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THE CALCULATION OF HABIT PLANES FOR ELASTIC TRANSFORMATIONS 

BY MINIMIZATION OF THEIR ELASTIC STRAIN ENERGY 

David R. Clarke 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory, 
and Department of Materials Science and Engineering, Universit. of 
California, Berkeley, California 94720, USA 

ABSTRACT 

By using Eshelby's method for the determination of the stresses and 

strains generated ina transformation, the shape and orientation of an 

ellipsoidal region of transformed phase that. minimises the elastic 

strain energy accompanying the transformation are calculated together 

with the change in elastic strain energy. The orientation of minimum 

total energy describes the habit plane. The applicability of the 

approach is demonstrated by showing that the habit planes of twins in 

cubic crystals, and martensitic plates in In-20%Tl and Fe-31%Ni, 

which have been calculated by other methods,.can alternatively be 

determined by this method. It is then used to calculate that the habit 

plane for martensitic plates in bulk, high density, oriented orthor­

hombic polyethylene should be (4.67,1,0) th h bi . or or om c. 

As a ~onsequence of these calculations it is shoym that minimiza­
the total 

tion of ~he/elastic strain energy must be the dominating factor in the 

nucleation event of transformed products in most metals. 
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1: Introduction 

Modern phenomenological theories of martensitic t.ra~sformati~n, (l-3') 

(reviewed for instance by Dunne and Wayman(4)) developed in the last 

twenty years, have been remarkably successful in inter-relating the 

crystallographic features of many martensites and in cases,. such as 

certain Fe-C steels, have predicted the existence of very thin twins 

in the martensites prior to their observation in the electron micro­

scope(S). These theories are all essentially based on the geometrically 

necessary operations required to describe the transformed crystal 

structure in terms of the parent structure. As such they can predict 

the interface or habit plane but cannot make any statement concerning 

the shape of the transformed region, or about the free energy change . 

accompanying the transformation. 

The purpose of this paper is to demonstrate that there is an 

alternative, but essentially equivalent, way of determining the habit 

planes, and at the same time, the shape of a transformed region and the 

energy change, one in which the formation of the transformation 

product is accomplished in order to minimize its total elastic strain 

energy. This approach is based on the methodology introduced in a 

series of papers by Eshelby(6 ,l,S), who wanted to calculate the stresses 

and strains produced when a region (the inclusion) within a body 

changes in shape and/or size. The relationship to the crystallographic 

theories is tha't the elastic strain energy of an oblate spheroid is a 

minimum when its long axes are parallel to a plane of invariant strain. 

This relationship is demonstrated by Christian. (g) 

•. 
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. The stresses and strains created in both the inclusion and the 

surrounding material are shown by Eshelby to be propor-tional to the 

shape change of the inclusion that would .have occuredhad the 

surrounding material not constrained the transformation of the inclusion. 

This shape change is denoted as· the transformation strain tensor £7 .. 
l.J 

The elastic field created by the transformation, and the stored energy 

in the elastic field, were shown by Eshelby to be also dependent on 

the shape of the inclusion and its orientation with respect to the 

coordinate axes of the transformation strain. More recently, Brown 

(10) . 
and Clarke have calculated these effects on the shear stress 

components of the elastic field, together with tabulating them for 

. many of the more coiiiiilon iriclusion geometries. 

The approach adopted here is firstly to decide on a plausible 

transformation strain that will describe the change in crystal structure 

that occurs on transformation; secondly to calculate the stored elastic 

energy when an elipsoid has th~s strain, and to find the shape and 

orientation of the ellipsoid that will minimize this energy. The 

same approach has been employed independently by Shibata arid Ono(ll) 

to calculate successfully the habit planes for the hcc-hcp transforma-

tions in titanium. 

In his 1957 paper, Eshelby used the idea that a transformation 

would occur in such a way as to minimize its total elastic energy, in 

order to deduce fromZener's(12) value of the heat of formation for 

martensite in iron that the martensite formed as discs with an aspect 
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accommodation effects of a transformation to the Bowles and Macken~ie(14) 

dilatation parameter, applied Eshelby's method to the case·of a thin 

ellipsoidal plate subjected to a general transformation strain. He 

showed that the accommodation, and hence the elastic energy, was 

minimized as the aspect ratio of the plate decreases. 

Since it is based on Eshelby's method, the procedure used here is 
coherent 

appropriate to any/shear transformation. For this reason section 3 is 

devoted to illustrating its applicability to a variety of transformation 

processes: a simple twinning reaction, the simple transformation in an 

indium-·thallium alloy, the more complex martensitic transformation in an 

iron-nickel alloy, and the martensitic transformation in polyethylene 

crystals, where a habit plane has yet to be reported. 

As the purpose of this paper is to demonstrate the calculation of 

habit planes and the shapes of the transformed products, rather than to 

present highly accurate calculations, the simplifications of linear 

isotropic elasticity and of an isotropic surface energy of the transformed 

inclusion are assumed. Indeed it is shown.in section 4, that unless 

-21 3 the transformed regions are very small ( ~10 em ) the surface energy 

contribution to the total free energy is negligible compared with the 

elastic strain energy. 

2. Background Theory 

The problem that Eshelby tackled in his papers was how to calculate 

the elastic state of a body when an internal region underwent a change 

in shape or size, which in the absence of the constraining material 

T 
could be described by a stress-free transformation strain, £ij" 
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Of the many results established by Eshelby, the one relevant 

here was that the energy stored in the elastic strain field caused by 

the transformation of an ellipsoidal inclusion could be expressed as: 

E=_!V I T 1 I T 
. 2 I 0 ij e:ij = Z VI Cijkl e:kl e:ij {1) 

VI is the volume of the ellipsoid, Cijkl are the elastic constants and: 
I . 

e:k.l is the strain within the inclusion. In this, and subsequent 

equations, the convention of sununation over repeated suffixes is assumed. 

The actual strain sustained by the inclusion is dependent only on 

the transformation strain and the shape of the inclusion. This relation-

ship has been expressed in two equivalent ways depending on its usage, 

namely, 

I T 
e:ij - s ijkl e: kl 

T 
y ijkl ·~1 {2) 

where Sijkl are geometric coefficients introduced by Eshelby and 

yijkl is an accommodation tenso:J;". Tables of Sijkl and Yijkl for a 

variety of commonly accuring inclusion shapes have been listed by 

Brown and Clarke 
(10) 

Eshelby prescri~es how, for the general 

ellipsoid,· the values of Sijkl may be determined, and the reader is 

referred to his paper for details. TI1ey may alternatively be found 

for various aspect ratios from the graphs and tables of reference 15. 

Two sets of orthogonal coordinate axes need to be defined in the 

calculation of the strain energy; the frame of the matrix phase and 

the frame of the transformed ("inclusion") region (Fig. 1). As 

shear transformations are considered in this paper, the matrix phase 

coordinate frame is defined by the crystallography of the parent phase 

·. 



. -6-. 

with the x axis being the shear direction, the z axis ?eing the shear 

plane normal, and the y axis being perpendicular to the other two 

in most of the examples given in section 3. The transformed region 

is defined in the inclusion frame and is assumed here to be a circularly 

synunetric ellipsoid about one axis, having a finite aspect ratio and 

intercepts along the axes of a, b and a. The aspect ratio, p, is 

givenby the ratio b/a; when b>a the inclusion is a prolate spheroid 

and when b<a it is an oblate spheroid. 

The transformation strain and the elastic strain energy density 

are defined in the matrix coordinate frame, whereas the Sijkl coefficients 

are presented by Eshelby and by Brown and Clarke in the inclusion frame. 

In the general case of the matrix frame and the inclusion frame not 

being coincident, the Sijkl coefficients required in equation (2) can 

IF be found from those defined in the inclusion frame S · by the usual 
mnop 

tensor relationship 

S = a a a a s1F 
· ijkl im . jn leo lp mnop 

where aij is the matrix relating the two c~ordinate frames (Fig. 1). 

The method of determining the minimum energy position is to 

calculate, for each relative position in space of the two frames, 

values of the Sijkl coefficients in the matrix frame and hence values 

of the elastic energy from equations 2 and 1. This is a complicated 

set of calculations and is bast manipulated using a computer. The 

position of minimum energy can then be identified. 

For most cases of importance the spheroidal ellipsoid is a 

versatile enough approximation to the true shape. When it is not, 

equation 1 must be replaced by its integral over the volume of the shape. 

.. 
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3. Applications 

3.1 Twinning in Cubic Crystals. 

Twinning in cubic crystals is a particularly simple transfoyrnation 

process because the crystal structure of the twinned region is .related 

to the parent structure by a single pure shear. In additio~ the 

transformation is well characterised; in fcc metals .a (tensor) shear 
. 1 

strain of ~ in the [112] direction describes both the macroscopic 

shear and the lattice reorientation of a twin on a (111) plane, and in 

bee metals the same value of shear strain in the [iil] direction on.a 

(112) plane describes the twin. Because of this simplicity of lattice 

reorientation and the ample experimental observations and verifications, 

it is of interest to show that the observed twinning modes correspond 

to minima of the strain energy accompanying the twinning transformation. 

Using the directions [iil], [liO] and [112] to form an orthogonal 

set of coordinate axes in the bee parent phase, the transformation strain 

that describes the atomic adjustments occuring during twinning can be 

written as 
0. 
0 
0 g)- i G 

. 1 
where S = ff 

0 
0 
0 

The same strain describes the twinning transformation in fcc structures,. 

provided the coordinate axes are chosen as [112], [llO] and [111]. 

These-axes correspond to the shear direction, the normal to both the 

shear direction and the shear plane normal, and the normal to the shear 

plane, respectively. This expression for·the twinning strain is only 
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approximate. The complete strain tensor required to describe the 

crystallography of twinning contains terms in s 2 , and as the value of 

s is not small these terms carinot strictly be neglected. However, 

since the transformation elasticity equations used throughout this 

paper are only valid for a linear elasticity, it is probably not 

worthwhile to use the complete strain tensor and so the less accurate 

infinitesmal-strain approximation is used. One result of this 

approximation is to make the transformation strain symmetrical to the 

Ox and the Oz axes rather than to the conventionally denoted n
1 

and n
2 

axes. It should be symmetrical to .the latter since a twin and its conju-

gate represent equivalent deformations differing only by a pure rotation. 

Following the method of calculation described in the introduction, 

the elastic strain energy per unit volume for twinned regions with 

this transformation strain is found to vary with both the orientation 

and the aspect ratio of the twinned region. It is found to be smaller 

when the twinned region is an oblate spheroid than if it were a prolate 

spheroid. Furthermore, it has·a minimum at two positions in a bee 

parent phase, when the normal to the spheroid is either [112] or [lll]. 

The second minitnuin position is a result of the approximate transformation 

strain used with its symmetry with respect to the 111 and 112 bee axes. 

As this symmetry doesn't exist, as explained above, this minimum is 

fictitous. 

The sharpness of the elastic energy minima is portrayed in Fig. 2, 

which is a plot of the variation in calculated stored elastic strain 

energy density of an oblate spheroid twin for different positions of 

its normal in the plane whose normal is [llO]b • The aspect ratio of . cc 

-. 
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this particular spheroid is 0.01, and even for this ~atio there is a 

very large variation of the strain energy calculated - almost two 

orders of magnitude. The sharpness of the minima probably indicates 

why there is.very little scatter in the composition planes determined 

experimentally. 

In Fig. 3, the elastic strain energy density is plotted as· a 

function of the aspect ratio of the spheroid. The curve shows that a 

transforming twin can minimise its elastic strain energy by forming as 

an oblate spheroid with as small an aspect ratio as possible, and in 

the limit tending asymptotically to being infinitely small. This is . 

. ' . (13) 
the deduction that Christian niade. 

3.2· Martensitic Transformation in In-20.4%Tl. 

The martensitic transformation in indium-thallium is one of the 

classic transformations; the transformation interfaces can be made to 

sweep reversibly through a crystal and the fcc and fct lattices are so 

nearly alike that the choice of lattice correspondence is clear. In 

addition as the fct martensites are twin-related lamallae, the prediction 

of the {110} habit plane was relatively straightforward. (16 ) 

The reason for considering this transforrilationhere is to demonstrate 

the applicability.of the transformation approach to one of the simplest 

martensitic transformation, and to calculate both the habit plane and 

elastic strain energy change involved. 

On cooling; at about 60°C, a fcc indium 20.4 atomic percent Thalium 

alloy tran::lforms to a face-centered-tetragonal martensite by contracting 

along two <001> directions and expanding along the other. The values of 

the lattice parameters of this alloy are approximately afcc = 4.740, · 

afct = 4. 710 and cfct = 4. 787A (Fig. 3 of a paper by Moore et al., (l7)). 
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Referred to a coordinate system where the x,y and z axes are [100], 

[010] and [001] respectively in the fcc phase, the transformation strain 

in the approximation of linear elasticity, is: 

"( -0.0633 

0 

0 

0 

o. 0099 . 

0 

0 

0 ) 
-0.0633 

Computation of the elastic strain energy density involved during 

this transformation shows that the minimum energy orientation corres-

ponds to an oblate spheroid having a habit plane within 1/2° of (llO). 

This agrees very closely with the observed {110} habits. As with the 

twinning transformation, the minimum is sharply defined and the energy 

is calculated to decrease with decreasing aspect ratio (Fig. 3). The 

elastic stri:dn energy accompanying the transformation of a spherical re-

gion of In-Tl is given in Table I. 

3.3 Martensitic Transformation in Fe-31%Ni Steels 

Of the very many martensitic transformations in steels that have 

been analysed, the one chosen here to illus.trate the applicability of 

the transform method to complex transformations is the one that occurs 

in Fe-31%Ni. This is because it is o~e of the few transformations for 

which there is a crystallographic explanation for the observed orienta-

tion relationship. 

It is not at all clear what strain tensor should be used to 

describe the transformation as there is no information as to what the 

detailed atomic movements accompanying the transformation are. However, 

in the absence of such data the crystallographic mechanism originally 

-. 
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proposed by Nishiyama seems reasonable as it does at least lead to 

the observed orientation relationship. Although themechanism cannot 

be entire~y correct, since it doesn't predict the extensive {121} 

twinuing within the martensitic plates observed by electron mic~oscopy, 

it is nevertheless used here as an approximation to the actual trans- · 

formation mechanism. 

Nishiyama(lB) observed that in the.Fe-31%Ni alloy the orientation 

relationship between the austenite (y) and martensite (a') phases was 

. {lll}y I I {110} , and <211> II <110> ,. a y a · 

As a result he proposed that the transformation occurred by a shear 

parallel to {111} in the direction <211> through an angle of 19°28', 
y y 

followed by lineal adjustments to enlarge the basal angle of 60° to 

70°32' and to satisfy t~ measured interplanar spacings. Although this 

leads to the correct orientation relationship the mechanism implies 

the habit plane to the {lll}y and as this is· at variance to the 

observed habit, the Nishiyama me~hanism has been discarded. Later, 

the phenomenological crystallographic theories showed that the observed 

habit could be tolerably predicted by a Bain distortion and a lattice 

invariant shear· strain in the <111> a., .. direction on a {121} plane, 

derived from a {110} austenite plane •. A better agreement was later 
·. (14) 

obtained by the incorporation of a small dilatation parameter • 

Despite the : shortcomings of the Nishiyama mechanism it 

can be shoWn that a minimum energy position is predicted close to the 

observed habits. 

Choosing the matrix coordinate frame to be described by the austenite 

directions [211], [Oll] and [111], the necessary transformation strain 
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required to describe the Nishiyama mechanism becomes 

T 
. e:ij = 

(

-0.07556 

0 . 

0.17673 

0 

0. _ _321 

0 

0.17673 ) 

0 ' 

-0.01945 

when the lattice parameters for the austenite and martensite are ay = 
0 (19) 3.591 and a , = 2.875A respectively. ex . 

In Figure 4 the position of minimum elastic energy for an oblate 

spheroid of aspect ratio 0.01 is plotted in a stereographic triangle, 

together with some of the more recently reported precision habit 

planes determinations, for Fe-31.1%Ni and Fe-30.9%Ni taken from Fig. 

(19) 3b of Breedi·s and Wayman. As can be seen the predicted habit plane 

is quite close to the reported habits and falls within 2° of the median 

position. This agreement is unexpectedly good since the transformation 

strain used does not include any terms appropriate to the observed 

internal {121} twinning of the martensite produced. The closeness is 

probably rather fortuitous. 

Also plotted are contours of energy corresponding to the minimum 

energy plus· one.percent and five percent, to give an indication of the 

possible variation in habit planes produced if the minimum energy 

criterion is not exactly fulfilled. The large variation encompassed by · 

the five percent contour is of particular interest because the simplifi-

cations of isotropic elasticity used in calculating the energies will 

probably introduce an error of typically five to ten percent for most 

metals. The five percent contour is of further interest since 

comparison with the positions of habits reported for Fe-Ni alloys with 
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. . (20) 
varying Ni content from 30.9 to 34.8% (Reed, and Figure 22 of 

reference 21) strikingly shows that they too are encompassed by the 

contour. Thus relatively large variations in alloy content can lead 

to significant variations in habit, whilst only changing the elastic 

energy by a small. amount. Although the energy minimum is relatively 

shallow, the variation in elastic energy betHeen the minimum energy and 

the maximum energy positions is large. Naturally.this variation 

increases as the aspect ratio decreases but even for an aspect ratio of 

0.01 it is large; minimum energy density and maximum energy density 

are computed to be 4~ 2 x 10-
2 and .1. 3 x 10-\.IV respectively. As a 

result it is not surprising that the habit planes are located near 

to (259). 

As with the previous examples, the strain energy density decreases 

with decreasing aspect ratio (Fig. 3) from the value given in Table I 

for a spherical region, but this does not markedly affect the predicted 

habit plane, which is that shown in Fig. 4, provided that the aspect 

ratio is smaller than about 0.3. 
.. 

3.4 Martensitic Transformation in Bulk Polyethylene 

Having established in the previous examples the viability of the 

transformation method, we Iiow u!;~ it to predict '~hat the habit plane 

in high density, oriented crystalline polyethylene should be. 

. (21) 
Young and Bowden have reported that when. bulk oriented, high 

density polyethylene is deformed in compr~ssion at right angles to 

the molecular chains, it undergoes a martensitic orthorhombic to mono-

clinic transformation resulting in an orientation relationship of the 

type Tl2 • This is the designation of one of the orientation relationships 
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proposed by Bevis and Crellin (2
3

) that might geometrically occur as a 

consequence of a transformation in polyethylene. The Tl
2 

relationship 

corresponds to the (110) and (010) planes being inclined to each 
o m 

other by 7°, and an angle of 44° separating the (220) and (220) 
o . m 

planes. The subscripts o and m refer to orthorhombic and monoclinic 
. . 

respectively. Young and Bowden show that the orientaticnrelationship 

they observe can be obtained if the orthorhombic crystal transforms by 

.a shear on a plane ( 4. 66 7, 1, 0) . • This is shown diagr ama tically in 
0 

Fig. 3 of reference 22. 

Defining the molecular chain orientation, [001] to be the z axis, 
0 

the c
1 

orthorhombic axis, [100], to be the x axis and the c
2 

axis, [010], 

to the y axis, the transformation can be described by the strain 

T 
E •• = 0.1005 

1] 

·(sin 28 

cos 28 

0 

cos 28 

-sin 29 

0 

where ·8, the angle the shear plane makes with the (100) plane, is 
0 

171.87 degrees-; Since the transformation is independent of position 

along the molecular chains (z axis), the predicted habit must also be 

perpendicular to the z axis. 

Although the martensitic transformation is stress induced, the 

·applied stress will not affect the orientation assumed by the mono-

clinic phase. This is because. the elastic energy due to the interaction 

of the applied stress field and the transforming inclusion is independent 

(6-8) 
of the shape or orientation of the inclusion. 
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By analogy with the case of cubic twinning, where the t,ransformation 

strain also describes a pure shear, it is 'to be expected that the pre-

dieted habit plane will coincide with the plane of. shear, namely· 

(4.667,1,0) • 
0 

When this transformation s:rain is used and the minimum energy 

configuration found, the predicted habit plane normal is indeed at 

right angles to the polyethylene chains and is the same as.the shear 

plane. Its position is shown on the (001) orthorhombic stereographic 

projection, of Fig. 5, togetherwith the 120% of the minimum energy 

density contour. As yet it cannot be compared to any experimental 

determination as none has been reported. 

It is to be expected that the polyethylene crystal will be highly 

anisotropic elastically, having maximum stiffness parallel to the 

molecular chains in the crystal, i.e. along the [001] direction. 
0 

Whilst such elastic anisotropy hasn't been included in these calculations, 

it is anticipated that its inclusion, for this particular transformation, 

would not alter the calculated habit. This is because the calculated 

habit plane already includes both the expected elastically stiff 

direction and the shear direction between the chains; any other habit 

plane would re~ult in greater distortion in the hard direc,tion there-

by increasing the strain energy. 

·. 
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4. The Total Free Energy Change 

In the previous section the habit planes were calculated on the 

·basis that they were determined by the minimization of the elastic 

strain energy alone. · However, if the material undergoes an equilibrium 

shear transformation, it is the minimization of the total free energy 

that determines the shape and orientation of the transformed product. 

It is the purpose of this section to deduce that the overwhelming 

orientation dependent contribution to the free energy change comes from 

the elastic strain energy. In general there will be five main contri-

butions to this free energy change: the "chemical" contribution, the 
. 

elastic energy stored in the strain field created by the transformation, 

the surface energy of the product, the energy associated with any elastic 

interactions, and lastly, the energy associated with the image strain 

field. 

The "chemical" contribution is the free energy change which would 

occur if the inclusion transformed by its stress free strain in the 

absence of any matrix. As .such, the elastic transformation theory can 

make no statement concerning this contribution, but it will of course be 

independent of orientation. The elastic interaction energy has two 
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p~rts; the elastic interaction bet,.;een any applied ·stress field and 

the transforming inclusion, and the interaction bet~>Jeen the indivi-dual 

products distributed throughout the volume of lhe parent phase. The 

first part is of no consequence as Eshelby has shown it to be indepen-

. (6.,-8) 
dent of the shape of the transformed reg1on. 

The second part would be the most difficult to calculate since it 

depends on a knowledge of the spatial distribution of the product phase. · 

However, it dcies not seem necessary to calculate it. If it were isotropic 

it would be a·constant additive term independent of orientation. If it 

were anisotropic it would be manifested by the product phase being 

oriented more often on one of a set of planes than on the others in the 

same crystallographic set~ and as such preferential orientations are 

rarely seen the anisotropic component of the elastic interaction energy 

must be small in comparision to the other energy contributions. The 

. (8) 
energy stored in the image strain field has been determined by Eshelby 

who showed that it depends on both the transformation strain, and the 

image strain field as well as on the volume fraction of the transformed 

product present. The calculation of the image strain .field presents 

(10, 24,25) 
few problems ·· · but the evaluation of its associated energy 

has not been included here because of the lack of experimental data. on 

the variation of volume fraction of transformed product as transforms-

tions proceed. As the image field exists in order to render the tractions. 

at the surface zero, the contribution is zero for an. infinite body, so 

these calculations are strictly for infinite body materials. 

Since the elastic strain energy of an ellipsoid of unit volume 

decreases with a decreasing aspect ratio, Fig. 3, it would appear to be 

' I 
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bl for t he transformed productto form in as thirt energetically favoura e 

l13) · However, for small aspect. ratios and small a plate as pbssible" • 

· i from .the surface energy term becomes signi-volumes, the cdntribut on 

ficant. An ellipsoid of revolution has a surfaceen~rgy given by 

the equation 

= IY)2/3 
Es Ys\P ·· 

(assumed to be isotropic), 
where ys is the interphase surface energy per unit areal V is the 

* volume of the ellipsoid and p is its aspect ratio.. For all but very 

small volumes (less·. than about l0-23cm3
). the surface energy contribu-

tion is small in comparison with the elastic s·train energy, since the 

interphase surface energy per unit area is very much smaller than the 

shear modulus; y .· s 
. -2 

is typically of the order of 10 ergs em whereas 

. 11 -2 
ll is of the order of 10 · dynes em However, for small volume~, the 

rapid incr~ase in surface energy with aspect ratio counters the rela-

tively slow decrease in elastic strain energywith aspect r~tio. 

* For extremely small particles, the e:l\.prepsion used by Orowan(
26

) 
for the surface energy is probably more realistic than this, as 
it takes into account the area of the atomic steps forming the sur­
face. However, the difference between the two expressions is small. 
for ellipsoids of small aspect ratio. 
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It might be thought then that two regimes may be identified. One, 

where the volume is large, and the habit plane and shape are determined 

by a desire to minimise the elastic strain energy, the surface energy 

being insignificant. 'Two, where the volume is small qnd the habit and 

shape are determined by a minimisation of the combined surface and 

strain energies. If the interphase sur-face energy is· isotropic the· 

habit plane will be unaffected and the only effect of the surface 

energy will be to determine the aspect ratio of the transformed product 

for its particular volume. However, for .most transformations the 

surface energy contribution will be negligibly small for physically 

realistic volumes of material. This is illustrated by the values, listed 

in Table II, of the aspe.ct ratios, thicknesses, surface energies and 

strain energies calculated for five different plates of martensite in 

the Fe-31%Ni alloy when they are of minimum combined surface and strain 

energy. An isotropic inter-phase surface energy, y , 
s 

. 12 
and shear modulus for Fe-31%Ni of 1. 52 x 10 dynes 

-2 of 15 erg em 

-2 (27) 
em were 

used in the calculation. Quite clearly, plates of such sub-atomic 

thicknesses as predicted by the minimization of the.combined surface 

and elastic strain energies, cannot p.ossibly exist. What probably 

occurs is that the transformed phase grows into a thin disc or plate 

by spreading out in an attempt to minimise its strain energy density 

until it is prevented from growing out any further by meeting an 

impediment, for instance a grain boundary, another growing plate of 

product phase, or an inclusion. Then according to whether it is 

energetically favourable or not for the whole material, the transfor-

mation proceeds by the plate growing thicker or by other plates 
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continuing to spread out. Similar values to those in Table II are 

obtained for the other transformations, so the conclusion that the 

tran8formation cannot physically attain a minimum value of combined 

surface and elastic strain energy, is also valid for them. 

This leads back to the.· nucleation of the transformed product 

and although the elastic energy approach elaborated.here can not say 

anything about the nucleation event, it can legitimately be used to 

estimate the product size below which the elastic strain energy of 

the transformation has no influence on the particle orientation. 

Assuming at this critical size, the maximum elastic strain energy is equal 

to the minimum surface energy, and the shape of the product is clearly 

a sphere. The energy balance is then 

*3 4/3 na l.1 E 
p 

*2 
= 4na y 

s 
leading to a* = 3'(. 

's 
llE 

p 

where E is the elastic strain energy density constant ·and is related to 
p 

the total elastic strain energy, E, by E = llVE • For the Nishiyama 
p 

transformation, using the energy density constant.· for a sphere given 

*" -3 in Table I leads to a critical radius, a , of -2Y x 10 A. Because 
. s 

any anisotropic corrections are unlikely to be greater than a factor 

of two, and the interphase surface e~ergy is probably not more than 

an order of magnitude greater than about 20 ergs cm-2 , the minimization 

of elastic strain energy must be an important factor in the nucleation 

phenomenon. Also, clearly, whatever the nucleation process the subsequent 

growth will be determined by a minimization of the elastic strain energy, 

unless the transformation is an exceedingly non-equilibrium process. 
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The conclusions of the previous paragraph are based on the assump­

tion that at the critical nucleus size the elastic strain energy is 

equal to the surface energy. It is likely, however, that at certain 

orientations, such as those corresponding to the cusp in surface energy, 

asymmetric growth may occur even though this may be unfavourable 

elastically, in which case the above estimates would have to be 

modified. In such circumstances the determination of the habit and 

critical nucleus shape is a difficult problem, compounded by the 

absence 9f detailed measurements on the variation of surface energy 

with orientation, which 'is beyond the limited objectives of this 

particular paper. To complete the picture, a fully rigorous approach 

would also have to assess the probability of occurrence for surface 

versus elastically dominated shapes. 

-. 
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5. Discussion 

The inherent limitation of the minimization of .elastic strain 

energy approach is that it can say nothing about the path of the atoms 

undergoing the transformation; a transformation strain must be supplied. 

Furthermore unless the transformation mechanism chosen is the same as 

that which actually occurs, the predicted habit planes and shapes will 

not necessarily be the same as those observed. As such part of the 

usefulness of the strain energy approach is in differentiating between 

proposed possible atomic mechanisms, and.in relating mechanisms to 

energy changes experimentally measured on transformation. Unfortunately 

the reverse is not possible. Furthermore, as with all energy minimiza-

tion techniques; the existence of a minimum total energy configuration 

is only a necessary condition for the occurrence of that configuration, 

and the sufficiency condition are determined by the nucleation and 

kinetics of the reaction. 

In addition to these fundamental limitations there are others 

which are not inherent; the use of isotropic linear elasticity, isotropic 

surface energies and identical elastic constants in parent and product 

phases. The simplification of isotropic elasticity can be easily removed 

by the use of the appropriate anisotropic equations using the work of 

Walpole (lS) who extended Eshe'lby' s formulation to anisotropic materials. 

The use of anisotropic surface energies also presents no problem, but 

their use is restricted by the dearth of the necessary measurements. 

Similarly, the lack of experimental data on the elastic moduli of the 

transformed product phases precludes, for most materials, allowance for 

the two phases having different elastic constants. The case of the trans-

formation product being inhomogeneous has been treated in isotropic 
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(6-8) (28) 
elasticity by Eshelby and in anisotropic elasticity by Walpole . 

One advantage of the energy minimization formulation is that it 

leatis quite naturally to the possibility of a variability, or scatter, 

of the habit planes, since there will inevitably be several sources of 

perturbation preventing the transformed product forming at·the exact 

position of minimum energy. The positional energy contours shown in 

Fig. 4 and 5 show that even a relatively small perturbation (1 to 20%) 

can cause wide variation in possible habits. 

Although only diffusionless transformations have been considered 

in this paper, Eshelby's method can equally be applied to diffusion 

controlled transformations by the use of an appropriate transformation 

strain. For instance, it has been used to describe the generation of 

stresses and strains produced by precipitation from a super-saturated 

solid solution(29 >, and in the calculation(30) of the diffusional stress 

relief during elastic deformation of copper containing particles of 

silica. 

The curves of Fig. 3 and the strain ~nergy values of Table I can 

be used in two ways in estimating the strain energy contribution to the 

free energy change accompanying a transformation event. Firstly, if 

the volume fraction of product phase and its aspect ratio are known, then 

the contribution may be calculated directly and compared to the experi-

mentally mea;;ured heat change. Alternatively, as the strain energy 

density is a maximum for a spherical particle, an upper bound may be 

placed on the strain energy contibution by multiplying the value for a 

.sphere by the volume fraction of the product phase. The fact that in 

Fig. 3 the curves for polyethylene and twinning are identical is simply 
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.P...t~ to the choice of a pure shear to describe the transformation for 

'hrt'..fr: materials. As such the curves for the two materials .are in direct 

.JXruqrortion to the magnitudes of their shear transformation strain and 

~~ scaling only the geometrical effect of the aspect ratio .remains. 

31'1:1:Uarly, the curves for the Fe-31%Ni and In-20%Tl .are nearly alike, 

9±:n::.e .their transformation strains consist of a pure shear and a dilata­

t:t.fan and although the relative values of the shear to dilatation for the 

ewo· transformations are slightly different, the two curves are so similar 

after scaling that they are covered by the·same line. 

The particular form of energy minimization adopted in this paper, 

basad as it is on the Eshelby analysis, applies only to coherent 

transformations that are homogeneously nucleated. It is assumed here 

tHat the martensite and twinning transformations are indeed both co­

herently and homogeneously nucleated. Whilst this does conflict with some 

~erimental evidence suggestive of heterogeneous nucleation, the con­

acaversy over the nucleation of these transformations remains such an 

open issue thatthis assumption is reasonable. A consequence of such a 

.buaogeneously nucleated coherent transformation is that the dislocation 

.~anism, by which the glide and climb of suitable interfacial dis:.. 

lmations produces, respectively, the shear and dilatational components 

of the transformation strain, cannot be correct. The dislocation 

~ctures observed must therefore be a result of the transformation 

r:.>ed\anism occurring, for instance to accommodate local strains produced 

b~ aon-relaxed stresses created during the transformations, rather than 

;···}~esenting the causal mechanism itself. The actual mechanism might 

··. 
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then originate in lattice vibration. modes as suggested for martensite 
(31) 

by Wasilewski and so successfully applied to the omega transformation 

by 
.1 (32) Cook, et a . and the phase transformations in barium titanate 

following the method described b,Y Cochran. ( 33 ) 

An important question is what reliance should be placed on the 

predictions made using the energy minimization formulation, since the 

prediction of the minimum energy may be computed as accurately as desired 

given atransformation strain that describes the lattice reorientation. 

If the transformation also occurs in thermodynamic equilibrium, then the 

predictions should be exact. However, the position is in practice 

limited by the inaccuracies and uncertainties of the reported lattice 

parameters, elastic constants and surface energies. In addition, it has 

··.been assumed that the nucleation event, if one exists, does not affect 

the subsequent growth of the product. These factors, together with any 

inhomogeneity in the material, probably determine how far from the exact 

position of minimum energy the.product phase forms. As such the predic-

tions of the habit plane, its variation with perturbations, and the value 

of the elastic strain energy involved in the transformation, are probably 

very reliable~ If precise lattice parameters, orientation relationships, 

elastic constants and thermal expansion coefficients were available, it . 

should b~ possible to determine the effects of composition and temperature on 



0 0 

-23..:.· 

habit planes. Furthermore, given reliable information on the percen-

tage of transformed material as a function of temperature the ~tored 

energy could be related to the t.nergy change measured. 

Conclusions 

The minimization of the elastic strain energy has been shown to 

be an alternative calculational procedure to the crystallographic theories 
coherent 

for th~ calculation of habit planes of a wide variety of/transformation 

products. The method also enables an estimate to b.e made of the shape 

of the product, and of the free energy change accompanying the transfor-

mation, it should be of particular value when used in conjunction with 

the crystalJographic theories of transformations. 

In pq.rticular, as well as reproducing the known composition plane 

for twinning in cubic crystals and the habit plane for the martensitic 

transformation in In-20%Tl, the method has been used to show that 

Nishiyama's mechanism for the m~rtensitic ·transformation in the Fe-31%Ni 

alloy d,oes lead to a habit plane close (within 2°) to the experimental 

determinations. Although this close agreement is unrealistic, since 

no account. was ·taken of the observed internal twinning of the martensite 

plates, it is probably indicative th~t the Nishiyama mechanism does form 

a basis for the atomic motions taking place during the transformation •. 

When the.procedure is applied to the stress-induced martensitic 

transformation in oriented high-density polyethylene, a habit plane of 

·(4.67,1,0) h h b" is predicted to occur. ort or om 1.c 

By consideration of the elastic strain energy generated by a trans-

formation it is deduced that orientation to minimise the elastic stra~n 

energy contribution must be an important factor in the nucleation of a 
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transformed structure in most metals. 
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TABLE I 

Elastic strain energy of a spherical region of transformed material. 

Transformation 

Cubic Twinning 

In-20%Tl 

Fe-31%Ni 

Polyethylene 

Energy 
units of '}lV 

-1 2.67 X 10 

-4 1. 74 X 10 

8.90 X 10-2 

-2 2.16 X 10 

-. 



-26-

TABLE II 

The Surface Energy and Elastic Strain Energy Contributions of a 

Martensitic Plate of Minimum Total Energy. 

Volume of Aspect Diameter of Thickness of Surface Elastic strain 
Ellipsoid Ratio Ellipsoid (a) Ellipsoid . Energy energy stored 
cm 3 em em ergs ergs 

·- ·---- --------~-

10-15 lXl0-3 1. 2Xl0-4 -7 1. 2Xl0. 3.6xlo-7 621Xl0-7 

10-18 'sxlo-3 7.2Xl0-6 3.6Xl0-8 1.2Xl0-9 63 Xl0-9 

10-21 2Xl0-Z 4.6Xl0-7 9.2Xl0-9 4.9Xl0-l2 67 Xl0-12 

10-23 4Xl0- 2 7.8xlO -8 3.0xl0-9 1.5Xl0-l3 7.2Xl0-l3 

. 10-24 . 6X10- 2 3.2xlO -8 1. 9Xl0-9 2.4xlo-14 7.6Xl0-l4 
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FIGURE CAPTIONS 

Fig. 1. The relationship between the inclusion and matrix coordinate 
. . 

frames, together with the transformation matrix relating them. 

Fig. 2. The variation in the elE stic strain energy density of a 

twinned ellipsoid in a cubic crystal as a function of the orienta-

tion of its normal in the plane whose normal is [llO]. The minimum 

energy density positions are marked for a bee lattice;. the equi-

valent fcc positions are given in the text. The aspect ratio 

used was one tenth. 

Fig. 3. · The variation of the elastic strain energy density with aspect 

ratio, for ellipsoids of Fe-31%Ni and polyethylene. The curve for 

the t~inning transformation is identical to that for the polyethylene 

and that for the In-Tl is very similar to that for the Fe-31%Ni. 

The curve . corresponds to the minimum energy density orientation 

of the ellipsoid having the aspect ratio shown. Note, the scales 

have been normalised so that the elastic strain energy density of 

a sphere is unity. 

Fig. 4. Stereogram depicting the predicted habit p~ane (V - close to 

5, 1~, 18) and the 101% and 105% (dashed line) of minimum energy 

contours calculated for Fe-.31%Ni using an aspect ratio of 0.05. 

Also shown (in dots) are the martensite mid-rib plane determina­

tions made by Breedis and Wayman (l9) . on Fe-30. 9%Ni and Fe-31.1% 

Ni specimens. 

·Fig. 5. The predicted habit plane [V- close to (4.6.7,1,0) ] for the 
0 

martensitic transformation in polyethylene, together with the 

120% of minimum energy contour An aspect ratio of 0.05 

was used in the calculations. 
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.---------LEGAL NOTICE-----------. 
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United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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