inference. It is well-known that special
cases need not inherit the intractability of more generalized versions
of Bayesian inference, even though the converse does hold true.




model nor the learner bias. It also does not depend on the
number of observations nor the number of agent types. The
model is NP-hard because the exponentially sized hypothesis
space (see Fig. 1b and Footnote 1) cannot be searched effi-
ciently.

Corrolary 3. CULTURAL LANGUAGE EVOLUTION is NP-
hard.

Corollary 3 follows from Theorem 1 and the fact that LAN-
GUAGE LEARNING is an intrinsic part (i.e., sub-problem) of
CULTURAL LANGUAGE EVOLUTION. Hence, even trans-
forming one generation to the next requires unrealistic time.

Theorem 4. CULTURAL LANGUAGE EVOLUTION is NP-
hard even when there is only one referent transmitted per
parent Nycal|l,| = 1, and there is only one parent |A| =
1, one child |C| =1 and all the learner biases Pr.(H)
are polynomial-time computable and the production model
Pr(s | r,1,1) is polynomial-time computable.

Theorem 4 shows that CULTURAL LANGUAGE EVOLUTION
also cannot be computed in polynomial time, even under
severe restrictions. Because its intractability is caused by
LANGUAGE LEARNING being intractable, transforming one
generation to the next requires unrealistic computational re-
sources even for just one parent, one child, one transmitted
referent, and the intractability does not come (solely) from
the learner biases nor the production model.

Discussion

We have shown that the language learning of Bayesian agents
used in some cultural evolution models is intractable (Theo-
rems 1 and 2). Consequently, such models of cultural evolu-
tion of language are also intractable (Theorems 3 and 4). It is
well-known that intractable models cannot scale from toy do-
mains to situations of real-world complexity as they quickly
run out of computational resources (time and/or space) when
trying to do so (van Rooij et al., 2019). The intractability of
the models render it impossible to assess whether or not the
properties that evolve in simulations for small lexicons would
also evolve in simulations for large lexicons, since the latter
fundamentally cannot be run (see Fig. 3). We could take it
on faith that the models would produce the same qualitative
behaviour if they could somehow, magically, be simulated at
large scale. But rarely do we accept appeals to faith in sci-
ence. And even if it were true, still the models would not
explain how human language could have evolved those same
properties, since humans would not have had access to any
such magical processes. Either which way, there is something
importantly wrong with the models (c.f. Box’s, 1976, quote),
at least in this particular form. Before addressing what alter-
native form the models could take, and how that form may be
developed, let us first take a moment to address some objec-
tions that could be raised at this point.

First of all, one may object that we take the agent-based
models of language evolution too literally. While the agents
in these models may be ideal Bayesians, this idealisation is
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Figure 3: Intractability of a computational model implies the
impossibility of scaling due to prohibitive resource demands.
This means we do not (yet) have a sufficient computational
explanation of language evolution at the ecological scale. The
wall of intractability can only be broken down by identifying
constraints and conditions that render the computations pos-
tulated by the model tractable.

a mere tool (see e.g. Kirby, 2017): the modellers are not re-
ally assuming that humans are ideal Bayesians, only that they
can usefully be modelled “as if” they are (see also Chater and
Oaksford, 2000). This objection can be understood in various
ways, none of which actually serves to fend off the problem
of intractability (van Rooij, Wright, Kwisthout, & Wareham,
2018). For instance, “as if” may mean that humans do not
perform explicit and/or exact probabilistic calculations over
full probability distributions but at best approximate Bayesian
inferences using all kinds of quick and dirty heuristics that
evolution endowed them with (Lieder & Griffiths, 2020). The
intractability proofs (Theorems 1-4), however, apply to all
and any type of algorithm (implicit, heuristic, probabilistic or
otherwise) and problems that are intractable to compute ex-
actly are typically also hard to approximate well with limited
resources (Kwisthout et al., 2011).

Secondly, one may object that the dynamics and patterns
of results that have been found using iterated learning simula-
tions with Bayesian agents have been replicated using iterated
learning experiments with human participants (see Tamariz
and Kirby, 2016; Tamariz, 2017, for reviews), and also mirror
the patterns we find in natural languages across the world (see
Fig. 3 on how the toy-scale experiment ‘scales’ to ecological-
scale language evolution). One might argue that together this
can be taken as converging evidence, and inspires faith that
the computational models used to explain the toy-scale ex-
periment are capturing something real about language evolu-
tion at large. In response, we first want to stress that the aim
of this paper is by no means to in any way discredit the em-
pirical findings from experimental or observational research.
Neither do we wish to argue that the models are so ‘wrong’
as to be beyond repair. Our point is that intractability signals
that, in a quite fundamental way, the models are explanatorily
incomplete. As we discussed above and in Fig. 3, even if the
models of cultural evolution using Bayesian agents get many
of the details right (idealisation allowing), the models would
still not yet explain how human language could have evolved
these empirical properties, because no agent (natural or artifi-



cial) would be able to perform the requisite computation with
realistic resources for realistically sized languages.

Having dealt with these objections, we can return to the
question about how the models might be revised to make
them more explanatorily complete. We are presented with
three options: first, one might assume that humans do in-
deed have magical powers that allow them to perform com-
putations which are provably intractable under any realistic
model of computation (Aaronson, 2005; Tsotsos, 1990). We
doubt this option would be preferred by computational mod-
elers, who make an effort to avoid ‘just so’ stories and instead
endeavour to make concrete models and run simulations to
substantiate explanatory claims. So let’s quickly move on to
the second option, which is to throw away the entire model
and return to the drawing board. While this is, of course, al-
ways an option, we think there are reasons to disprefer it. For
one, the Bayesian agent-based models have proven empiri-
cal success, even if they are limited to toy domains, and it is
not clear that other models able to replicate these successes
would not run into the same wall of intractability. Moreover,
the Bayesian formalism has the virtue of being able to model
agents’ epistemic states and transitions while remaining ag-
nostic about the precise implementing mechanisms (Kirby,
2017). Given these considerations, the third option may be
preferred, which is to retain the idea (and functional form)
of Bayesian language learning but expand the model with ex-
plicit assumptions about constraints on the input domain that
can render Bayesian computations tractable.

Analogously to how research on the evolution of language
has sought to identify the constraints under which proper-
ties of language evolve, the third option tasks us to iden-
tify the constraints under which learning and evolution can
be computationally tractable. However, the methodology
for identifying constraints and verifying tractability is—as
we have demonstrated here—based on formal mathematical
proof techniques, not simulation or empirical observation.
While perhaps unconventional, the idea is easy to intuit: com-
putations that are intractable for the input domain in general
(e.g. all possible production models and all possible learner
biases), may be tractable for a constrained subset of the input
domain (Downey & Fellows, 2012). It is important to stress
once more that, in this area, formal proofs are the name of the
game: people’s intuitions regarding what makes a problem
easy or hard are often wrong. For example, one might think
that learning is tractable as long as the production model is
easy to compute, but Theorem 2 shows it is not. The good
news is that the techniques of parameterized complexity (see
e.g. Downey & Fellows, 2012; van Rooij et al., 2019) provide
us with a well-developed methodology to put our intuitions to
the test and prove tractability relative to constraints (so-called
fixed-parameter tractability). There is much to gain by mak-
ing constraints explicit and proving fixed-parameter tractabil-
ity. Practically, it would make it possible to simulate language
evolution at ecological scales. More importantly, these con-
straints would be explanatorily meaningful: they would ex-
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plain under which conditions language at the ecological scale
could have evolved at all.

Acknowledgments

We thank the anonymous reviewers for their invaluable feed-
back. Marieke Woensdregt was supported by a Dutch Organ-
isation of Scientific Research (NWO) grant 016.vidi.185.205
on ‘Elementary particles of conversation” awarded to her PI
Dr Mark Dingemanse. Todd Wareham was supported by
NSERC Discovery Grant 228104-2015. Iris van Rooij ac-
knowledges the support of a Distinguished Lorentz Fellow-
ship funded by the Netherlands Institute for Advanced Study
in the Humanities and Social Sciences (NIAS-KNAW) and
the Lorentz Center. Mark Blokpoel is supported by Nether-
lands Organization for Scientific Research (NWO) (Gravita-
tion Grant 024.001.006 of the Language in Interaction con-
sortium, Lil).

References

Aaronson, S. (2005). NP-complete problems and physical
reality. ACM Sigact News, 36(1), 30-52.

Abdelbar, A. M., & Hedetniemi, S. M. (1998). Approximat-
ing MAPs for belief networks is NP-hard and other theo-
rems. Artificial Intelligence, 102(1), 21-38.

Arora, S., & Barak, B. (2009). Computational complexity: a
modern approach. Cambridge University Press.

Barr, D. J. (2004). Establishing conventional communica-
tion systems: Is common knowledge necessary? Cognitive
science, 28(6), 937-962.

Blokpoel, M., van Kesteren, M., Stolk, A., Haselager, P.,
Toni, 1., & van Rooij, I. (2012). Recipient design in human
communication: Simple heuristics or perspective taking?
Frontiers in Human Neuroscience, 6.

Box, G. E. (1976). Science and statistics. Journal of the
American Statistical Association, 71(356), 791-799.

Brochhagen, T., Franke, M., & van Rooij, R. (2018). Coevo-
lution of Lexical Meaning and Pragmatic Use. Cognitive
Science.

Chater, N., & Oaksford, M. (2000). The rational analysis of
mind and behavior. Synthese, 122(1-2), 93-131.

Chickering, D. M. (1996). Learning Bayesian networks is
NP-complete. In Learning from Data: Al and Statistics, V
(pp- 121-130). Springer.

Downey, R. G., & Fellows, M. R. (2012). Parameterized
Complexity. Springer Science & Business Media.

Fortnow, L. (2009). The status of the P versus NP problem.
Communications of the ACM, 52(9), 78-86.

Frixione, M. (2001). Tractable competence. Minds and Ma-
chines, 11(3), 379-397.

Griffiths, T. L., & Kalish, M. L. (2007). Language evolu-
tion by iterated learning with bayesian agents. Cognitive
Science, 31, 441-480.

Kirby, S. (2001). Spontaneous evolution of linguistic
structure-an iterated learning model of the emergence of
regularity and irregularity. IEEE Transactions on Evolu-
tionary Computation, 5(2), 102-110.



Kirby, S. (2017). Culture and biology in the origins of lin-
guistic structure. Psychonomic Bulletin and Review, 24(1),
118-137.

Kirby, S., Griffiths, T., & Smith, K. (2014). Iterated learning
and the evolution of language. Current Opinion in Neuro-
biology, 28, 108-114.

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015).
Compression and communication in the cultural evolution
of linguistic structure. Cognition, 141, 87-102.

Kwisthout, J., Wareham, T., & van Rooij, I. (2011). Bayesian
intractability is not an ailment that approximation can cure.
Cognitive Science, 35(5), 779-784.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational anal-
ysis: Understanding human cognition as the optimal use
of limited computational resources. Behavioral and Brain
Sciences, 43, el.

Marr, D. (1982). Vision: A computational investigation into
the human representation and processing of visual infor-
mation. San Francisco, CA: W.H. Freeman.

Nowak, M. A., Plotkin, J. B., & Krakauer, D. C. (1999).
The evolutionary language game. Journal of Theoretical
Biology, 200(2), 147-162.

Rich, P, Blokpoel, M., de Haan, R., & van Rooij, I. (2020).
How Intractability Spans the Cognitive and Evolutionary
Levels of Explanation. Topics in Cognitive Science, 12(4),
1382-1402.

Shimony, S. E. (1994). Finding maps for belief networks is
np-hard. Artificial intelligence, 68(2), 399-410.

Skyrms, B. (2010). Signals: evolution, learning, & informa-
tion. Oxford University Press.

Smith, A. D. M. (2014). Models of language evolution and
change. Wiley Interdisciplinary Reviews: Cognitive Sci-
ence, 5(3), 281-293.

Smith, K. (2018). How Culture and Biology Interact to Shape
Language and the Language Faculty. Topics in Cognitive
Science.

Steels, L. (2003). Evolving grounded communication for
robots. Trends in Cognitive Sciences, 7(7), 308-312.

Tamariz, M. (2017). Experimental Studies on the Cultural
Evolution of Language. Annual Review of Linguistics, 3(1),
389-407.

Tamariz, M., & Kirby, S. (2016). The cultural evolution of
language. Current Opinion in Psychology, 8, 37-43.

Thompson, B., Kirby, S., & Smith, K. (2016). Culture shapes
the evolution of cognition. PNAS, 113(16), 201523631.

Tsotsos, J. K. (1990). Analyzing vision at the complexity
level. Behavioral and Brain Sciences, 13(3), 423-445.

van Arkel, J., Woensdregt, M., Dingemanse, M., & Blokpoel,
M. (2020). A simple repair mechanism can alleviate com-
putational demands of pragmatic reasoning: Simulations
and complexity analysis. In Proceedings of the 24th Con-
ference on Computational Natural Language Learning (pp.
177-194).

van Rooij, I., Wright, C. D., Kwisthout, J., & Wareham, T.
(2018). Rational analysis, intractability, and the prospects

215

of ‘as if’-explanations. Synthese, 195(2), 491-510.

van Rooij, 1., Blokpoel, M., Kwisthout, J., & Wareham, T.
(2019). Cognition and intractability: A guide to classical
and parameterized complexity analysis. Cambridge Uni-
versity Press.

van Rooij, 1., Evans, P., Miiller, M., Gedge, J., & Wareham,
T. (2008). Identifying sources of intractability in cognitive
models: An illustration using analogical structure mapping.
In Proceedings of the 30th Annual Conference of the Cog-
nitive Science Society (Vol. 30, pp. 915-920).

van Rooij, 1., Kwisthout, J., Blokpoel, M., Szymanik, J.,
Wareham, T., & Toni, I. (2011). Intentional communi-
cation: Computationally easy or difficult? Frontiers in
Human Neuroscience, 5.

Woensdregt, M., Cummins, C., & Smith, K. (2020). A com-
putational model of the cultural co-evolution of language
and mindreading. Synthese.



