
UC Davis
UC Davis Previously Published Works

Title
Accelerating Multi-GPU Embedding Retrieval with PGAS-Style Communication for Deep
Learning Recommendation Systems

Permalink
https://escholarship.org/uc/item/0246g3qz

Authors
Chen, Yuxin
Buluc, Aydin
Yelick, Katherine Yelick
et al.

Publication Date
2024-11-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0246g3qz
https://escholarship.org/uc/item/0246g3qz#author
https://escholarship.org
http://www.cdlib.org/

Accelerating Multi-GPU Embedding Retrieval with
PGAS-Style Communication for Deep Learning

Recommendation Systems
Yuxin Chen

University of California, Davis
Davis, USA

yxxchen@ucdavis.edu

Aydın Buluç
Lawrence Berkeley National Laboratory

Berkeley, USA
abuluc@lbl.gov

Katherine Yelick
University of California, Berkeley

Berkeley, USA
yelick@berkeley.edu

John D. Owens
University of California, Davis

Davis, USA
jowens@ece.ucdavis.edu

Abstract—In this paper, we propose using Partitioned Global
Address Space (PGAS) GPU one-sided asynchronous small mes-
sages to replace the widely used collective communication calls
for sparse input multi-GPU embedding retrieval in deep learn-
ing recommendation systems. This GPU PGAS communication
approach achieves (1) better communication and computation
overlap, (2) smoother network usage, and (3) reduced overhead
(due to the data unpack and rearrangement steps associated
with collective communication calls). We implement a CUDA
embedding retrieval backend for PyTorch that supports the
proposed PGAS communication scheme and evaluate it on
deep learning recommendation inference passes. Our backend
outperforms the baseline using NCCL collective calls, achieving
1.97x speedup for the weak scaling test and 2.63x speedup for
the strong scaling test in a 4 GPU NVLink-connected system.

Index Terms—PGAS, Deep Learning Recommendation Model,
Collective Calls, Communication

I. INTRODUCTION

Deep learning recommendation algorithms are widely used
for a variety of products, including Google advertising, Netflix
personalized video suggestions, and Instagram feeds. Accord-
ing to Meta’s reports, more than 50% of machine learning
training time at Meta is devoted to deep learning recommen-
dation models (DLRM) [1], and over 70% of inference time
is used for these models [2]. Managing and processing large-
scale embedding tables during training and inference cycles
is crucial, as they often become bottlenecks due to significant
memory usage and intensive data transfer requirements.

In the domain of deep learning recommendation models
(DLRM), embedding tables (EMBs) are a critical stage for
capturing intricate relationships among entities such as users,
items, and their respective sparse features. During the em-
bedding table retrieval operations, these sparse feature inputs
(categorical data) are converted into continuous representa-
tions, enabling neural networks to effectively discern complex
patterns within the dataset. The memory usage of these embed-

ding tables is typically vast, accounting for 99% of the memory
used in DLRMs [3]. Driven by the need for better accuracy, the
size of embedding tables continues to grow, often exceeding
the limits of a single GPU’s memory. Consequently, these
embedding tables are frequently partitioned across multiple
GPUs using model parallelism. This is also the major driving
force to use multiple GPUs for DLRM.

Despite employing model parallelism for embedding tables,
other layers of DLRM, such as the Multilayer Perceptron
(MLP) layer, still use data parallelism to minimize communi-
cation and optimize performance. Using model parallelism for
all stages would result in more communication overhead and
yields lower overall performance. This mixture of two parallel
computing strategies is the dominant approach for DLRM on
multi-GPU systems and is the approach used in this paper.
The use of these two strategies for parallelism necessitates
converting the memory layout from model parallelism in the
embedding table layer to one suitable for data parallelism.
This conversion results in significant communication at the end
of embedding table layers during both the inference forward
pass and the training forward and backward pass, leading
to a large fraction of overall runtime being spent on com-
munication. Currently, the de facto communication scheme
uses high-performance collective communication libraries like
the NVIDIA Collective Communications Library (NCCL) [4].
As a result, both DLRM training and inference use a bulk
synchronous model, calling collective communications at the
end of the computation CUDA kernel, separating the program
into compute and communicate phases. This execution model
precludes the possibility of interleaving communication and
computation at a fine granularity, yielding sub-optimal per-
formance. Particularly, as the EMB layer of DLRM weak
scales on more GPUs to meet the increasing memory size
requirements of embedding tables, there is a significant gap
between the achieved and perfect weak scaling behavior.

In this paper, we propose an alternative communication
scheme to collective communication that utilizes Partitioned
Global Address Space (PGAS) fine-grained one-sided mes-
sages. This scheme leverages GPU direct access instead of
collective communication calls on the CPU side at the end
of computation kernels (embedding table retrieval CUDA
kernels). This approach offers three major benefits:

1) Fine-Grained Communication and Computation
Overlap: In contrast to separate communication and
computation phases, PGAS GPU direct communication
sends many small one-sided messages immediately after
the data becomes available inside the CUDA kernel, re-
sulting in fine-grained communication and computation
overlap.

2) Smooth Network Usage: Instead of sending aggregated
messages in the communication phase, the PGAS direct
GPU communication sends messages throughout the
computation kernel as each piece of data is generated,
thereby smoothing network usage.

3) Eliminating Unpacking Step: Collective calls move
data in chunks, often requiring an additional step of
unpacking the received data or rearranging it into local
data structures (e.g., tensors). The PGAS direct GPU
communication eliminates this local memory staging by
writing data directly to remote device memory from
thread registers without the need for unpacking.

We implement a PyTorch backend that uses the proposed
PGAS direct GPU communication and test its effectiveness in
a single-node, multi-GPU embedding retrieval forward pass
on a 4-GPU NVLink-connected system. We compare it to a
PyTorch baseline that uses NCCL for communication. In our
experiments, our backend achieves a geometric mean speedup
of 1.97x for the weak scaling test and 2.63x for the strong
scaling test compared to the baseline.

We summarize our main contributions below:
1) We develop a PyTorch backend for implementing the

embedding tables forward pass that supports PGAS
direct-GPU communication.

2) Using the single-node, multi-GPU systems embedding
retrieval application as a case study, we analyze the time
components of the NCCL baseline, and demonstrate
how several of the time components can be significantly
reduced by switching to the PGAS direct-GPU commu-
nication scheme.

3) We experimentally verify the effectiveness of the PGAS
direct-GPU communication scheme, achieving over 2x
speedup over the NCCL baseline. Furthermore, we pin-
point that the performance benefits arise from intensive
communication and computation overlap, as well as the
removal of the unpack (data arrangement) step.

II. BACKGROUND: DLRM ARCHITECTURES

Figure 1 illustrates the high-level architecture of a
DLRM [5]. DLRMs are used to make predictions based
on domain-specific inputs, also referred to as samples. For

s

s

Predictions

User
Input
Data

Batch N

Dense
Features

Sparse
FeaturesN

N

MLP Stack

Embedding
Tables

Sparse
Feature 0

Sparse
Feature
Pooling

Feature
Interact

MLP Stack

sSoftmax

GPU

Model Parallelism

Data Parallelism

Fig. 1. Architecture of a DLRM. The dotted line outlines the stages of the
DLRM that run on GPUs. The stages in the dark gray box are executed with
data parallelism, while the stages in the light gray box are executed with
model parallelism. The input data is generally partitioned on the CPU and
then copied to the GPUs.

example, Netflix uses these models for personalized enter-
tainment recommendations, Airbnb for homestay suggestions,
and Facebook for advertisement targeting. These inputs are
generally categorized into dense features and sparse fea-
tures, as shown in Figure 1. Dense features in a DLRM
are continuous-valued attributes, represented as vectors of
real numbers, capturing quantitative information. Examples
include age, rating scores, and purchase amounts. Sparse
features in a DLRM are categorical attributes represented as
high-dimensional, sparse vectors with mostly zeros and few
non-zero values corresponding to specific categories. These
features encode qualitative information, such as pages browsed
or users’ IP addresses, and often require encoding techniques
like one-hot encoding. The input for each sparse feature is
often a bag of non-zero entries. The size of the bag, known
as the pooling factor, varies by features and by samples.

Dense feature inputs are fed into the top Multilayer Per-
ceptron (MLP) layers, while sparse feature inputs are fed into
the embedding (EMB) layer. Both the top MLP and the EMB
layer generate batches of dense tensors, commonly referred
to as embeddings. These embeddings are lower-dimensional,
feature-rich representations that capture the essential charac-
teristics of the input data. These embeddings pass through
the interaction layer, which fuses the embeddings from the
MLP and EMB layers using operations such as dot product,
element-wise product, or concatenation to produce a single
dense embedding. This single embedding is then fed to the
bottom MLP. Finally, the output of the bottom MLP goes
through a softmax layer to generate predictions in the form
of a probability distribution over all possible outcomes. This
workflow is shown in Figure 1.

A. Embedding Tables (EMBs)

At the core of DLRMs lie embedding tables, which store
learned representations for sparse features. Figure 2 illustrates
a typical embedding table structure, where each sparse feature
corresponds to a distinct table. Each row within the table is an
embedding vector, representing learned weights updated dur-
ing backpropagation. The size of embedding vectors, denoted

emb. dimension d
Embedding Vector 0
123.9, 9.2, 0, 9, 7,…

Embedding Vector 42
Embedding Vector 43
Embedding Vector 44

Embedding Vector 41

.
.
.
Embedding Vector 99

.
.
.

Sparse Feature 0

emb. dimension
Embedding Vector 0
Embedding Vector 1

1,2,5,7,9,2.2, 3.4, ….
Embedding Vector 43
Embedding Vector 44

Embedding Vector 41

.
.
.
Embedding Vector 99

.
.
.

Sparse Feature 1

.
 .
 .

emb. dimension
Embedding Vector 0
Embedding Vector 1

Embedding Vector 42
3.3, 7.1, 0.2, 0.9, ….
Embedding Vector 44

Embedding Vector 41

.
.
.
Embedding Vector 99

.
.
.

Sparse Feature N-1

Embedding Tables

M_i M_N-1

Fig. 2. Embedding tables for N sparse features. Each embedding table uses
a hash size Mi = 100.

by d, is a hyperparameter that determines the dimensionality
of the embedding space. Common values for d are powers of
2, such as 64, 128, or 256, for better memory alignment.

The size of each embedding table depends on the car-
dinality of the corresponding sparse feature space. Some
tables, like those for US states, have small cardinalities (e.g.,
50 rows). However, tables for features like user-browsed
pages can have billions of rows, which is impractical due
to memory constraints. To optimize memory, a hash function
H : Cardinalitysparse feature i maps sparse feature indices to
0, 1, . . . ,M . This reduces memory demands. Each sparse
feature may have different M values. Thus the total size
of embedding tables scales approximately with

∑
i d × Mi.

The hash function also introduces hash collisions, where
multiple sparse inputs map to the same embedding vector.
However, collisions represent a necessary trade-off between
prediction accuracy and memory usage. In recent years, the
number of sparse features and the sizes of embedding tables
have increased significantly to improve prediction accuracy.
According to Facebook’s records [6], the memory capacity
requirements of DLRMs grew 16-fold between 2017 and
2021. Embedding tables now require terabytes of memory,
accounting for roughly 99% of the overall model memory.

B. Embedding Table Lookup and Pooling Operations

Embedding table lookup and pooling operations are fun-
damental in the forward pass of the embedding table (EMB)
retrieval. Figure 3 illustrates workflow of a typical EMB layer
forward pass.

In this example, there are S sparse features, each corre-
sponding to a embedding table in Figure 3. The input consists
of three samples, forming a batch. We focus solely on the
sparse input: each input sample may or may not have a sparse
input for every sparse feature. As highlighted in a gray box in
Figure 3, for the first sample, we have input for sparse features
1 and 2, but no input for sparse feature S. Each sparse feature
with input typically consists of a bag of one or more indices.
The size of this bag, often called the pooling factor, varies
depending on the sparse feature and samples. In the example
shown in Figure 3, sample 1 has 4 indices for sparse feature

765, 21, 334, 87

12, 76, 221

1, 3, 7, 91, 75
pooling factor

hash

(size=100)

41, 43, 44
emb. dimension

Embedding Vector 0

Embedding Vector 1

Embedding Vector 42

Embedding Vector 43

Embedding Vector 44

Embedding Vector 41

.
.
.
Embedding Vector 99

Emb. Output

710, 264, 9475

NULL

NULL

hash

(size=500)

emb. dimension

Embedding Vector 0

pooling factor

Embedding Vector 42

Embedding Vector 43

Embedding Vector 41

.
.
.
Embedding Vector 499

Embedding Vector 44

0, 0, … , 0

…..

hash

(size=200)

emb. dimension

Embedding Vector 0

pooling factor

Embedding Vector 42

Embedding Vector 43

Embedding Vector 41

.
.
.
Embedding Vector 199

Embedding Vector 44

Sparse Feature 1 Sparse Feature 2 Sparse Feature S

Ba
tc

h
Si

ze 1 sampleNULL

Fig. 3. Example illustrating the embedding lookup and pooling operation.
The lookup and pooling operations are highlighted in bold. For sparse feature
1, the input is hashed, generating the index for the corresponding embedding
table. Those embedding vectors are then read and combined via element-wise
summation to produce the output vector of the lookup operation. In the case
of sparse feature 2 and sample 3, the input data is NULL, indicating that
sparse feature 2 contains no sparse input for sample 3.

1 and 3 indices for sparse feature 2. The following steps are
then performed for each sparse input in the EMB layers:

1) Hashing: For each bag of indices for a particular sparse
feature in a specific sample, apply the hash function H
to all the indices in that bag, mapping them to the rows
of the embedding table.

2) Lookup: Read the corresponding embedding vectors
from the embedding table using the hash results as the
indices.

3) Pooling1: Combine the embedding vectors obtained
from a bag via element-wise summation to produce a
single output embedding vector.

C. Distributed Forward Pass of DLRMs

As discussed in Section II-A, the entire set of embedding
tables cannot fit into a single GPU memory, necessitating
model parallelism to distribute embedding tables across multi-
ple GPUs. Conversely, data parallelism is employed for other
parts of the model, including the MLP layer and interaction
layer, to optimize performance.

Data parallelism partitions the input by the batch dimension,
while model parallelism partitions it by the embedding table
dimension. Each GPU processes a full batch of specific sparse
inputs whose embedding tables are located on that device,
executing the EMB forward (or backward) pass in parallel.

In the example depicted in Figure 4, both sparse and dense
inputs initially reside in the CPU memory with a batch size

1The terms “pooling operation” and “pooling factor” might be confusing.
The pooling factor refers to the number that describes the bag size of a sparse
input, while the pooling operation is the method used to combine multiple
embedding vectors into a single embedding vector.

S0
S1User

Input
Data

Batch N

Dense Features

Data Parallel

Sparse Features

Model Parallel

N

N/2 N/2

N

S0
S1

Device 0
N/2

NS0

Device 1
N/2

NS1

Run MLP
and

Lookup &
Pooling

Device 0
N/2

Device 1
N/2

N/2 N/2S0

N/2 N/2S1

Device 0
N/2

Device 1
N/2

N/2

N/2 S0
S1

N

Fig. 4. Communication in the EMB layer forward pass. The dense inputs are
partitioned into mini-batches. The sparse inputs are partitioned based on the
location of each sparse feature: GPU 0 receives all sparse inputs for sparse
feature 0, and GPU 1 receives all sparse inputs for sparse feature 1. The
top MLP and EMB retrieval run concurrently. At the end of the EMB layer,
GPU 0 sends a mini-batch of sparse feature 0 embeddings to GPU 1, and
GPU 1 sends a mini-batch of sparse feature 1 embeddings to GPU 0. This
allows the data layout to be suitable for data parallelism.

of N , and there are 2 GPUs in total. The dense inputs are
divided into mini-batches, each with a mini-batch size of N/2.
Conversely, the sparse inputs are partitioned based on the
embedding table location. Assuming there are only 2 sparse
features in this example, sparse feature 1 is located on GPU 0
and sparse feature 2 is located on GPU 1. The full batch
of sparse inputs for sparse feature 1 is sent to GPU 0, and
the full batch of sparse inputs for sparse feature 2 is sent to
GPU 1. The dimensions of each partitioned dense input and
sparse input are marked and shown in Figure 4.

At the end of the EMB layers, communication is required
to convert the memory layout from model parallelism to a
layout compatible with data parallelism. This involves repar-
titioning the EMB output embeddings along the batch size
dimension and performing an all-to-all communication. Each
GPU receives the output EMB embeddings of non-local sparse
features that belong to the local mini-batch. As a result, each
GPU has an N/2-sized mini-batch of embedding vectors for
all sparse features. The communication required to achieve
this data layout conversion, illustrated by the pink boxes in
Figure 4, is the focus of our communication optimization.

III. ASYNC ONE-SIDED SMALL MESSAGES IN EMB
FORWARD PASS

A. Challenges in the EMB Forward Pass

In a typical PyTorch DLRM implementation, the transition
from model parallelism to data parallelism is facilitated by
collective all-to-all calls. Although local communication may
overlap with remote computation, there is no overlap between
local communication and computation. This clearly separated
communication and computation phase scheme has the fol-
lowing potential performance drawbacks:

1) Extra Unpacking Step: An unpacking step (or data
rearrangement) is often needed after collective commu-
nication calls, as continuous memory chunks are sent to
maximize network bandwidth utilization.

2) False Dependencies: During the computation kernel,
communication data is generated progressively. Aggre-

gating this data for collective calls does not align well
with the intrinsic data dependencies of the EMB layer
forward pass. Each piece of communication data is ready
to send immediately, without waiting for the generation
of all other data. This mismatch introduces false depen-
dencies and additional overhead in the communication
control path, including the time spent waiting for all
EMB layer output to be generated, CUDA kernel syn-
chronization, and the time to trigger the collective calls.

3) Dominant Synchronization Overhead: With small
batch sizes, the overhead of CUDA kernel synchroniza-
tion can become significant compared to communication
and computation, as the forward pass is essentially
latency-limited.

4) Lack of Fine-Grained Overlap: The clear phase bound-
ary between computation and communication eliminates
the possibility of fine-grained communication and com-
putation overlap.

B. PGAS One-sided Small Messages in EMB Forward Pass

Based on the previous discussion, the EMB layer can be
optimized using fine-grained one-sided direct-GPU commu-
nication to fuse communication with computation. In this
approach, each GPU thread can initiate PGAS small mes-
sages in the form of RDMA writes as soon as its necessary
computations are finished, rather than waiting for all other
messages to be generated. This PGAS approach has three
primary advantages over collective communication calls:

1) Elimination of Unpacking Step: Messages are directly
written to the remote GPU at the memory locations
where they are supposed to be. This eliminates the need
for the unpacking or data rearrangement step, along with
the corresponding intermediate communication buffers.

2) Reduced Communication Control Path Overhead:
Collective communication calls introduce extra over-
head in their communication control path, including
the time waiting for all other outputs to be gener-
ated and CUDA kernel synchronization. In the PGAS
approach, messages are sent directly without waiting
for any other operations. This eliminates the overhead
of false dependencies from the communication control
flow path. Consequently, the PGAS approach reduces
the communication control path latency to the time of
triggering the communication on the GPU. Although it is
faster to trigger communication on the CPU than on the
GPU, due to the various overheads incurred in collective
communication calls, the overall communication control
path latency of the PGAS approach is much lighter and
faster than that of collective calls.

3) Fine-Grained Overlap and Smoothed Out Network
Usage: The PGAS approach issues many small one-
sided reads and writes. While collective calls make better
use of network bandwidth by sending large chunks of
messages, the PGAS approach sends messages imme-
diately upon generation, spreading them out over the
computation. This enables fine-grained communication

and computation overlap, avoids network congestion,
and prevents the network bandwidth from becoming a
bottleneck.

C. Implementation Details

We provide pseudocode for the customized PyTorch back-
end and the implementation of PGAS direct-GPU mes-
saging in Listings 1 and 2. Listing 1 demonstrates a
typical approach to invoking a customized CUDA/C++
backend. Within this listing, the C++ compiled back-
end function torch.ops.PGAS.forward is wrapped with
torch.autograd.Function to handle both the forward and back-
ward passes. LookupFunction.apply invokes the forward com-
putation for the EMB layer in the DLRM forward function.

Listing 2 provides an implementation of PGAS direct-GPU
messaging within the EMB forward CUDA kernel defined
in PGAS EMB forward kernel. When writing the result of
an embedding lookup, the GetEmbOwnerId function queries
the partition ID of the input. If the corresponding input
belongs to the mini-batch of remote GPUs, CUDA threads
write the resulting embeddings directly to the output array
on the remote GPU with the correct index. This one-sided
communication approach significantly reduces overhead (see
item (2), Reduced Communciation Control Path Overhead,
above).

Furthermore, the direct-GPU writes are issued by CUDA
threads and leverage GPU instruction parallelism: they run
concurrently and asynchronously with other CUDA threads,
which enables significant computation-communication over-
lap (see item (3), Fine-Grained Overlap and Smoothed Out
Network Usage, above).

Finally, the C++ function PGAS EMB forward invokes the
CUDA kernel for each device, allowing concurrent execution,
and then synchronizes all CUDA kernels to ensure the EMB
layer forward pass is complete.

In summary, we expect this approach to allow for better
utilization of available resources, reduce network idle time,
eliminate unnecessary overhead, and enable more efficient
overlap of communication and computation. Consequently, we
can achieve improved performance and a reduction in the
performance gap between achieved scalability and theoretical
scalability, especially for weak scaling.

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the effectiveness of fine-grained one-sided asyn-
chronous communication in the EMB layer forward pass on a
multi-GPU system, we conduct a series of experiments.

Our baseline is a typical PyTorch implementation of the
EMB layer forward pass, consisting of an EmbeddingBagCol-
lection forward pass followed by the all to all single collec-
tive call with async op set to true. All input and output tensors
are on GPUs, and with NCCL as the communication backend,
these PyTorch calls invoke their corresponding CUDA and
NCCL functions. On each GPU, communication does not start
until the embedding table forward CUDA kernel finishes. We

Listing 1 PGAS direct-GPU-based EMB retrieval PyTorch
code snippet.
class LookupFunction(torch.autograd.Function):

@staticmethod
def forward(

ctx,
weights,
offsets,
indices,
outputs):
calling PGAS fused CUDA backend
torch.ops.PGAS.forward(

weight_lists,
offsets,
indices,
outputs)

class DLRM(nn.Module):

def forward(
self,
dense_input,
sparse_input_offsets,
sparse_intput_indices):
apply forward pass for top MLP layer with dense_input
.....
LookupFunction.apply(

self.weights_lists,
sparse_input_offsets,
sparse_input_indices,
outputs)

Continue next layer's forward with outputs
.....

call wait after the all to all single call to synchronize all the
GPUs.

We modify the C++/CUDA backend of the baseline, im-
plementing the approach described in Section III. This new
backend eliminates the unpacking step and fuses communi-
cation and computation into a single CUDA kernel to max-
imize computation-communication overlap. We refer to this
approach as the PGAS fused retrieval.

Both the baseline and PGAS fused implementations utilize
the same codebase from the DLRM benchmark provided
by Facebook and are run with identical configurations and
identical dense and sparse inputs. For all experiments, the
dense and sparse feature inputs are generated synthetically
with a uniform random distribution. All experiments are
conducted on a DGX machine with four V100 NVIDIA GPUs
connected via NVLink. We run the full inference pipeline of
the DLRM model [5] with 100 batches, measuring the accu-
mulated time of embedding table forward pass and the sub-
sequent communication and data unpacking and rearranging
over the 100 batches. This focus allows us to better evaluate
the effectiveness of the proposed asynchronous PGAS-style
communication.

A. Weak Scaling Tests on up to 4 GPUs

Driven by the increasing memory requirements of embed-
ding tables, we conduct weak scaling tests with both PGAS
and baseline implementations on up to 4 GPUs. Each GPU
handles 64 embedding tables, each with 1 million entries and
an embedding vector size of 64. We use a batch size of 16,384

Listing 2 PGAS direct-GPU-based EMB retrieval CUDA
backend code snippet.

template<typename scalar_t, typename AccuFunc, typename ShardFunc>
__global__ void PGAS_EMB_forward_kernel(

const int n_gpus,
const int gpu_id,
const PackedTensorAccessor64<scalar_t, 2,

RestrictPtrTraits> weights,
const PackedTensorAccessor64<int64_t, 1,

RestrictPtrTraits> offsets,
const PackedTensorAccessor64<int64_t, 1,

RestrictPtrTraits> indices,
scalar_t * __restrict__ outputs,
const int BatchSize,
const int EMBDim,
AccuFunc accu_func,
ShardFunc GetEmbOwnerId) {
// Compute the embedding lookup and pooling given sparse
// input offsets and indices and store the embedding result
// in Vec4T sum
......
auto [pe, output_idx] = GetEmbOwnerId(

threadIdx.y, blockIdx.x, BatchSize, n_gpus);
if(pe == gpu_id) {

// Writing the embeddings locally
sum.store(outputs[output_idx]);

}
else {

// PGAS writing the embeddings to remote GPU memory
sum.store(outputs[output_idx], pe);

}
}

void PGAS_EMB_forward(
TensorList weights,
TensorList offsets,
TensorList indices,
TensorList outputs) {
int num_devices = weights.size();
cudaStream_t streams[num_devices];
for(int i=0; i<num_devices; i++) {

// Compute threads and blocks size for kernel launch
cudaSetDevice(i)
cudaStreamCreateWithFlags(streams+i,

cudaStreamNonBlocking);
PGAS_EMB_forward_kernel<<<blocks, threads, 0,

streams[i]>>>(....)
}
for (int i=0; i<num_devices; i++) {

cudaSetDevice(i);
cudaStreamSynchronize(streams[i]);

}
}

TORCH_LIBRARY(PGAS, m) {
m.def("forward", &PGAS_EMB_forward);

}

and a pooling factor generated from a uniform distribution
with a maximum size of 128.

1) Performance Summary: The speedup of PGAS over the
baseline is shown in the following table:

Speedup 2 GPUs 3 GPUS 4 GPUs

PGAS over baseline 2.10X 1.95X 1.87X

In general, our PGAS fused implementation achieves an av-
erage speedup of 1.97x over the baseline. Figure 5 shows the
weak scaling factor for both PGAS and baseline with up to 4

1 GPU 2 GPUs 3 GPUs 4 GPUs
Number of GPUs

0.5

0.6

0.7

0.8

0.9

1.0

Si
ng

le
 G

PU
 ru

nt
im

e/
N

GP
U

Ru
nt

im
e

Baseline
PGAS
Perfect weak scaling

Fig. 5. Weak scaling tests for baseline and PGAS fused EMB retrieval.

GPUs. The weak scaling factor is calculated by dividing the
runtime by single GPU runtime. The ideal weak scaling factor
is a flat line with a value of 1.

Though the baseline’s weak scaling flattens out beyond
2 GPUs, it has a significant gap compared to perfect weak
scaling. In contrast, the PGAS implementation’s weak scaling
line is closer to the ideal.

The major weak scaling difference between PGAS fused
and baseline implementations occurs when scaling from from
1 GPU to 2 GPUs. The significant jump in baseline is due
to the additional communication time. Baseline uses bulk
synchronization, which imposes a clear boundary between
computation and communication phases. This inevitably intro-
duces a communication time after the computation when we
scale the system from single GPU to 2 GPUs. In contrast, the
PGAS implementation can effectively hide the communication
time within the existing computation. As we will see in
Figure 6, the communication phase takes roughly the same
time as the computation phase, so PGAS achieves almost
perfect communication-computation overlap, incurring almost
no additional cost when scaling from 1 GPU to 2 GPUs.
Consequently, the baseline implementation has almost double
the runtime of PGAS on 2 GPUs, resulting in a worse weak
scaling factor of 0.46.

When going beyond 2 GPUs, Figure 5 shows that both
PGAS and baseline have good scaling (shown by a relatively
flat line). This is because communication time does not
increase with more GPUs.

Now, we present a more detailed analysis of the runtime for
PGAS and baseline.

2) Runtime Component Analysis: Figure 6 shows the PGAS
runtime and breaks down the runtime for the baseline into
three components: “Computation”, “Communication”, and
“Sync + Unpack”.

a) Method for measuring the time components for base-
line: Measuring computation time is straightforward, as the
baseline has distinct computation and communication phases.
However, disentangling communication time from data un-
packing time is difficult; this is because the baseline merges
communication and data unpacking (or rearrangement) using
an asynchronous request object. To overcome this, we first
measure the entire communication phase with wait called at

1 GPU 2 GPUs 3 GPUs 4 GPUs
Number of GPUs

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

ec
on

ds
)

Baseline Computation Time
Baseline Communication Time
Baseline Sync and Unpack Time
PGAS Fused Time

Fig. 6. Runtime and its time breakdown of PGAS and baseline implementa-
tion for the weak scaling test.

the end. Then, we measure the same phase but only send
a single float. By subtracting these two times, we estimate
the synchronization and data rearrangement time; this is an
overestimation by only the latency of sending a single float.
The communication time is then calculated by subtracting the
synchronization and data rearrangement time from the total
communication phase time, resulting in an underestimated
value since network latency is excluded.

b) Method of measuring communication for PGAS fused
implementation: It is challenging to provide a similar break-
down for the PGAS implementation due to the heavy in-
terleaving of communication and computation. Instead, we
show the communication volume over time for the PGAS
implementation in Figure 7. The x-axis represents the timeline,
and the y-axis represents communication volume in units of
256 bytes. We designed a communication counter to be read
every hundred GPU clock cycles. With each RDMA write,
that thread also atomically adds to that counter. Consequently,
sequential reads of the communication counter show the
communication volume over time. For comparison, we also
plotted the communication volume over time for the baseline
implementation, represented by the dashed green line. The
communication volume is calculated by linearly interpolating
the total communication volume over the communication time.

c) Baseline: The baseline runtime comprises three major
parts: (1) computation, (2) communication, and (3) data
unpack time and CUDA synchronization overhead. Weak
scaling tests maintain a constant workload per device while
increasing the problem size with the number of GPUs. Conse-
quently, as the number of GPUs increase during weak scaling
tests, we expect:

• Computation time stays the same, because computation
workload per-GPU stays the same.

• Communication time decreases. Although total com-
munication volume increases, as GPUs are added,
total communication volume

total network bandwidth decreases. Thus the communication
time should decrease with more GPUs.

• Sync and unpack time increases because there is
more received communication data, leading to increased

0.00 0.05 0.10 0.15 0.20
Timeline

0

100000

200000

300000

400000

500000

Co
m

m
un

ica
tio

n
Vo

lu
m

e

PGAS GPU 0
PGAS GPU 1
baseline GPU 0(1)

Fig. 7. Time profiling of communication volume over time for PGAS fused
and baseline implementations on 2 GPUs.

unpack workload.
These expectations are consistent with Figure 6. The increase
in the sync and unpack time roughly balances out the decrease
in communication time, thus the total runtime stays roughly
the same. This in turn leads to good weak scalability beyond
2 GPUs.

d) PGAS Fused Implementation: The PGAS fused im-
plementation is about twice as fast as the baseline. From
Figure 6, PGAS fused time is only slightly more than the
baseline computation time. The PGAS fused implementation
writes the data directly to remote GPU memory inside the
CUDA kernel. Those writes are small messages that are
generated by the intricate computation pattern and are sent
away immediately without any explicit aggregation. Note GPU
memory warp coalescing (handled by hardware) is still in ef-
fect, aggregating the message with natural locality. As a result,
the PGAS fused implementation is able to significantly overlap
communication with computation. From the corresponding
baseline time components, the communication time is less
than the its computation time. PGAS fused implementation
is able to almost completely hide the communication. More
straightforward evidence is seen in Figure 7: the communica-
tion volume is well-distributed over the computation time and
largely overlaps with computation. In contrast, the baseline
implementation has a long initial period when communication
volume stays flat at 0.

Additionally, the PGAS fused implementation writes the
data directly to the location needed for the next DLRM layer,
eliminating the need for data unpacking and rearrangement.
Those remote writes may lead to some random access, but
they run concurrently with local computation and are therefore
hidden and do not increase runtime.

Now, let’s go back to the weak scaling result (Figure 5) to
answer the question “why does the PGAS fused implementa-
tion not have the weak scaling performance decline between
1 and 2 GPUs, as baseline does?” This is because PGAS

1) Removes the need for unpack (data rearrangement), and
2) Overlaps the communication with the computation.
We observe that the runtime of the PGAS fused implemen-

tation slightly increases with more GPUs used. The increased

1 GPU 2 GPUs 3 GPUs 4 GPUs
Number of GPUs

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Sp

ee
du

p
ov

er
 si

ng
le

 G
PU

Baseline
PGAS
perfect strong scaling

Fig. 8. Strong scaling test on up to 4 GPUs connected via NVLink.

time comes from the increase communication overhead. PGAS
fused implementation uses many small messages. Compared
to large messages, those small messages are not bandwidth-
efficient as the message header takes a good portion of band-
width. This header overhead increases as the communication
volume (total number of small messages) increases. However,
the overhead only increases very slightly with more GPUs.
The reason is as follows: By intensively overlapping commu-
nication with computation, the PGAS fused implementation
is not bandwidth-limited as long as the communication can
be done within the computation period. Thus the bandwidth
inefficiency does not readily translate to an increase in the
overall runtime. Although small messages are not bandwidth-
efficient, the use of small messages is able to smooth out the
network usage.

B. Strong Scaling Tests on up to 4 GPUs

We conduct strong scaling experiments with both the base-
line and the PGAS fused implementation on up to 4 GPUs.
In this strong scaling test, the total workload is limited by
the single GPU memory (32 GB). Therefore, we choose the
configuration with 96 embedding tables, each with 1 million
entries and an embedding vector size of 64, a batch size of
16,384, and a pooling factor of up to 32 to maximize GPU
memory usage.

1) Performance Summary: The speedup of PGAS over
baseline is shown in the following table:

Speedup 2 GPUs 3 GPUS 4 GPUs

PGAS over baseline 2.95X 2.55X 2.44X

On average, the PGAS fused implementation achieves a
speedup of 2.63X over baseline. Figure 8 shows the strong
scaling factors for both PGAS and baseline with up to 4 GPUs.
The strong scaling factor is calculated by dividing the single
GPU runtime by the runtime, namely the speedup over single
GPU implementation. The ideal strong scaling line is marked
out in green.

Neither PGAS nor baseline achieve good strong scaling:
baseline with {2,3,4} GPUs were all slower than baseline on
single GPU. PGAS has slightly better strong scaling, with
{2,3,4} GPUs all faster than a single GPU. However, the
strong scaling for PGAS decreases beyond 2 GPUs.

1 GPU 2 GPUs 3 GPUs 4 GPUs
Number of GPUs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(s

ec
on

ds
)

Baseline Compute Time
Baseline Communication Time
Baseline Sync and Unpack Time
PGAS Fused Time

Fig. 9. Runtime and time breakdown of PGAS and baseline implementation
for the strong scaling test.

The reason is that embedding table retrieval features low
arithmetic intensity, the computation workload is mainly mem-
ory operations and is proportional to the batch size and the
number of local embedding tables. Strong scaling tests main-
tain the total workload constant and evaluate the speedup
as we partition the problem and run it on more GPUs. In our
strong scaling test, the total workload is limited by the single
GPU memory size. As a result, as we partition the workload
on more GPUs, the computation workload per GPU is not
enough to fully utilize either the GPU computation resource
or the GPU memory bandwidth; thus adding more GPUs does
not lead to acceleration. This is verified by the computation
throughput and memory throughput collected on the compu-
tation kernel on 2 GPUs with the NVIDIA profiling tool ncu.
Both computation throughput and memory throughput are less
than 60% with 38% for computation throughput and 57% for
memory throughput.

Despite the difficulty in accelerating the EMB forward pass
with more GPUs, PGAS still achieves better strong scaling
than baseline, especially from single GPU to 2 GPUs. This
is because in baseline, the decrease in computation time is
balanced out by the increase in communication time, synchro-
nization, and unpacking time. As a result, the total runtime
increases by 1.8x, failing to achieve any speedup with multiple
GPUs. On the other hand, the PGAS fused implementation is
able to hide the increased communication with computation,
achieving a roughly 1.6x speedup over a single GPU.

2) Runtime Component Analysis: Figure 9 shows the PGAS
runtime and the time breaks down for the baseline.

a) Baseline: Strong scaling tests maintain a constant
total workload while partitioning the fixed workload on more
GPUs. Consequently, as the number of GPUs increases during
strong scaling tests, we expect:

• Computation time decreases with 2 GPUs and stays
roughly the same beyond 3 GPUs because the compu-
tation kernel used in this experiment is latency-limited
beyond 2 GPUs.

• Communication time decreases. Although total com-
munication volume increases, as GPUs are added,

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time steps

0

20000

40000

60000

80000

100000

Co
m

m
un

ica
tio

n
Vo

lu
m

e

PGAS GPU 0
PGAS GPU 1
PGAS GPU 2
PGAS GPU 3
baseline GPU 0 (1,2,3)

Fig. 10. Time profiling of communication volume over time for PGAS and
baseline implementations on 4 GPUs.

total communication volume
total network bandwidth decreases. Thus the communication

time should decrease with more GPUs.
• Sync and unpack time increases because there is

more received communication data, leading to increased
unpack workload.

These expectations are consistent with Figure 9. While the
computation time decreases with 2 GPUs, the incurred sync
and unpack time, along with the communication time, together
offset the decreased computation time, resulting in a higher
runtime than that of a single GPU. Beyond 2 GPUs, the
increase in the sync and unpack time roughly balances out
the decrease in communication time with the unchanged
computation time beyond 2 GPUs, resulting in a total runtime
that stays roughly the same. Both of those in turn lead to no
speedup or sometimes, a slowdown under strong scalability.

b) PGAS Fused Implementation: The PGAS fused im-
plementation is on average 2.63x faster than the baseline. From
Figure 9, the total time for PGAS fused is only slightly more
than the computation time for baseline. This is once again
because the PGAS fused implementation is able to almost
completely hide the communication with computation. (From
the time breakdown for baseline in Figure 9, we infer that
communication time is less than computation time.) More
straightforward evidence is seen in Figure 10: the commu-
nication volume is well-distributed over the computation time
and largely overlaps with computation on 4 GPUs. Finally, the
PGAS fused implementation writes directly to the final remote
memory location, removing the need to unpack and rearrange
data that is incurred in the baseline.

We observe that the runtime of the PGAS fused implemen-
tation slightly increases with more GPUs. The reason is the
same as in the weak scaling test; since small messages are not
bandwidth-efficient, the increased total communication volume
introduces more overhead. However, just as with weak scaling,
those increased overheads do not directly translate to increased
runtime but instead can be hidden by computation.

In general, by removing the unpack (data rearrangement)
step and overlapping the communication with computation
intensively, the PGAS fused implementation achieves on av-
erage 2.63x speedup over the baseline and 1.6x strong scaling

speedup on 2 GPUs. However, because the computation kernel
becomes latency-limited, the strong scaling speedup does not
continue with more GPUs.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the effectiveness of adopt-
ing PGAS-style one-sided small direct-GPU messages in the
forward pass of multi-GPU embedding table retrieval. We
analyze the time components of the traditional programming
model, which involves a CUDA kernel backend followed by
a non-blocking collective call, and verify that PGAS-style
direct-GPU messages can address performance issues in this
approach. Specifically, PGAS-style one-sided small messages
can hide communication within computation, significantly
reducing communication time. By writing directly to the
final remote memory location, they eliminate the unpacking
(data rearrangement) step required in the traditional approach.
Additionally, these messages smooth out network usage by dis-
tributing communication across the entire computation period.
As a result, we observe runtime speedups and better weak
scalability in the backend using the PGAS-style direct-GPU
message scheme compared to the traditional approach.

In the future, we intend to apply the PGAS-style direct-GPU
messaging scheme to the EMB layer’s backward pass, which
also faces significant scalability issues and performance bottle-
necks due to communication and synchronization. During the
forward pass, each GPU receives the necessary embeddings
for its portion of the input data, with communication volume
proportional to the embedding dimension size and batch size.
However, during backpropagation, the gradients for these
embeddings need to be communicated back to the GPUs that
own these embeddings. The communication volume in the
backward pass is proportional to the embedding dimension
size and the number of unique embeddings needed for the
batch, which can be as large as the embedding table size in
the worst case. This volume is typically much higher than in
the forward pass.

Additionally, during the backward pass, gradients must be
aggregated across all GPUs that used the same embeddings.
If multiple GPUs used the same embedding, their gradients
must be summed to get the total gradient for that embedding.
Combining these gradients often requires multiple rounds of
collective calls, where embeddings are shifted to (received
from) the next (previous) GPU, a step not needed in the
forward pass. This process necessitates multiple synchroniza-
tions to ensure all GPUs have consistent gradient information
before shifting and finally updating the embeddings, adding
significant synchronization overhead.

We believe that the PGAS-style direct-GPU messaging
scheme can optimize communication by replacing multiple
rounds of collective calls with atomic PGAS direct-GPU
remote writes. By achieving better overlap of communication
and computation (since gradient computation is more complex
and thus takes more time, leaving a larger window to hide
communication), and by replacing multiple rounds of synchro-
nization with atomic operations, we can substantially reduce

communication and synchronization time. This approach is
expected to lead to a significant performance improvement in
the EMB layer backward pass.

In our current implementation, we partition the sparse inputs
on the CPU and then copy it to the GPU. The time spent
on input partitioning is small in our experiments because we
use a simple table sharding scheme (partitioning by tables).
However, if a more complicated sharding scheme is used
(partitioning by rows) [6], the sparse input partitioning and
aggregation time will become more significant. A potential
optimization is to merge the sparse input partitioning into
the computation kernel, allowing computation to start imme-
diately when the corresponding sparse input is picked out.
This optimization can achieve multiple overlaps: sparse input
processing with computation, sparse input processing with
communication, and communication with computation, thus
improving overall performance.

The current implementation is designed for a single-node,
multi-GPU system. We also aim to extend this work to a multi-
node system. Compared to high-performance NVLinks, inter-
node connections have higher latency and lower bandwidth,
which could lead to reduced bandwidth utilization and impact
overall performance in a PGAS-style communication setup. To
mitigate this, an asynchronous communication aggregator [7]
can be employed to improve bandwidth utilization with mini-
mal changes to the existing code. The modification involves re-
placing the operation sum.store(outputs[output idx], pe) with
aggregator.store(outputs[output idx], sum, pe), where data is
written to the aggregation buffer instead of directly to remote
GPU memory. The aggregator then transmits the aggregated
message to remote memory based on user-defined aggregation
size and maximum wait time.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
(NSF) under projects CCF-1823034 and CCF-1823037 and in

part by the Advanced Scientific Computing Research (ASCR)
program within the Office of Science of the DOE under con-
tract number DE-AC02-05CH11231 and the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

We would like to thank Louis Feng from Facebook for his
guidance on this work, and Collin McCarthy from Owens’
group for his consistent support.

REFERENCES

[1] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood,
“Understanding training efficiency of deep learning recommendation
models at scale,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, Feb. 2021, pp.
802–814.

[2] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A system for
optimizing end-to-end at-scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, May 2020, pp. 982–995.

[3] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee, A. Male-
vich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The
architectural implications of Facebook’s DNN-based personalized recom-
mendation,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, Feb. 2020, pp. 488–501.

[4] NVIDIA, “NVIDIA collective communications library (NCCL),” https:
//developer.nvidia.com/nccl, 2024, [Accessed: July 20, 2024].

[5] Meta, “An implementation of a deep learning recommendation model
(DLRM),” https://github.com/facebookresearch/dlrm, 2024, [Accessed:
July 20, 2024].

[6] G. Sethi, B. Acun, N. Agarwal, C. Kozyrakis, C. Trippel, and C.-J. Wu,
“RecShard: statistical feature-based memory optimization for industry-
scale neural recommendation,” in Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’22. ACM, Feb. 2022, pp. 344–
358.

[7] Y. Chen, B. Brock, S. Porumbescu, A. Buluç, K. Yelick, and J. D. Owens,
“Scalable irregular parallelism with GPUs: Getting CPUs out of the way,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’22, Nov. 2022,
pp. 708–723.

