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SANISAND-MSf: a sand plasticity model with memory surface and
semifluidised state

MING YANG�, MAHDI TAIEBAT† and YANNIS F. DAFALIAS‡

A new constitutive model for sand is formulated by incorporating two new constitutive ingredients into
the platform of a reference critical state compatible bounding surface plasticity model with kinematic
hardening, in order to address primarily the undrained cyclic response. The first ingredient is a memory
surface for more precisely controlling stiffness affecting the plastic deviatoric and volumetric strains and
ensuing excess pore pressure development in the pre-liquefaction stage. The second ingredient is the
concept of a semifluidised state and the related formulation of stiffness and dilatancy degradation,
aiming at modelling large shear strain development in the post-liquefaction stage. In parallel, a
modified flow rule aimed at providing a better description of non-proportional monotonic and cyclic
loading is introduced. With a single set of constants, for which a detailed calibration procedure is
provided, this new model successfully simulates undrained cyclic torsional and triaxial tests with
different cyclic stress ratios, separately for the pre- and post-liquefaction stages, as well as liquefaction
strength curves based on ru and shear strain criteria for initial liquefaction. The successful reproduction
of the sand element response under undrained cyclic shearing contributes to future applications in
realistic and thorough seismic site response analysis.

KEYWORDS: constitutive relations; liquefaction; plasticity; repeated loading; sands; stiffness; stress path

INTRODUCTION
During the dynamic analysis of geostructures, the pheno-
menon of sand liquefaction is a predominant event that must
be accounted for. Hence, the underlying mechanism and
patterns of liquefaction have been explored by laboratory
experimentalists, where regular harmonic loading is usually
exerted on the soil specimen. An undrained cyclic torsional
test on Ottawa-F65 sand with the relative density Dr ¼ 60%
is presented in Fig. 1 to illustrate the response when the
sample is sheared with cyclic stress ratio (CSR) 0�20, where
CSR is the ratio of the cyclic shear stress amplitude τamp and
the initial mean effective stress p0. The stress path of shear
stress τ and mean effective stress p in Fig. 1(a) and the shear
stress–strain curves in Fig. 1(b) can be decomposed into two
stages based on whether the mean effective stress p reaches
zero or not, termed the pre- and post-liquefaction stages,
respectively, with the following response characteristics:
(a) intense plastic volumetric contraction tendencies along
with small shear strain in pre-liquefaction stage; (b) large but
limited shear deformation with increasing amplitude in the
post-liquefaction stage, where the mean effective stress
almost vanishes instantaneously and repeatedly, also called
cyclic mobility (Castro, 1975).

The effort to simulate numerically the foregoing two
response characteristics has led to extensive exploration in
developing different constitutive models during recent
decades. Within the framework of the bounding surface
(BS) plasticity and hypoplasticity (Dafalias, 1986), Wang
et al. (1990) formulated a plastic shear modulus dependence
on the accumulated deviatoric plastic strain, which can
effectively represent the response shown in Fig. 1.
Papadimitriou et al. (2001), Papadimitriou & Bouckovalas
(2002) and Dafalias & Manzari (2004) used a macroscopic
fabric-dilatancy tensor to influence the plastic modulus and
dilatancy coefficient such that large contraction occurs upon
loading reversal, after a dilative phase, that brings the mean
effective stress p close to zero and enables the simulation of
the typical butterfly shape, as shown in Fig. 1(a). To address
bounded strain cyclic mobility, Elgamal et al. (2003)
activated a constant-volume perfectly plastic phase with the
stress state frozen, when the loading stress path intersects the
phase transformation line at low confinement, until a
user-defined octahedral shear strain increment is accumu-
lated. Khosravifar et al. (2018) updated the flow rule to
address dependence on number of loading cycles, effective
overburden stress and static shear stress. Boulanger &
Ziotopoulou (2013) addressed the observed cyclic stiffness
degradation as a function of quantities related to cumulative
plastic shear strains and proposed accordingly the PM4Sand
model, which is based on the Dafalias & Manzari (2004)
platform. Zhang & Wang (2012) and Wang et al. (2014)
decomposed the dilatancy and volumetric strain rate into
reversible and irreversible components, introduced the
concept of a volumetric strain threshold below which the
soil is considered liquefied, and used cumulative irreversible
volumetric strain as a model parameter. In addition, these
authors were able to address the phenomenon of large but
limited shear strain accumulation in the post-liquefaction
stage.
These and several other similar approaches have contrib-

uted significantly to the modelling of cyclic mobility;
however, they share a general shortcoming and a lack of
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calibration flexibility for separate pre- and post-liquefaction
response simulations. The shortcoming is the use of a
quantity related to cumulative plastic volumetric or shear
strain in their formulation for dilatancy determination or
stiffness degradation that stays in the model after the
completion of a cyclic loading process, based on the
non-decreasing nature of a cumulative quantity. Yet, there
is no constitutive mechanism to eliminate such quantity in
subsequent drained or undrained monotonic and cyclic
loading, which are thus affected unduly and irrationally by
a past cyclic loading event. The lack of calibration flexibility
is that while these models can fit on purpose the practically
important liquefaction strength curve – that is, CSR against
the total number of cycles Nini for reaching the so-called
initial liquefaction – such overall fitting does not necessarily
correspond to correct fitting of the general stress–strain and
undrained stress path response in the pre- and post-
liquefaction stages separately. This is because there are no
constitutive mechanisms for addressing the cyclic response
separately for pre- and post-liquefaction stages.

The objective of this work is to present a new constitutive
model for sands, by remedying two simulative inadequacies
of a reference two-surface constitutive model by Dafalias &
Manzari (2004), abbreviated as the DM04 model, which is
an extension of its precursor by Manzari & Dafalias (1997).
The DM04 model is critical state compatible and is built
within the framework of BS plasticity; thus, by the very
nature of the BS, it can address qualitatively the response
under cyclic loading. However, the first simulative inade-
quacy is that, with stiffness determined by fitting monotonic
undrained loading, it over-predicts the pore water pressure
and shear strain accumulation under cyclic loading in the
pre-liquefaction stage. Increasing the stiffness by means of
increasing the value of the plastic modulus, Kp, will address
successfully both pore water pressure and shear strain
accumulation simultaneously, since both depend on plastic
modulus, but at the same time it will disqualify the
simulation under monotonic loading. It is therefore necessary
to invent a constitutive scheme that can increase the stiffness
under cyclic loading without altering the stiffness under
monotonic loading.

This scheme introduces a new constitutive ingredient
described by the concept and role of a ‘memory surface’
(MS) in stress space that stores a previously experienced
range of stress ratio while increasing the stiffness for stress
states within the MS without altering the stiffness for stress
states on the MS during monotonic loading. Memory
surfaces of various types go quite some way back in time,
as in the work of Wang et al. (1990), Stallebrass & Taylor
(1997), Maleki et al. (2009) and di Benedetto et al. (2014).

The MS adopted in this study is a multifaceted modification
of the original proposition by Corti et al. (2016) that was later
adjusted by Liu et al. (2019) to be compatible with the DM04
model platform. The use of the MS was shown to be
successful in simulating plastic volumetric and deviatoric
strain variations in drained cyclic shear tests, but has not yet
been tested extensively for simulations of multiple data under
undrained conditions. It must be mentioned that the MS
introduced by Corti et al. (2016) fades away during dilation,
usually obtained by extensive monotonic loading of dense
samples, thus returning to its original size before the cyclic
loading, ready to play its role again upon a new such loading,
an original feature adopted in the present work.
The second simulative inadequacy of the reference DM04

model is that after reaching the post-liquefaction stage under
undrained cyclic loading, the undrained stress path stabilises,
acquiring the usual butterfly shape, and similarly the cyclic
stress–strain loops stabilise at a fixed shear strain amplitude.
And while the butterfly stabilised shape is desirable for the
undrained stress path, because it is exactly what experimental
data show, the stress–strain stabilisation is against the
experimental observation of increasing shear amplitude
with number of post-liquefaction cycles, with an eventual
saturation level. Contrary to what was done with the MS for
the pre-liquefaction stage, namely to increase the stiffness by
way of the plastic modulus Kp for both deviatoric and
volumetric plastic strain rates, now one must progressively
decrease the stiffness only for deviatoric plastic strain rate in
order to achieve the increasing shear strain amplitude, while
maintaining the same stiffness for plastic volumetric strain
rate in order to maintain the stabilised butterfly-shaped
undrained stress path. This new combination of stiffness
modification protocol can be achieved by decreasing simul-
taneously by the same factor the plastic modulus Kp and the
dilatancy D. This is because the decrease of Kp will achieve
the shear strain amplitude increase, while the same decrease
ofD will maintain fixed the value of the ratioD=Kp on which
the plastic volumetric strain rate and consequently the
undrained stress path depend, thus maintaining the same
butterfly shape of the latter. Notice that the foregoing
conclusions are valid for any plasticity model because they
address the basic constitutive relations irrespective of the
specific model they are related to.
The above required constitutive modification to the DM04

model was in fact addressed in the paper by Barrero et al.
(2020) by a new constitutive ingredient reflecting the physical
existence of a ‘semifluidised (Sf) state’ for very low effective
mean stress reached in the post-liquefaction stage. It intro-
duced a new internal degradation variable for plastic modulus
and dilatancy, named the ‘strain liquefaction factor’ (SLF),
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Fig. 1. Experimental data of undrained cyclic torsional test for Ottawa-F65 sand at Dr¼60% after Ueda et al. (2018): (a) stress path;
(b) stress–strain response
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that increases towards a saturation value of unity during
undrained cyclic loading, while it decreases in a continuous
way upon subsequent drainage. Notice that both the evolution
of, and analytical effect on Kp and D by the SLF are active
only for states within the semifluidised state, while leaving
almost intact the response outside that state.
The introduction of the two new constitutive ingredients of

MS and SLF, besides remedying the two simulative inade-
quacies of the DM04 model under undrained cyclic loading,
also addresses the aforementioned shortcoming and lack of
calibration flexibility encountered in various other constitu-
tive models. First, the fact that the MS fades away upon
dilation and the SLF demise upon drainage, allows a new
cyclic loading to start anew without any unjustified effect
from a previously performed cyclic loading that resulted in
accumulated and permanently stored quantities such as
cumulative shear strain. Second, the MS and SLF are
aimed at improving the cyclic stress–strain response for pre-
and post-liquefaction stages, respectively, without affecting
each other; thus, they contain the seed for a separate rather
than overall successful simulation of the CSR against total
number of cycles in pre- and post-liquefaction stages.
The new model maintains of course all innate capabilities

of the DM04 model to be critical state compatible and
effective in simulating the response under various pressures
and densities for monotonic loading. In fact, its capability
to simulate monotonic non-proportional loading, and its
control of strain accumulation shift under cyclic triaxial
loading in compression and extension, are improved by two
small modifications that will be described in the next section.
Its effectiveness for cyclic loading will be shown by successful
simulation of two extensive experimental databases on
undrained cyclic torsional and triaxial tests with different
CSRs. In the process, the detailed calibration procedures for
the model constants related to the new constitutive ingre-
dients, the semifluidised state and the MS, will be fully
explained. These two new constitutive ingredients suggest the
name SANISAND-MSf for the model, because it is a
member of the SANISAND family of models (Taiebat &
Dafalias, 2008), with M standing for ‘memory surface’ and
Sf for ‘semifluidised state’.
In terms of basic notation, tensor-value quantities will

be shown by bold face characters and the symbol : between
two tensors denotes summations over the adjacent pairs of
indices in reverse order of the tensors, which in the case of
second-order tensors implies the trace, namely tr ABð Þ ¼ A :
B ¼ AijB ji.

REFERENCE DM04 MODEL
The DM04 has four conical surfaces, as illustrated

in Fig. 2 in the deviatoric stress space, shown for convenience
only as the π-plane for the stress ratio. These surfaces are
a small yield surface (YS) centred at the back-stress ratio α
that obeys kinematic hardening (KH), and three other
origin-concentric surfaces: bounding surface (BS), critical
state surface (CS) and dilatancy surface (DS). A mapping
rule from the origin along the unit-norm deviatoric tensor n,
normal to the YS at the stress ratio r, specify image points on
the BS and DS whose distances from the current back-stress
ratio α control the plastic modulus and dilatancy,
respectively.
The constitutive equations of the DM04 model are

presented collectively in Table 1, together with some
modifications to be discussed in the sequel. With more
details provided in the paper by Dafalias & Manzari (2004),
it is only expedient to outline briefly here the symbols and
basic definitions. The elastic and plastic strains are denoted
by the superscripts e and p, respectively, while a superposed

dot implies the rate. The p ¼ tr σð Þ=3 is the mean effective
stress, with σ being the effective stress tensor and tr �ð Þ the
trace operator; s ¼ σ� pI is the deviatoric stress tensor, with
I being the second-order identity tensor, and r ¼ s=p is the
stress ratio in Fig. 2; εv ¼ tr εð Þ is the volumetric strain, with ε
being the strain tensor; e ¼ ε� εv=3ð ÞI is the deviatoric
strain tensor; L is the plastic multiplier that includes the
plastic modulus Kp in its denominator and is enclosed in the
Macaulay brackets such that Lh i ¼ L if L � 0 and Lh i ¼ 0 if
L , 0; D is the dilatancy ratio; R′ represents the deviatoric
flow rule direction normal to the CS surface at the image
point αc

θ, also shown transferred at the stress ratio point r,
Fig. 2. The A0 and h are directly related to dilatancy and
plastic modulus, respectively, and their definitions are of
cardinal importance for the performance of the model. The z
is an evolving dilatancy fabric tensor whose role is to induce
large contraction upon unloading after a dilative phase. The
αin is the initial value of α at initialisation of a new loading
process and is updated when the denominator of h becomes
negative, as per the rules discussed by Dafalias (1986).
The g θ; cð Þ is the interpolation function for the BS, DS and
CS, with θ the Lode angle and c the ratio between triaxial
extension and compression critical stress ratio values; ψ ¼
e� ec is the state parameter (Been & Jefferies, 1985) defined
as the difference between the current void ratio e and the
critical void ratio ec at the same p on the critical state line
(CSL) in the e–p space (Li & Wang, 1998).
Two modifications are introduced to the DM04 model.

The first defines a modified flow rule along R* obtained by
interpolation between n and the unit norm R′= R′j jj j, with j:jj j
being the norm operator, as

R* ¼ I xαð Þnþ 1� I xαð Þ½ � R′
R′j jj j ð1Þ

with the interpolation factor xα ¼ hαbθα � αj jj ji=αbθα measur-
ing the relative distance of α from its BS projection αb

θα
along

the radius from the origin (see Table 1 for the definition of
the θα and the unbold αbθα that is the length of the αb

θα
shown

in Fig. 2); the I xαð Þ is an interpolation function varying
together with xα from 1 to 0, as αmoves from the origin onto
or outside the BS, and accordingly the R* varies from n to
R′= R′j jj j. The choice I xαð Þ ¼ x2α is made for simplicity here,
as shown in the third column of Table 1, without adding a
new constant (the exponent 2 is a default value). Alternative
choices are possible, as for example one variant of the
sigmoidal function widely used in machine learning σ xαð Þ ¼
I xαð Þ ¼ 1=f1þ exp ½�kðxα � RcÞ�g that approaches 1 and 0

r1

r2 r3

α

r
n

Yield surface

Bounding surface

αθ
b

αθ
c

αθ
d

n
θ

α̇

Critical state surface

R'

R'

Dilatancy surface

αθα
b

Fig. 2. Schematic illustration of model surfaces and mapping rules on
the deviatoric stress ratio π plane
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as closely as desired by the specification of its two constants k
and Rc. Fig. 3 shows the simulation compared against data
for the undrained simple shear test of Toyoura sand (data
from Yoshimine et al. (1998), also appeared in figure 12 of
the paper by Dafalias & Manzari (2004)) using four different
flow rules associated with n, R′ and two R* according to
equation (1) with the aforementioned two interpolation
functions. The plots in Figs 3(a) and 3(b) do not differ
significantly, but the one in Fig. 3(c) shows the advantages of
using the modified flow rule for non-proportional loading.

The second modification consists of dividing dilatancy D
and plastic modulus Kp by gðθ; cÞng, with ng a model
constant, as shown in the third column of Table 1; the
foregoing division of Kp is achieved by dividing the b0 term
of its coefficient h. Dividing both D and Kp by the same
factor, the function of the Lode angle θ, maintains the same
plastic volumetric strain rate and correspondingly pore water
pressure rate and undrained stress paths, while balancing the
relative magnitude of shear strain amplitude in triaxial
compression and extension, thereby allowing, by a proper
choice of ng, control of the shifting of the stress–strain loops
during cyclic triaxial loading. The use of gðθ; cÞng has a small
effect on the stress–strain curve in extension, while the
response in compression is unaltered because gðθ; cÞng ¼ 1.

MEMORY SURFACE
The MS by Corti et al. (2016), and its extension by Liu

et al. (2019), is equipped with both isotropic hardening (IH)
and kinematic hardening (KH) in the deviatoric stress ratio
space, and its role is that of an auxiliary BS aimed at adding
extra stiffness to the deviatoric and volumetric plastic strain
rates for stress points within the MS, prompted by compari-
son of simulations with data. It is thought that the role of the
MS as a stiffening constitutive ingredient is related to

adjustments to the micromechanical fabric characteristics
due to experienced past loading range in stress space.
The formulation of the MS developed in this study is

different from that of Corti et al. (2016) and Liu et al. (2019)
in regard to the following aspects.

• It is a MS for the back-stress ratio rather than the stress
ratio, compatible with the formulation of DM04 model,
which allows the minimum of its size to be zero.

• It derives the evolution of MS in general, using BS
techniques, as opposed to the assumption that the virgin
loading formulation is extended to cases under general
loading (Liu et al., 2019).

• It tackles the singular case where a denominator can go to
zero under certain loading conditions, existing in Liu
et al. (2019).

• It does not make use of MS for the determination of
dilatancy D that is evaluated with the equation listed in
Table 1 using the dilatancy fabric tensor z, according to
the DM04model. If an improvement of dilatancy is found
necessary, one could make use of the dilatancy-triggering
surface proposed by Woo et al. (2019) in a role similar to
that of the MS while being compatible with the DM04
model platform.

The MS is defined analytically by

fM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αM
θ � αM

� �
: αM

θ � αM
� �q

�
ffiffiffiffiffiffiffiffi
2=3

p
mM ¼ 0 ð2Þ

where αM is its centre andmM its size. As illustrated in Fig. 4,
αM
θ is the image point of α on the MS obtained by projection

from αM along n on it, expressed analytically by

αM
θ ¼ αM þ

ffiffiffi
2
3

r
mMn ð3Þ

Table 1. Changes from basic to modified DM04 model equations related to flow rule and dilatancy updates

Description DM04 equations Modified equations Constants

Elastic relations ε̇ev ¼ ṗ=K ; ėe ¼ ṡ= 2Gð Þ
Plastic relations ε̇pv ¼ Lh iD; ėp ¼ Lh iR′ ėp ¼ hLiR*

Hypoelastic moduli G ¼ G0patð2�97� eÞ2= 1þ eð Þð p=patÞ1=2 G0

K ¼ 2 1þ νð ÞG= 3 1� 2νð Þ½ � ν

Yield surface f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� pαð Þ : s� pαð Þp � ffiffiffiffiffiffiffiffi

2=3
p

pm ¼ 0 m

Dilatancy D ¼ A0 1þ z : nh ið Þ αd
θ � α

� �
: n D ¼ A0gðθ; cÞ�ng 1þ z : nh ið Þ αd

θ � α
� �

: n A0, ng

Deviatoric flow rule R′ ¼ Bn� C n2 � 1=3ð ÞI� �
R* ¼ x2αnþ 1� x2α

� �
R′= R′j jj j

n ¼ r � αð Þ= r � αj jj j xα ¼ αbθα � αj jj j
D E

=αbθα

B ¼ 1þ 3 1� cð Þ= 2cð Þg θ; cð Þ cos 3θ αbθα ¼
ffiffiffiffiffiffiffiffi
2=3

p ½gðθα; cÞM exp ð�nbψÞ �m� c

C ¼ 3
ffiffiffiffiffiffiffiffi
3=2

p
1� cð Þg θ; cð Þ=c cos 3θα ¼

ffiffiffi
6

p
tr n3

α

� �
; nα ¼ α= αj jj j

g θ; cð Þ ¼ 2c= 1þ cð Þ � 1� cð Þ cos 3θ½ �
Kinematic hardening α̇ ¼ Lh i 2=3ð Þh αb

θ � α
� �

Fabric-dilatancy rate ż ¼ �cz �ε̇pv
� �

zmaxnþ zð Þ cz, zmax

Hardening coefficient h ¼ b0= α� αinð Þ : n½ �
b0 ¼ G0h0 1� cheð Þð p=patÞ�1=2 b0 ¼ G0h0gðθ; cÞ�ng 1� cheð Þð p=patÞ�1=2 h0, ch

Image point on DS αd
θ ¼ ffiffiffiffiffiffiffiffi

2=3
p ½gðθ; cÞM exp ðndψÞ �m�n nd, M

Image point on BS αb
θ ¼ ffiffiffiffiffiffiffiffi

2=3
p ½gðθ; cÞM exp ð�nbψÞ �m�n nb

Critical state line ec ¼ erefc � λcð p=patÞξ erefc , λc, ξ
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where the use of the subscript θ in all the above is indicative
of the corresponding Lode angle θ. The distance of α from
αM
θ projected on n will be the key new quantity for increasing

the stiffness. During the loading process one must make sure
that the α does not move outside the MS so that the
aforementioned quantity remains positive. To this extent, one
can write

α̇ ¼ α̇M
θ þ Lh i 2

3
h* αM

θ � α
� �

¼ α̇M þ
ffiffiffi
2
3

r
ṁMnþ

ffiffiffi
2
3

r
mMṅþ Lh i 2

3
h* αM

θ � α
� � ð4Þ

where the rate of equation (3) was used in deriving
equation (4), which is valid for α inside or on the MS.
Equation (4) simply states that α will move as much as its
image point αM

θ plus an additional motion along αM
θ � α

controlled by a free to choose modulus h*, hence guarantee-
ing that α will never cross and move outside the MS because
the additional motion will stop when αM

θ � α ¼ 0 no matter
what the value of h* is. By multiplying equation (4) with n
and taking the trace of each term, one obtains

α̇ : n ¼ α̇M
: nþ

ffiffiffi
2
3

r
ṁM þ Lh i 2

3
h* αM

θ � α
� �

: n ð5Þ

noticing that ṅ : n ¼ 0 implied by n : n ¼ 1. Equation (5)
becomes the consistency condition for the MS when α is
on it – that is, when αM

θ � α ¼ 0, as can be seen by taking the
rate of fM in equation (2) and observing from Fig. 4 that the
normal n to the YS at r is the same as the normal n to theMS
at αM

θ .

Rate of αM

Referring to Fig. 4 one can observe that eventually α will
reach the BS at its image point αb

θ , as per the corresponding
rate equation for α in Table 1, and the MS at its image point
αM
θ ; thus, αM

θ will reach the BS at the same point αb
θ .

Consequently the αM will reach a point αbM
θ , which is

inwards from αb
θ along n and defined by

αbM
θ ¼ αb

θ �
ffiffiffi
2
3

r
mMn ð6Þ

Based on equations (3) and (6) one has αbM
θ � αM ¼

αb
θ �

ffiffiffiffiffiffiffiffi
2=3

p
mMn� αM ¼ αb

θ � αM
θ ; thus, the following rate

r1

r2 r3

α
rn

Yield surface

α M

n

Memory surface

Bounding surface

n

αθ
M

αθ
b

αθ
bM

αθ+π
b

Fig. 4. Illustration of the conceptual framework of bounding-memory
surface models
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Fig. 3. Simulation of undrained simple shear test data of Toyoura sand (Yoshimine et al., 1998) using flow rules associated with n, R′ and from
equation (1) R*

1 for I xαð Þ ¼ x2α and R*
2 for I xαð Þ ¼ σ xαð Þ where k ¼ 15 and Rc ¼ 0�6
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equation of evolution can be written for αM– that is, the KH
of the MS

α̇M ¼ Lh i 2
3
hM αbM

θ � αM� � ¼ Lh i 2
3
hM αb

θ � αM
θ

� � ð7Þ

with hM an appropriatemodulus to be defined in the following.

Rate of mM

The isotropic hardening/softening (IH) of the MS is given
by the rate of its size mM. A modification of the proposition
by Liu et al. (2019) can be expressed by

ṁM ¼
ffiffiffi
3
2

r
α̇M

: n�mM

ς
�ε̇pv
� � ð8Þ

Observe the deletion from the second term of equation (8),
of the complicated term fshr used in the corresponding
equation (16) of the proposition by Liu et al. (2019), which is
necessary to keep the MS from becoming smaller than the
YS. This is because in the present case the MS refers to the
back-stress ratio α and not to the stress ratio r, hence, it is
allowed to shrink down to zero size – that is,mM ¼ 0 – due to
dilation. The MS shrinking was an original suggestion by
Corti et al. (2016) that is very important because it provides
the mechanism to eliminate a previousMS upon dilation and
start anew in a subsequent loading process.
The next step would be to substitute the expression of α̇

as listed in Table 1, and equations (7) and (8) into the con-
sistency equation (5) and solve for the parameter hM

necessary for the operation of equation (7). In doing so,
two traps may arise. First, during dilation and softening,
which is common to dense sands, the second term of
the right-hand side (RHS) of equation (8) may render
the size mM of the MS zero, and if the first term is negative,
then equation (8) will yield an unacceptable negative value
of mM. This eventuality is possible because one may
have α ¼ αM

θ during monotonic loading from the origin for
which all tensors are along n, and because during softening
the α is outside the BS, a standard feature of the DM04
model, the αM

θ will be as well; consequently, it follows from
equation (7) that the α̇M, which is along αb

θ � αM
θ , will be

along �n (recall the αM
θ is further out than αb

θ along n);
hence, the first term of the RHS of equation (8) will be
negative, establishing the first trap. The second trap is more
serious. In solving equation (5) for hM, after the aforemen-
tioned substitutions, the term αb

θ � αM
θ

� �
: n will appear in

the denominator and it is possible for cases where some part
of the MS has moved outside the BS to have αb

θ � αM
θ

� �
:

n ¼ 0 even if αb
θ = αM

θ . This will cause singularity and an
infinite value for hM that may create serious numerical
problems upon implementation. Such zeroing of the corre-
sponding quantity (rbθ � rMÞ : n may occur in the

r1

r2 r3

α
r
n

Initial
yield surface

α

r
n

Translated
yield surface

Bounding surface

αθ
b

αM

Coinciding α  and α M

before expansion

Memory surface
after expansion

α = αθ
M

Fig. 5. Memory surface expansion and translation during virgin
loading

Table 2. Changes from modified DM04 to SANISAND-MSf model equations related to memory surface and semifluidised state

Description DM04 modified
equations

SANISAND-MSf Constants*

Memory surface — fM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αM
θ � αM

� �
: αM

θ � αM
� �q

� ffiffiffiffiffiffiffiffi
2=3

p
mM ¼ 0

Image point on MS — αM
θ ¼ αM þ ffiffiffiffiffiffiffiffi

2=3
p

mMn

α̇M ¼ Lh i 2=3ð ÞhM αb
θ � αM

θ

� �
ṁM ¼ Lh i½

ffiffiffiffiffiffiffiffi
2=3

p
cchM αb

θ � αM
θ

� �
: n

� �
�mM=ς αb

θ � αM
θ

� �
: n

		 		 �Dh i�
cc ¼ 1

ς ¼ 0�00001
hM ¼ hþ

ffiffiffiffiffiffiffiffi
3=2

p
mM=ς
� �

sgn αb
θ � αM

θ

� �
: n

� � �Dh i
n o
= 1þ ccH αb

θ � αM
θ

� �
: n

� �
 �
Hardening coefficient h ¼ b0= α� αinð Þ : n½ � h ¼ b0= α� αinð Þ : n½ �f g � exp ½μ0=ðj αinj jju þ εÞ�ðbM=bref Þw


 �
μ0, u
ε ¼ 0�01, w ¼ 2

bM ¼ αM
θ � α

� �
: n

bref ¼ αb
θ � αb

θþπ

� �
: n

SLF rate — ‘̇ ¼ Lh i½c‘ 1� prh i 1� ‘Þn‘ð � � cr‘ ε̇vj j c‘, n‘ ¼ 8, cr

pr ¼ p=pth pth ¼ 10 kPa

h0 h0 ¼ h′0 1� 1� prh ið Þx‘ þ f‘
h i

x, f‘ ¼ 0�01
A0 A0 ¼ A′

0 1� 1� prh ið Þx‘ þ f‘
h i

*Some constants have indicated default numerical values.
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denominator of the second term of the RHS of equation (18)
in the paper by Liu et al. (2019).
In order to avoid the foregoing two traps, the following

equation is proposed in lieu of equation (8), using the plastic
volumetric strain rate as given in Table 1 and equation (7)

ṁM ¼ Lh i
ffiffiffi
2
3

r
cchM αb

θ � αM
θ

� �
: n

� �"

�mM

ς
αb
θ � αM

θ

� �
: n

		 		 �Dh i
� ð9Þ

One can identify the following changes in regard to equation
(8). First the Macaulay brackets appear in the first term of
the RHS of equation (9) by applying them to α̇M

: n and
using equation (7), while treating hM as positive, a hypothesis
that must be confirmed at the end. Therefore, the first term
will not contribute to the shrinkage of the MS when
αb
θ � αM

θ

� �
: n , 0, so that it excludes the aforementioned

first trap of mM becoming negative. Second, the quantity
αb
θ � αM

θ

� �
: n

		 		 is introduced in the second term of the RHS
in order to address the eventuality of αb

θ � αM
θ

� �
: n ¼ 0 in

the denominator of the solution of equation (5) for hM, with
which it will be cancelled. Use of an absolute value �j j is
necessary in the case of a MS larger than the BS where
the negative value of αb

θ � αM
θ

� �
: n would induce increase

rather than decrease of the MS size during dilation. The
factor cc is added simply to provide a greater flexibility in the
relative contribution of IH and KH to the evolution of mM.
Its default value cc ¼ 1, proposed in Corti et al. (2016),
implies that the rate of IH is exactly equal to the rate of
KH when α is on the MS; in practical terms it means
that, as the α moves away from the origin during virgin
loading, the centre αM of the MS is half the value of α and
equals mM. So, the MS develops with one end on α and the
other fixed at the origin, as presented in Fig. 5. If cc . 1 the
KH will contribute more to IH and the stress origin will be
inside the MS, while if cc , 1 the KH will have a lesser
contribution to IH and the origin will be left outside the MS,
during virgin loading. Irrespective of the value of cc, the
structure of equations (7) and (9) implies that for monotonic
radial virgin loading from the origin, the current back-stress
ratio point will be simultaneously on the yield and memory
surfaces; thus the value of cc will affect the response only
upon reverse loading after monotonic, as per the foregoing
description of the stress origin position in relation to the MS.
The constant ς, appearing in equation (9), controls the pace
of MS shrinking during dilation; hence, it affects the
post-liquefaction stress path. A default value of ς ¼
0�00001 is found to be effective. Finally, the assumption h* ¼
h in equation (5) is necessary, without any significant loss of
generality, for the elimination of the effect of zero denomi-
nator when αb

θ � αM
θ

� �
: n ¼ 0 because the choice h* ¼ h

makes the foregoing zero term appear also in the numerator;
hence, it will be cancelled.
Based on the foregoing, substitution of α̇ from Table 1 and

equations (7) and (9) in equation (5), yields for hM the
solution

hM ¼ 1
1þ ccH αb

θ � αM
θ

� �
: n

� �
hþ

ffiffiffi
3
2

r
mM

ς
sgn αb

θ � αM
θ

� �
: n

� � �Dh i
( ) ð10Þ

where the Heaviside functionH x½ � ¼ 1 if x � 0 andH x½ � ¼ 0
if x , 0; the sign function sgn x½ � ¼ 1 if x . 0, sgn x½ � ¼ 0 if
x ¼ 0 and sgn x½ � ¼ �1 if x , 0. Recall that in writing
equation (9) it is hypothesised that hM . 0 so that it is

taken outside the �h i and this hypothesis must now be
confirmed. Indeed when αb

θ � αM
θ

� �
: n . 0 equation (10)

yields hM . 0, but when αb
θ � αM

θ

� �
: n , 0 it is possible to

have hM , 0 depending on the relative values of the first and
second terms of the RHS of equation (10). But in this case
the first term of the RHS of equation (9) goes to zero anyway,
irrespective of the sign of hM, and any negative value of
the latter has no adverse effect on the formulation for the
rate of mM.
The Heaviside and sign functions in equation (10) are

discontinuous upon change of sign of their argument. This
has no effect in radial loading if the change of sign of
αb
θ � αM

θ

� �
: n occurs when αb

θ ¼ αM
θ because then α̇M ¼ 0;

but if it happens that for a continuously changing direction n
the sign of αb

θ � αM
θ

� �
: n changes without having αb

θ ¼ αM
θ ,

then discontinuities in the value of hM appear. However, this
will show no discontinuous stress–strain response because it
will only affect the rate of evolution of MS without any
discontinuity of the MS itself.

The role of MS
With equations (7), (9) and (10) the evolution of the MS is

complete. Its link to the DM04 model can then be expressed
by modifying the value of the hardening coefficient h, listed
in Table 1, as follows

h ¼ b0
α� αinð Þ : n exp

μ0
j αinj jju þ ε

bM

bref


 �w� �
ð11Þ

where bM ¼ αM
θ � α

� �
: n and bref ¼ αb

θ � αb
θþπ

� �
: n (refer

to Fig. 4 for identification of the foregoing tensors); αin is the
value of α at the initiation of a new loading process as
explained in DM04; and μ0, u are model constants. Default
values of w ¼ 2 and ε ¼ 0�01 are found to be very effective.
The exponential term in equation (11) adds stiffness to the
deviatoric response by increasing the value of h in analogy to
the distance bM of α from its image αM

θ on the MS, projected
on n, a standard BS scheme, since the MS is in fact an
auxiliary BS for stiffness control. The analytical expression

Table 3. SANISAND-MSf calibrated model constants for two types
of sands

Model constant Symbol Ottawa-F65 Karlsruhe

Elasticity G0 125 100
ν 0�05 0�05

CSL M 1�26 1�28
c 0�735 0�75
erefc 0�78 1�038
λc 0�0287 0�056
ξ 0�7 0�28

Yield surface m 0�01 0�01
dilatancy nd 2·50 1·20

A′0 0·626 0·56
ng 0·9 0·95

Kinematic nb 0·60 1·0
hardening h′0 4·00 7·60

ch 0·968 1·015
Fabric dilatancy zmax 15·0 15·0

cz 2000 1000
Memory surface μ0 4·08 7·80

u 0·96 0·87
Semifluidised state c‘ 35 25

x 3·5 3·3
cr 0* 0*

*Calibration requires detailed data for multiple liquefaction stages.
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Fig. 6. Effects of SANISAND-MSf model constants μ0, u on the simulated liquefaction strength curve with initial liquefaction referring to
ru ¼ 0�95 based on undrained cyclic torsional tests under constant CSR: (a) role of μ0; (b) role of u
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of this exponential term follows an initial suggestion by
Liu et al. (2019) where the factor ð p=patmÞ0�5 of this
suggestion, that may adversely affect the simulation of
liquefaction resistance with increasing initial p, is substituted
by ðj αinj jju þ εÞ�1 that accounts for cyclic shear stress
amplitude effects.

SEMIFLUIDISED STATE
Based on the laboratory observations of undrained cyclic

shear tests on sand, the concept of ‘semifluidised state’ is
introduced in the paper by Barrero et al. (2020), which refers to
the state of granular material when the mean effective stress is
very small, namely when p , pth with the threshold mean
effective stress pth being a model constant. An internal state
variable named the ‘strain liquefaction factor’ (SLF) and

symbolised by ‘ is introduced, whose purpose is to induce
stiffness degradation within the semifluidised state. The ‘
evolves only when p , pth according to the rate equation

‘̇ ¼ Lh i½c‘ 1� prh ið1� ‘Þn‘ � � cr‘ ε̇vj j ð12Þ
where c‘ is a model constant controlling the evolution rate of
‘; n‘ is a model constant with the default value 8�0; the
pressure ratio pr ¼ p=pth compared to 1 determines if the
stress state falls into the semifluidised state; and pth is given
the default value of 10 kPa, but it can be re-adjusted if
necessary for various sands. In regard to such re-adjusted
values of pth, a more thorough investigation should be
undertaken in the future, possibly using the tool of the
discrete-element method. A big advantage of the present
scheme is that the analytical dependence of the response on
pth is not very sensitive to a more exact and different value of
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Fig. 8. Simulations compared with experiments in undrained cyclic torsional test with CSR ¼ 0�19 on isotropically consolidated sample of
Ottawa-F65 sand with Dr ¼ 50%: (a), (c) experimental data from Ueda et al. (2018); (b), (d) simulations using SANISAND-MSf;
(e), (f) comparisons between experiments and simulations in terms of pore pressure generation and shear strain development. Experiment and
simulation are shown in grey and black lines, respectively. Pre-liquefaction and post-liquefaction are shown in solid and dashed lines, respectively
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pth. Because of 1� prh i the ‘ evolves from minimum value
0 to maximum value 1 only when pr , 1 within the semi-
fluidised state. The last term of equation (12) is zero for
undrained loading where ε̇v ¼ 0, and leads ‘ towards zero
during drained loading inside or outside the semifluidised
state. This last term is a very important constitutive element
because it allows readjustment of ‘ to its initial zero value,
and eliminates the shortcoming of various models mentioned
in the introduction associated with the use of ever-increasing
cumulative quantities such as plastic shear strain for stiffness
degradation. The effect of this last term is not addressed in
this work because no draining after undrained loading is
considered. Yet, one can refer to Barrero et al. (2020) for a
detailed qualitative investigation of the role of the
back-to-zero last term of equation (12) in the response after
reaching liquefaction, followed by subsequent drainage and

new cyclic loading until re-liquefaction, where the significant
effect of the value of model constant cr is illustrated.
Comparison with data is a future necessary endeavour.
The role of the SLF is to decrease by the same factor

stiffness and dilatancy, by decreasing the values of h0 and A0
listed in Table 1, according to the following two equations:

h0 ¼ h′0 1� 1� prh ið Þx‘ þ f‘
h i

ð13Þ

A0 ¼ A′0 1� 1� prh ið Þx‘ þ f‘
h i

ð14Þ

where x and f‘ are model constants, the latter with the default
value 0�01. The primed quantities h′0 and A′0 are in fact the
quantities h0 and A0 of the DM04 model, listed in Table 1.
The new h0 of equation (13) will transfer by wayof b0 as listed
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Fig. 9. Simulations compared with experiments in undrained cyclic torsional test with CSR ¼ 0�15 on isotropically consolidated sample of
Ottawa-F65 sand with Dr ¼ 50%: (a), (c) experimental data from Ueda et al. (2018); (b), (d) simulations using SANISAND-MSf;
(e), (f) comparisons between experiments and simulations in terms of pore pressure generation and shear strain development. Experiment and
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in Table 1, the effect of ‘ on the value of h in equation (11).
Thus, the resulting value of h will be simultaneously affected
by the roles of MS and SLF. Observe that outside the
semifluidised state one has pr ¼ p=pth . 1, hence,
equations (13) and (14) become h0 ¼ h′0 1þ f‘ð Þ and A0 ¼
A′0 1þ f‘ð Þ, respectively, rendering h0 and A0 almost equal to
their original primed values, given the very small default
value of f‘ ¼ 0�01. Finally, it follows from equations (13)
and (14) and the equations of Table 1, that h′0=A′0 ¼ h0=A0 ¼
Kp=D, and since the plastic volumetric strain rate is
proportional to D=Kp, one has that within the semifluidised
state this rate is unaltered by the modifications of h′0 and A′0 to
h0 and A0, in equations (13) and (14), respectively. This
achieves exactly what was intended, based on experimental
data, the simulation of which required a strong softening
related only to the deviatoric plastic strain rate. Note that the

SLF rate equation in the paper by Barrero et al. (2020),
corresponding to equation (12) in the present work, had an
additional term ð p=pinrÞa to allow for an overall fitting of the
liquefaction strength curve based on reaching different cyclic
shear strain amplitudes, often inaccurately balanced between
pre- and post-liquefaction stages; this is no longer needed given
the role of the MS in pre-liquefaction model performance.
Table 2 presents a summary of the transition from the

modified DM04 model equations, to those of the new
SANISAND-MSf model, in conjunction with the newly
introduced constants, including those with default values.

CALIBRATION
The new SANISAND-MSf model requires the calibration

of 21 model constants, divided into three groups. The first

−20

−10

0

10

20
Experiment

−20

−10

0

10

20
Simulation

−20

−10

0

10

20
Experiment

−20

−10

0

10

20
Simulation

0

0·2

0·4

0·6

0·8

1·0

Experiment
Simulation

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10
Experiment
Simulation

Sh
ea

r s
tre

ss
, τ

: k
Pa

Sh
ea

r s
tre

ss
, τ

: k
Pa

Sh
ea

r s
tre

ss
, τ

: k
Pa

Sh
ea

r s
tre

ss
, τ

: k
Pa

Ex
ce

ss
 p

or
e 

pr
es

su
re

 ra
tio

, r
u

Sh
ea

r s
tra

in
, γ

: %

Mean effective stress, p: kPa
(a)

0 20 40 60 80 100 120
Mean effective stress, p: kPa

(b)

0 20 40 60 80 100 120

−10 −5 0 5 10
Shear strain, γ : %

(c)

−10 −5 0 5 10
Shear strain, γ : %

(d)

Number of cycles, N

(e)

0 5 10 15 20 25 30 35 40
Number of cycles, N

(f)

ru = 0·95

Fig. 10. Simulations compared with experiments in undrained cyclic torsional test with CSR ¼ 0�13 on isotropically consolidated sample of
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group includes 16 constants inherited from DM04 and its
modification as listed in Table 1; details of their calibration
can be found in the paper by Taiebat et al. (2010).

The second group is related to the effect of MS on stiffness
by means of h, equation (11), and consists of two constants μ0
and u. Effects of μ0 and u on the simulated liquefaction
strength curve with initial liquefaction referring to ru ¼ 0�95
are illustrated in Figs 6(a) and 6(b). It can be concluded that
μ0 mainly affects the position of the liquefaction strength
curve, while u affects both the position and the slope.

The last group of model constants, linked to the semi-
fluidised state, is used to capture the post-liquefaction shear
strain development, without any effect on pre-liquefaction. It
consists of c‘ and cr, entering equation (12) and x entering
equations (13) and (14). As mentioned after equation (12),
the effect of cr is not addressed in this work, but a parametric
study is carried out to illustrate the effect of c‘ and x on the

post-liquefaction shear strain development. With reference to
the typical data of Toyoura sand at Dr ¼ 70%, the numerical
results shown in Fig. 7 are obtained with a shear stress
amplitude of 40 kPa for three combinations of c‘ and x,
keeping the other model constants fixed. Based on the
foregoing, the following calibration procedure is suggested:
(a) keep c‘, and vary x to capture the general trend of shear
strain development; (b) tune c‘ for local revision of this
general trend towards a better match for each cycle.

MODEL PERFORMANCE
Undrained cyclic torsional tests
The experimental data of undrained stress paths, shear

strain development and pore pressure generation under
undrained cyclic torsional tests on Ottawa-F65 sand from
Ueda et al. (2018) will be simulated by the SANISAND-MSf
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Fig. 11. Simulations compared with experiments in undrained cyclic torsional test with CSR ¼ 0�10 on isotropically consolidated sample of
Ottawa-F65 sand with Dr ¼ 50%: (a), (c) experimental data from Ueda et al. (2018); (b), (d) simulations using SANISAND-MSf;
(e), (f) comparisons between experiments and simulations in terms of pore pressure generation and shear strain development. Experiment and
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model. The samples are isotropically consolidated at around
100 kPa, ending up with very similar relative densities of
50%. Four tests are carried out with CSRvalues of 0�19, 0�15,
0�13 and 0�10. Recall that here CSR ¼ τamp=p0. The model
constants are provided in Table 3 with most inherited from
the DM04 model, as determined in Ramirez et al. (2018),
while zmax and cz are tuned for better approaching the
semifluidised state. The other model constants related to MS
and semifluidised state are calibrated by following the
aforementioned procedures in the calibration section.
Figures 8–11 present experiments and simulations for the

aforementioned four CSRs. The loading process is divided
into two stages, before and after the excess pore pressure ratio
ru ¼ 0�95, for the first time so that the comparisons can be
made separately for pre- and post-liquefaction stages – shown

in solid and dashed lines, respectively. Such comparisons are
in general quite satisfactory, as clearly shown in the figures,
and the following few points can be emphasised. As the CSR
becomes progressively smaller, the model can capture the
increasing number of cycles during the pre-liquefaction stage,
shown by the solid lines of the parts (b) as compared with the
corresponding experimental curves of the parts (a) of
Figs 8–11. In particular Fig. 11(b) compared with
Fig. 11(a) presents successful simulations for the very low
CSR= 0·10 that are beyond the capabilities of most existing
constitutive models, including DM04, but for SANISAND-
MSf the ingredient of the MS allows over 200 cycles to be
captured in the pre-liquefaction stage, until ru ¼ 0�95 is
reached. Similarly, owing to the constitutive ingredient of the
semifluidised state, the model can capture the increasing
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Fig. 12. Simulations compared with experiments in undrained cyclic triaxial test with CSR ¼ 0�25 on isotropically consolidated sample of
Karlsruhe find sand with Dr ¼ 79%: (a), (c) experimental data from Wichtmann & Triantafyllidis (2016); (b), (d) simulations using
SANISAND-MSf; (e), (f) comparisons between experiments and simulations in terms of pore pressure generation and axial strain development.
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lines, respectively
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shear strain amplitude in the post-liquefaction stage, shown
by the dashed lines of parts (d) in comparison with the
experiments of parts (c) in Figs 8–11. Characteristically
Fig. 9(d) shows a slowdown of the strain amplitude increase,
exactly as exhibited by the data in Fig. 9(c), and this is the
result of the SLF ‘approaching its saturation value of 1. Parts
(e) and (f) of Figs 8–11 illustrate the successful simulations of
the previous parts from the perspective of pore water pressure
and shear strain amplitude variations plotted against the
number of cycles for the four different CSRs.

Undrained cyclic triaxial tests
Data of undrained cyclic triaxial loading on Karlsruhe

fine sand from Wichtmann & Triantafyllidis (2016) will be
simulated by the SANISAND-MSf model. The sand samples

are isotropically consolidated around 100 kPa, ending up
with similar relative densities around Dr � 78%. Three
experimental tests are carried out with different CSRs of
0�25, 0�20 and 0�15. Here CSR ¼ qamp= 2p0ð Þ, that is, the ratio
of the deviatoric stress amplitude to twice the initial mean
effective stress. The calibrated model constants are provided
in Table 3 with most related to the DM04 model and adopted
from Liu et al. (2018), while the others are calibrated as
mentioned in the calibration section.
Figures 12–14 present data and simulations for the

aforementioned CSRs. The asymmetries of the undrained
stress path butterfly shapes in parts (b) and stress–strain loops
in parts (d) of these figures are in agreement with the
corresponding experimental data of parts (a) and (c),
respectively, and result from setting the model constant c ¼
0�712, while size-wise the simulated strain is close to the data
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Fig. 13. Simulations compared with experiments in undrained cyclic triaxial test with CSR ¼ 0�20 on isotropically consolidated sample of
Karlsruhe find sand with Dr ¼ 78%: (a), (c) experimental data from Wichtmann & Triantafyllidis (2016); (b), (d) simulations using
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thanks to the incorporation of the semifluidised state. For
the same reason of c ¼ 0�712, one has the shifting of the
stress–strain loops towards extension observed experimen-
tally in parts (c) and successfully simulated in parts (d) of
Figs 12–14. Such shifting is controlled by the introduction of
gðθ; cÞng in the modification of the DM04 shown in Table 1,
and had it not been introduced, the shifting would have been
unrealistically larger. Observe that shifting of the stress–
strain loops in Figs 13(d) and 14(d) towards extension is
slightly larger than the data, and this can be attributed to the
shifting occurring in the pre-liquefaction stage, shown by the
solid line loops. In conclusion, the successful simulation of
undrained stress paths, and the pore pressure generation and
shear strain development in both pre- and post-liquefaction
stages, further confirm that the SANISAND-MSf model can

address the main ingredients of granular material under
undrained cyclic triaxial shearing.

Liquefaction strength curve
The liquefaction strength curve – that is, the plot of CSR

against the number of cycles to initial liquefaction – is a
different perspective and a practically important measure of
the success of a simulation. The foregoing data and
simulations will be used to plot the corresponding strength
curves, adopting four criteria for initial liquefaction, namely
one ru based and three shear strain based.
Figure 15 presents the liquefaction strength curves for the

four undrained cyclic torsional tests on Ottawa F65 sand
with Dr ¼ 50%. The criteria for the initial liquefaction are
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excess pore pressure ratio, ru ¼ 0�95, and three double
amplitudes of shear strain, namely γDA ¼ 1�5%, γDA ¼
3�0% and γDA ¼ 7�5%. The data imply that ru ¼ 0�95
happens between γDA ¼ 3�0% and γDA ¼ 7�5%, while the
model suggests a value of around 1�5%. The model can give
very precise simulation of the number of cycles for ru ¼ 0�95
for all CSRs, as seen in Fig. 15(a). For the three
shear-strain-based criteria the model slightly over-predicts
the number of cycles, with small variations between higher
and lower CSRs. In general, the performance is very
satisfactory.
Figure 16 presents the liquefaction strength curve for the

three undrained cyclic triaxial tests on Karlsruhe fine sand
with Dr � 78%. The four criteria for initial liquefaction are
excess pore pressure ratio ru ¼ 0�95, and three double
amplitudes of axial strain εDA

a ¼ 1�0%, εDA
a ¼ 2�5% and

εDA
a ¼ 5�0%. The data imply that ru ¼ 0�95 happens between
εDA
a ¼ 2�5% and εDA

a ¼ 5�0%, while the model suggests a
range between εDA

a ¼ 1�0% and εDA
a ¼ 2�5%. For all four

criteria the data and simulations are in good agreement on
the average for all CSRs, with some small over-prediction
of the number of cycles for the strain-based criteria, except
from the test with the lowest CSR, which exhibits the
excellent performance shown in Figs 16(b)–16(d). The
experiments from Figs 15 and 16 indicate that large
deformation occurs along with excess pore pressure ratio
approaching 0�95, irrespective of which criterion is adopted
for initial liquefaction. This message is also conveyed by the
present model.

Effect of initial conditions
While the foregoing has addressed simulations for various

values of CSR at the same initial relative density Dr and
mean stress p0, the following addresses simulations for
different values of Dr and p0 under the same constant
CSR. Various laboratory experiments (Vaid et al., 2001;
Hyodo et al., 2002; Kiyota et al., 2008; Yang & Sze, 2011;
Wichtmann & Triantafyllidis, 2016) indicate that cyclic
liquefaction resistance increases with increasing relative
density or decreasing initial mean stress.
Figure 17 compares simulation and experimental plots of

pore pressure generation and axial strain development
against number of cycles, for two undrained cyclic triaxial
tests on isotropically consolidated samples of Karlsruhe fine
sand with the same p0 ¼ 100 kPa but different relative
densities subjected to a CSR of 0�15. Similarly, Fig. 18
compares same plots of experiments and simulations of two
undrained cyclic triaxial tests on isotropically consolidated
samples of Karlsruhe fine sand with similar Dr � 65% but
different initial mean stresses under a CSR of 0�125. The
reasonable agreement between simulations and experimental
data in Figs 17 and 18 shows that SANISAND-SMf is
capable of capturing the effects of different initial densities
and mean stresses.

CONCLUSION
The new SANISAND-MSf constitutive model for sands is

formulated by introducing minor and major modifications
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into the DM04 model platform by Dafalias & Manzari
(2004). The minor modification consists of two parts: one
that improves the accuracy of the non-associative flow rule in
non-proportional loading, and a second that improves the
cyclic shear stress–strain loops shifting under cyclic triaxial
loading by introducing a simple Lode angle dependence.
The major modification also has two parts, incorporating
two new constitutive ingredients. The first is a back-
stress-ratio-based MS, which is a drastic modification of
the original idea proposed by Corti et al. (2016) and adjusted
by Liu et al. (2019) to align with the DM04 model. The role
of the MS is to increase the stiffness for back-stress ratios
within it, in order to better simulate the stress paths and
stress–strain loops for undrained cyclic shear tests in the
pre-liquefaction stage. Compared to the foregoing references,
the present MS ingredient addresses several important issues,
among them a size of zero initial value, greater simplicity and
generality of its evolution and the avoidance of singularity
occurring by possible zeroing of a denominator in the
formulation. The second constitutive ingredient is the con-
cept of a semifluidised state for very low effective stresses
(Barrero et al., 2020), within which strong stiffness and
dilatancy degradation is described by means of an evolving
state variable termed the SLF, which can simulate large shear
strain development in the post-liquefaction stage without
affecting the response in the pre-liquefaction stage. The
SANISAND-MSf model is validated against two exper-
imental databases – namely, four undrained cyclic torsional
tests and three undrained cyclic triaxial tests. The simulations
of the undrained stress path, stress–strain loops, excess pore
pressure generation and shear strain development plotted
against the number of cycles are successfully compared with
the experimental data. Furthermore, and unlike other
models, such simulation is successful separately for the pre-
and post-liquefaction stages. The corresponding strength
curves of CSR plotted against number of cycles to initial
liquefaction, the latter defined in terms of both ru-based and
shear-strain-based criteria, show very satisfactory compari-
sons with data, thus removing a simulation shortcoming of
the reference base DM04 model. The constitutive ingredients
of MS and semifluidised state have generic value and can be
incorporated in other models, similar to the DM04 model,
such as the zero elastic range model developed and
implemented by Dafalias & Taiebat (2016) and Petalas &
Dafalias (2019), with appropriate adjustments.

It is also expected that the model will perform satisfac-
torily under drained cyclic conditions, as shown for similar
formulations by Corti et al. (2016) and Liu et al. (2019),
and this will be addressed in future works. Simulations
under undrained cyclic loading, however, remain the most
useful and difficult to achieve, and it is believed that the
present work has contributed positively in this endeavour.
With such satisfactory performance in simulating uni-
directional cyclic shear tests, the next step is to conduct a
systematic evaluation of SANISAND-MSf with respect to
multidirectional cyclic shear tests (Yang et al., 2019), where
effects of initial static bias and different cyclic shear paths are
considered.

The present model is void of two common theoretical
shortcomings with practical implications, encountered in
other constitutive models with similar simulative capabilities.
First, it does not use quantities that depend on cumulative
shear strain to describe stiffness degradation, which remain
in the model affecting unduly the subsequent loading simul-
ations. Instead, the SLF is introduced within the concept of a
semifluidised state, which promptly fades away upon drai-
nage following the cyclic loading. Second, it does not include
quantities related to the initiation of a cyclic loading, such as
the initial value p0 of p or the CSR that includes p0, into the

constitutive relations; models which do fall into the trap that
any intermediate state can be virtually considered as an
initial loading state, by means of a stop-and-start-again
loading event, thus, adversely modify the subsequent
response for what is essentially the same loading process.
Instead, only updatable values of internal variables at the
initiation of any new plastic loading process are used, such as
αin, and it was shown that the model is capable of capturing
the effect of different initial conditions on density and mean
pressure.
Thermodynamic compatibility in the sense of positive

dissipation (positive entropy production) is a desired feature
not always addressed in inelastic constitutive modelling
works, as in the present one. One way this can be achieved
requires making hypotheses about the structure of free energy
dependence on internal variables that in conjunction with the
rate evolution equations of these variables are sufficient to
satisfy positive dissipation, but one may expect restrictions on
the constants of those equations. In the case of kinematic
hardening internal variables, a basic feature of the present
model family, there is a standard approach that can be found
in the paper by Feigenbaum & Dafalias (2008) for metals
which, however, will require adjustments to accommodate
the dilatancy feature for soils that does not exist in metals. An
effort in this direction will be undertaken in the future.
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NOTATION
A0 dilatancy model variable in equation (14)
A′0 dilatancy model constant
B model variable in Table 1
b0 plastic modulus model variable in Table 1
bM projection distance between αM

θ and α along n
bref bounding surface length along n
C model variable in Table 1
c Lode angle interpolation constant
ch plastic modulus model constant
c‘ semifluidised state model constant
cr semifluidised state model constant
cz fabric dilatancy model constant
D dilatancy
Dr relative density
e void ratio
ec critical void ratio

erefc critical state line model constant
ee elastic deviatoric strain tensor
ep plastic deviatoric strain tensor
f yield surface
f‘ semifluidised state model constant with a default

value of 0�01
fM memory surface
G hypoelasticity shear modulus
G0 hypoelasticity model constant

g θ; cð Þ Lode-angle-dependent interpolation function
h hardening coefficient for kinematic hardening
h* user-defined constant for determination of hM

h0 model variable in equation (13)
h′0 plastic modulus model constant
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hM hardening coefficient for memory surface kinematic
hardening in equation (7)

I xαð Þ interpolation function in equation (1)
I second-order identity tensor
K hypoelasticity bulk modulus
Kp plastic modulus
‘ strain liquefaction factor in equation (12)
L plastic multiplier
M critical state stress ratio in p–q space
m yield surface size model constant

mM memory surface size model variable
N number of loading cycles

Nini number of loading cycles to initial liquefaction
n unit norm tensor normal to yield surface
nb bounding surface model constant
nd dilatancy model constant
ng model constant in Table 1
n‘ semifluidised state model constant with a default

value of 8�0
nα unit norm tensor along α
p mean effective stress
p0 initial mean effective stress
pat atmospheric pressure
pr threshold pressure ratio
pth threshold pressure with a default value of 10 kPa
q deviatoric stress
R′ deviatoric flow rule tensor of DM04 model
R* deviatoric flow rule tensor of current model in equation (1)
r deviatoric stress ratio tensor
ru excess pore water pressure ratio
s deviatoric stress tensor
u memory surface model constant in equation (11)
w memory surface model constant with a default value of 2�0

in equation (11)
x semifluidised state model constant
xα relative distance between αbθα and α
z fabric dilatancy tensor

zmax fabric dilatancy model constant
α yield surface centre tensor

αin value of α at initiation of new loading
αM memory surface centre tensor
αb
θ projection of α on bounding surface along n

αbM
θ bounding target of αM

αbθα length of αb
θα

αb
θα

projection of α on bounding surface along nα

αb
θþπ projection of α on bounding surface along �n
αd
θ projection of α on dilatancy surface along n

αM
θ projection of α on memory surface along n
γ shear strain
ε strain tensor
εa axial strain
εv volumetric strain
εev elastic volumetric strain
εpv plastic volumetric strain
ς memory surface shrinkage model constant
θ Lode angle along n
θα Lode angle along nα

λc critical state line model constant
μ0 memory surface model constant in equation (11)
ν hypoelasticity Poisson’s ratio
ξ critical state line model constant
σ stress tensor
τ shear stress

τamp amplitude of shear stress
ψ state parameter
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Taiebat, M., Jeremić, B., Dafalias, Y. F., Kaynia, A. M. & Cheng, Z.
(2010). Propagation of seismic waves through liquefied soils. Soil
Dyn. Earthq. Engng 30, No. 4, 236–257.

Ueda, K., Vargas, R. R. & Uemura, K. (2018). LEAP-Asia-2018:
stress–strain response of Ottawa sand in cyclic torsional shear
tests. DesignSafe-CI, https://doi.org/10.17603/DS2D40H.

Vaid, Y. P., Stedman, J. D. & Sivathayalan, S. (2001). Confining
stress and static shear effects in cyclic liquefaction. Can.
Geotech. J. 38, No. 3, 580–591.

Wang, Z. L., Dafalias, Y. F. & Shen, C. K. (1990). Bounding surface
hypoplasticity model for sand. J. Engng Mech. 116, No. 5,
983–1001.

Wang, R., Zhang, J. M. & Wang, G. (2014). A unified plasticity
model for large post-liquefaction shear deformation of sand.
Comput. Geotech. 59, 54–66.

Wichtmann, T. & Triantafyllidis, T. (2016). An experimental
database for the development, calibration and verification

of constitutive models for sand with focus to cyclic loading:
part I – tests with monotonic loading and stress cycles. Acta
Geotech. 11, No. 4, 739–761.

Woo, S., Salgado, R. & Prezzi, M. (2019). Dilatancy-triggering
surface for advanced constitutive modelling of sand.
Géotechnique Lett. 9, No. 2, 136–141, https://doi.org/10.1680/
jgele.17.00085.

Yang, J. & Sze, H. Y. (2011). Cyclic behaviour and resistance of
saturated sand under non-symmetrical loading conditions.
Géotechnique 61, No. 1, 59–73, https://doi.org/10.1680/
geot.9.P.019.

Yang, M., Seidalinov, G. & Taiebat, M. (2019). Multidirectional
cyclic shearing of clays and sands: evaluation of two
bounding surface plasticity models. Soil Dyn. Earthq. Engng
124, 230–258.

Yoshimine, M., Ishihara, K. & Vargas, W. (1998). Effects of
principal stress direction and intermediate principal stress on
drained shear behavior of sand. Soils Found. 38, No. 3, 177–186.

Zhang, J. M. & Wang, G. (2012). Large post-liquefaction defor-
mation of sand, part I: physical mechanism, constitutive
description and numerical algorithm. Acta Geotech. 7, No. 2,
69–113.

YANG, TAIEBATAND DAFALIAS246

Downloaded by [ UNIVERSITY OF BRITISH COLUMBIA] on [28/01/24]. Copyright © ICE Publishing, all rights reserved.

https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.1680/geot.1997.47.2.235
https://doi.org/10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/jgele.17.00085
https://doi.org/10.1680/geot.9.P.019
https://doi.org/10.1680/geot.9.P.019
https://doi.org/10.1680/geot.9.P.019
https://doi.org/10.1680/geot.9.P.019
https://doi.org/10.1680/geot.9.P.019
https://doi.org/10.1680/geot.9.P.019

	INTRODUCTION
	Figure 1

	REFERENCE DM04 MODEL
	Equation 1
	Figure 2

	MEMORY SURFACE
	Equation 2
	Equation 3
	Table 1

	Equation 4
	Equation 5
	Rate of ${\bissf\alpha} ^{\rm M}$

	Equation 6
	Figure 4
	Figure 3

	Equation 7
	Rate of $m^{\rm M}$

	Equation 8
	Figure 5
	Table 2

	Equation 9
	Equation 10
	The role of MS

	Equation 11
	Table 3
	Figure 6
	Figure 7

	SEMIFLUIDISED STATE
	Equation 12
	Figure 8

	Equation 13
	Equation 14
	Figure 9

	CALIBRATION
	Figure 10

	MODEL PERFORMANCE
	Undrained cyclic torsional tests
	Figure 11
	Figure 12
	Undrained cyclic triaxial tests
	Figure 13
	Liquefaction strength curve
	Figure 14
	Figure 16
	Figure 15
	Effect of initial conditions

	CONCLUSION
	Figure 18
	Figure 17

	ACKNOWLEDGEMENTS
	NOTATION
	REFERENCES
	Barrero et al. 2020
	Been and Jefferies 1985
	Boulanger and Ziotopoulou 2013
	Castro 1975
	Corti et al. 2016
	Dafalias 1986
	Dafalias and Manzari 2004
	Dafalias and Taiebat 2016
	di Benedetto et al. 2014
	Elgamal et al. 2003
	Feigenbaum and Dafalias 2008
	Hyodo et al. 2002
	Khosravifar et al. 2018
	Kiyota et al. 2008
	Li and Wang 1998
	Liu et al. 2018
	Liu et al. 2019
	Maleki et al. 2009
	Manzari and Dafalias 1997
	Papadimitriou and Bouckovalas 2002
	Papadimitriou et al. 2001
	Petalas and Dafalias 2019
	Ramirez et al. 2018
	Stallebrass and Taylor 1997
	Taiebat and Dafalias 2008
	Taiebat et al. 2010
	Ueda et al. 2018
	Vaid et al. 2001
	Wang et al. 1990
	Wang et al. 2014
	Wichtmann and Triantafyllidis 2016
	Woo et al. 2019
	Yang and Sze 2011
	Yang et al. 2019
	Yoshimine et al. 1998
	Zhang and Wang 2012




