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Occipital-temporal cortical tuning to
semantic and affective features of natural
images predicts associated behavioral
responses

Samy A. Abdel-Ghaffar 1,2, Alexander G. Huth3, Mark D. Lescroart4,
Dustin Stansbury5, Jack L. Gallant 1,5,6 & Sonia J. Bishop 1,6,7,8

In everyday life, people need to respond appropriately to many types of
emotional stimuli. Here, we investigate whether human occipital-temporal
cortex (OTC) shows co-representation of the semantic category and affective
content of visual stimuli. We also explore whether OTC transformation of
semantic and affective features extracts information of value for guiding
behavior. Participants viewed 1620 emotional natural images while functional
magnetic resonance imaging data were acquired. Using voxel-wise modeling
we show widespread tuning to semantic and affective image features across
OTC. The top three principal components underlying OTC voxel-wise
responses to image features encoded stimulus animacy, stimulus arousal and
interactions of animacy with stimulus valence and arousal. At low tomoderate
dimensionality, OTC tuning patterns predicted behavioral responses linked to
each image better than regressors directly based on image features. This is
consistent with OTC representing stimulus semantic category and affective
content in a manner suited to guiding behavior.

The ability to recognize and respond appropriately to emotionally
salient stimuli is essential to a species’ evolutionary success. Adaptive
responses to dangerous situations carry a survival advantage, while
identification of potential mates and protection of offspring facilitates
reproductive success. Optimal behavior is likely to extend beyond the
simple choice to approach or avoid and to entail selection from a
complex range of alternate behaviors1. For example, encountering a
large bear versus a weak, diseased, animal should promote different
types of avoidance responses, while conspecific infants and potential
mates should prompt different types of approach response. We know
relatively little about theneuralmechanisms that facilitates these types
of behavioral choices. Activation to emotional stimuli has been

reported across a variety of brain regions including the amygdala,
medial and lateral regions of frontal cortex as well as occipital and
superior temporal cortex2–11. Here, we focus on the potential functional
role of occipital temporal cortical regions in the representation of, and
response to emotional natural stimuli. Within occipital temporal cor-
tex, different sub-regions have long been known to preferentially
respond to various subcategories of animate and inanimate stimuli,
including faces, bodies, places and objects12–18. In recent years, it has
beenproposed thatdifferential representationof distinct categories of
objects and scenes in ventral occipital areas might be linked to their
function and behavioral affordances as well as to their visual form19–21.
This has been supported by findings from multi-modal object
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recognition studies and categorization studies in congenitally blind
participants19,20,22. Importantly, however, much of this work has largely
focused on inanimate stimulus categories such as tools or navigable
locations21,23,24.

If behavioral affordances inform representation of objects and
scenes in OTC, integrated representation of stimulus semantic and
affective features might arguably be a logical sequala. For example, if
we encounter a snake or cockroach in our vegetable garden, it might
be beneficial not only to register a negative affective response but to
access semantic information linked to the category of species
encountered, for example, as to whether it might be poisonous (rep-
tiles) or disease-carrying (insects). This in turn might facilitate our
response. We hence set out to investigate whether there is evidence
for integrated representation of stimulus semantic category and
affective features within occipital temporal cortex and to test
whether the information represented might be suitable for guiding
behavioral responses. Finally, we were also interested in whether co-
representation of semantic category and affective features varies as a
function of stimulus animacy.

To address these questions, we adopted a voxel-wise multi-fea-
ture encoding model framework developed within the visual neu-
roscience literature25–28. Used in conjunction with functional magnetic
resonance imaging (fMRI), presentation of a large diverse emotional
natural image stimulus set, and acquisition of participant-specific rat-
ings of stimulus valence and arousal, thismodeling framework enabled
us to investigate tuning to image semantic category and affective
information at a single voxel level across OTC. Our findings revealed
representation of natural image semantic category and affective fea-
tures acrossmuch ofOTC. Principal components analysis of voxel-wise
feature weights indicated that many OTC voxels are co-tuned to
semantic and affective information. Considering the first three com-
ponents alone, we found co-representation of image animacy and
valence as well as image animacy and arousal. Scores on these three
components explained 20% of the variance in novel subjects’ selection
of behavioral responses to match image content (e.g. the response
‘retreat from’might be selected for an image of a snarling dog). Using
scores on the first twenty components explained 40% of variance in
novel subjects’ selection of behavioral responses across images. This
prediction of behavioral responses from OTC components based on
tuning to both semantic category and affective image features sig-
nificantly exceeded that achieved using OTC tuning to low-level
structural image properties or semantic category or affective features
alone. It also significantly exceeded the variance explained by com-
ponents from PCA performed directly on stimulus features, across
images viewed. This is consistentwithOTC showing augmented tuning
to those image semantic and affective properties that are of value to
guiding behavior.

Results
Using a multi-feature encoding modeling approach to investi-
gate representation of natural image semantic and affective
features
Our experimental stimuli comprised 1620 images varying widely in
semantic category and affective content. We labeled each image for
features of interest (see Methods for details). Using ridge regression,
we fit multi-feature encoding models to the functional magnetic
resonance imaging (fMRI) data acquired while subjects viewed the
images (see Methods and Fig. 1a). We tested alternate models by
changing the features included as regressors. To have sufficient sta-
tistical power to fit the multi-feature encoding models used required
the acquisition of a large amount of fMRI data per subject. The six
subjects in our study each completed fifty fMRI scans across six 2 h
sessions. Thirty training scans, each 7.5min long, were used for model
estimation, and twenty test scans, each 6min long, were used for
model validation. Images were presented at the center of the screen

and viewed for 1 s each, with a 3 s inter-stimulus interval. Subjects
either categorized the valence (negative, positive, neutral) or the
broad semantic category (human, animal, food, object, building
/scene) of each image.We used these twodifferent tasks to ensure that
cortical tuning to stimulus affective features was not only observed
when task-relevant29,30. Subjects who performed the semantic cate-
gorization task in the scanner subsequently categorized the images by
valence in a post-scan behavioral session. All subjects also rated the
images for emotional arousal in this post-scan session (see Methods
for details and Fig. S1 for the percentage of images falling within each
valence by arousal bin for each participant).

Mapping tuning to semantic and affective image features
across cortex
Our primary model, the Combined Semantic, Valence and Arousal
(CSVA) model (Fig. 1b), describes each image using a combination of
mutually exclusive semantic categories, subjects’ subjective valence
and arousal judgments, and a number of additional semantic-emotion
(SE) compound features conveying both semantic and affective
information (e.g. ‘rotten food’, ‘mutilated human’), see Methods for
details. FMRI data from the model estimation runs were concatenated
and ridge regressionused tofit theCSVAmodel to each subject’s BOLD
data using a finite impulse response function with four 2 s time-bins.
Voxel-wise weights were estimated for each model feature for each
time-bin. These weights were applied to the values of feature regres-
sors for the images viewed during the validation scans, generating
predicted BOLD time-courses for each voxel. We correlated these
predicted time-courses with the observed validation BOLD time-
courses to obtain estimates of model prediction accuracy for each
voxel (see Methods for further details). Figure 2a shows the resulting
prediction accuracies projected onto the cortex of each individual
subject. These cortical maps reveal that the CSVA model significantly
predicts validation BOLD time-courses across a wide stretch of OTC.
Figure 2b shows a close up of OTC for one example subject. Figure S2
shows the areas of cortex where the CSVAmodel outperforms a Gabor
model which captures low level differences in image structure. It can
be seen that the latter performs better in V1-V4 but the CSVA model
outperforms the Gabor model outside of these retinotopic visual
areas. As an additional control analysis, we regressed out variance in
the BOLD data that could be explained by respiration or pulse-
oximetry measures (see Supplementary Information). There was
minimal change in prediction accuracies (Fig. S3).

In principle, the CSVAmodel could significantly fit subjects’ BOLD
data simply as a result of BOLD responses to image semantic or
affective features alone. One of the advantages of the voxel-wise
modeling framework employed is that this can easily be explored.
Specifically, we compared the fit of the CSVA model against that of a
model containing only the semantic category features from the CSVA
model (the Semantic Only model) as well as against that of a model
containing only the valence and arousal features (the Valence by
Arousal model). Each of these simpler models was fit to the estimation
data, the validation data was then used to calculate voxel-wise pre-
diction accuracies in the same manner as for the CSVA model. A
bootstrap procedure was used to compare CSVAmodel fit against that
of each of the other two models (see Methods for details). Model
comparison was restricted to voxels where at least one of the three
models showed a significant fit (see Table S1 for voxel counts per
subject). Results revealed that the CSVA model outperformed the
Valence by Arousal model at a group level and for all six subjects
considered individually (ps< 0.05), Fig. S4. The CSVA model also
outperformed the Semantic Onlymodel at the group level and for four
out of six subjects considered individually (ps <0.05). CSVA model
superiority to the Semantic Only model was apparent in stretches of
OTC adjacent to, and overlapping with, regions with known semantic
selectivity including the Occipital Face Area (OFA), Fusiform Face Area
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(FFA), posterior superior temporal sulcus (pSTS) and extra-striate
body area (EBA), Fig. S5.

A convergent approach to the model comparison procedure
described above is provided by variance partitioning. This technique
estimates the variance explained by different elements of the CSVA
model for each voxel (see Supplementary Methods: Variance Parti-
tioning). Figure S6 shows CSVA model prediction accuracies for each
subject after variance explained by semantic category features or
affective (valence by arousal) features is partitioned out. It can be seen
that many of the voxels responsive to the full CSVA model still show
significant prediction accuracies when only variance explained by
semantic category by affective feature interactions and the influence
of modifiers (rotten, mutilated etc.) used to create compound
semantic-emotion (SE) features is retained.

We further examined whether coding stimulus affective features
differentially improvedmodel fit for animate versus inanimate stimuli.
This enables us to address the question of whether co-tuning to image
semantic and affective features in OTC is observed for animate stimuli
only, or both for animate and inanimate stimuli. We investigated this
by adapting the Semantic Only model such that either animate

semantic category regressors or inanimate semantic category regres-
sors were replaced by regressors coding for semantic category,
valence and arousal, Fig. 3a. The same cortical mask was used as for
comparison of the CSVAmodel against the Semantic Only and Valence
by Arousal models, as described above. Across all participants, we
observed a significantly greater increase in prediction accuracies
relative to the Semantic Only model baseline when coding of affective
features (i.e. participants’ subjective valence and arousal ratings) was
added for animate as opposed to inanimate stimuli, Fig. 3b. Many of
the voxels that showed this pattern were located within OTC, Fig. S7.
Buildingupon these initialfindings,we applied PCA toCSVAvoxel-wise
feature weights to further examine the structure of voxel-wise tuning
to stimulus animacy, valence and arousal within OTC. We report these
analyses next.

PCA on CSVAmodel feature weights reveals consistent patterns
of OTC tuning to stimulus animacy, valence and arousal across
subjects
The voxel-wise modeling approach adopted enables us to go beyond
simply assessingmodel fit and to interrogate voxels’ response profiles,

Fig. 1 | The modeling procedure and the CSVA model. a BOLD data collected
while subjects viewed 1440 images were used for model estimation. Ridge
regression was adopted to fit each model to the BOLD time-series for each voxel,
using a finite impulse response function with four 2 s time-bins. Weights were
estimated for each model feature for each time-bin. These weights characterize
each voxel’s response profile or ‘tuning’ to model features. Model validation was
conducted using independent fMRI data collected while subjects viewed 180 novel
images. Voxel-wise feature weights were used to generate a predicted time-series
for each voxel. This was correlated with the recorded BOLD time-series to obtain a
metric of model fit that controls for over-fitting, see Methods for details. b The
Combined Semantic, Valence and Arousal (CSVA) model comprises 126 mutually

exclusive features denoting image semantic category (21 categories), valence (3
levels) and arousal (2 levels) and 18 additional semantic-emotion (SE) compound
features that carry both semantic and affective information (e.g. mutilated human;
rotten food), see Methods for further details. Image semantic category and SE
features were labeled by four independent raters; image valence and arousal were
assessed by each subject, see Methods for further details. Here, five example
images are labeled with CSVA features. Due to copyright reasons, the images from
our database have been replaced with similar images where the photographer, and
subject when relevant, have provided consent for the image to be used and pub-
lically shared. See table S4 for source & licensing details.
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Fig. 3 | Cortical tuning to stimulus affective content is greatest for animate
stimuli. a We examined the extent to which including the valence and arousal of
either animate or inanimate stimuli improved model fit over and above modeling
semantic category information alone. To investigate this, we constructed two
additional models. The Semantic with Valence by Arousal for Animate Stimuli
(SVAA) model includes features for each semantic category, but only stimuli
belonging to animate semantic categories are also labeled for valence and arousal.
The Semantic with Valence by Arousal for Inanimate Stimuli (SVAI) model includes
features for each semantic category, but here only stimuli belonging to inanimate
semantic categories are labeled for valence and arousal. b Model comparison was
performed using the same cortical mask as for comparison of the CSVA model
against the Semantic Only and Valence by Arousal models. This plot shows the

percentage of voxelswhere the SVAAand SVAImodels, respectively, outperformed
the Semantic Only model, +/- SEM calculated across bootstrap samples. Data are
presented separately for each individual subject. The number of voxels included in
this analysis were as follows: subject 1 n = 6777, subject 2 n = 6450, subject 3
n = 5483, subject 4 n = 6596, subject 5 n = 6580, subject 6 n = 6618 (see Methods
and Table S1). For all six subjects, labeling valence and arousal features for animate
images improved model fit to a greater extent than labeling valence and arousal
features for inanimate images (* significant at p =0.05, two-tailed confidence
interval test with SEM calculated via 1000-resample bootstrap test). Using separate
estimation and validation datasets penalizes the inclusion of additional regressors
that capture noise as opposed to genuine signal in the data. This is likely to explain
the poorer performance of the SVAI model relative to the Semantic Only model.
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Fig. 2 | CSVAmodelvoxel-wisepredictionaccuracy scoresmappedontocortex.
a Voxels where activity was significantly predicted by the Combined Semantic,
Valence and Arousal (CSVA) model are shown on cortical maps for all 6 subjects.
For each voxel, prediction accuracies were calculated using the z-transformed
correlation between the CSVA model predicted time-course and the recorded
BOLD time-course for the validation dataset. Significance was assessed by permu-
tation testing, see Methods for details. The CSVA model significantly predicts
validation BOLD time-courses across much of OTC. This was consistently observed
across subjects. b Prediction accuracy scores for subject 1; the cortical map is

cropped (top) to zoom in on OTC. In addition, prediction accuracy scores are
projected onto inflated lateral (bottom left) and ventral (bottom right) cortical
surfaces. Note: Regions of interest (ROIs) are labeled in white, sulci in black. RSC
Retrosplenial Complex, OPAOccipital Place Area, LO Lateral Occipital cortex, pSTS
Posterior Superior Temporal Sulcus, EBA Extrastriate Body Area, OFA Occipital
FaceArea, FFAFusiformFaceArea, PPAParahippocampal PlaceArea,ATFPAnterior
Temporal Face Patch. IPS Intraparietal Sulcus, STS Superior Temporal Sulcus, ITS
Inferior Temporal Sulcus, CoS Collateral Sulcus.
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i.e. their ‘tuning’, to different stimulus features. The CSVA model
includes over 100 features. As a result, it is unwieldy to examine and
interpret spatial patterns of tuning for each individual feature. Instead,
we can seek to identify the main structure underlying similarities and
differences in feature response profiles, across voxels. This can be
achieved by applying principal components analysis (PCA) to model
feature weights across a given set of voxels28.

We first conducted a group-level PCA on CSVA model feature
weights across OTC voxels where the CSVA model fit significantly and
predicted validation BOLD time-series better than the Semantic Only
model, see Methods for details. (We note that expanding voxel selec-
tion to include all cortical voxelswhere theCSVAmodelfit significantly
produced ahighly similar PCA solution, rs >0.95 for loadings of the top
three group PCs, as did excluding voxels that fell within early visual
cortex (EVC), rs>0.99 for loadings of top three group PCs, see Sup-
plementary Information, Fig. S8, Fig. S9). Each of the top three PCs
from the group-level PCA accounted for significantly more variance
than could be explained by covariance between stimulus features
alone (Fig. 4A), see Methods.

To examine consistency in PC loadings across subjects, we per-
formed leave-one-out cross validation. Here, we conducted PCA on a
given participant’s data and extracted the top three PCs. We then
correlated the PC loadings, across features, with those of the top three
PCs obtained fromagroup level PCA conductedwith the data from the
given participant left out. Significance was calculated via a permuta-
tion test (see Methods). This revealed that the top three PCs for each
subjectwere significantly correlatedwith those of the remaining group
indicating high consistency in the structure of OTC tuning to CSVA
model features across subjects (Fig. 4B, Table S2). We note that this
holds for all subjects, including subjects 2 and 4 who categorized
images semantically while fMRI data were acquired (see Methods).

We explored OTC co-representation of stimulus animacy, valence
and arousal by comparing the feature loadings of the top three group
PCs to those of seven dimensions of theoretical interest (Fig. 5). The
first of these ‘theoretical’ dimensions comprised a previously adopted
4-level index of animacy (human, other mammal, non-mammalian
vertebrate/invertebrate, and inanimate18). The second comprised a
binary index of whether image content was animate or inanimate. The
third indexed whether humans were present in each image or not. The
remaining four dimensions separately indexed the valence and arousal
of animate and inanimate stimuli (seeMethods for further details). We

correlated the feature loadings of these theoretical dimensions with
those of the three group PCs; this provides ameasure of howwell each
theoretical dimension explains the information carried by each PC.
Bootstrapping was used to determine correlation significance at
p <0.05 (see Methods for further details). This correlational analysis
revealed that PC 1 represented both stimulus animacy and stimulus
arousal (Fig. 5). PC 2 primarily represented the arousal value of ani-
mate, but not inanimate, stimuli. PC 3 represented the valence of
animate, but not inanimate, stimuli. Both PC2 and PC3 also carried
information about animacy in general, though more weakly than PC1.

To visualize the spatial structure of tuning captured by these PCs,
we projected voxel-wise PC scores onto maps of OTC for each subject
(Fig. 6, Fig. S10, Fig S11). Thesemaps showclear hemispheric symmetry
in voxel-wise feature tuning across OTC; they also reveal commonal-
ities in spatial transitions in tuning across subjectswith distinct cortical
patches responding selectively to particular parts of the space cap-
tured by the top 3PCs. To further explore this tuning, we projected
individual features into the space defined by the top 3PCs. This pro-
jection is illustrated in Fig. 6b, here we focus on those parts of the PC
space to which there is a strong response as shown in Fig. 6a.

We conducted a number of additional control principal compo-
nents analyses. First, we sought to ensure that PC feature loadings did
not simply reflect low-level image structure. To address this,wefitted a
Gabor model to the estimation data and regressed out the variance
explained before fitting the CSVAmodel to the residuals (seemethods
and supplementary information). PCA of the resulting CSVA model
featureweights, across voxels, revealedminimal change in PC loadings
in non-EVC OTC (rs >0.97, see Fig. 7a–c). As expected, in EVC con-
trolling for variance explained by the Gabor model changed CSVA
feature weights and PC loadings to a somewhat greater extent (see
Fig. 7d–f).

Given the role commonly ascribed to OFC in coding stimulus
affective value31–34, we also conducted PCA of CSVA model feature
weights across voxels in OFC and non-OFC frontal cortex (see sup-
plementary information for frontal ROI definitions and PCA details).
For each of these frontal regions, only the top two PCs showed good
consistency across subjects (see Fig. S12) and there was much less
consistent organization of the spatial structure of voxel-wise PC scores
both within and across participants (Fig. S13, Fig S14). This is poten-
tially consistent with theories according to which frontal cortical tun-
ing shows highwithin and between subject flexibility in representation

Fig. 4 | Results of PCA on CSVAmodel feature weights, across OTC voxels. A A
group-level principal components analysis (PCA) was conducted on CSVAmodel
feature weights across all OTC voxels where model fit was significant and better
than that of the SemanticOnlymodel. The scree plot shows the amount of variance
explainedby eachof the top ten PCs (in red). PCs froma PCA analysis conducted on
stimulus features (using the combined designmatrix from all 6 subjects) are shown
in black. Asterisks indicate group PCs that explain significantly more variance than
the stimulus PCs (one-tailed jackknife test, *p =0.03, this is the smallest possible p
value given the jackknife test used), see Methods for details. B Results of a leave-

one-out cross validation analysis of the similarity in feature loadings between
individual subject PCs and group PCs. The correlation matrix presented gives the
correlationof feature loadings for the top three PCs extracted fromPCAconducted
on each individual subject’s data and the top 3 PCs from the group-level PCA
conducted on the data from all remaining subjects. All correlations shown are
significant at p < 1E-8 (assessed by one-tailed permutation tests) except for subject
6 PC 1 where p =0.0065, see Table S2). This indicates a shared representational
structure across subjects.
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to take into account current task goals and changes in stimulus value
across time and between contexts29,30,32–35.

OTC tuning to emotional natural images predicts behavioral
responses
Of central interest to uswas the question ofwhetherOTC tuning to the
affective and semantic features of emotional natural visual images
might be able to guide selection of behavioral responses in a manner
that goes beyond a simple approach-avoidance dichotomy. To address
this, we asked a separate set of subjects recruited via Amazon’s
Mechanical Turk to select behavioral responses appropriate to the
content of each image viewed by our fMRI subjects (see Methods for
details). The frequency with which each image was associated with a
given behavioral response was calculated (Fig. 8). We examined the
extent to which OTC tuning to affective and semantic stimulus fea-
tures, as captured by CSVA model group PC scores, predicted these
behavioral responses, across images. We varied the number of PCs
used from 1 to 21. We capped the number of components used to
predict behavior at 21 to facilitate comparison with the Semantic Only
model (given this latter model’s fewer features, this was the maximum
number of PCs). Each image was given a score for each PC that
represented the product of its features by feature loadings for that PC.
These scores were used to predict out of sample behavioral responses
across images (see Methods for details). The extent to which beha-
vioral responses linked to each image were correctly predicted
increasedwith thenumber ofCSVAmodel PCs entered. Inotherwords,
as we included more dimensions of variance in OTC tuning to CSVA
model features, we explainedmorevariance in behavioral responses to
the images viewed. The top 3 PCs alone accounted for 20% of
explainable variance in behavioral responses across images, the top 10
PCs approximately 30%, and the top 20 roughly 40%. Notably, this
performance was superior to that achieved using components from
PCA conducted directly on CSVA features, across stimuli, Fig. 9a. This

indicates that OTC organizes representation of stimulus semantic and
affective features in a manner that increases mapping to potential
behavioral responses at low tomedium levels of dimensionality. This is
consistent with the hypothesis that the structure of OTC tuning to
semantic and affective features might be suitable to support selection
between alternate approach and avoidance behaviors.

We next sought to determine whether OTC tuning to image
semantic and affective features as captured by the CSVA model pre-
dicted behavioral responses significantly better than OTC tuning to
low-level image structure. To accomplish this, we fit a Gabor model to
OTC BOLD time-courses (see Methods for details), conducted PCA on
Gabor model weights across significantly predicted voxels and used
the top 1–21 of these PCs to predict behavioral responses to each
image. Figure 9B shows that OTC tuning to emotional images as cap-
tured by Gabor model PCs explained significantly less variance in
behavioral responses than that captured by CSVA model PCs (ps <
0.05). This indicates that OTC extraction of low-level structural image
properties alone is unlikely to provide a basis for guiding behavior to
emotional stimuli. Additional regression analyses revealed that the
maximal performance of the Valence by Arousal model (at 6 PCs) and
the Semantic Onlymodel (at 21 PCs) was also significantly poorer than
that of the CSVA model using an equivalent number of PCs, ps <0.05,
Fig. 9B. Here, as for the Gabor model, PCA was conducted on model
weights across all OTC voxels where the model in question showed a
significant fit. Taken together these results reveal that OTC repre-
sentation of affective and semantic stimulus features predicts beha-
viors selected in response to the stimulus in question more efficiently
than either the same information before transformation by OTC or
OTC tuning to semantic category or affective information alone or to
low-level structural features.

It has been argued that our responses to threat-related stimuli
might be especially evolutionarily conserved. The information used to
select between avoidance behaviors might hence differ in nature to

Fig. 5 | Top three dimensions underlying OTC tuning to semantic and affective
image features carry information about stimulus animacy and its interactions
with stimulus arousal and stimulusvalence.Agroup-level PCAwasconductedon
CSVA model feature weights across OTC voxels (see Fig. 4). Feature loadings
(n = 144) on the top three PCs were correlated, using Pearson’s r, with feature
loadings on theoretical dimensions of interest. Bootstraping was used with 5000
resamples to perform one-tailed significance tests of correlation coefficients. Bars
show Pearson correlation coefficients (r) +/- sd calculated from bootstrap samples
for each of the top three PCs (left to right) against each theoretical dimension

(y axis). Saturated color and * indicates correlations significant at p <0.05, trans-
parent colors indicate correlations that are not significant. PC1 carries information
about stimulus animacy and the arousal value of both animate and inanimate sti-
muli. PC2 carries information about the arousal of animate stimuli; PC3 carries
information about the valence of animate stimuli. PC2 and PC3 also show some
tuning to animacy in general, though more weakly than PC1. Note. Theoretical
dimensions: arousal is coded as high (+1) or low (0), valence is coded as positive (1),
neutral (0), negative (−1), see Methods for details.
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that used to select between approach behaviors. We addressed this by
conducting two further analyses that examined prediction of beha-
viors restricted to approach behaviors only or avoidance behaviors
only. The results are given in Figure S15. Across the first ten principal
components, OTC tuning toCSVAmodel features continued to explain
more variance in behavioral responses than components from PCA
conducted directly onCSVA features, this was seen all thewayup to 20
components for approach behaviors. OTC tuning to CSVA models
features also continued toperformbetter thanOTC tuning to semantic
categories only or to low-level structural features in predicting beha-
vior. The one notable difference was that, for avoidance behaviors,
OTC tuning to affective features alone (i.e. as captured by the valence

by arousal model) substantially outperformed all other models in
predicting behavior including OTC tuning to the full CSVA model.

As an additional control analysis, we excluded three of the
response categories that arguably do not require explicit behavioral
responses (be supported by, empathy for suffering, empathy for joy).
Excluding these categories had minimal impact on the findings
(Fig. S16). We also conducted two final analyses to quantify chance
prediction performance (permuting behavioral responses across
images) and to estimate an upper bound of prediction of behavioral
ratings across images. For the latter, we conducted PCA on the beha-
vioral ratings themselves to examine how much variance is explained
by the first component, first two components etc (Fig. S17).

Fig. 6 | Structure of OTC tuning as captured by PCA on CSVA model feature
weights. a Mapping PC scores from the group-level PCA of CSVA model feature
weights, across OTC voxels, reveals considerable spatial structure in tuning to the
top three PCs. Maps for two representative subjects (S1 and S2) are shown (see Fig.
S10 for maps from all subjects). Voxel-wise PC scores were calculated as the pro-
duct of CSVA model feature weights for a given voxel by feature loadings for each
PC. A RGB color space is used; red=scores on PC1, green=scores on PC2, blue=-
scores on PC3. PC scores are thresholded at 6 standard deviations above and below
0, with values beyond the threshold given the maximal (or minimal) color channel
value. Areas where MRI data were not acquired are shown in black. Both voxels

where the CSVAmodel did not fit significantly and those where the CSVAmodel fit
significantly but did not outperform the semantic only model were excluded from
the PCA (these voxels are shown in gray). PCA maps using CSVA model feature
weights from all voxels where the CSVAmodel fit significantly are given in Fig. S11.
b Individual features are projected into the 3-dimensional space defined by the top
three PCs, focusing on those parts of the space to which there is a strong response
as shown in Fig. 6a. The first column ‘color’ shows the location in PC space using the
sameRGBcolor spaceas in Fig. 6a. The second column ‘features’ shows the features
with loadings on the top three PCs that correspond to that location in PC space.
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Discussion
Evolutionarily, survival is linked to optimal matching of approach
and avoidance behaviors to stimuli encountered in the world around
us. Here, we considered the possibility that selection between such
behaviors might be facilitated by combined representation of sti-
mulus semantic information and affective value. We investigated
whether humanOTC shows such combined representation and if this
representation might be of a nature able to guide behavioral
responses to a wide range of natural emotional visual stimuli. Voxel-
wise modeling of fMRI data collected while subjects viewed over
1600 emotional natural images revealed that many OTC voxels show
combined representation of stimulus semantic category and affec-
tive value with this being most apparent for animate stimuli. A
separate group of subjects selected behavioral responses that best
matched image content. Regression analyses revealed that OTC
tuning to semantic and affective stimulus features, as captured by
PCA on CSVA voxel-wise model weights significantly predicted
behavioral responses, across images. At low to medium levels of
dimensionality, the amount of variance explained significantly
exceeded that achieved when PCA was performed directly on
semantic and affective stimulus features, across images viewed, i.e.
before the information carried by these features was transformed by
OTC. It also significantly exceeded that explained by OTC tuning to
semantic category or affective featuresmodeled alone as well as that
explained by OTC tuning to low-level structural image features.

Within OTC, the presence of stretches of cortex with preferential
tuning to different subtypes of animate and inanimate stimuli is well
established12–18. It has been argued that representation of object and

scene categories in OTC may carry information linked to stimulus
behavioral affordances19–21. In addition, several studies have reported
evidence that stimulus affective value is represented within OTC8–11.
Here, we built on these literatures to ask whether there is cor-
epresentation of stimulus semantic category and affective information
within OTC and whether this representation is suited to enabling
selection between alternate avoidance and approach behaviors. Our
findings were consistent with co-representation of semantic category
and affective information at a voxel-wise level within OTC, with coding
of both stimulus valence and arousal for animate stimuli and some
more limited coding of stimulus arousal for inanimate stimuli. Voxels
sensitive to this informationwere found in stretches of cortex adjacent
to areas with well-characterized selectivity to different categories of
stimuli, notably neighboring FFA, EBA and pSTS. Within these well-
characterized areas, semantic selectivity might have developed to
facilitate navigationof our social environments.Our current results are
consistent with selective tuning to semantic categories in adjacent
regions being combined with tuning to stimulus affective information
in a manner well-suited to guide behavioral selection.

More specifically, our findings suggest that OTC co-
representation of image semantic category and affective properties
has the potential to guide selection of diverse behavioral responses to
a wide range of natural stimuli. Across the low to medium levels of
dimensionality considered (1–21 PCs), OTC tuning to semantic and
affective image features better predicted behavioral responses across
stimuli than direct use of an equivalent number of dimensions based
directly on the feature themselves (Fig. 9a). This potentially indicates
that OTC is effectively compressing and extracting stimulus semantic

Fig. 7 | Correlations between Gabor and CSVAmodel features do not drive the
variance capturedby the CSVAmodel inOTC.Out-of-sample variance explained
by the Gabor model was regressed out of the estimation BOLD data, and the
residuals were used to re-fit the CSVA model (named CSVA Gabor-controlled)
resulting in new feature weights. PCA was performed on these new weights. To
clarify whether any changes in feature weights or PC loadings and scores were
primarily observed in early visual cortex (EVC) or were also seen in non-EVC
occipital temporal cortex (OTC), we divided our OTC ROI into these two regions
(see SupplementaryMethods).We conducted a separate PCAwithin each. a–c (top
row) show findings for non-EVC OTC voxels; d–f (bottom row) show findings for
EVC voxels. a, d. A bar and whisker plot shows voxel-wise correlations between
feature weights from the CSVA and CSVA-Gabor-Controlled models for each

subject across non-EVC OTC voxels and EVC voxels. Box plot elements: center
line=median; box limits=upper and lower quartiles; whiskers=1.5 x inter-quartile
range; individual points=feature weight correlation coefficients (across features)
for each voxel. b, e A correlation matrix shows the similarity between feature
loadings for the top 3 group PCs from the original CSVAmodel and the top 3 group
PCs for the CSVAGabor-controlledmodel for PCA conducted across non-EVCOTC
voxels and EVC voxels. c, f A bar-and-whisker plot shows the correlations between
PC scores from the original CSVAmodel and PC scores from the Gabor-Controlled
model across non-EVCOTCvoxels and EVC voxels. Box plot elements: as for panels
a and d except individual points = PC score correlation coefficients (across voxels)
for each subject.
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and affective features of pertinence to behavior, i.e. representing these
features in amore efficient fashion. Further, when amodel of low-level
visual structure, namely a Gabor model, was fitted to OTC voxel time-
courses, it did a significantly poorer job than the CSVA model in pre-
dicting behavioral responses (Fig. 9b). This indicates that it is the
encoding of higher-level features in this region of the brain, as
opposed to lower-level structural features, that has the potential to be
used to guide appropriate behaviors. Here, we note that controlling for
low-level visual structure did not alter the structure of tuning to
semantic and affective features within regions of OTC outside of early
visual cortex (Fig. 7).

An important caveat is that we did not investigate mid-level
structural features and cannot rule out that features such as stimulus
color or shape might carry information about stimulus category or
affective value that can be used to trigger behavioral responses.
Indeed, it is possible that where we refer to encoding of semantic
category, wemight to some extent be capturing encoding of mid-level
structural features that correlate with the stimulus categories used.
This pertains to a wider debate on the representation of stimulus
categories within OTC and could potentially be addressed in future
work using mid-level structural models and stimulus sets designed to
de-correlate mid-level structural and semantic information. For now,
our findings indicate that OTC encodes representations well-suited to
selecting between a range of alternate approach and avoidance
behaviors in the context of emotional natural imageswhere visual cues
signal affective information which changes the optimal response to a
stimulus falling within a given category.

It can also be argued that our main behavioral analysis demon-
strates that OTC tuning to CSVA model features carries information
able to guide selection between a mixed set of avoidance and
approach behaviors but does not specifically address selection within
avoidance behaviors and selection within approach behaviors. We
addressed this through a further post-hoc analysis in which we sub-
divided behaviors into approach behaviors and avoidance behaviors.
OTC tuning to semantic and affective image features, as captured by
CSVA model PCs continued to predict behavioral responses better
than either OTC tuning to semantic category alone or OTC tuning to
image structure as captured by the Gabor model, Fig S15. However,
OTC tuning to affective features alone (as captured by the Valence by
Arousal model) performed best in prediction of avoidance behaviors.
Thisfindingmight suggest that the relative importanceof affective and
semantic features differs between approach and avoidance behaviors,
with affective stimulus features playing more of a key role in driving
avoidance behaviors. We note, however, that this analysis was limited
by there only being seven different avoidance behaviors. If a larger
number had been used it is possible that we would have found the
CSVA model to outperform the Valence by Arousal model.

As information reaches OTC rapidly36, representation of stimulus
category and affective information within this part of cortex might be
well suited to support behavioral responses to emotional stimuli. Here,
we are not arguing that the amygdala is not involved in the initial
learning of emotional value. Indeed, an interesting question would be
whether insult to the amygdala early in development alters the nature
of these OTC representations. One limitation of the voxel-wise
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Fig. 8 | Behavioral responsesmatched to image content: exampledistributions.
Subjects recruited through Amazon’s Mechanical Turk platform were shown the
emotional natural images used in this study and asked to select one or more
behavioral responses appropriate to the content of each image froma list provided.
For each image, we calculated the proportion of MTurk subjects that selected each
behavioral response. This is illustrated here for 9 example images1. The behaviors

selected between are given on the x axis. Some terms have been abbreviated for
illustration purposes (see Methods). In each row, the proportion of subjects
selecting each behavior is plotted for a given image. 1Note, where images from our
data-set did not have licences allowing for public sharing (including all images
containing faces), they have been replaced by highly similar images with such
licences in place. See table S4 for source & licensing details.
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modeling approach is that it is difficult to successfully fit amygdala
activity. Prediction of the validation BOLD time series requires a con-
sistent response to stimulus features across multiple presentations of
the validation images. This reduces the ability to fit activity in regions
sensitive to stimulus novelty that shownon-stationary BOLD responses
across presentations. We note that, ideally, a region informing choice
between competing avoidance or approach responses to emotional
stimuli should be able to give a consistent output despite multiple
viewings of the stimulus in question. Hence, the method used is
appropriate for identifying regions suited to consistently guiding
selection of behavioral responses to emotionally salient stimuli.

Our findings reveal less clear spatial structure of tuning to
semantic and affective stimulus information in frontal regions than in
OTC (see Figs. S13, S14). We cannot rule out the possibility that
reduced extent and spatial consistency of tuning to semantic and
affective stimulus content in frontal regions might reflect lower sen-
sitivity to detect such tuning as a result of differences in signal to noise
across cortex. However, an interesting possibility is that theOTCmight
be particularly well suited to the long-term storage and rapid activa-
tion of the representations needed to select between alternate
approach and avoidance behaviors. In contrast, tuning in frontal
regions, might be flexibly reconfigured to suit current goals29,30,35. If
this is the case, OTC and OFC might well play important com-
plementary roles in guiding behavior. Evidence in support of this
proposal has been provided by a number of studies examining the
invariance of object representation to the precise task performed.
Here, findings have consistent reported tuning in occipital-temporal
regions to be more invariant to the precise task than tuning in frontal
regions29,30. Intriguingly, in a study using a dynamically adaptive ima-
ging procedure, Cusack andMitchell also reported that OTC tuning to

the animacy, valence and arousal of target items (a knife or dolphin)
was maintained across task conditions (perception and imagery) to a
greater extent than tuning to low-level structural features37.

An alternate fMRI analysis approach used in the field is a form of
multivariate pattern analysis (MVPA) known as representational simi-
larity analysis (RSA). Prior work using Representational Similarity
Analysis (RSA) has failed to find interactions of stimulus valence and
animacy in OTC7. The current study has greater within-subject statis-
tical power than previous studies due to the collection of more BOLD
data per participant. Both the difference in power and difficulties
inherent in using RSA to study interactions (see Supplementary
Information: RSA) might explain the discrepancy in results. While
respecting the limitations of RSA, we also recognize the value of
enabling readers to compare across studies. Hence, we conducted RSA
on our current data-set. The findings are consistent with those from
our primary analyses, revealing animacy by valence and arousal
interactions in OTC (Figs. S18–S20).

Our current study did not set out to explore representation of
internal emotional states provoked by the stimuli viewed or to shed
light on whether neural representation of emotional states is more
consistent with dimensional or categorical models of emotion. We
asked participants to judge the valence and arousal of the stimuli
viewed as the valence by arousal model is a mainstream model for
representing stimulus affective value. Recent work has indicated that
OTC tuning to movies and images can differentiate stimuli according
to the emotion they provoke8,10. Notably, Kragel and colleagues
developed a convolutional neural network model able to differentiate
video clips evoking 11 distinct categories of emotions8. They reported
that occipital cortical responses to the video stimuli were better able
to differentiate these categories than other regions of cortex.

Fig. 9 | OTC tuning patterns predict behavioral responses to emotional natural
stimuli. a We examined the extent to which OTC tuning to emotional natural
images, as captured by CSVA group-level PC scores, predicted the behavioral
responses selected for each image by MTurk raters, across images. The dotted red
line represents the percentage of out-of-sample variance in behavioral responses
explained as a proportion of potential explainable variance (y axis) plotted against
the number of PCs included as predictors in the ordinary least squares regression
analysis. The error band around the dotted line represents the 95% confidence
interval (CI). We also calculated the scaled1 out-of-sample variance in behavioral
responses explained using PCs derived directly from PCA on CSVA image features,
across images (yellow dotted line; 95% CI is given by the associated error band).
Across all levels of dimensionality considered (nu. of PCs=1 to 21), OTC tuning to
CSVA features predicted behavioral responses significantly better than compo-
nents from PCA conducted directly on the features themselves. This is consistent
with OTC showing selective representation of image semantic and affective

features pertinent to behavior. b Here, data are shown using the same format as in
a Dotted lines represent scaled1 out-of-sample variance in behavioral responses
explained by PCs obtained from PCA on OTC feature weights for the CSVA model
(red) versus a Gabor model (pink), the Semantic Only model (dark blue) and the
Valence by Arousal model (light blue). Error bands give the 95% CIs. Given the
smaller feature space of the Valence by Arousal model, the maximum number of
PCs that can be extracted for this model is six. The poor performance of Gabor
modelPCs inpredictingbehavioral responses suggests thatOTC tuning to low-level
image structural features is insufficient to guide behavior. Both the Semantic Only
and Valence by Arousal models outperform the Gabor model in predicting beha-
vior. However, their maximal prediction of behavior (at n = 21 and n = 6 PCs
respectively) is significantly less than that achieved by the CSVA model using an
equivalent number of components. 1Scaled by potential explainable variance (see
methods).
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Interestingly, in behavioral work with another stimulus set, they
demonstrated that the output layer of their model was able to predict
ratings of valence and arousal. The authors argued that these judg-
ments might be emergent properties of the more detailed categorical
emotion representations. In future work it would be of interest to
determine the extent to which the combined semantic and affective
features captured by our CSVA model map onto the final layer repre-
sentations of the model used by Kragel and colleagues and to also
evaluate the mapping between discrete emotional states and beha-
vioral responses evoked by complex affectively charged natural
images.

In summary, our findings are consistent with the co-
representation of stimulus semantic category and affective informa-
tion in OTC. This is observed in areas of cortex adjacent to, and par-
tially overlapping with, areas with known selectivity to different
categories of stimuli. Our analyses further indicate that tuning to
semantic category and affective image features within OTC might
carry information sufficient to drive rich behavioral responses to a
diverse range of emotional natural visual stimuli. Indeed, the more
efficient prediction of behavioral responses from OTC tuning to sti-
mulus features than from the stimulus features themselves possibly
indicates that OTC is effectively compressing and extracting infor-
mation about semantic category and affective image content that is
most of value to guiding behavior.

Methods
Participants
Data were collected from six healthy adult human subjects (four
females, two males, mean age = 24, range = 21–26). All subjects had
normal or corrected-to-normal vision. The study was approved by the
University of California Berkeley committee for protection of human
subjects. Written informed consent was obtained from all subjects
prior to participation.

Experimental stimuli
A total of 1620 stimuli were used, 1440 were presented during model
estimation runs and 180were presented duringmodel validation runs.
All stimuli were natural images obtained from the International
Affective Picture System (IAPS) set38, the Lotus Hill image set39, and
internet searches. The imageswere labeled using 23mutually exclusive
semantic categories: faces, full bodies, body parts, couples, gatherings
(2–9 people), crowds (10+ people), land mammals, water mammals,
fish, reptiles, insects, birds, savory food, dessert food, household
items, vehicles, other artifacts, indoor buildings, outdoor buildings,
land scenery, sky scenery, water scenery, plants. These semantic
categorieswere basedon those usedbyNaselaris and colleagues26with
a number of modifications (e.g. differentiation between reptiles and
insects, elimination of irrelevant categories (namely texture patterns)).
Four raters independently categorized each image; their modal cate-
gorization was used in the models described below. In just one
instance no modal semantic category was obtained. This was resolved
by discussion. The small number of images labeled as plants (n = 36
images) or vehicles (n = 72 images) led to the possibility of empty
feature vectors when stimuli were labeled using compound features
for semantic category by valence by arousal (see Model Features
below). Hence, for all except the first two subjects to complete the first
estimation and validation fMRI session (subjects 1 and 3), these images
were removed and replacedwith images from thebuildings categories.
Images were displayed at a visual angle of 12 × 12 degrees.

Procedure
Subjects completed six fMRI sessions. Four 9.5min retinotopy scans
(two with clockwise/counterclockwise wedges and two with expand-
ing/contracting rings28) were completed within session 1. Each of the
subsequent five sessions comprised performance of the main task. In

each of these sessions, participants completed six model estimation
scans of 7.5min duration and four model validation scans of 6min
duration. A structural scan was also acquired at the beginning of each
session.

All stimuli were back projected onto a translucent screen posi-
tioned in the bore of the magnet, visible via an angled mirror placed
above the subject’s head. Subjects fixated on a central white cross.
Images were presented for 1 s with a 3 s inter-stimulus-interval during
which the fixation cross was presented against a gray backgroundwith
luminance matched to the mean luminance of the images in the sti-
mulus set. During each estimation scan, forty-eight images were pre-
sented twice in a pseudo-random order. Null trials (no image
presented) were also included, occurring once every eight trials. Dur-
ing validation scans, nine imageswere eachpresented nine times using
a Type-1, Index-1 sequence40 to control for order effects. While viewing
the images, subjects performed one of two tasks. Four subjects (1, 3, 5,
and 6) were asked to categorize the valence of each image as negative,
neutral, or positive. To control for effects of task, two subjects (2, 4)
performed an alternate semantic categorization task, categorizing
each image as human, animal, object, food, or building/scene. For
these two subjects, valence categorizations were obtained from the
post-scan behavioral sessions (see below).

Post-scan behavioral task. After the six fMRI sessions were com-
pleted, each subject returned to our lab to complete an additional
behavioral task. Each image viewed within the fMRI sessions was re-
presented to subjects with the same gray background and degree of
visual angle as used in the fMRI sessions. Subjects were instructed to
first rate the valence of each image as negative, neutral, or positive.
Labels above the image indicated which button to press for each
valence. Following valence categorization, the text above the image
changed to indicate that image content should be rated for arousal
using a nine-point scale. At the beginning of the task, subjects were
instructed that ‘positive’ referred to “something you would want to
look at, have, or be close to”, while ‘negative’ referred to “something
you wouldn’t want to look at, have or be close to”. Arousal was cate-
gorized on a continuum from not emotionally intense at all (1) to
extremely emotionally intense (9). The task was self-paced and took
between 3 and 6 sessions to complete, with each session lasting 1.5 h.

fMRI data acquisition
FMRI data were collected on a 3T Siemens TIM Trio scanner at the UC
Berkeley Brain Imaging Center using a 32-channel head coil. An echo-
planar T2*-weighted imaging (EPI) sequence was used with a decreas-
ing slice series, repetition time (TR) = 2.0 s, echo time (TE) = 34ms, flip
angle = 74, voxel size = 2.4 × 2.4 × 3.0mm, inter-slice gap =0.75mm,
matrix size = 98 × 98, field of view = 224 × 224mm. We prescribed 25
axial slices to cover all of temporal and occipital cortices, and asmuch
of frontal and parietal cortices as possible. The first 5 volumes of each
scan were discarded to allow for T1 equilibration effects. Anatomical
data were collected using a T1-weightedMP-RAGE sequencewith 1mm
isotropic resolution. A separate T1 was acquired at the beginning of
each scan session. Pulse oximetry and respiration data were collected
during fMRI data acquisition, using a Biopac recording system (Biopac
MP150Data Acquisition Unit, BiopacUIM100Cwith Nonin 8600FO for
pulse oximetry, and Biopac RSP100C with Biopac TSD221 for respira-
tion). Eye tracking was performed using an Avotec camera and
Arrington Viewpoint software.

fMRI data preprocessing
FMRI data were preprocessed using Matlab version 8.0 (The Math-
Works, Natick, MA) and SPM8 (Welcome Department of Imaging
Neuroscience, London, UK). Blood oxygen level dependent (BOLD)
images were first converted from DICOM to NIFTI format. Next,
diagnostics were run on the BOLD time series from each scan.
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Following an approach similar to that adopted by Power and
colleagues41 and Carp42, bad volumes (with unusually high changes in
mean whole-brain signal intensity) were identified using the time-
series diagnostic tool tsdiffana.m (http://imaging.mrc-cbu.cam.ac.
uk/imaging/DataDiagnostics). Among other indices, this tool calcu-
lates the mean square difference of voxel-wise signal intensities
between each volume (n) and the previous volume (n-1) and divides this
by the mean signal across the whole volume averaged over the whole
time-series. Volumes (both n and n-1) were rejected using an absolute
cutoff (the recommended default of 10) as this handles differences
between subjects in the noisiness of data better than a within-subject
percentile cut off. In line with findings by Power and colleagues41, bad
volumes tended to correspond to those with notable spikes in move-
ment. Bad volumes were replaced by the average of the volumes on
either side. Subsequent to this initial data-cleaning step, image rea-
lignment was conducted to correct for within run head movement and
to align images between runs. This was then followed by slice time
correction. An ‘image on/off’ nuisance variable accounting for variance
due simply to image presence was regressed out of the preprocessed
BOLD data. This was codedwith a 1 for volumes with a stimulus present
and 0 for volumes with no stimulus present and convolved with a 4 bin
FIR function (FIR time bins: 2–4 s, 4–6 s, 6–8 s and 8–10 s post stimulus
onset). Low-frequency drift in the BOLD data was identified using a
Savitzky-Golay filter with a 120 s window and 3rd degree polynomials
and this was subtracted from the signal. The mean response for each
voxel within each run was then subtracted from the BOLD data to
account for differences in BOLD signal values across runs. Data were
neither normalized to common space nor spatially smoothed in order
to retain maximal resolution for our voxel-wise modeling.

fMRI data modeling
Models constructed. Each image viewed was labeled with a distinct
set of features corresponding to the feature space for each of the
following models:
(1) The ‘Semantic Only’ model. The feature space for this model

comprised the following mutually exclusive semantic categories:
Human-Face, Human-Body, Human-Body-Part, Human-Couple,
Human-Gathering, Human-Crowd, Land-Mammal, Water-Mam-
mal, Bird, Fish, Reptile, Insect, Savory-Food, Dessert-Food,
Household-Object, Other-Artifact, Indoor-Building, Outdoor-
Building, Water-Scenery, Sky-Scenery, Land-Scenery. Two sub-
jects (1 and 3) also viewed a small number of images belonging to
two additional categories: Plants and Vehicles (see the Experi-
mental Stimuli section). Each image was given a ‘1’ for the
semantic category to which it was most often allocated, across
raters, and a ‘0’ for all other categories.

(2) The ‘Combined Semantic, Valence and Arousal’ (CSVA) model.
Ratings from each subject were used to create subject-specific
labels for each image for valence (negative, neutral or positive) and
arousal (high or low). For subjects who did the valence categoriza-
tion task in the scanner, each image was presented either twice (for
images shown in model estimation runs) or nine times (for images
shown in model validation runs). In both cases, the modal valence
value was used. For cases in which there was no modal value (e.g.
for images categorized once as negative and once as neutral), if one
of the categorizations was neutral, the image was coded as neutral.
All other images without modal responses (e.g. those with one
negative and one positive categorization) were excluded from
analysis (mean= 24 images excluded per subject). For the two
subjects who did the semantic task within the scanner, post-scan
valence categorizations were used. Image arousal level (high, low)
was determined using a within-subject median split on the post-
scan 9-point ratings of image arousal; images rated below the
median were categorized as low-arousal, and those equal to or
above the median were categorized as high-arousal. These labels

were used to subdivide each semantic category by valence and by
arousal. In thismanner, new compound featureswere created, each
of which had a binary (1/0) value for semantic category, valence,
and arousal (e.g. Human-Body, neutral valence, low arousal = ‘1’). In
addition to these semantic by valence by arousal features,
additional binary (present = ’1’, absent = ‘0’) features that carried
information about both semantic and emotional image content
were also incorporated (e.g. mutilated, rotten). As these typically
only applied to one or two semantic categories, the following 18
compound semantic-emotion (SE) features were created and
included in the CSVAmodel: Mutilated humans, Mutilated animals,
Rotten food, Threat directed towards the viewer by a human
aggressor, Threat-directed towards the viewer by an
animal aggressor, Threat directed away from the viewer by a
human aggressor, Threat directed away from the viewer by an
animal aggressor, Romantic couples portrait (i.e. face only),
Romantic couples full bodies, Human babies, Animal babies,
Human social interaction portrait, Human social interaction single
human (e.g. person playing golf), Human social interaction couples,
Human social interaction gatherings, Erotica portrait, Erotica single
human, and Erotica couples.

(3) The ‘Semantic with Valence by Arousal for Animate Stimuli’
model. This model included compound semantic by valence by
arousal features (as described in the CSVA model above) for
images belonging to animate semantic categories. Only semantic
features were included for images belonging to inanimate
semantic categories (as in the Semantic Model). In other words,
information about image valence and arousal was only included
for stimuli belonging to animate semantic categories.

(4) The ‘Semantic with Valence by Arousal for Inanimate Stimuli’
model This model included compound semantic by valence by
arousal features (as described in the CSVA model above) for
images belonging to inanimate semantic categories. Only
semantic features were included for images belonging to animate
semantic categories (as in the Semantic Model). In other words,
information about image valence and arousal was only included
for stimuli belonging to inanimate semantic categories.

(5) The ‘Valence by Arousal’ model. This model included six com-
pound features indicating the valence (negative, positive, neutral)
and arousal (high, low) values for each image. Here, as for the
CSVA model, subject-specific ratings of valence and arousal were
used to model each participant’s data. The semantic category of
each image was not included in the model. This resulted in each
image being assigned a single compound feature that was a
combination of subject defined valence and arousal (e.g. negative,
low arousal).

(6) The ‘Gabor’ Model. This model was used to assess the representa-
tion of low-level image structure, specifically variation in luminance
contrast across the image. Model features comprised the results of
filtering each image, after it was grayscaled and zeromeaned,with a
set of 474 Gabor filters that spanned 4 orientations (0, 45, 90, and
135 degrees) and 5 spatial frequencies (1.5, 3, 6,12 and 24 cycles/
image) across a square grid of spatial locations covering the image
(500× 500 px). The filters were spaced using a grid determined
separately for filters at each spatial frequency such that adjacent
Gabor filters were separated by 3 standard deviations of the spatial
Gaussian envelope. Featureweights were z-scored across all images
to normalize differences in energy magnitude due to Gabor filter
size. Image processing was conducted using the STRFlab toolbox
for Matlab (strflab.berkeley.edu).

Model estimation. Model estimation was performed using custom
code written in Matlab. For each subject, a design matrix was created
for each model with regressors that indicated the presence (1) or
absence (0) of each of the model’s features for each stimulus. Each of
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these feature regressors was convolved with a finite impulse response
(FIR) filter, resulting in 4 new regressors for each feature, each one
representing a time delay of 2–4, 4–6, 6–8 and 8–10 s from stimulus
onset, respectively. Taking the dot product of these regressors with a
set of linear weights is functionally equivalent to convolution of the
original feature with a linear temporal kernel that has nonzero entries
for 2–4, 4–6, 6–8, and 8–10 s delays. Six movement parameters, as
estimated by SPM 8, were also included in the model as nuisance
regressors.

For each subject, fMRI data from the model estimation runs were
concatenated. L2-penalized (ridge) linear least square regression was
used to find feature regressor weights which mapped the model fea-
tures onto the BOLD time-series for each voxel. L2-penalized regres-
sion requires specification of a hyper-parameter lambda, which
determines the amount of penalization applied during feature weight
estimation (i.e. how much the feature weights are shrunk towards a
Gaussian distribution). A range of 10 lambda values logarithmically
scaled from 10−9 to 105 were tested. K-folds cross-validation was used
to determine the optimal value of lambda. Specifically, for each value
of lambda, each model was fit on 9/10ths of the estimation data by
selecting 27 of the 30 estimation runs without replacement. Using the
weights estimated, voxel-wise BOLD time-series were predicted for the
remaining 1/10th of the data. This was repeated until all runs had been
included once in the held-out data. Concatenating the 10 predicted
sections of the data resulted in a predicted time-series for the entire
estimation dataset for each voxel. This complete predicted time-series
was correlated with the actual recorded BOLD time-series and the
single lambda value which produced the highest mean correlation
value across all voxels was selected. Although selecting lambda indi-
vidually for each voxel would almost certainly result in higher model
performance, we opted to use a single value across all voxels in order
to keep feature weights on the same scale and allow for subsequent
principal components analysis of feature weights across voxels (see
below). The final feature weights used were created by re-estimating
the weights across all the estimation data using the selected best
lambda value. This fitting procedure was repeated for eachmodel and
each subject.

Model validation. Model validationwasperformedusing customcode
written inMatlab. For each subject, the voxel-wise prediction accuracy
of each model was assessed using the concatenated BOLD time-series
from the validation runs. Completely new images were viewed within
these runs. As in model estimation, a design matrix was constructed
for each model by creating regressors to indicate the presence or
absence of each model feature for each of the images viewed during
the validation scans. This design matrix was then convolved with four
FIR bins (2–4 s, 4–6, 6–8 s and 8–10 s post stimulus onset). The feature
weights obtained during model estimation were multiplied with the
FIR-convolved validation design matrix to produce voxel-wise pre-
dicted BOLD time-series for the 6760 s of validation data. We corre-
lated these predicted time-series with the observed validation BOLD
time-series to obtain estimates of model prediction accuracy for each
voxel, whichprovide ametric ofmodel fit that controls for over-fitting.
Permutation testing was used to determine the significance of this
correlation for each voxel for each model (for more details, see the
Statistical Analysis section).

We note that correlation values reported here are not scaled by
each voxel’s noise ceiling, and hence are lower than those reported in
papers where such scaling is used. Noise ceiling calculations require
exact repetition of validation stimuli in the same order. This has the
advantage of allowing a measurement of the amount of explainable
variance, assuming that responses to the same stimuli in the same
order are constant. Given potential issues of habituation across mul-
tiple presentations for emotional stimuli, we chose to minimize order
effects by presenting images in a pseudo-randomized Type-1, Index-1

sequence40. A consequence of this is that we separately predict voxel-
wise responses to each individual presentation of a given stimulus.
Inevitably this is noisier than predicting averaged responses across
several stimulus presentations leading to lower raw prediction values
but similar power to detect prediction significance given the increased
number of data points available without averaging.

Model comparison. We compared the voxel-wise prediction perfor-
mance of the CSVAmodel to that of the Semantic only and Valence by
Arousal models. Voxels whose activity were significantly predicted by
any one of the three models were included in these comparisons.
Correlations between predicted validation BOLD time-series and
actual validation BOLD time-series were computed for each voxel for
each model as described above. We then calculated the proportion of
these correlations that were greater for the CSVA model compared
with the Semantic Only and Valence by Arousal models. We used a
bootstrap test (2-tailed) to determine whether this proportion was
significant. Please see the Statistical Analysis section for more details.
The same method, and cortical mask was used to compare the
Semantic Onlymodel against the Semanticwith Valence by Arousal for
Animate Stimuli (SVAA) and the Semantic with Valence by Arousal for
Inanimate Stimuli (SVAI) models.

PCA of CSVA model feature weights. Principal components analysis
(PCA) of CSVA model feature weights, across voxels, allows us to
identify consistent patterns of co-tuning to image features, i.e. to
identify image features towhichvoxels tend to show similar responses.
We conducted a PCA of CSVA model feature weights across all voxels
within OTC where the CSVA model fit significantly (as assessed by
significant prediction of the BOLD time-series for the validation data-
set) andoutperformed the SemanticOnlymodel. Theweights from the
4–6 s and 6–8 s FIR bins were averaged together for each feature, as
these time points correspond to the peak of the BOLD hemodynamic
response function (HRF). Non-centered PCA was applied to these
weights. The feature weights associated with vehicle and plant
semantic categories were excluded as only 2 of the 6 subjects viewed
stimuli from these categories. Both group-level and subject-wise PCA
analyses were conducted.

For the group-level PCA, voxels were concatenated across sub-
jects. Some of the structure in feature tuning across voxelsmaymerely
reflect co-variance between stimulus features. Hence, we sought to
identify the top group PCs for which the amount of variance explained
was more than achieved by consideration of stimulus features alone.
To address this, we used a jackknifing procedure. This resulted in the
retention of the top three PCs. (Please see the Statistical Analysis
section for further details).

We next calculated the similarity between the top three group
PCs and the top three PCs from each subject-wise PCA. This was
achieved by using leave-one-out cross validation (LOOCV) to com-
pare feature loadings for the top three PCs from group-level and
subject-wise PCAs of CSVA model feature weights. We conducted
PCAon a given participant’s data and extracted the top three PCs.We
then correlated the PC loadings, across features, with those of the
top three PCs obtained from a group level PCA conducted with the
data from the given participant left out. Since the ordering of the PCs
is by explained variance, the ordering of components at the group
levelmay not always be the same as that at the single subject level. To
ensure we were comparing single subject PCs to group PCs that
captured similar dimensions, the top three single-subject PCs were
re-ordered so that each single-subject PC was matched to the group
PC with which it had the highest correlation. If there were conflicts
(where the highest correlation for 2 or more single subject PCs was
with the same group PC), we resolved them by selecting the single
subject PC that was closest to the group PC in its ordering. This was
done recursively where necessary.
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Interpreting the top 3 group-level PCs. By correlating theoretically
informative dimensions with each of the group PCs it is possible to
investigate the aspects of stimulus content encoded by each PC. Each
theoretical dimensionof interestwas formalized as a vector comprised
of values for each of the CSVA model features. We used three theo-
retical dimensions to explore the representation of animacy. The first
of these comprised a four-level scale of animacy18 with inanimate
objects at the bottomof the 0–3 point scale, followed by invertebrates
and non-mammalian vertebrates, then non-human mammals, with
humans at the top of the scale. We also used a simpler binary animacy
dimension where features indicating that the stimulus was animate
were given a ‘1’ and features indicating that the stimulus was inanimate
were given a ‘0’. The third dimension specifically coded for the pre-
sence (1) or absence (0) of humans. The remaining dimensions enco-
ded the perceived valence (positive = +1; negative = −1, neutral = 0) and
arousal (high = 1; low =0) of stimuli from either animate or inanimate
semantic categories. As an example, the fourth dimension encoded the
perceived valence of all animate stimuli. Here, all CSVA compound
features indicating an image was perceived as positively valenced and
belonged to one of the 12 animate semantic categories were given a ‘1’,
all CSVA compound features indicating an image was perceived as
negatively valenced and belonged to one of the 12 animate semantic
categories were given a ‘−1’, and all CSVA compound features indi-
cating an image was perceived as neutrally valenced and belonged to
one of the 12 animate semantic categories were given a ‘0’. To deter-
mine the valence for each of the 18 semantic-emotion (SE) compound
features in the CSVA model, we took the mode of the valence cate-
gorizations for stimuli possessing that feature across subjects. Finally,
inanimate stimuli were given the value that equated to the mean of
animate stimulus values, in order to exclude their influence on the
correlation with the PCs. In a parallel fashion, we also created dimen-
sions that coded inanimate stimulus valence, animate stimulus arousal
and inanimate stimulus arousal.

The vector for each theoretical dimension of interest was corre-
lated with the CSVA feature loadings for each of the PCs from the
group-level PCA on CSVA model feature weights, across OTC voxels.
We used a bootstrap procedure to assess the significance of these
correlations. Please see the Statistical Analysis section for further
details.

Prediction of behavioral responses. We next sought to test whether
OTC tuning to image semantic and affective features could predict
behavioral responses associated with the stimuli presented. To inves-
tigate this, Amazon Mechanical Turk (AMT) workers were shown 25
potential behavioral responses and asked to select the response(s) that
would be appropriate to take if confronted with the content of a given
image from our stimulus set. The 25 behavioral responses included
were informed by recent theoretical work1,43 and extended to fit our
stimulus set. Theywere as follows: Bondwith, TakeCareofYoungwith,
Nurture/Raise, Procreate with, Be Affectionate with, Have Sex with,
Play with, Gain Social Support from, Gain Nutrition from, Gain Gusta-
tory Satisfaction from, Relieve Thirst with, Use to Facilitate Activity,
Take Shelter in, Warm Oneself with, Empathic Response to Suffering,
Empathic Response to Joy, Prolong Looking at, Curtail Looking at,
Retreat from,Defend Self fromAggressor, Defend Self fromUnwanted
Sexual Attention, Avoid Predation by Fleeing, Avoid Predation by
Freezing, Avoid Disease by Not Touching, Avoid Toxins by Not Con-
suming. In total 49 workers allocated a total of 27,516 behavioral
responses with a mean of 2 behavioral responses per worker per
image, with 9 workers evaluating the behavioral responses suited to
the content of each image. Four of the behavioral response options
(Relieve Thirst with, Warm Oneself with, Defend Self from Unwanted
Sexual Attention, Avoid Predation by Freezing) were rarely selected
(less than 1% of total responses) and hence excluded from further
analyses.

In order to compare models’ prediction of behavioral responses,
we conducted additional PCAs on voxel feature weights for the Gabor
model, the Semantic Only model and the Valence by Arousal model,
respectively. We included all OTC voxels where the model in question
significantly fit the validation BOLD time-series. For both the CSVA
model and these additional comparison models, we projected the
vector of feature values for each image into the PCA space of each
model. This was achieved by calculating the inner product of the
images’ feature vector with each of the PC loading vectors. This
effectively captures the information about the image in question car-
ried by each component of OTC tuning for a given model. For models
incorporating affective features (the CSVA and Valence by Arousal
models), we used the modal values of valence and arousal, across
subjects, for each image. For the Valence by Arousal model, this pro-
cedure resulted in6 PC scores per image, for the SemanticOnlymodel,
this procedure resulted in 21 PC scores per image. For the remaining
models, we retained the top 21 PC scores per image to match the
number of PCs in the Semantic Onlymodel. In addition, we conducted
PCA on CSVA model image features, across images, concatenating
design matrices across subjects. We also projected the vector of fea-
ture values for each image into this PCA space, retaining the top 21 PC
scores per image.

The final step entailed using these PC scores to predict the
behavioral responses allocated to each image. This effectively allows
us to determine how well the tuning captured by each model predicts
behavioral responses to each image. We conducted a series of
regression analyses using PCs from each of the PCAs described above.
We varied the number of PCs entered as regressors; this number was
increased in steps of 1 from 1 to n (n = 21 features except for the
ValencebyArousalmodel, wheren = 6 features), see Fig. 7B. Inorder to
control for over-fitting we used leave-one-out cross-validation
(LOOCV) to calculate the amount of variance explained in the beha-
vioral responses (R2). Please see the Statistical Analysis section for
further details.

Visualization of fMRI results
Flatmap construction and ROI labeling. Cortical flatmap construc-
tion was conducted using PyCortex44. This python tool makes use of
the Freesurfer image analysis suite for cortical reconstruction and
volumetric segmentation (http://surfer.nmr.mgh.harvard.edu/). Fol-
lowing initial automatic segmentation, white matter and pial surface
maps were hand edited to remove any remaining artifacts and the
surface was regenerated. In order to flatten the cortical surface, five
relaxation cutsweremade into the surfaceof each hemisphere and the
surface crossing the corpus callosum was removed. The calcarine
sulcus cut wasmade at the horizontal meridian in V1 using retinotopic
mapping data from Session 1 as a guide.

Early visual regions V1-V4 were defined using the retinotopic
mappingdata. In addition, a reduced semanticmodelwith 8 categories
(Faces, Bodies, Body Parts, Multiple People, Animals, Food, Objects,
Scenes)wasfit to the estimationdata andused to identify the following
functional landmarks on each subject’s flat map: RSC, Retrosplenial
Complex; OPA, Occipital Place area; LO, Lateral Occipital cortex; pSTS,
Posterior Superior Temporal Sulcus; EBA, Extrastriate Body Area; OFA,
Occipital Face Area; FFA, Fusiform Face Area; PPA, Parahippocampal
Place Area; ATFP, Anterior Temporal Face Patch. We also label the
following sulci: IPS, Intraparietal Sulcus; STS, Superior Temporal Sul-
cus; ITS – Inferior Temporal Sulcus; CoS, Collateral Sulcus; Post-CS,
Post Central Sulcus; CS, Central Sulcus; SF, Sylvian Fissure. Note, these
ROIs are only for orientation of the viewer and were not used to con-
strain any of our analyses.

Display of PC scores on the cortical maps. A RGB color key was used
to project voxel-wise PC scores for the top three group PCs onto
individual subjects’ cortical maps (red=loading on PC1, green=loading
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on PC2, blue=loading on PC3). Voxel-wise PC scores were calculated as
theproduct ofCSVAmodel featureweights for a given voxel by feature
loadings for each PC. PC scores were thresholded at 6 standard
deviations above and below 0, with values beyond the threshold given
the maximal (or minimal) value. Thus, a value of 0 for a given color
channel is 6 s.d.’s below a PC score of 0, a value of 128 for a given color
channel has a PC score of 0, and a value of 255 is 6 s.d.’s above a PC
score of 0.

Statistical analysis
Model prediction significance testing. We calculated voxel-wise
prediction accuracies for each model for each subject. As described in
the Methods section above, the feature weights obtained during
model estimation were multiplied with the FIR-convolved validation
design matrix to produce voxel-wise predicted BOLD time-series for
the validation data-set. We calculated voxel-wise prediction accuracy
scores by correlating these predicted time-series with the observed
validation BOLD time-series (n = 3380 time points per voxel). Permu-
tation testing was used to determine the significance of model pre-
diction for each voxel. The following procedure was used. We
randomly shuffled validation data-set images without replacement,
and convolved the resulting feature regressors with the FIR filters to
create a randomized FIR-convolved validation design matrix. This
randomized design matrix was then multiplied by the feature weights
for each voxel from model estimation. This created a predicted vali-
dation BOLD time-series for each voxel. This predicted time-series was
correlated with the observed validation BOLD time-series for the same
voxel. This was repeated 5000 times for each voxel, producing a null
distribution of prediction accuracy scores (i.e. correlations) for each
voxel. Significance (one-tailed) was determined on a voxel by voxel
basis by evaluating the proportion of values in this null distribution
that fell below the actual prediction accuracy score for that voxel for
the model in question. We corrected for multiple comparisons by
using the Benjamini-Hochberg procedure to apply a false discovery
rate (FDR) correction across all cortical voxels within the subjects’ flat-
map (q < 0.05).

Model comparison. We used a bootstrap procedure to estimate a
distribution of prediction accuracy scores for each voxel for each
model by resampling across the 20 validation runs with replacement,
1000 times. Pairs of models were compared by examining the relative
proportion of voxels better predicted by onemodel than the other, for
each of these 1000 iterations. We calculated a z-value from the mean
and standard error across these 1000 ratio values, after subtracting 0.5
(chance level, both models perform equally). A p-value (2-tailed)
indicating the extent to which one model was superior to the other,
across voxels was computed from the resulting z-value.

Principal component significance testing.We conductedgroup-level
and subject-wise PCAs of CSVA model feature weights, across voxels
(see section above for details of voxel selection and time-bin selec-
tion.) For the group-level PCA, voxels were concatenated across sub-
jects. In order to determine which group PCs explained significantly
more variance than stimulus features alone we conducted a jackknife
test. Thirty sets of voxel-wise feature weights were created by holding
out each estimation run in turn and estimating the feature weights for
each voxel using the remaining twenty-nine runs. PCA was conducted
on each of the resultant thirty sets of feature weights. A standard one-
tailed jackknife test was used to determine whether the amount of
variance across voxels explained by the topPC fromeachof these jack-
knifed PCAs was significantly greater than that explained by the top
stimulus feature PC (i.e. the first component from a PCA conducted on
the presence or absence of stimulus features across images). This
procedure was repeated for subsequent PCs until the difference in
variance explained by the PC from the group PCA of CSVA model

feature weights, across voxels, and the corresponding stimulus PCwas
no longer significant. This procedure was used to determine the group
PCs retained for further consideration.

PCA was conducted across voxels within four ROIs, namely OTC,
non-EVC OTC, OFC, non-OFC Frontal, in addition to a whole-cortex
mask. Table S3 gives the number of voxel included in the group PCA
for each ROI, following voxel section procedures.

We used leave-one-out cross validation (LOOCV) to compare
feature loadings for the top three PCs from group-level and subject-
wise PCAs of CSVAmodel feature weights. Significance was calculated
via a permutation test where, for each of the three PCs in turn, the PC
loadings of the group-minus-subject-X PCs were shuffled relative to
subject X’s PC loadings. This resulted in a null distribution, and the
group-minus-subject-X against subject X correlation coefficient was
compared with the 95th percentile value from the null distribution.

Relating PCs to hypothetical dimensions. Three PCs were retained
from the group PCA of CSVA model feature weights (see section
above). We investigated the aspects of stimulus content encoded by
each of these PCs by correlating each of them with hypothetical
dimensions of interest. The hypothetical dimensions were formalized
as vectors comprised of values for each of the CSVA model features
(see section above for further details). To assess the significance of
correlations between the PCs and the hypothetical dimensions (cor-
related across features, n = 144 features) we created a bootstrapped
distribution for each correlation using randomized sampling with
replacement. Specifically, we resampled CSVA model features with
replacement 5000 times and re-estimated the correlations between
the group PCs and hypothetical dimensions across the sampled fea-
tures. In this manner, we obtained a distribution of 5000 values for
each correlation. This distribution was then used to conduct a one-
tailed bootstrap test for significance and to obtain the 95% confidence
interval. An alpha threshold of 0.05 was used to determine
significance.

Predicting behavioral responses from OTC tuning. We investigated
how well OTC tuning, as captured by the CSVA model, could predict
behavioral response to the images viewed. We compared this predic-
tion performance with that of three alternative models of OTC tuning
and with that achieved using image features (as labeled by the CSVA
model) as opposed to brain responses to these features. In each case,
feature dimensionality was reduced using PCA.

PCA was conducted on feature weights for each of the four
models of OTC tuning considered (see section above), across OTC
voxels, and the inner product of each images’ feature vector with each
of the PC loading vectors calculated. This gave a score for each image
on each PC for each model. PC scores for each image were also
obtained using PCA on the CSVA model image features themselves.

These PC scores were entered into regression analyses to predict
behavioral responses for each image (see Methods). We used leave-
one-out cross-validation (LOOCV) to calculate the amount of variance
in behavioral responses explained. This form of cross-validation con-
trols for over-fitting of the behavioral responses. For each model, and
each behavioral response, each of the images (n = 1620 images) was
left out one at a time. The PC scores for the other images were then
used to predict the proportion of raters that allocated the behavioral
response to the left out image. Thiswas conducted in turn for all of the
images. The amount of variance explained was summed across itera-
tions, giving the total amount of variance in workers’ selection of each
behavior that could be explained by a given set of PC scores. This was
repeated across behaviors. This LOOCVR2 valuewas then scaled by the
total explainable variance in behavioral mappings (this reflecting the
consistency in behaviors selected for each image across MTurk
workers.) Bootstrapping across images was used to determine con-
fidence intervals for the scaled LOOCV R2. Specifically, across 1000
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iterations, images were randomly sampled with replacement, and the
aboveprocedure repeated. The resultant 1000 scaled LOOCVR2 values
were used to calculate confidence intervals which were used as the
threshold of a one-tailed hypothesis test of LOOCV R2 values.

Transforming prediction accuracies to z-values. We transformed
model prediction accuracies to z-values for display on each subject’s
cortical map (Fig. 2 and Figs. S2, S4–S7). To do so, we first converted
the correlation of the predicted and actual validation BOLD time-series
to a t-statistic using the following equation:

t = r*sqrtððn� 2Þ=1� r2Þ ð1Þ

where r is the Pearson correlation coefficient and n is the number of
validation volumes (3380). We then converted that t-statistic to a z-
value by first finding the probability of the t-value using the student’s-t
cumulative distribution function, and then using the normal prob-
ability density function to find the z-value associated with that
probability value.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fmri data for all subjects is available together with the CSVAmodel
feature matrices via the Open Science Framework database - https://
osf.io/b5pxu/. For data privacy reasons, structural images have been
skull stripped prior to sharing. Source data are provided with
this paper.

Code availability
Voxel-wise modeling analysis code, with tutorials, is available at
https://gallantlab.org/voxelwise_tutorials/voxelwise_modeling.html.
Detailed specification of ourmodeling choices can be foundwithin the
README file provided in the OSF directory: https://osf.io/b5pxu/.
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