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THE‘CALQULAIIoﬁ OF HABIT PLANES FORVELASTIC'TRAﬁSFQRMATIONS
o 'BY MINIMIZATION OF THEIR ELASTIC STRAIN ENERGY
| David R. Clarke '
Inorganic Materials Research Division, Lawrence BerkeleybLaboratory;
and Department of Materials Science and Engineering, Universit = of
California,_Berkeley, California 94720, USA o
ABSTﬁACT

vBy using.Eshelby's method for the determinatibn of the stresses and
 strains generated in a transformationm, tne.shape_and‘orientation of an
ellipsoidal region of transformed phase.that_minimises the elastic
strain energy accomnanYing the transformation are calculated togetner
with the change in elastic strain energy. The orientationvof minimum
total energy describes the habit plane. The appllcabillty of the
approach is demonstrated by show1ng that the hab1t planes of twins in -
‘cubic_crystals, and martensitic plates in In-ZOZTl and Fe-317%Ni,
.which have Been calculated by.other methods, . can alterﬁativel& be
.determined b&.thls method. It ls.then used to calculaterthat the habit
plane for martensitic plates in'bulk, high densit&,‘oriented orthor-
hombic polyethylene should be (4.67,1 o)ortnorhonnic
As a consequence of these calculations it is shown that minimiza-

the total :

tion of the/elastic strain energy must he the dominatlng factor in the |

nucleation event of transformed products in most metals.



1. Introduction

‘Modern phenomenological theories of martensiticvtraﬂsformati;ﬁ,(lf3s -
(reviewed for instance by Dunne and Wayman(a)) developed in the last
twenty years, ﬁave beén remarkably successful in iﬁter-relating the.

Vcrystallograbhiclfeatures of'many martensites 'And'in cases,“§ﬁchvas
certain Fe-C steels, have predicted theiexistencé'of Qery:tﬁin fwins
in the martenéites priér to‘their observation in thevelectrén miérq_
scope(s). These theories are all essentially based.on.thergeométriéally
necessary operations.reduifed to describe the transfbrmed crystal
’structﬁre in terms §f the parent structure. As such'ﬁhey can predicﬁ
the interface or'habit plane but cannot make any statéﬁent concerning

" the shape of'fhe transforﬁed region, or about the ffee energy change

accompanying thé transformation.

The purpose of this paper is to demonstratejthétrthere.is an
altefnative, but ESsentially eﬁuivalent, way 6f defefmining the habit
planes, ana at the same time, the shape of a transformed region and the
energy change, oﬁe in which thé formation of the transformation

product is accomplished in order to minimize its total elastic strain

energy. This épproach is based on the methodology introduced in a
' (6,7,8)

.series of papeté by Eshelby s wﬁo wantéd to caléulate the strésses
:_and strains producéd when‘a region (the inclﬁSion):within'a body
Changeé in shapé and/or size. The relationship to.the crystalldgraphié
theo:ies is thét the elastic strain energy of an oblate épheroid is a
minimum whén its long axes §r¢ parallél to a plane of invariant strain.

This relationship is demonstrated by Christian.(g)
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. The stfesées‘and strains creatéd'in bdfh:tﬁe'inélusibn and the
surroundinglmafgrial are shown‘by Eshelby to bé prépértional to;thé
'Shaﬁe changé of.the inclusion that woﬁld;have occuréd\had the
surroundiﬁg material nét constrained the transforﬁation of the inclusion.
This éhape change is dgnb;ed as’ the transformation étrain tensor E:j'

. The elastic fiéld cféated’by'the transformation, and the stored énefgy |
in the élastic field, were shown by Eshelby to be_éléb deﬁendent on

the shape of:the inclusion and its orientation with féspect to the
cbordinate Axeé of the tfansforﬁétion strain. More fecently, Brown

(10)_have calculated these effects on the shear stress

 and_C1arke
gomponents of the elastic fieid, together with taBulating them for
. many of the mofe common inclusion geometries.

The appr§ach adopted here is‘firstly to decide bn a plausible
transformation strain that will describe the chaﬁgé'ih_gfystal structure
;hat'pccurs on transformation;‘secondly to calculate'thebstoréd elastic
ene:gy when an eliésoid has - this strain, and to find the shape and

~ orientation of the ellipsoid that will minimize this‘énergy. vThe |
same approach has been employed independently by Shiﬁaﬁa énd-ono(ll)

to calculéte‘éuccessfully‘the habit planes for the beé-hep transférma—'
tions in titaﬁium. | .

In his 1957 paper, Eshelby'used the idea.that'é_transformation

would océur iﬁ.such a way as to minimi?e its ﬁotal'eléstic energy; in

(12)

‘order to deduce from Zener's value of the heat of formation for

martensite in iron that the martensite formed as discs with an aspect
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in an attempt to relate the

() -

o .rafié of-aboﬁt_O;OB. .Latér, Christian
accommodation effects ofva transformation to the Bowlgs and Macken;ie
, dilatation parameter, applied ﬁshelby's method to the case-of a thin -: )
ellipsoidal plate subjected to a general transformation strain. He
showed thatvthe accommodation, and hence the élastic eﬁergy, waé
minimized aéithe aspect ratio of the plate decreaseé,'- “
Sin;e-it.is,based on Eshelby's method, the proéedurg uséd here iév
appropriate to any/%%ggig%iansformation.  For this reason section 3 is_'
devoted to illustratingiits'applicabilityvto a variety of transformation
processes: g simplg twinning‘reacfion, the siﬁple.transformation in an
indiunrvthalliuﬁ.alloy, the moée complex martensitic,transformation-in an
iron-nickel alloy, and the martensitic transformatibn,in polyethylene
crystals, where_a habit plane has yet to be reporfed.
Aé ;he purpose of this paper is to demonstrate the calculation of
habit planes and the shapes of-the transformed»prédu;ts, rather than to
present highlylaccurate calculations, the simplifications of lineaf
isotropic elésticity and of an'isotrdpic sufface energf of the transformed
inclusion are assumed. Indeed it is shown in éection 4, that unless
the traﬂSfofmed:régions are very émall ( 5ldh21cm3)‘the surfécévene;gy
contribution to the total frée enérgytig negiigible-éémpared with the
elastic strain.enefgy. |

2. Background Theory

The problem that Eshelby tackled in his papers was how to calculate =
the elastic state of a body.when an internal region underwent a change
in shape or size; which in the absence of the constraining material

could be described by a stress-free transformation strain, 813.
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Of the many results established by Eshelby, the one relevant
here was that the energy stored in the elastic stfaiﬁ field caused by

the transforma;ion ofvan.ellipsoidal_inclusion could be expresséd as:
B - Y °;j 55 = f% V7 Cipia S iy @
VI is the voiumé'of the ellipsoid, Cijkl afe the elastic éoﬁs;éﬁts and:
éil'is ;he strain wiFhin the inclusion. In this, "and subseqﬁent‘;
equations, ;he_;onvention of summatioﬁ,over'repeated.sﬁffixes is assﬁméd.
The actual strain sustained by the inclusion is dépendent only on
the transformation strain and the shape of the inciusion. ,This.relation-

ship has been expressed in two equivaient ways depending on its usage,

namely;

" Syt e s Yy S @

1jk1

is an accommodation tensor. Tables of Sijkl

where S are geometric coefficients introduced by Eshelby and.

Yijkl énd Yijkl for a
variety of commonly accuring inclusion shapes have been listed by

(10)

Brown and Clarké' . Eshelby prescribes how, for the geﬁeral
.ellipsoid,~thé{ya1ues of Sij?l may be determined, and fhe reader is
referred to his paper for details. They may alternatively be found
for various éspect ratios from the.graphs and tables of.reference 15.
- Two sets of orfhogonal coordinate axes neéd to be defined in ﬁhe
calculation qf the étrain energy; the frame of the matrix phése and
the frame'of thé transformed ("inclusion")‘region (Fig. 1). As

shear transformations are considered in this paper, the matrix phase

‘coordinate frame is defined by the crystallography of the'parent phase -
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vwithlfhe X axis‘being the shear direction, the z axis being the shear
plane normal, aﬁd the y axis being perpendicular to the other two
in most of the examples given in section 3. vThe transformed region
is defined in the'inclusion-frame and is assumed here to be a circularly
symmetric ellipsoid about one axis, having a finite aspgct ratio aﬁd
intercepts along the éxgs of a, b and.a. The aSpeét fatio, p, is
given by the fatio b/é; wheﬁ b>a the iﬁclusibn is a prolate spheroid
and when B<a it is an oblate spheréid. | |

.The transfofmation-stfain and the elastic strain energy density
are defined in the matrix codrdinéte frame, whereas the Sijkl coéfficients
are presented by Eshelby ;nd bberown and Clarke in tﬁe inclusion frame.’

In the-generél case of the matrix framg and the incluéion frame not
being coincident, the Sijkl coefficients reduired iﬁ:equation (2) can
be found from those definéd_in ;he inclusion frame Siiép by the usual
tensor,relationship | | |

S = a, a a SIF
T1ijk1 im “jn akp 1p “mnop
where aij is the matrix‘;elating the two coordinate frames (Fig. 1).
The method . of determihing the minimum energy position is to

calculate, for each relative position in space of the two frames,

values of the $ - coefficients in the matrix frame and hence values

1kl

of the elastic energy from equations 2 and 1. This is a cdmplic;ted
set of calculations and is test manipulated using agcomﬁuter. The
position of minimum energy can then be identified.

For most c#sés of importance the spheroidal ellipsoid is a
versatile enocugh épproximation to the true shape. ‘When it ié not,

equation 1 must be replaced by its integral over the volume of the shape.’



3. Applications

3.1 Twinning in Cubic Crystals.

Twinning‘in cubic crystals is a particularly simple transforﬁation
process because the crystal structure of the twinned'region is related
to the parent structurevby a single pure shear. in'additioh the
transformatiod is.well characterised in fec metals a (tensor) shear
strain of - .:Z? in the [112] direction describes both the macroscoplc
shear and the lattice reorientation of a twin on a (lll) plane, and in
bcc metals the same value of . shear strain in the [111] directlon on a
(112) plane describes the twin. Because of this simplicity of lattice

reorientation and the ample experiﬁental observations and verifications,

it is of interest to show that the observed twinning modes correspond
to minima of the strain'energy accomoanying the twihhihg'transformation.

~ Using the directions.[iil], [110] and.[112]'to form an orthogonal
sct of coordinate axes in the bcc parent phase, the transformation strain

that describes the atomic adjustﬁents occuringvduring’twihning can be

T'. 1 00'1".1383
€15~ 72‘(‘1) o o7 2\ o o

where S =/£

written as

. The same strain describes the twinning transformatlon in fcc structures, .

provided the coordinate axes are chosen as [112], [110] and [111]
These axes correspond to the shear direction, the normal to both the

shear direction and the shear plane normal, and the normal to the shear

plane, respectively. This expression for the twiﬁning.strain is only
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approximate. The complete strain tensor réquired to describe the

2, and as the value of

crystallography of twinning contains terms in é
s 1s not small these terms cannot striétly be neglecfed. However, .
since thé transformation elasticity equations used fhroughout this
paper are only valid for'a'linear elasticity, it is pxobably not
worthwhile to'usé the complefe strain tensor and so the less accurate
infinitésmalfstréin approximation is used. One result of this

approximation is to make the transformation strain ‘symmetrical to the

0x and the Oz axes rather than to the conventionally.denoted nl'and n2'

axes. It should bevsymmetrical to the latter since a twin and its conju-
gate represent equivalent deformations differing only by a pure rotation.
Following the method of calculation described in the inﬁroduttion,
the.eiastic strain eﬁergy per unit volume for twinne& regioné with
this transfdrmation strain is found to vary with_bbtﬁ_the orientation
and the aspect ratio of the twinned region. It is found to be smaller
when the twinned region is an oblate spheroidvthan if it were a prolate
spheroid. .Fﬁrtherﬁore, it has'a minimum at two positions in a‘bcc
parent phase, when the normal to the spheroid is either [112] or [iil].
Thé second minimum position is a result of the approximate transformation
strain used with its symmetry with respect to the 111 and 112 bcc axes.
As this syﬁmetry doesn't exist, as éxplained-above, this minimum is

fictitous.
Tﬁe sharpness of the elastic énergy minima is'pbrtrayéd in Fig. 2,

which is a plot of the variation in calculated stored elastic strain |

energy density of an oblate spheroid twin for different positions of

its normal in the plane whose normal is [110]bcc.-The aspect ratio of
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this particular sphereid is 0.01, and eVee for this ratio fheretis a
fery largelﬁeriafion of the.strain eeergy celculeted - almost two
orders of maghitﬁde. The sharpness of the ﬁinima ﬁrobebly indicates
why there is.very little scatter invthe‘compositioh.elanes detefmiﬁed
experimentally. ’ |
In Fig. 3; the elastic strain energy density is flotted aefa

function of the aSpecf ratio of the sphéroid. The”curQe shows that a -
transformingftﬁin can minimise its elastic strain energy by forming as
an oblate spheroid with es smell an aspect ratio as possible, and in
the limit tending'asymptotieally to being infinitely émall. This is,

(13)

the deduction that Christian made.

3.2 Martensitic Transformatidn in In-20.4%T1.

The marteﬁsitic traneformation in indium—thalliuﬁ is one of the
classic‘tranefermations; the transformation iﬁterfeces_can.be made to
‘sweep reversibly thfough~a cfystel and the fece and.fct lattices are so
nearly alike that the choice of lattice correepondence is c¢lear. 1In
addition as tﬁe fct martensites are twin-felated 1ama11ae, the prediction

of the {110} habit plane was relatively stralghtforward ae)

The reason for considering this transformatlon.here is to demonétrate
the apﬁlicabiliéy:of the transformation approach te one of the simplest'
martensitic.trensformation, and to calculate both the_habit-plane and
" elastic strain energy change involved. |

6n cooling, at aBout 60°C a fce indium 20 4 eteﬁic percent Thalium-
alloy tranuforms to a face-centered-tetragonal marten51te by contractlngx
along two <001> directions and expanding along the other. The values of.
the lattice parameters of this elloy are epproxiﬁeteiy e = 4.740,;
(17))'

= 4.710 and ¢ = 4.7873 (Fig. 3.of a paper by Moore et al.,

3fct fct
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Referred to a coordinate system where the x,y'and‘z axes are {[100],
[010] and [001] respectively in the fcc phase, the transformation strain

in the approximation of linear elasticity, is:

T _ - ;-0.0633 0 0
€,, T .
ij
. 0- ©0.0099. 0

o o0 ‘0;0533,

Computation of the elastic strain energy demsity involved duriné_
this transformation‘shows that the minimum energy Qrientation cofres-
ponds to an oblate sﬁheroid having a habit plane within'l/Z? of (lIO).
This agrees very closely with the observed {110} habits. As with the
_fwinning transformation, the minimum is sharply define& and the ehergy
- is calculated go decrease with decreasing aspect ratiq (Fig. 3). The
elastic sﬁréin energy accbmpanying the trénsfbrmation of a spherical re-

gion of In-Tl is given in Table I.

3.3 Martensitic Transformation in Fe-3LlZNi Steels

Of the very many martensitic transformations in steels that have
been analysed, the one chosen here to illuétrate thé applicabiiity of
the transform method to complex transformations is thé one that éccurs'
‘in Fe-31%Ni. This is because it is one of the few transformations for
. which there is a crystallographic explanation for the’obserVed orienta-

tion relationship. )
It is not at all clear what strain tensor should be used to
describe the transformation as there is no information as to what the

detailed atomic movements accompanying the transformation are. However,

in the absence of such data the crystallographic mechanism originally
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,probosed By Niéhiyama seems reasonabie:as if does étileasf lead to

the observed orientation relationship. Althouéh thameéhanism’candot

be entirely correct, since it doesn't ﬁredict the éxﬁehéiye'{12l}
twinning within the marteﬁsitic piates observed by eléctron'microscopy,'
it is nevertheless used.ﬁere as ;n approximation to the actual'tfans- :
formation meéhanism.'

(18) observed that in the Fe-31ZNi alloy the orientation’

Nishiyama
» relatioﬁship\bétween the austenite (Y) and martensite (a') phases was
j{111}Y // {110}, and <211> /] <110>,,.

As a result_he propdéed that the transformation occurred by a shear
parallel tov{lv'll},Y in the-difection <211>Y.throuéh an angle of 19°28°',
followed by.lineal_adjustments to enlarge the basal angle of 60° to
70°32'_and.t§‘satisfy thameasured'interplanar spacings. Although this
leads to the coirect orientation relationship the mechanism implies

the habit plané to the’{llllY "and as this is at variance to the
osserved habit, the Nishiyama méghanism has been discérded. Later,
"the phenomenologicél crystallographic theories showed tHat ﬁhe observed
ﬁabit could.bevtblerably'predicted by a Bain distbrtion and-a lattice
invariant shear strain in fhe <111>a,” direction.oﬁ.a’{12l}'pléne,v
derived from a'{110} austenite plane. A better agfeement was later
 obtained by‘tﬁe‘iﬁéorpdration of a small dilatation péfameter(14)'

Deépite.the : shortcomings of the Nishiyama mechanism:it

can be shoWn.that‘a minimum energy position is prédiéted close t;'the
observed habits.

~Choosing thé matfix coordinate frame to bevdescribed by the austenite

directions [511}, [011] and [111], the necessary transformation strain
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required to describe the Nishiyama mechanism becomes

T _ ;-0.0755- 0 1 0.17673
1] : o
o 0..321 0
- V0.17673 0 ~0.01945

when the lattice parameters for the austenite and martensite are a
| s ane® . (19) ‘
3.591 and a, = 2.875A respectively.

In Figure 4 the position of minimum elastic energy for an oblate
spheroid of aspect'ratib 0.01 is plotted in a'étereographic triangle,
together with some of the more recently reported precision habit
planes determinations, for Fe—31.1%Ni and Fe-30.97Ni taken frbm'Figf

19) As can be seen'the‘predicted habit plane

3b of Breedis and Wayman.
. is quite close to the reported habits and falls within 2° of the median
,position; "This agréemeﬁt.is unexpectedly good since the transformation
strain used does not include any terms appropriate,to“the observed
internal {121} twinning of the martensite produced, fhe cioseness is
probably‘rathef fortuitous. | |
Also plottéd are contours of energy correspoﬁding to the minimumv
energy plus- one percent and five percent, to give an indication of the
possible va;iati@n in ‘habit planes prddﬁced if the mihimum energy
criterion.is not exactly fulfilled. The large variation encompassed by -
Athe five percent contour is of particulaf interest because the siﬁpiifi-
- cations of isotropic elasticity used in calculating the energies will
pfobably introduce an error of typically five to ten percent for most

metals. The five percent contour is of further interest since

comparison with the positions of habits reported for Fe-Ni alloys with
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vérying ﬁi éontent from 30.9 to 34.8%,(Reed,(20) and Figure 22 of
reference 21) Strikingly shows that they too are éncqmpassed byyfhe
contour. . Thus.relatiVely large variations in alloy Céntent can lead
~ to significant variations in habit, whilst only changiﬁg-the elastic
energy by a'small‘améunt. Although the energy minimum‘is relatively
shallow, the §ariation in eléstic-energy‘between.thétﬁiniﬁuﬁ energy'ana‘:
the maximuélénergy pOsition§ is'large.A Natufélly:this:var;ation |
increases as-thg aépect ratio decreases buﬁ even for an aspect ratio of
0.01 it is la;geg.minimum énergy density and maximuﬁvénergy density
are computed té be 4.2 x 10_2‘and:l.3 X lO"luV'reépeéﬁiVely,. As a
-resuit,itbis ﬁot'3urprising thét the habit planes'ate'located ngér
to (259). |

"As with the previous examples, the strain energy;density decréases
with'décreésing'aSpect ratio (Fig. 3) from the value gi;en in Table I-
for a spheriéal region, but‘this does not markediy,éffect the predicted
habit plane;‘which is thatvshown‘ih Fig. 4, provided'that the aspect
ratiolis smaller than about O.é. |

3.4 Martehsitic Transformation in Bulk Polyétﬁylene

Haviné esgablished in the previous examples thé viability of the
transformﬁtioﬁ method, we Tiow usé-it to predict wha;_the haBit plané
4“in high density,‘ofiented érystalliné polyetﬁylene'éhouldvbe.
Youﬁg_and»Bowden(z;) have reported that when'bulk oriented;‘high
- density polyeﬁhylene.is.deformed‘in cOmpression‘at_right angles to |

the mo1ecu1ar chains, it un&ergoes a martensitic otthéfhombic to mono-

clinic transformation resulting in an orientation relationship of the

type T12. This is the désignation of one of the oriéntation relationships
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proposed by Bevis and Crellin that might geometrically occur as a

consequence of a transformation in polyethylene. .The T1l, relationship

2
cofrequnds_tp the (110)0 and (OIO)m planes being inciined to each
‘other by 7°, and an angle of 44° separating the (220)oband (220)m,
planee. The_subécripts 0 aéd m refer'to.orthorhombic'and monqcliﬁic
respectivelyf ;Young and Bowden show that the erientaiiairelationship'
they observe'can Ee obtained if the ofthorhombic erystal transforms by
a shear on e_plane (4.667, l,IO)O. This is shown diagraﬁatieally in
Fig. 3 of reference 22. o o

Defining the molecular.chain orientation,v[OOl]d to be.the z axis,

the ¢, orthorhombic axis, [100], to be the x axis and the c. axis, [010],

1 2

to the y axis, the transformation can be described by the strain

v sin 20 cos 20 O
€35 = 0-1005 cos 20  -sin 28 0

o o0 0

where -6, the angle the shear plane makes with the (100)0 plane,‘ié
171.87 degreesj Since. the transformationvis independent of position
along the meleEular_Chains (z axis), the predicted habitbmust also be
perpendicular to tﬁe z axis. |
Although the martensitic transformation ie sfress induced; the
"applied stress will not affect the orientation.assumed-by the mono-
clinic phase. This is because the elastic energy due to £hé interaction
of the applied stress field and tﬁe transforming iﬁclusion is independent

of the shape or orientation of the_inclusion.(é_s)
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By analdgy &ith the case of cubic fwinning, where the transformation
etrain alsb describes a pure shea?,iie is*to'be exﬁeeted'that tﬂe pre-
dic;ed habit plane will coincide with.the plane of shear, namely -
@;‘537,1,0)0. | |

When this transformation sirain is used and the‘minimuﬁ energy
configufatioﬁ foﬁnd, the predicfed habit plane norma; is indeed at
right angles to the polyethylene chains and is the same as.the shear
" plane. Its ﬁosition is shown on the (001) orthofhombic stereographic’
projection, of Fig; 5, ‘together with the ;20% of the minimum energy
density contour. As yet it cannot be compared toeaﬁy e#perimental_.
~ determination as none has.been reported.. ‘ V

Iﬁ is ﬁo be expeceed that the pquethylene crystai will be highly |
anisotropie elastically, having maximum étiffness>para11el to the
molecular chains in the crystai, i.e. along the [001]o direction.

Wﬁilet sdch elastic anisotropy hasn't been included.in«these'calculations,
it.is anticipated that its inclusion, for this éarticular tfansformation,
woeld not alter:the calculated habit. This is beeauée the calculated
habit plane already includes boeh the expected elastically stiff
direction and ;he shear direction eetween the chaiﬁs;rény ether habit
élane'w0u1§ result in greater distortion in the herd'direction there-

by increasing the strain energy.A
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4. The Total Free Energy Change

In the previous section thé habit planes were calculatéd on the
“basis that they were determined by the minimizatioﬁvof the elas;ic
strain energy alone. 1Howeve;, if the material qndérgoés an équilibrium
shear transformation,.it is,the'minimizatioq 6f the total ffee energy
that detgrmineé’the shape an& oriéntatibn ofAthe’transfdrméd product. -
It is the purpoée of this section to de&uce-that~theﬂoverwhe1mihg
orientation dependeht coﬁtribution to the free energy change comes from
the elastic strain energy. In genéral there will bg five maiﬁ contri-
butions to thié free energy change: -ﬁhe "chemical"‘éontribution, the
elastic eneré§‘stofed in the strain field created by the transformation,
the surface enérgy.of the product, the energy associated with any elastic
interactions, ana'léstly,'the energy assdciated with tﬁe image straiﬁ
field. o | |

The "chemical" contribution is the free energy;ghange which would
occur if the inclusion transforﬁed_by its stress frée strain in the
absence of any matfix. As such, the elastic transformation theory can
make no statéﬁen; éoncerning thisAéontfibution, but it will of course be

independent of orientation. The elastic interaction energy has two
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parts; thé-elaséic’ihteraction between'any'applied'étreés'field and
the transformiﬁg:inclusion, and fhe interaction bgtWeéh the individual
products diétributéd throughout the volume of the pafént phase. . The
first paft_is of né'consequence as Esheiby has shbwn'it to be'indepén—
dent §f the shabe of the transformed region.(6’8) v

The éecond'part'would bé,the most difficult to calculate since it
depends on a knbwledge of the spatial distributién'of'the produét phase.
Howeﬁer; it does ﬁot seem necessary té calculate it. If it were isotropic
1t would be afconstant additive term indgpendent of orientation. If it
were anisotropic it Qould be manifested by fhe’ﬁroduct phasé being
~oriented more.often on one of a set of planes thén Qn'the others in the
same crystallographic:éet; and as such preferential orientétions are
rarely seen thé'anisotrppic component of the elastic'inferaction energy
must be small.in comp;risionvto the other energy_;ontfibutions.. The
energy storéd_in the image strain field has been'determinedbby Eéhelby(s)
who sho&ed that it deﬁends én-bqth,the transformation strain, and the
image straiﬁ fiéld'as;well as on the_volume fractioﬁ'of the transformed
prpduct presént. ‘The calculation of the image stréih-field presents

(10, 24,25) C e e .
. but the evaluation of its associated energy

few proﬁlems
»has ndt been i#cluded here becapse of the lack of experimental data on
“the véfiation Of‘voiume fraction of transformed produé£ as transforma-
tions prdceed. As thé iﬁagé field exists in order fovrender the tractions
at thé surface'zero, the contribution is zero fofran,infinite body, so
. these calculations are strictly for infinite body maﬁerials.

Since the elastic strain energy of an ellipsoid of unit volume

decreases with a decreasing aspect ratio, Fig. 3, it would appéar to be -
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energetically favourable for the transformed product to form in as thln

4 .
a plate as p0351b1e 13). However, for small aspect ratios and small

A

volumes, the contrlbution from the surface energy term becomes 81gn1—

vficant. An ellip301d of revolution has a surface energy given by

the‘eQuation='f'l;

. v (assumed to. be 1sotrop1c),
where Y is the interphase surface energy per unit areal V is the

volume of the ellip301d and p is its aspect ratio,* For all but very

small volumes (1ess than about 10 23cm3) the surface'energy contrihu-.
‘tion is small in comparison with the elastic strain energy, since the
interphase‘surface energy per unit area is.very much smaller than the

shear modulus, Y is typically of the order of - 10 ergs cm 2-‘whereas

}u is of the order of 1011 dynes cm 2. However, for small volumes,;the

‘ rapid increase 1n surface energy with aspect ratio counters the rela-

tively slow deCrease‘ln elastic strain.energy'W1th aspect_ratio;'

. * For extremely small particles, the expression used by Orowan(za)
for the surface energy is probably more ‘realistic than this, as
it takes into account the area of the atomic steps forming the sur-
face. However, the difference between the two expressions is small

7 for e111ps01ds of small aspect ratio
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© It miéﬁt be fhought then that two regimes may Be idéntified. Cne,v
where the volume is largé, and the habit plane and shépe aré determined
by a desire to minimise the elastic strain energy, tﬁe surface energy
being inéignificant. "Two, where the.voiume is small énd the habit and
shapé are détermined by a minimisation of.the combined surface and
strain energies;: If the inferphase supface'energy is'iéotrbpic the
habit plane_w111 be unaffected and the only effectﬂéfzthe surface
energy Willibe:tb détermine the aspect ratio of tﬁé_transformed product
for its particﬁlar3volume, Howevgr, for,most.transformétions'the
surface enérgy‘contribution will be negligibly small for physically
realistic VOiuﬁes of material. This is illustrated by the values, listed
‘vin Table IL of the éspect’ratios, thicknesses, surfate‘energies and
stréin energies célculated for five different plates of martensite in.
the Fe-317Ni alloy when they are of ;dnimum combined surface and strain
energy. An isotropic inter-phase surface>enérgy; Y;,:éf 15 erg cm--2
and  shear godulus fof Fe—31%Ni,9f.l.52 X 1012 dyneé'cm—2 @7) were
used in the calculation. Quite clearly, plates of éuéh sub—atomié
thicknesses as pfedicted.by the minimization of the.combined surface
and elastic étréin energieé, cannot poséibly exis;; What probably‘
occurs is that the transformed phase grows into a thin disc of plate
by spreading out in an attempt to minimise its strain'energy density
until'it'is prevented from growihg Out‘any fﬁrﬁher by meeting én
impediment, for instance a grain boundary, another growing plate of
. product phase,_or'an intlusion. Theﬁ according to whether it is
' énergetically favourable or not forﬂfhe whole material, the transfor-

mation proceeds by the plate growing thicker or by other plates
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c;ntinuing to spread out. Similar values to thosé iﬁ_Table II:arg
obtaingd fof the cher transférmations, so the conclusioﬁ that the .
fransforma;ion cannot physiéallyvatﬁain a minimum value of combined
surface and eiastic strain energy, is also valid fof‘them._'

This leads back to the,nucleatidn of the transformed produéf
andvalthough.ﬁhé elastic energy apprdach elabofatedjhere Eép ﬁot say
anything about thé nﬁcleation event, it,can legitimateiy be used‘to
'estiméte tﬁé.product size below which the élastic sprain‘énergy of

the transformation has no influence on the particle orientation.

7

Assuming at this critical size, the maximum elasticVStrain energy is equal
" to the minimum surface énergy, and thevshape of the prodﬁct is clearly
a sphere.’ The energy balance is then

%
4/3 ma 3

y Ep = 4ﬂa*2YS leading to a* = EIE
UEP

where Ep is the eiastic strain energy density constant ‘and is related to
the total elastic strain energy;_ﬁ; by E é uVEp; fof £he Nishiyama
transformation, gsing‘the.energy'deﬁsityvconstant’for a sphere given

in T;ble I 1ea§s to a étitical rgdius, a*; of QZYS X 10%33. Because

any anisotfopic'corréctions are unlikely to be greafet than a faCtor

of two, and thé i@terphaée surfaée energy is probabiy*not_more_thaﬁ

an order of magnitude greater.than about 20 érgs ém_z; the minimization.
A of elaséic sﬁraiﬁ energy must be an important fact;r in the nucleation
phenomenon. .Aisb; cleérly,-whatever’the nuclgatipp pfocess the subsequent

growth will be determined by a minimization of the élastic strain energy,

~unless the transformation is an ekceedingly'non—equilibrium process.
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The conélﬁéions of the previousvparagraph‘aré based on the assump-
tion that at the critical nucleus size the elastic strain energy is
equal to the surface energy. It is likely, however, that at certain
orientations, such as those corresponding to the cusp in surface energy,
asymmetric growth may occur_eVen though this may be uﬁfavoufaﬂle
elastically, in which case the above eétimates would havé go be
modified. Iﬁ_such circumstances the détermination of the habit and
critical nucieﬁs shabe is a difficult problem, compounded by the
absence of détailed‘measﬁfements on the variation of surface energy
with orientation, which‘is bgyond the limited objectives of this
particular paﬁérL -To complete the picture, a fully rigorous épproach
would also have to assesé thé probability of occufrence for surface

versus elastically dominated shapes.
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'5. Discussion
The inherént limitation of the minimization of elastic strain
energy approach is that it éan'say néthing about the path of the atoms
undergoing the.transfofmation; a tranéformation sfréin must be supplied.
Furthermo;e unless the transformation"mechanism éhosep is the same as
that which actually occurs, thé predicted habit'planéé aﬂd shapes will
not necgésarily be the samé as those 6bserved. Aé'suéh part of the |
usefuipess Qf:the étrain»energy approach is’in differentiating between
proposed possible atomic ﬁéchanisms, and ‘in relating'méchanisms to
enérgy changészexperimentally mgésured on.transformation. Unfortunately
the reverse is not pdséible. .Furthermore, as With,all energy mipimiza—
- tiom techniques, the existenée of a ﬁinimum total‘énergy COnfigurétion
is only a necéésafy gonditiqn fof the occurrence of that configuration,
and the sufficiéncy condition are determined by'tﬁe nucleation and
kinetics éf‘the_reactioﬁ. | |
| In additioﬁ tb these fundamental limitations there are otheré
which are ﬁot‘inherent; the use of isotropic linear elasticity, isotropic
surface energies and identical elastic coﬁstants iﬁ parent and product
phases. fhe simplification of isotropic elaéticitytcah be easily removed
by the use of‘thg appropriate aﬁisotfopic equations using the.work:of.
Walpolegs) who:exténded ﬁshélby's formulatibn té anisotropic materials.
" The use of anisotropic surfacé energies also presenfg‘no problenm, Bﬁt
_fheif.use_is festriéted by the dearth‘of thebpecessafyvmeasurements.
Similarly, the laék of experiméntal data on the elésfic moduli of the
transformed product phases precludes, for mOSt.m3£érials, allowance for'.

the two phases having different -elastic constants. The case of the trans-

formation product beiﬁg inhomogencous has been treated in isotropic
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(6-8) (28) .

elasticity by Eshelby and in anisocropic elasficity by Walpole

One advaﬁtage of the energy minimization formuiétion>is'that it
leaus quite naturally to tﬁé possibility of a variabilit}, or scatter,
of the habit planes, since theré will inevitably be several sources of
perturbation préventing the transformed product forming at -the exact
position bf_miﬁimum energy. The positional energy éontoprs.shown in
Fig.véland_sﬂéhow that even a relatively small pérturbation tl to 20%)
can cause wide variation in possible habits. |

Although only_diffusionless_transformations havé beeh considered’
in this‘papef,'Eshelby's method éan equally be applied to diffusion
controlled ﬁransformations by the use of an approprigte transformation
strain. Fof,inétance, it has been used to describe the_geqerétion of
stressés and strains prqducéd by pfecipitation from a sﬁper—saturéted

(29) (30)

, and in the calculation

solid solution of the diffusional stress

relief durihg elastic déformatipn of copper containing particles of
'éilica. | | |

| : The.cutves of Fig. 3 and the strain energy values of Table I can
be used in t&o-ways.in estimating thg strain energy contribution to the
free energy Ch;nge aécompanying a transformation eﬁent. Firstly, if
fhe voiumé fréction of product phése,and itsiaspect ratio are known, then
 the contribution may be calculated directly and cémpargd‘to fﬁe experi- -
mentally méasuréd ﬁeat change. _Alternatively, as the strain eﬁergy
.deﬁsity is a maximum for é-spherical_particie, an upper 50und may be
Placed on theiéfrain energy contibutibn by multiplying the vélue for.a
'_~spﬁeré by the volume fraction of the‘product phase. The fact that in

Fig. 3 the cu:vés for polye;hylené and twinnihg arefidentical is simply



e to the Qhoice of a pure shear to describe the tranéformation for
‘hﬁﬁhnmté}ials. .As such the curves for the two mgte?ials,are in direcf
Fupoertion to the magnitudes of their shear transformation strain and
@fer scaling only the geometrical effect of the aspect ratio4femains.
EEhilarly, the curyes for thé‘FEfBlZNi and In-ZOZTliafe néafly alike,
siace their transformatipn'Strains consist of a'puré shear and a dilata-
trion ap& althqugh the relative valueé of the shear to dilatation for the
_UWo-transformétions are slightly different, the two éurves aré so similar
after scaling_tﬁat tﬁey are covered by the same line.'
Thé particularvform of eﬁergy miniﬁization adopted.in this paper,

- Bbased as it is on the Eshélby analysis, applies only ﬁd coherent -
tnansformationsrthat'are homogeneously nucleated. It is assumed here
that the martéﬁsite and ﬁwinning transformations éfe indeed both co-
HWerently and homogeneously.hucleated. Whilst this aoes conflict with some
experimental évidénce‘suggesfiveﬂof heterogeneous nucleation, the cbn—
gcgversy over the nucleation Qf these transformations remains sgch an
apen issue thatffhis assumption is reasonablg.- A consequence of such a
iﬂnngeneouslyvﬁﬁéleated coherent transformation is‘fhét:the disloéation.
sachanism, by which the glide an@ climb of Suitable‘interfacial dis-
lsxations produceé, respectively, the shear and dilatational components -
rof the transformation strain, cannot be correct. The dislocation
structures §bserVed must therefore be a result of the'traﬁsformation
pechanism 6ccurring, for instance to accommodate local strains produced
by mon—relaxeﬁ stresses created during the transformations, rather than

swyresenting the causal mechanism itself. The actual mechanism might
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then originate in lattice vibration modes as suggested for martensite
(31 | .
by Wasilewski and so successfully applied to the omega transformation

(32)

by Cook, et-al;_ and the phase transformations in barium titanate

following the method described by Cochran.(33)

An important question is what reliance éhould”beiplaced on the
pre&iCtions made using the énergy minimi;ation formulation, sincé the
prediction of the mihimum energy may be éomputed as’éccufately'as desired
éiven a;transformatibn strain that'descriﬁes the lattice reorientation.
If the #fansfor@ation also occurs in thér&odynamic equilibrium, then the
_predictiqns Should be éxaét. "However, the positioh is in practice_
limited by the‘inaécuracies an&:uncgrtainties of thé fepofted 1attic¢
parameters, eiastic constants and surface eﬁergies. :in addition, it has
“_béen assumed that‘thé nﬁqléation eveﬁ;,‘if one exiéts,.does not affect
fhe subsequent.gfoﬁth of the product. These factors, togethef with any
inhomégéneity in.the material, pFobably determine h0wlfér from the exact
position of mihiﬁum energy the.produgt.phase forms. As such the predic-
tions of the Habit piane, its variation with perturbationms, aﬁd the value
of the elasticvstrain energy involved:in the transfb;mé;ion, are probably
veryvfeliable, If precise lattice parameters, orieﬁ;ation relationships,
elastic constants and thermal gxpanSion coefficieﬁts were available, it

should be possible to determine the effects of compositién and temperature on
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habit planes;"Furthermore, given reliable'infbrmatibﬁ on the perten-
tage‘of transforﬁea material as a funétion of tempéf;ture the stored
énergy cbu1d be related to the energy change meésured.
Conélusions
The minimization of the elastic strain enefgy has bee# shown to
 be an alternatiﬁe calculational procedure'to the.c:ystallograéhic theories .
o - : ‘ . o coherent :
for the caléulgtion'of habit planes of a wide'variety of/transform;tion
proddcts. The méthod also- enables an estimate to be made of the shape
of the'prodﬁct, and of the free energy changé acéémﬁanyihg the transfor-
mation, it shéﬁld be of barticular value when used in conjunction:with
the crystallographic théories of trénsformations. |
In pafticqlar, as well as reproduciﬁg the kﬁown composition pléne
for twinningvin'cubic c:yStalé aﬁd the_Habit plane‘for the martensitic
transformatiéﬁ in In-20%T1, the method has been uged.to show that |
_ Nishiyama's me§héhism for the mgrtensitic'transfo:ﬁation'in the Fe-317Ni
" alloy does leéd to a habit plane ciqse (within 2°) to the experimentalv
détetminations; Aithough this close agréément ié unrealistic, since
no accoﬁntjwas~taken of the observed internal twinning of the martensite
plates, it ié;proBably indicative that the.Niéhiyaﬁé ﬁechaniém doeé form
V a basis fof,thé étomic motions taking place duringvfhe transformation._
When the.pfoéédure is applied tq'thé stressfinducedvmartensitic
'transforﬁatidnuin oriented high-density polyethylene, a habit plané 6f

j(4.67,l,Q) is predicted to occur.

orthorhombic
By consideration of the elastic strain energy genefated by a trans-

formatibnvit is deduced that orientation to minimise the elastic Strain

energy confpibution must be an importaﬂt factor in the nucleation of a



transformed structure in most metals.
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TABLE I

Elastic strain energy of a spherical regibn‘of transformed material.’

Trénsformétion . _'Enefgy
units of uv
Cubic Twinning - . 2.67x107%
In-20%T1. S , 1.74 x 1074
* Fe-31ZNi | 8.90x1072
. o -2
.Polyethylene - 2.16 x 10




TABLE IL

The Surface Energy and Elastic Strain Energy Cohfributions of a

Volume of
Ellipsoid
cm?

Diameter of

Ellipsoid (a) Ellipsoid .

Martensitic Plate of Minimum Total Energy

Thickness of Surface Elastic strain
_Energy . energy stored

ergs ergs

10—15

10—18v

10—21

10—23

"10

3.6x10°

7 7

621x10

9 9

1.2x107° 63 x10~
4.9x10 1% 67 x10712
1.5x10713 7.2x10713
| 14 4

2.4x107 14 7.6x107"
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FIGURE CAPTIONS -

1. The relationship between the inclusion and'matrix coordinate
frames,vtogether with the transformation matrix relating them.

2. The variation in the elsstic strain energy density of a

‘twinned ellipsoid in a cubic crystal as a function of the orienta-

. tion of its normal in the plane whose normal iS-[llO]. The minimum

Fig;

Fig.

Fig.

energy density positions are marked for a bec lattice; . the equi-

valent fcc positions are given in the text. The aspect ratio
used was one tenth.
3. ' The variation of the elastlc strain energy den51ty with aspect

ratio, for ellipsoids of Fe-31ZNi and polyethylene. The curve for

‘the twinning transformation is identical to that for the polyethylene

and that for the In-Tl is very similar to that for the Fe—3l/N1.

. The curve‘ corresponds to the minimum energy den31ty orlentation

of the e111p501d having the aspect ratio shown "Note, the scales
have been normalised so that the elastic strain energy density of
a sphere is unity. v | |

4. AStereogram depicting the predicted habit plane (V - close to

5, 13, 18) .and the 101% and 105% (dashed line) of minimum energy

contours calculated for Fe-31%Ni using an aspect ratio of 0.05.‘

Also shown (in dots) are the martensite mid-rib plane determina-

tions madelby Breedis and Wayman(lg)'on_Fe—30.9ZNi and.Fe—3l.1Z'
Ni specimens. v ‘ | v N ‘
5. The predicted habit plane [V - close to (;_g; 1 0) ] for the
martensitic transformatlon in polyethylene, together with the

- 120% of minimum energy contour An aspect ratio of 0. 05

was.used in the calculations.
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