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Abstract 

In many areas like economics, finance, and health, people make 
judgmental forecasts looking at previous time series data. In 
such efforts, either tabular presentations or graphs are utilized, 
where graphs can be in different formats like bars, lines or 
points. Different presentations may cause certain biases 
stemming from bottom-up processing. To delineate such 
perceptually driven biases in judgmental forecasting, we 
investigated the effect of graph format (line, bar, point) and 
trend type (upwards, downwards, flat) on judgmental point 
forecasts when no domain information was provided. Bringing 
together perspectives from graph processing, visualization and 
forecasting literatures, our major goals were to determine 
which graph formats lead to more accurate forecasts and 
whether bar graphs lead to mean reversion bias or within-the-
bar bias in forecasts. Additionally, we wanted to determine 
whether asymmetric damping observed in sales forecasts of 
downward vs. upward trended series were confounded by 
graph characteristics. We found that forecasts in line and point 
graphs were less biased than those in bar graphs; forecasts 
based on bar graphs depicting trended data exhibited mean 
reversion bias. We also observed a general positivity bias in 
forecasts for all trend types in line and point graphs. This 
implied trend following forecasts in upward trends and mean 
reverting forecasts in downward trends revealing an 
asymmetricity in the absence of context as well. 

Keywords: judgmental forecast, graph, trend 

Introduction 

Many people engage in tasks that require them to make 

forecasts based on a given set of past data. Judgmental point 

forecasts are mostly utilized in the economics domain, as 

people make future predictions of inflation, stock/fund 

prices, returns and product sales. Naturally the judgmental 

forecasting literature has mainly focused on how such 

financial/economic forecasts vary as a function of domain 

knowledge, trend type and noise (Bolger & Harvey, 1993; 

De’Bondt, 1993; Glaser, Iliewa, Weber, 2019; Harvey & 

Reimers, 2013; Lawrence & Makridakis, 1989, O’Connor et 

al, 1997); nevertheless, effects of format characteristics have 

not been systematically investigated. The graph visualization 

literature found evidence of differences in bottom-up 

processing of line, bar and/or point graphs leading to 

differences in judgments (Correll and Heer, 2017; Godau et 

al., 2016; Kang et al., 2021; Newman & Scholl, 2012; Schah 

& Freedman, 2011; Strobel et al., 2016; Xiong et al., 2019; 

Yuan et al., 2019; Zachs & Tversky, 1999). Different graph 

formats can possibly lead to biased judgmental forecasts as 

well (Theocharis, Smith and Harvey, 2019). Our goal was to 

examine certain biases that typically impact forecasts. 

Forecasts may be biased either towards the x-axis (within-

the-bar bias; Goddau et al., 2016; Kang et al., 2021), the mean 

of the series leading to mean-reversion (also known as trend-

dampening, Bolger & Harvey, 1993; De’Bondt, 1993; 

Harvey & Reimers, 2013; Lawrence & Makridakis, 1989, 

O’Connor et al, 1997) or the last point(s) in the series 

(recency bias; Glaser et al., 2019; Theocharis et al., 2019). 

Also, typically forecasts of downward trending series are 

more mean reverting than forecasts of upward trending series 

leading to asymmetric damping (O’Connor et al, 1997). We 

systematically investigated the impact of different graph 

formats (line, bar and point) and trends (upward, downward 

and flat) on judgmental forecasts. In the following section, 

we will first provide a selective review of biases caused by 

different graph formats, followed by domain and trend effects 

studied in the judgmental forecasting literature. Then we will 

provide an overview of the experiment and outline our 

hypotheses. 

 

Graph Formats & Judgmental Biases. Graphs can make 

statistical information easy to understand, paving the way for 

easier detection of trends and other patterns in data (Pinker, 

1990). People can interpolate and extrapolate functions using 

the data conveyed via graphs (Ciccione & Dehaene 2021, 

Schulz et al., 2017) Nevertheless, graphs can mislead people 

to detect patterns even when none exists (Lawrence et al., 

2006). Informationally equivalent graphs may not always be 

computationally equivalent because visual processing of 

graphs is impacted by various cognitive heuristics and biases 

(Shah & Hoeffner, 2002; Zacks & Tversky, 1999). One major 

bottom-up factor that may cause systematic judgment biases 

is the graph format (bar, line vs. point graphs). Different 

graph formats can bias time series forecasting as well 

(Theocharis et al., 2019).  

One typically used graph format when presenting trend 

data are line graphs. While lines are more suitable in 

conveying continuous data, bars are preferred for discrete 

data (Zacks & Tversky, 1999). Accordingly, trends are more 
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accurately extracted from the line graphs. When participants 

forecast based on data presented in line graphs, responses 

revealed an effect tagged as recency bias, i.e. forecasts were 

closer to the last data point compared to when data was 

presented as point graphs (Theocharis et al., 2019).  

When processing bar graphs, a salient bias known as the 

within-the-bar bias emerges. This leads viewers to 

mistakenly think the height of the bar represents the 

likelihood of the values in the distribution rather than just 

their average (Newman & Scholl, 2012). When there were 

multiple data points presented via bar graphs, the average 

estimations were biased more towards the x-axis as a result 

of the within the bar bias (Goddau et al., 2016; Kang et al., 

2021; Yuan et al., 2019, but also see Xiong et al., 2019). 

Within the bar bias also led to trend line estimates with lower 

intercepts in bar graphs vs. line and point graphs, implicitly 

indicating lower perceived means (Correll & Heer, 2017). In 

an unpublished study, Harvey and Reimers (2012) found that 

using bars vs. lines or points led to within-the-bar bias in 

judgmental forecasts, i.e. forecasts were closer to the x-axis 

both in upward and downward trended graphs. All in all, 

graph visualization literature associated line graphs with the 

recency bias and bar graphs with the within the bar bias.  

 

Effects of Domain Knowledge and Trends. Researchers 

detected reversals in sales and price forecasts based on 

trended series presented in line graphs. (Bolger & Harvey, 

1993; De’Bondt, 1993; Harvey & Reimers, 2013; Lawrence 

& Makridakis, 1989, O’Connor et al, 1997), a bias called 

trend-damping. We note that trend damping resembles mean 

reversion. For instance, Lawrence and Makridakis (1997) 

associated damping with the general anticipation of reversals 

in economic time series. Harvey and Reimers (2013) 

mentioned the adaptation effect, which states that the degree 

of damping would increase in line with the past knowledge 

of the world (which usually demonstrates long term-cycles 

and trends are a part of these cycles) and as the magnitude of 

the trend slope increases (i.e. damping is not detected in very 

shallow slopes). In a similar vein, De’Bondt (1993) also 

showed that financial experts were more likely to predict 

reversals in trended stock price series, while non-experts’ 

forecasts were more trend following. 

Another important finding in these studies was that the 

reversals were more significant in downward trended series 

in comparison to upward trended series (Harvey & Reimers, 

2013; Lawrence & Makridakis, 1989, O’Connor et al, 1997). 

This phenomenon was called the asymmetric damping. There 

may be several factors contributing to this pattern. First, 

people are more familiar with rising series than declining 

ones in real life; this results in higher variance and larger 

confidence intervals in forecasts of downward trended series 

(Harvey & Bolger, 1996; Lawrence & Makridakis, 1989, 

O’Connor et al, 1997). Secondly, the data utilized in these 

studies were such that higher values were better than lower 

ones as in sales or stock prices. As a result, an asymmetric 

damping was observed either due to an optimism bias and/or 

the perceived likelihood of actions expected to be taken when 

the data was going down. (Harvey & Reimers, 2013; 

Lawrence & Makridakis, 1989; O’Connor et al., 1997).  

Another line of research focusing on the relationship 

between forecasting and domain are price-return studies 

(Glaser et al., 2007; Glaser et al., 2019). In Glaser et al. 

(2019) participants estimated future values using either prices 

(via line graphs) or returns of the same investment 

instruments (via bar graphs). Glaser et al. (2019) found that 

forecasts were more trend following in the price condition 

and were more mean reverting in the return condition. 

Additionally, they found that judgmental forecasts were 

based on the whole data in the return graphs (i.e. all four 

quarters of the past data) implying mean reversion and on the 

more recent data in the price graphs (i.e. only the last 

quarter’s data) implying a recency bias. They attributed these 

differences to the top-down effects of framing the graphs as 

prices or returns. However, in this study context was 

confounded with graph type. Thus, we believe that these 

results could have been at least partly due to prices being 

depicted in line and returns being depicted in bar graphs.  

In short, during judgmental forecasting tasks, line graphs 

may lead to a recency bias (Glaser et al., 2019; Theocharis et 

al., 2019) and bar graphs may lead to a within-the-bar bias 

(Harvey & Reimers, 2012) or mean reversion (Glaser et al., 

2019). Mean reversion is different from within-the-bar bias, 

since these biases reflect different mechanisms: the first takes 

into account the mean of the series and the second takes into 

account the area of the bars pulling the forecasts towards the 

x-axis as argued by Kang et al, 2021. The two also imply 

different results specifically in downward trended graphs, i.e. 

higher estimates (revealing a dampening in the trend) in the 

case of mean reversion and lower estimates (revealing trend 

continuation) in the case of within-the-bar bias.  

 

Goals of study and hypotheses. In this study, we asked 

people to make one-period (close) and three-period (far) 

ahead forecasts, as well as mean estimations based on data 

presented in different formats. Our first goal was to determine 

which graph format leads to the highest accuracy, i.e. lowest 

absolute distance between the judgmental forecasts and the 

model forecasts. We hypothesized that point graphs would 

lead to more accurate forecasts than line and bar graphs, as 

no particular bias unique to point graphs have yet been 

identified. Our second goal was to determine whether bar 

graphs lead to mean reversion or within-the-bar bias. We 

hypothesized that in bar graphs, forecasts would be lower in 

upward trended series and higher in downward trended series 

implying mean reversion. Accordingly, the absolute 

difference from the mean would be lower in both upward and 

downward trended bar graphs in comparison to line and point 

graphs. Our third goal was to see whether there would be 

asymmetric damping in downward vs. upward trended 

graphs, when no context was specified. We expected 

forecasts in downward trended graphs to be more mean 

reverting than upward trended graphs, implying asymmetric 

damping. We also wanted to explore the mean estimates in 

terms of whether they are being affected from mean reversion 
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or within-the-bar bias. We used the absolute difference 

between the mean estimates and the actual mean as our 

dependent variable. The findings here would shed light on 

whether forecasts in bar graphs were being affected by the 

differences in how existing data was mentally summarized. 

Our final goal was to study whether the line graphs would 

lead to a recency bias in comparison to bar and point graphs. 

We hypothesized that the difference between the forecast and 

the last data point would be smaller in line graphs in all three 

trend conditions. This would imply recency bias in line 

graphs not only in flat series (as in Theocharis et al., 2019) 

but also in trended series (Glaser et al., 2019.  

Method 

Participants 

We planned to recruit 40 participants for each of the three 

graph format groups assuming medium sized effect and 80% 

power. A total of 199 people entered our Qualtrics link. We 

excluded those participants who did not complete the 

experiment (27), entered the experiment via mobiles despite 

our instructions (15), completed the experiment in less than 4 

minutes and over an hour (6), and/or failed the attention 

check (12). This reduced the sample to 139 participants. Then 

we chose the first 40 participants for each graph group as 

planned, resulting in a total of 120 participants (79 females). 

Data from one participant (from the line group) was excluded 

from the study and replaced with a new participant because 

his estimates were 3.3 SD off the mean of his group. Of the 

120 participants, 84 were undergraduate students (Mean age: 

20.71, SD: 1.92, range: 19-30) and 36 were college graduates 

(Mean age: 41.75, SD: 8.9, range: 24-57). The mean age of 

the overall participants was 27 (SD=10.9, Median: 21, range: 

19-57). Undergraduate participants received .5 course credit 

in exchange for their participation; the rest were reached via 

snowballing. Study was pre-registered. (AsPredicted 

#66001) 

Materials 

Judgmental Forecasting Task. In the judgmental 

forecasting task, participants were randomly assigned to one 

of the three graph formats (line, bar, point). Then, after 

reading the instructions, each participant was shown three 

graphs presenting a flat, upward and downward trend in 

random order (see Figure 1). Each graph was presented for 

two times, first for making one-period ahead and second for 

three-period forecast. Participants were asked to make their 

forecasts on a slider scale marked 0-12, where they could 

choose a decimal number like 6.5. To ensure that content-

based expectancies would have minimal impact on the 

forecasts, we did not provide any title or y-axis label. Before 

moving to the second part of the experiment, we added an 

attention check, which asked the participants to move the 

scale to a point between 70%-80% on a 0-100% scale. In the 

second part, we asked participants to provide the mean value 

of the data presented with the exact same graphs again in a 

randomized order. Each graph was shown for seven seconds 

at most or until the participant pressed a key to continue, to 

prevent them from making exact calculations by giving 

unlimited time. After the graphs disappeared, participants 

provided their mean estimation on a continuous 0-12 scale, 

where they could again choose a decimal number.  

 

 
 

Figure 1: Graphs used as stimuli in the experiment. 

 

The data series used to construct the graphs were made up 

of 12 points representing the period (as in Glaser et al., 2019). 

The data was created with a generative model (a+bx+e), in 

which the slope (b) was 0.4 for upward trended graphs, 0 for 

flat graphs and -.4 for downward trended graphs and the error 

term (e) was randomly withdrawn from a normalized 

distribution with mean 0 and standard deviation .5. Our 

generation model was similar to Correll et al. (2017) and 

O’Connor et al. (1997). We manipulated the last data point in 

the series by varying the error term using either a positive 

(0.35) or a negative number (-0.35), aiming to control the 

effect of last change on the judgmental forecasts. Half of the 

participants in each graph format saw a positive and the 

remaining half saw a negative last error term. The intercept 

(a) was determined in a way to make sure that the generative 

model forecast for the next period was the same for all three 

trend types. Finally, the graphs were presented with 

horizontal and vertical grid lines to make data reading easier 

as in Lawrence and Makridakis (1989).  

Procedure 

The experiment was carried online via Qualtrics 

(https://www.qualtrics.com). Participants provided informed 

consent and then were randomly assigned to one of the three 

graph format groups in the judgmental forecasting task. 

Finally, they completed the Demographic Form and were 

thanked before they left the site. The study was approved by 

the Institutional Review Board at Bogazici University. 

Results 

We conducted 3x3 mixed factorial design ANOVAs with 

graph format (line, bar, point) as between participants 

variable and trend type (upward, downward, flat) as within 

participants variable, for all dependent variables (the absolute 

difference between the judgmental forecast and the model 
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forecast, the judgmental forecast and the mean of the series, 

the judgmental forecast and the last data point, the mean 

estimate and the mean of the series). As part of the data 

cleaning, we replaced six data points with sample means as 

their z-score were below or above 3.3 SD. Greenhouse–

Geisser correction was implemented for non-spherical data 

along with a Bonferroni adjustment for inflated Type 1 error 

with α set as 0.05.  

 

Absolute error: Distance from the model forecast. To 

determine whether graph format impacts accuracy, we 

calculated the absolute difference between the judgmental 

forecast and the model forecast for both horizons. The results 

for the one-period ahead forecast indicated that the main 

effect of trend (F(1.63, 190.8) = 14.69, p < .001, η2 = .11) 

was significant. However, there was no main graph effect 

(F(2, 117) = .86, p = .42, η2 = .01) or interaction (F(3.26, 

190.81) = 1.98, p = .11, η2 = .03). Post-hoc analysis showed 

that absolute difference was significantly higher in 

downward trend in comparison to upward trend (p < .001) 

and flat trend (p < .001). 

 

 
 

Figure 2: Absolute error for one- and three-period ahead 

forecasts. Error bars represent standard errors 

 

The analyses for the three-period ahead forecasts implied 

that there were main effects of trend type (F(1.60, 186.93) = 

16.5, p < .001, η2 = .12) and graph format (F(2, 117) = 3.65, 

p < .05, η2 = .06). The bar graph was marginally different 

from both line graph (p =.07) and point graph (p =.06), as the 

absolute difference was higher in bar graphs in comparison 

to line and point graphs. Separately, all trend types were 

significantly different from each other, where lowest distance 

from the model forecast was observed in the flat trend, 

followed by the upward trend (p < =.001) and then the 

downward trend (p < .001). Additionally, there was a 

significant interaction between graph format and trend type 

(F(3.20, 186.93) = 7.13, p < .001, η2 = .11). The interaction 

was due to the fact that forecasts in bar graphs were 

significantly less accurate than point (p < .001) and line (p < 

.05) graphs in the downward trended series, but not in upward 

or flat series. All in all, in the bar graph condition forecasts 

were less accurate, specifically for the downward trended 

series. There was, however, no significant accuracy 

difference between line and point graphs regardless of trend 

type. 

 

Mean reversion or within the bar bias: Distance from the 

Mean. We calculated the absolute difference between the 

forecast and the mean of the series to determine whether there 

was mean reversion or within-the-bar bias. For the one-period 

ahead forecasts, both the main effect of graph format (F(2, 

117) = 10.56, p < .001, η2 = .15) and trend type (F(1.59, 

185.94) = 330.51, p < .001, η2 = .74) were significant. 

However, there was no interaction effect (F(3.18, 185.94) = 

1.77, p < .001, η2 = .03). Post-hoc analysis showed that 

distance from the mean (descriptive statistics presented in 

Table 1) in the bar graph condition was significantly smaller 

compared to line (p < .001) and point graphs (p < .001) and 

this was valid for all trend types (p < .001) indicating relative 

mean reversion (and not within-the-bar bias). There was no 

significant difference between point and line graph 

conditions. Separately, all trend types were significantly 

different from each other (p < .001), where lowest distance 

from the mean was seen in the flat trend, followed by the 

downward trend and then the upward trend. This indicated 

existence of asymmetric damping between upward and 

downward trended series.  

 

Table 1: Descriptive statistics for the absolute difference 

between forecasts and actual mean 

 

    1-period 3-period 

    Mean SD Mean SD 

Upward 

Line 3.00 .70 3.94 .82 

Bar 2.42 .64 3.04 .99 

Point 2.92 .66 3.75 1.06 

Downward 

Line 2.03 .83 3.11 1.22 

Bar 1.70 .67 2.22 1.39 

Point 2.04 .89 3.09 .98 

Flat 

Line .60 .45 0.59 .45 

Bar .54 .36 0.54 .44 

Point .60 .46 0.68 .46 

 

The analyses for the three-period ahead forecasts mirrored 

those of the one-period ahead forecasts. As before, there were 

main effects of trend type (F(1.70, 198.94) = 378.36, p < 

.001, η2 = .76) and graph format (F(2, 117) = 13.08, p < .001, 

η2 = .18). The bar graph was significantly different from both 

line graph (p < .001) and point graph (p < .001), as distance 

from the mean was smaller in bar graphs in comparison to 

line and point graphs. This was valid for both upward and 

downward trended graphs (p < .001), indicating relative mean 

reversion. Also, all trend types were significantly different 

from each other (p < .001), where lowest distance from the 

mean was registered by the flat trend type, followed by the 

downward and upward trend types, again implying 

asymmetric damping. This was observed across all graph 

formats ((p < .001). Additionally, there was a small yet 

significant interaction between graph format and trend type 
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(F(3.4, 198.94) = 3.56, p < .05, η2 = .05). This was due to the 

fact that bar graphs were more mean reverting than the other 

graph formats in upward and downward trended series, while 

there was no significant difference in the flat series.  
 

Mean Estimate Accuracy: Distance between the Actual 

Mean and the Mean Estimate. To explore if differences in 

forecasts are caused by differences in mean estimates, we 

calculated the absolute difference between the actual mean 

and the mean estimate. There was a significant main effect of 

trend type (F(2,234) = 4.85, p < .01, η2 = .04). Flat graphs 

were significantly different from both upward trended (p < 

.05) and downward trended (p < .05) graphs as the distance 

between the actual mean and the mean estimate was lower in 

flat graphs (M = 1.18, SD = 1.04) with respect to upward (M 

= 1.57, SD = 1.40) and downward trended graphs (M = 1.55, 

SD = 1.29). As no surprise, the higher accuracy in flat graphs 

imply a relative ease while estimating means using flat graphs 

compared to trended graphs. What is more important is that 

there was no significant difference between mean estimation 

accuracy of upward and downward graphs. There was neither 

main effect of graph type (F(2,117) = 2.80, p = .08, η2 = .04) 

nor interaction effect between graph format and trend type 

(F(4,234) = 1.72, p =.15 , η2 = .03). Thus, the mean reversion 

bias observed in forecasts in the bar graph condition or the 

asymmetricity between forecasts of upward and downward 

trends cannot be attributed to how viewers mentally 

summarized studied trends. 
 

Table 2: Descriptive statistics for the absolute difference 

between one period ahead forecast and last data point 

 

    Mean SD 

Upward 

Line .84 .49 

Bar .52 .33 

Point .81 .56 

Downward 

Line .66 .45 

Bar .84 .84 

Point 86 .51 

Flat 

Line .59 .38 

Bar .57 .39 

Point .66 .36 
 

Recency Bias: Distance from the Last Data Point. To 

determine whether there was a recency bias in forecasts, we 

calculated the absolute difference between the forecast and 

the last data point of the series. There were small yet 

significant effects of trend type (F(1.83, 214.36) = 4.56, p < 

.05, η2 = .04) and an interaction between trend type and graph 

format (F(3.66, 214.36) = 2.98, p < .05, η2 = .05). There was 

no effect of graph format (F(2, 117) = 1.70, p = .19, η2 = .03). 

Flat graphs were significantly different from downward 

trended graphs (p < .05) and marginally different from the 

upward trended graphs (p = .06) as the distance from the last 

data point was smaller in flat graphs with respect to the 

downward trended graphs (descriptive statistics presented in 

Table 2). The interaction was driven by the upward trended 

bar graphs. They were significantly different from upward 

trended lines (p < .01) and upward trended points (p < .05). 

In fact, the distance from the last data point was smaller in 

upward trended bar graphs in comparison to lines and points. 

These findings implied a recency bias in upward trended bar 

graphs with respect to upward trended line and point graphs. 

However, the effects were small. Contrary to our 

expectations, our data did not reveal a recency bias in the line 

graph condition. 

 

Discussion 

We studied the effects of graph format and trend type on 

forecasting controlling for top-down domain effects. The 

novelty of our study was its context-free setting to delineate 

the bottom-up effects, since forecasting had been mainly 

studied in context-rich settings (Harvey & Reimers, 2013; 

Lawrence & Makridakis, 1989; O’Connor et al., 1997). We 

found that point and line graphs pave the way for more 

accurate forecasts with smaller absolute error. Bar graphs 

lead to more mean reverting forecasts with relatively higher 

damping in both upward and downward trended graphs in 

comparison to line and point graphs (as shown in Figure 3). 

This finding indicated that bar graphs caused mean reversion 

rather than within- the-bar bias, since the first required a 

higher but the latter required a lower forecast in the 

downward trend condition (Kang et al., 2021). This finding 

was in line with our hypothesis and Glaser et al. (2019)’s 

finding but different from Harvey and Reimers (2012)’s 

claim for within-the-bar bias in forecasts of both upward and 

downward trended bar graphs. Critically, we also found an 

asymmetry in the extend of mean reversion in the forecasts 

of downward as opposed to upward trended series (which was 

valid for all graph formats) even when no particular context 

was specified. This was in line with our hypothesis and 

replicated earlier findings (Harvey & Reimers, 2013; 

Lawrence & Makridakis, 1989, O’Connor et al, 1997), but 

extended those to forecasting in a no-context case. These 

findings were observed for both forecasting horizons, 

displacing the possibility that they were valid only for the 

short or longer-term. 

As can be seen in Figure 3, there was a general positivity 

bias in forecasts in almost all conditions: the forecasts were 

above the model forecasts. One exception was the upward 

trending bar graphs. This resulted in trend continuing 

forecasts (which were above model forecasts) in upward 

trending series in line and point graphs, but mean reverting 

forecasts (which were again above model forecasts) in all 

three graph formats. This pattern resulted in the 

asymmetricity in forecasts of upward vs. downward trends. 

Interestingly, this finding contradicted with Ciccione and 

Deahene (2021). They had participants make forecasts based 

on periodic functions similar to ours (i.e. a+bx+e with x being 

the period and e the error term), which were presented in 

scatterplots, where no context was specified. They found that 

forecasts were always trend-following: Specifically, they 

were above the model forecasts in upward trended series and 
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below the model forecasts in downward trended series in line 

with the predictions of Deming regressions rather than OLS 

regressions. The difference between our study and theirs may 

have stemmed from the fact that we labelled the x-axis in our 

graphs as “period” and they did not, making their graphs look 

like scatterplots depicting a relationship between two 

variables. Our choice might have led some participants to 

imagine a positive variable such as sales while forecasting, 

mimicking what they are more likely to encounter in 

everyday life. This was presumably why our finding of a 

more pronounced mean reversion in downward as opposed to 

upward trends resembled the prior findings of asymmetrical 

dampening witnessed in upward vs. downward sales 

forecasts (Lawrence & Makridakis, 1989; O’Connor et al., 

1997). Differences in how viewers mentally summarized 

trends does not seem to contribute to the biases observed. 

Specifically, we cannot explain relative mean reversion in 

forecasts using bar graphs and the asymmetric mean 

reversion between forecasts in upward and downward graphs 

via differences in mean estimates. Rather, our findings seem 

to be related with the differences in forecasting processes in 

bar graphs compared to line and point graphs. 

 

 
 

Figure 3: One- and three-period ahead mean judgmental 

forecasts. Top and bottom panel depicts forecasts based on 

trends with positive and negative last error term.  

  

Contrary to our expectations, we observed no recency bias 

in forecasts based on line graphs in comparison to bar and 

point graphs. This was in contrast to earlier findings by 

Theochrais et al (2019) and Glaser et al. (2019). Theocharis 

et al. found recency bias in line graphs in comparison to point 

graphs using flat and serially independent time series, which 

resembled our flat series. They linked their finding with an 

illusory bias of serial dependence caused by line graphs in 

comparison to point graphs. As our trended data was already 

made up of serially dependent series, this explanation does 

not hold for our data. We did find that forecasts in upward 

trended bar graphs displayed a recency bias in comparison to 

line and point graphs. However, the effects were small. This 

may be traced to the participants’ different strategies of 

forecasting in upward trending bar graphs compared to 

upward trending line and point graphs, which also resulted in 

mean reverting forecasts in bar graphs vs. trend following 

forecasts in line and point graphs.  

Our findings altogether underline the importance of 

bottom-up factors such as the different graph formats and 

trend types in affecting the judgmental forecasts. We argue 

that the judgmental forecasting literature may have 

overlooked the impact from bottom-up factors, instead 

focusing on framework effects, specifically domain 

knowledge, experience and trend characteristics. One 

important example is Glaser et al. (2019)’s findings of mean 

reverting return forecasts vs. trend following price forecasts 

observed for the same investment instruments. They 

associated this with the top-down framework effects. 

Nevertheless, we argue that two bottom-up factors may have 

played a key role in their results. The first one was that they 

used bar graphs to convey returns and line graphs to convey 

prices. We already showed that bar graphs cause relative 

mean reversion in comparison to line graphs. Additionally, 

returns were calculated using the prices and this led to 

visually flatter graphs as per characteristics of returns, 

whereas price graphs were trended. We also showed that flat 

graphs lead to more mean reverting forecasts than trended 

graphs. 

One major question that remains to be answered is whether 

an economic/financial domain leads to trend damping (i.e. 

mean reversion) in forecasts and a further asymmetry 

between forecasts of upward vs. downward trended series as 

suggested by the judgmental forecasting literature (Bolger & 

Harvey, 1993; De’Bondt, 1993; Glaser et al., 2019; Harvey 

& Reimers, 2013; Lawrence & Makridakis, 1989, O’Connor 

et al, 1997). In ongoing work, we compare different domains 

(no-domain vs. sales), this time controlling for graph format 

effects using line graphs as in sales forecasting studies 

mentioned previously. Preliminary findings suggests that the 

results for the no-domain line graphs replicated findings from 

our initial study. We believe that this approach that takes into 

account both bottom-up and top-down factors in judgmental 

forecasts is likely to give a more comprehensive 

understanding of biases shaping forecasts. 
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