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RESEARCH ARTICLE
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Abstract
Although central serotonergic systems are known to influence responses to noxious stimuli,

mechanisms underlying serotonergic modulation of pain responses are unclear. We pro-

posed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions

implicated in sensory and affective responses to pain, contribute to the serotonergic modu-

lation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKOmice) we found

normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In

contrast, 2CKOmice exhibited a selective enhancement of affect-related ultrasonic after-

discharge vocalizations in response to footshock. Enhanced affect-related responses to

noxious stimuli were also exhibited by 2CKOmice in a fear-sensitized startle assay. The

extent to which a brief series of unconditioned footshocks produced enhancement of acous-

tic startle responses was markedly increased in 2CKOmice. As mesolimbic dopamine path-

ways influence affective responses to noxious stimuli, and these pathways are disinhibited

in 2CKOmice, we examined the sensitivity of footshock-induced enhancement of startle to

dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor

antagonist raclopride selectively reduced footshock-induced enhancement of startle without

influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affec-

tive behavioral responses to unconditioned aversive stimuli through mechanisms involving

the disinhibition of ascending dopaminergic pathways.
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Introduction
Although serotonergic neurotransmission has been implicated in the modulation of responses
to noxious stimuli, the nature of these controls and their underlying mechanisms are unclear.
Inconsistent results have been reported, and this likely relates to variability in dosing and selec-
tion of pharmacological agents, the modality of noxious stimuli studied, and the heterogeneity
of serotonin receptors. At least 14 receptor subtypes mediate the actions of central serotonin
[1,2], and the relative contributions of distinct 5-HT receptor subtypes to the sensory and affec-
tive components of pain perception remain to be clearly delineated.

Several lines of evidence indicate that 5-HT2CRs contribute to the serotonergic modulation of
nociceptive responses. 5-HT2CRs are expressed in multiple brain regions implicated in nocicep-
tion, including the bed nucleus of the stria terminalis, amygdala, prefrontal cortex, and striatum
[3–7]. However, diverse and inconsistent results have been reported in studies of 5-HT2CR agonist
and antagonist treatment effects on nociceptive processing. For example, antinociceptive effects
of 5-HT2CR activation were indicated by the antiallodynic effects of 5-HT2CR agonists in different
rodent pain models [8–11]. For example, pharmacological blockade of 5-HT2CRs decreased the
antinociception produced by nefopam (acetic acid induced writhing and formalin-induced paw
licking; [12]), fluvoxamine (mechanical allodynia following sciatic nerve lesion; [13]), post-ictal
state (heat-induced tail flick assay; [14]), intraperitoneal acetic acid conditioning (formalin-
induced paw licking; [15]) and intrathecal serotonin (formalin-induced paw flinching; [16]).
However, not all studies reported antinociceptive actions of 5-HT2CRs. For example, 5-HT2CR
agonist treatments enhanced nociceptive responses in rodents receiving intraperitoneal injection
of acetic acid [17] or hindpaw injections of formalin [18]. Additionally, 5-HT2CR antagonist treat-
ment was reported to suppress mechanical allodynia produced by sleep deprivation [19].

A well-known action of 5-HT2CRs of potential relevance to their modulation of pain
responses relates to the regulation of ascending brain dopamine pathways. Activation of
5-HT2CRs located in the substantia nigra pars compacta and the ventral tegmental area has
been found to suppress activity of nigrostriatal and mesolimbic dopamine pathways, respec-
tively [20–23]. We demonstrated that 2CKOmice exhibit enhanced activity of both pathways
[24–26]. In this context, it is noteworthy that ascending dopamine pathways are activated by
noxious stimuli, and this activation has been associated with the magnitude of nociceptive
responses in rodents and in humans [27–31]. In light of the above findings, we considered the
possibility that disinhibition of dopamine pathways could contribute to the enhanced process-
ing of nociceptive messages in animals lacking 5-HT2CRs.

Methods

Mice
All studies were carried out in accordance with the NIH Guide for the Care and Use of Labora-
tory Animals. Procedures describing the generation of 2CKO mice have been previously
described in detail [32]. Experimental cohorts were generated by breeding C57BL/6Jhtr2c+/htr2c-

females to wildtype C57BL/6Jhtr2c+/Y males. All studies used 2–3 month old male wildtype and
2CKO littermate offspring. Animals were fully congenic to the C57BL/6J genetic background.
Mice were group-housed and maintained under standard UCSF transgenic facility housing
conditions. All experiments were conducted by investigators blinded to genotype.

Baseline nociception assays
We determined baseline levels of sensitivity to noxious heat, mechanical and chemical stimuli
in wildtype and 2CKO mice (for detailed procedures see [33]). Briefly, in the Hargreaves’ assay
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of sensitivity to noxious heat, animals were acclimated for 30–60 min to clear plastic chambers
atop a glass surface through which a radiant heat source was focused on a hindpaw. The heat
source was adjusted to produce a baseline response of approximately 10 sec in wildtype mice.
For the hot plate test, animals were placed on the hot plate at temperatures of 48.0°C, 52.5°C,
or 55.0°C and the latencies of mice to flinch, jump or lick their hindpaws was recorded. Hot
plate temperatures and corresponding heat exposure cut-off times were as follows: 48.0°, 60
sec; 52.5°C, 60 sec; 55.0°C, 30 sec. Sensitivity to mechanical stimuli was assessed using cali-
brated von Frey filaments. Mice were placed in a clear plastic chamber with a wire mesh grid
floor and hindpaws were stimulated with filaments applied through the mesh floor. Testing
began using the 0.4 g von Frey hair. Withdrawal thresholds were determined using the up-
down method [33,34]. To determine sensitivity to a noxious chemical stimulus we used the for-
malin test, in which mice received an intraplantar hindpaw injection of 2% formalin in a vol-
ume of 10 μl. Time spent licking/biting the injected hindpaw was assessed at 5 min intervals
over a 60 min post-injection period. Twenty-four hours after the formalin test, we monitored
sensitivity to mechanical stimuli using the von Frey test on the injected and uninjected hind-
paw. A profound drop in mechanical threshold after formalin administration indicates
mechanical hypersensitivity produced by chemical injury to peripheral nerve terminals [35,36].

Ultrasonic vocalization
Ultrasonic vocalizations were recorded as described by Liu et al [37]. Mice were restrained in
acrylic holding chambers and placed in a sound-insulated testing chamber. Brief uncondi-
tioned footshock stimuli of varying intensity (0.04 mA, 0.1 mA, 0.16 mA, 0.2 mA, 0.4 mA, 0.8
mA, 1.6 mA) were presented to the mice in a pseudorandom order; 70 stimuli were presented
per trial, with average interstimulus intervals of 60 sec. Custom designed hardware was built to
synchronize stimulus generation (using SRLAB, San Diego Instruments, Inc) with our
MATLAB-based (The Mathworks, Natick, MA) sound data acquisition system. A microphone
capable of measuring ultrasonic frequencies (Brüel & Kjær Falcon 1/4” condenser microphone
200 V Pol, free field, 4 Hz-100 kHz, type 4939) was fixed about 10 cm from the animal. The
microphone signal was amplified (Brüel & Kjær Nexus conditioning amplifier), filtered
(Tucker-Davis technologies antialiasing filter, Fc = 120 kHz), digitized (Tucker-Davis technolo-
gies A/D converter), and saved as a binary sound file (sampled at 250000 Hz) using custom-
written MATLAB software. To compare wildtype and 2CKO sensory response to noxious sti-
muli, we measured the magnitude of vocalization-during-shock (VDS) responses (i.e., total
sound and ultrasonic power during presentation of stimulus). To compare affect-related
responses to noxious stimuli in wildtype and 2CKOmice, we determined the magnitude of
vocalization-after-discharge (VAD) responses (i.e. total sound and ultrasonic power following
termination of the shock stimulus). Both response latency [38] and spectrographic morphology
[39] criteria were used to differentiate VDS from VAD responses. Briefly, VDSs were charac-
terized by their temporal occurrence during the shock presentation, and by visual inspection of
the resulting sound spectrograms, which demonstrated constant energy distribution across a
continuum of audible and ultrasonic frequencies. In contrast, VAD responses occurred at vari-
able latencies after termination of shock presentation; visual inspection of the resulting sound
spectrograms demonstrated significant harmonic components in both audible and ultrasonic
frequencies (“chatter” per [39]).

Fear-sensitized startle
The fear-sensitized startle (FSS) assay was adapted from Kokkinidis and colleagues [40–42].
Mice were transferred from their home cage into individual transport cages, placed in a
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Plexiglas holding chamber within the startle apparatus (SRLAB, San Diego Instruments, Inc.),
and exposed to a 5 min acclimation period in the darkened chamber with 70 dB white noise
(dB measures obtained at sea level with 20 μPa as reference sound pressure). Acoustic startle
responses were measured using a piezoelectric device that responded to the deformation of the
holding chamber as the mouse startled. Baseline acoustic startle responses were obtained at
stimulus magnitudes of 90, 105, and 120 dB (white noise; nine replicates for each stimulus
magnitude; stimuli were presented in a pseudo-random order separated by 60 sec). The order
of stimuli was as follows (from 1st to 27th): 105 dB, 120 dB, 90 dB, 120 dB, 90 dB, 105 dB, 90
dB, 105 dB, 120 dB, 105 dB, 90 dB, 120 dB, 120 dB, 105 dB, 90 dB, 90 dB, 120 dB, 105 dB, 90
dB, 105 dB, 120 dB, 105 dB, 120 dB, 90 dB, 120 dB, 90 dB, 105 dB. Startle stimulus parameters
were 0 ms rise time, 40 ms hold time, 0 ms fall time; startle response data were collected for
2000 ms starting 20 ms before stimulus presentation. Presentation of all pre-shock startle sti-
muli required approximately 30 min. Immediately after evaluation of pre-shock startle
responses, mice received a series of nine 0.4 mA, 250 ms unconditioned shock stimuli, each
separated by 60 sec. Following shock stimuli, startle responses were again measured in a man-
ner identical to the pre-shock phase. Post-shock startle testing began 60 sec after presentation
of the final shock, and required approximately 30 min to deliver all startle stimuli.

Drugs
Raclopride (Sigma-Aldrich), a dopamine D2/D3 receptor antagonist, was dissolved in saline
vehicle and administered at doses of 1 and 3 mg/kg (10 μl injected volume per gram body
weight). Mice received i.p. injections of drug or vehicle 20 min before testing.

Statistical analysis
Outcomes (spectral power in 22–100 kHz frequency bands for ultrasonic vocalizations, piezo-
electric voltage response for startle) were compared by univariate analysis of variance
(ANOVA). For startle experiments, we performed full factorial analyses evaluating primary
factor effects (genotype, startle stimulus intensity, condition (pre- vs. post- shock responses,
aka shock sensitization) and drug dosage where appropriate), as well as all factor interactions.
When required, post hoc testing was performed by Student’s t-test of wildtype vs. mutant vocal-
ization responses corrected for multiple comparisons by the Bonferroni method.

Results

2CKOmice exhibit normal baseline sensitivity to noxious thermal,
mechanical and chemical stimuli
In the Hargreaves’ test of heat nociception, paw withdrawal latencies to a thermal stimulus did
not differ between wildtype and 2CKOmice (Fig 1A; Student’s t-test, p = 0.17). Similarly, there
were no differences in licking/jumping latencies in the hot plate test (Fig 1B; Student’s t-test,
p = 0.13, 0.21, 0.13 at 48.0°C, 52.5°C, and 55.0°C, respectively). The responsiveness in the for-
malin test was also comparable in the wildtype and 2CKOmice (Fig 1C; p = 0.96, F = 0.0023,
two way repeated measures ANOVA). Importantly, not only were baseline mechanical with-
drawal thresholds comparable in the two groups of mice, but the mechanical hypersensitivity
recorded postformalin did not differ (von Frey test, Fig 1D). For each of these nociception
assays, n = 10 for both wildtype and 2CKOmice. Taken together these results indicate that the
loss of 5-HT2CRs does not alter baseline responses to a diverse range of noxious stimuli and
that nerve injury induced mechanical hypersensitivity is preserved.

5-HT2CRs Regulate Aversive Behavioral Responses
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Selective phenotypic enhancement of affect-related vocalizations in
response to footshock
Analysis of ultrasonic vocalization following shock stimuli is an established method of evaluat-
ing nociceptive responses in rodents [43–45]. Analysis of vocalization timing and spectro-
graphic morphology has been proposed to distinguish sensory from affective responses to
shock stimuli [38,39]. Here we recorded ultrasonic vocalizations in response to graded shock
stimuli (ranging from 0.04 mA to 1.6 mA) were recorded in wildtype and 2CKO mice (n = 8
per genotype). Spectrographic analyses of vocalizations were performed to quantify total power
in both audible (0–22 KHz) and ultrasonic (22–100 KHz) frequency ranges for both the

Fig 1. Heat-induced nociceptive responses are similar in 2CKO and wildtypemice. A. No difference between wildtype (open bar) and mutant (filled bar)
paw withdrawal latencies in Hargreave’s assay. Data analyzed by Student’s t-test, bars are ± 1 standard error. B. No difference between wildtype (open bar)
and mutant (filled bar) latencies to move paws from hot plate at 48, 52.5, and 55°C. C. No acute difference in the temporal pattern of paw licking following
hindpaw formalin injection. Data analyzed by ANOVA, bars are ± 1 standard error. D. Twenty-four hours after formalin injection, paw withdrawal thresholds
significantly decreased to a similar extent in 2CKO and wildtype mice. * = p<0.001, Students’s t-test, bars are ± 1 standard error.

doi:10.1371/journal.pone.0142906.g001
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vocalizations elicited during the shock stimulus (VDS) and the vocalization afterdischarge
(VAD) occurring at variable latencies following shock stimulus termination. Fig 2A and 2B
illustrates representative spectrographic traces showing the characteristic waveforms of both
VDSs and VADs for wildtype and 2CKOmice.

Using standard sound spectrographic morphological criteria to distinguish VDS and VAD
responses, we calculated total ultrasonic spectral power for all of the above responses. No sig-
nificant phenotypic differences in VDS ultrasonic spectral power were noted. Increases in stim-
ulus strength significantly increased VDS power to a similar extent in both groups (Fig 2C;
p<0.03 for stimulus strength, genotype and stimulus x genotype interaction NS by ANOVA).
These findings indicate that mice lacking 5-HT2CRs display normal sensory responses to foot-
shock. By contrast, at the 0.4 mA stimulus intensity, 2CKOmice exhibited a significant
increase in VAD power (Fig 2D; p<0.001 for stimulus strength; p< 0.023 for genotype,
p<0.011 for stimulus x genotype interaction by ANOVA; post hoc testing of 0.4 mA group by
Bonferroni method, p<0.002). This is suggestive of a heightened affective response to the 0.4
mA stimulus.

Fig 2. 2CKOmice display ultrasonic vocalizations to footshock indicative of enhanced affective reactivity. A. Representative sound spectrogram
from a wildtype mouse following a 0.4 mA footshock stimulus administered 2.7 sec into recording trial. Two vocalization-during-shock (VDSs, two short noise
spikes) followed by vocalization-after-discharge (VAD, long noise burst with visible “chatter” lines) vocalization patterns can be observed. B. Representative
sound spectrogram from a 2CKOmouse following a 0.4 mA footshock stimulus. A single VDS vocalization followed by a prolonged VAD (with prominent
chatter) is observed. C. Spectral power (above ambient noise) of VDS vocalizations. Open bars depict wildtype responses, and filled bars depict 2CKO
responses. Bars are ± 1 standard error. D. Spectral power (above ambient noise) of VAD vocalizations. Open bars depict wildtype responses, and filled bars
depict 2CKO responses. * p<0.001, Student’s t-test, bars are ± 1 standard error. Since our background noise measurements averaged around 70 dB, the
background ultrasound power for these figures shows up in red on the colormap, with higher powers depicted as darker colors.

doi:10.1371/journal.pone.0142906.g002
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2CKOmice exhibit enhanced fear-sensitized startle
Fig 3 illustrates startle magnitudes before and after shock sensitization. Unless otherwise noted,
the magnitude of the shock stimulus was 0.4 mA for 0.25 sec, which in mice is considered to be
mildly noxious [46]. Whereas wildtype and 2CKO (n = 8, 12 respectively) mice had similar
baseline startle magnitudes, the enhancement of startle following shock presentation was sig-
nificantly greater in the mutants (Fig 3; by three-way ANOVA, p<0.001 for genotype
(F = 31.46), shock sensitization (F = 24.35), startle stimulus intensity (F = 10.29, and genotype
x shock sensitization interaction (F = 12.63), no other interaction terms significant).

The greater sensitivity of 2CKO mice to shock-induced startle enhancement was further
demonstrated by the observation that comparable startle responses resulted from different
shock stimulus intensities in wildtype (n = 10) and 2CKO (n = 8) mice. Fig 4 shows that startle
facilitation produced in wildtype mice by a shock intensity of 0.8 mA was equivalent to that
produced by 0.15 mA in mutants. In this experiment, the primary factors of genotype, shock
sensitization, and startle stimulus intensity were all significant by 3-way ANOVA (p<0.001,
F = 7.393, F = 57.019, F = 7.768 for genotype, shock sensitization, and startle stimulus intensity
respectively, no two-way or three-way interaction terms significant).

We note that on initial inspection, it could be difficult to understand why, for 2CKOmice,
absolute post-shock startle values were greater in the study using the 0.15 mA shock (Fig 4)
than in the study using a 0.4 mA shock (Fig 3). However, further examination revealed a non-
specific enhancement of startle responses in the former study, affecting not only post-shock
2CKO responses, but also pre-shock 2CKO and wildtype responses. When shock-induced
enhancement of startle was examined as percentage increase relative to pre-shock values, the
increased facilitation in 2CKO mice by the 0.4 mA stimulus was significantly greater than that

Fig 3. 2CKOmice display enhanced fear-sensitized startle responses after unsignaled footshock.Open bars depict wildtype, and filled bars depict
2CKO data. All footshock stimuli were 0.4 mA in amplitude. The primary factors of genotype, startle stimulus intensity, and condition (pre vs. post shock) were
all significant at p<0.001, ANOVA, bars are ± 1 standard error.

doi:10.1371/journal.pone.0142906.g003
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resulting from the 0.15 mA stimulus (3-way ANOVA interaction between Study and Shock
Condition; F = 261284; p<0.001).

Selective block of fear-sensitized startle in 2CKOmice by the dopamine
D2/D3 receptor antagonist, raclopride
Previous studies of 2CKO mice revealed evidence for enhanced activation of mesolimbic dopa-
mine pathways [25]. This is notable in light of prior studies demonstrating that FSS is sensitive
to limbic dopamine D2 receptor activation [47]. We hypothesized that if enhanced mesolimbic
dopamine system activation contributed to the observed phenotype, then administration of
dopamine D2 receptor antagonists could eliminate the phenotypic differences that we recorded
for fear-sensitized startle responses. We therefore examined such responses in wildtype and
2CKOmice following treatment with saline vehicle or the dopamine D2/D3 receptor antagonist
raclopride. Fig 5 illustrates startle responses both before and after the shock stimulus in mice
that received vehicle, raclopride 1 mg/kg, and raclopride 3 mg/kg (n = 8 per genotype/dosage
combination). Four-way ANOVA with genotype, stimulus magnitude, drug dosage, shock as
primary factors to model startle response demonstrated a significant genotype × condition ×
dosage interaction suggesting that increasing doses of raclopride suppressed FSS in mutant
mice to a greater degree than in wildtypes (p<0.035, F = 4.437). Primary factors of mouse
genotype, raclopride dosage, startle stimulus intensity, and pre vs. post shock condition were
all significant predictors of startle response (p<0.001, F = 119, F = 10.8, F = 69.6, F = 13.1,
respectively), as were 2 way interactions of genotype by raclopride dosage, genotype by startle

Fig 4. Wildtypemice require higher shock intensities to exhibit levels of startle potentiation equivalent to those of 2CKOmice.Responses of 2CKO
mice to footshocks of 0.15 mA intensity (black bars) are similar to those of wildtype mice receiving 0.8 mA shocks (filled bars). ANOVA, bars are ± 1 standard
error.

doi:10.1371/journal.pone.0142906.g004
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Fig 5. Raclopride blocks expression of fear-sensitized startle responses in 2CKOmice without affecting baseline startle responses.Open bars
depict preshock responses, black bars depict postshock responses. Bars surrounded by no background derive from wildtype mice; bars surrounded by grey
background derive from 2CKOmutant mice. Raclopride dosages given on x axis. A. Responses to 90 decibel (dB) startle stimuli. B. Responses to 105 dB
startle stimuli. C. Responses to 120 dB startle stimuli. Whereas the footshock-induced enhancement of startle responses in 2CKOmice is blocked by
raclopride, baseline startle responses are unaffected by the drug. ANOVA, bars are ± 1 standard error.

doi:10.1371/journal.pone.0142906.g005
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stimulus intensity, genotype by pre vs. post shock condition, raclopride dosage by startle stimu-
lus intensity, and raclopride dosage by pre vs. post shock condition (p<0.005, F = 13.6,
F = 5.23, F = 17.4, F = 6.03, F = 7.76, respectively). Raclopride treatment of 2CKOmice normal-
ized fear-sensitized startle responses in a dose-dependent manner, with an enhanced effect on
2CKO startle responses.

Discussion
Our studies not only reveal an impact of 5-HT2CR function on the regulation of nociceptive
behaviors, but also that the influence of these receptors appears to be selective for the affective
response to noxious stimuli. Baseline withdrawal responses did not differ, which indicates that
transmission of the “pain”message from the periphery to spinal cord reflex circuits was not
altered. These findings indicate that serotonergic influences can differentially modulate sensory
versus affective aspects of pain processing. To our knowledge this is the first report of an exper-
imental manipulation that selectively enhances affective responses while sparing sensory
responses to a noxious stimulus. The ability of a selective dopamine D2/D3 receptor antagonist
to suppress the phenotypic enhancement of such affective responses raises the possibility that
5-HT2CRs exert these effects through regulation of ascending dopaminergic pathways.

The preservation of the sensory component of pain processing was not limited to a particu-
lar modality. Thus no phenotypic differences were observed in paw withdrawal responses to
either a thermal (Hargreaves’ test) or a mechanical stimulus (von Frey filaments). Furthermore,
2CKOmice displayed normal levels of formalin-induced paw licking, a behavior believed to
reflect sensory rather than affective-motivational response to the chemical stimulus [48]. Con-
sistent with this perspective, a prior study demonstrated that lesions of the anterior cingulate
cortex, a region implicated in affective-motivational aspects of pain, did not impact these
behavioral responses to formalin. On the other hand, the anterior cingulate cortex lesions did
eliminate behaviors that are more associated with the affective-motivational response to forma-
lin (conditioned place avoidance; [48]). Not only did the 2CKOmice exhibit normal acute
responses to formalin injection, but there were also no phenotypic differences in the subse-
quent nerve injury-induced mechanical hypersensitivity of the injected paw, which is presumed
to arise from nerve damage produced by formalin.

These results are consistent with our finding that 2CKOmice exhibited normal VDSs dur-
ing electrical shock. VDSs occur with short latencies during shock stimuli, with spectral powers
highly correlated with stimulus intensity [38,39]. In contrast, mutants displayed a phenotypic
enhancement of VADs, which occur following shock termination, and exhibit a characteristic
spectrographic pattern distinct from VDSs. Several features of VAD responses indicate that
they are reliable correlates of nociception-induced affect [38,49–51]. For example, VAD
responses are more sensitive than VDSs to suppression by anxiolytic drug treatments, or by
damage to forebrain regions linked to affective pain responses in humans, and they are selec-
tively enhanced by stressors [38,49,50]. Moreover, the capacity of electrical shock to support
fear conditioning is directly related to its capacity to elicit VADs [52,53]. Taken together, the
enhancement of VADs, but not VDSs in 2CKO mice suggests that there is a selective increase
of the sensitivity of these animals to affective responses to noxious stimuli.

Consistent with a phenotypic enhancement of affect-related nociceptive responses, we
found that 2CKOmice also displayed increased sensitivity in an entirely different test situation,
one that is also believed to measure an affective response. The enhancement of the acoustic
startle response following administration of electrical shock has been considered to reflect an
affective pain response elicited in rodents [42,54,55] and in humans [56]. Baseline acoustic
startle responses were normal in 2CKOmice, consistent with prior studies indicating that
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baseline auditory physiology is normal in these animals [57]. By contrast, relative to wildtype
mice, mutants displayed markedly enhanced startle responses following footshock. The foot-
shock intensity used in this procedure (0.4 mA), had been previously shown to elicit normal
VDSs in mutants, indicating a lack of phenotypic influence on their sensory response to this
stimulus. The enhanced responsiveness of 2CKOmice to footshock-induced startle sensitiza-
tion was further highlighted by the observation that wildtype mice required footshock ampli-
tudes of 0.8 mA to potentiate startle responses to the level observed for mutants receiving 0.15
mA stimuli. Altogether, the normal baseline nociceptive responses to a variety of noxious sti-
muli in 2CKOmice, coupled with evidence of enhanced responsiveness in two distinct assays
of nociception-induced affect with very different behavioral output measures, indicate that
genetic lesion of the htr2c locus selectively augments affective vs. sensory responses to noxious
stimuli.

We considered the possibility that disinhibition of the mesolimbic dopamine system con-
tributes to the augmentation of nociception-induced affective responses in mice lacking
5-HT2CRs. The activity of mesolimbic dopamine pathways is subject to serotonergic inhibition,
and pharmacological studies that used 5-HT2CR antagonists suggest that 5-HT2CRs located
within the ventral tegmental area contribute prominently to this action of serotonin [23,58,59].
Accordingly 2CKO were found to exhibit elevated levels of extracellular nucleus accumbens
(NAc) dopamine, enhanced cocaine-induced dopamine efflux in the NAc, and enhancement
of behaviors associated with mesolimbic dopamine function [24,25].

It is therefore of interest that mesolimbic dopamine pathways terminating in regions such
as the NAc, amygdala and prefrontal cortex have been implicated in affective responses to nox-
ious stimuli, including footshock [28,30,60,61]. For example, pharmacological blockade of
dopamine D2 receptors in the amygdala suppressed the expression of fear responses in a Pav-
lovian conditioning procedure that used footshock [62]. Evidence for nociception-induced
activation of the mesolimbic dopamine system in humans was reported in a positron emission
tomography study using displacement of raclopride as an indicator of dopamine release [31].
The extent to which application of a noxious stimulus activated NAc dopamine release was
highly correlated with ratings of negative affect and fear during noxious stimulus exposure.

We hypothesized that if disinhibition of dopamine pathways contribute to the enhancement
of affective responses to noxious stimuli in 2CKO, then the phenotype could be attenuated by
dopamine receptor blockade. Indeed we found that treatment with raclopride selectively
blocked shock-induced sensitization of acoustic startle in mutant mice without affecting base-
line startle responses. These findings are consistent with prior work demonstrating that shock-
induced sensitization of acoustic startle could be suppressed by amygdala injections of raclo-
pride [47]. Altogether, our findings indicate that the absence of 5-HT2CRs selectively enhances
affective responses to noxious stimuli via a dopamine D2 receptor sensitive mechanism.

Further studies are required to determine definitively whether this phenotype is attributable
to disinhibited mesolimbic dopamine system activation, and the locations of the mesolimbic
terminal fields most involved. Possibilities include the NAc, the amygdala and the prefrontal
cortex. It is notable that in addition to the ventral tegmental area, 5-HT2CRs are also expressed
in each of these regions, where they could exert local actions impacting pain-associated affect.
It should also be noted that 5-HT2CRs are widely expressed throughout the brain, and could
possibly influence pain responses via dopamine-independent mechanisms [3].

The findings reported here were performed in mice completely lacking 5-HT2CRs through-
out development. Therefore, we cannot exclude the possibility that developmental conse-
quences of the 5-HT2CR loss could contribute to the phenotypes observed. However, a recent
study indicates that lifelong global modifications of 5-HT2CR function can impact pain sensi-
tivity in humans [63]. A positron emission tomography study using radiolabeled raclopride
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was performed with subjects bearing a common allelic variant of theHTR2C gene. In the
Cys23Ser variant, a serine replaces a cysteine in the N terminus of the variant receptor, which
has been reported to display reduced serotonin binding affinity [64–67]. Cys23Ser carriers
exposed to a nociceptive challenge displayed higher overall qualitative experiences of pain,
increased NAc dopamine release, and there was a significant correlations between these mea-
sures [63]. In this context, further analysis of the neural mechanisms through which 5-HT2CRs
influence affective responses to nociceptive stimuli, warrant consideration for exploiting sero-
tonergic mechanisms in pain management and for understanding genetic predispositions to
pain vulnerability.
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