
UC Irvine
ICS Technical Reports

Title
Dynamic load balancing algorithm complexity

Permalink
https://escholarship.org/uc/item/0253g0zj

Author
Cha, Sung D.

Publication Date
1987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0253g0zj
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Dynamic Load Balancing Algorithm Complexity

Sung D. Cha

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Technical Report 87-24

Dynamic Load Balancing Algorithm Complexity

Sung D. Cha

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

Abstract

This paper presents a theoretical analysis of the asymptotic complexity
inherent in a load balancing algorithm in a loosely-coupled network, where
processor communication is achieved by message passing. The load balancing
complexity depends· on the network topology and the overhead of processor
communication for each polling strategy. The best, worst, and average case
analysis of the load balancing algorithms for the various polling topologies
are presented. The polling strategies considered are local, global, and random
polling. The complexity is presented as a function of the number of processors
in the network.

1 Introduction

A major advantage of a distributed system is the possibility of achieving load balanc­
ing and fault tolerance. When the current load of a processor exceeds its processing
capability, other underloaded processors, if there are any, might be able to share the
load to better utilize the processors and to maximize the system throughput. Further­
more, if there exist multiple paths between any pair of processors, a limited degree of
fault tolerance against processor and/ or channel failures can be achieved. The proces­
sors could com~unicate despite communication channel and/or intermediate processor
failures. The degree of fault tolerance that can be achieved depends on the degree of
processor and/or channel redundancy provided in the system - e.g., the system topology.
Therefore, careful analysis is needed to achieve the maximum fault tolerance with the
minimum cost possible.

1

A distributed system considered in this paper has a point-to-point interconnection
structure [LPS81], where each processor can communicate by explicit message passing
through the communication channels. If two processors are not directly connected, the
message can be forwarded by the intermediate processors.

This paper examines the complexity of a typical fully distributed and asynchronous
dynamic load balancing algorithm. The algorithm is distributed in that there is no central
processor that controls the load balancing activity, and any processor can initiate the load
balancing activity independent of the other processors. The algorithm is asynchronous
in that the processors do not need to be synchronized to achieve load balancing. Once
the source and destination processor are determined, the load balancing activity can take
place independent of other processors. The algorithm is dynamic in that the processor
selected for job execution can vary dynamically depending on the each host's load when
the load balancing activity is initiated. The main focus of this paper is to examine
the asymptotic complexity inherent in a dynamic load balancing algorithm in a loosely­
coupled network, as a function of the system topology and the number of the processors
in the system.

The load balancing activity can be initiated by either the idle processors or by t;Iie
overloaded processors. The former is called a receiver-initiated algorithm while the latter
is called a sender-initiated one. The idle processors could "demand" more loads to better
utilize the processing power. This approach, however, requires careful design because it
could lead to unnecessary invocation of load balancing algorithms if the system overall is
underloaded. Each processor could query other processors demanding more jobs which
are not available. Load balancing algorithms based on this approach have been published
by [NH85,LK87] among others. The load balancing activity, however, could be initiated
by the overloaded processors seeking idle processors to share the loads. Since the load
balancing activity itself is executed as a processor, the load on the already overloaded
processor will be increased. However, this situation can be avoided by the careful defini­
tion of "overloading". For example, if the load at a processor exceeds a certain limit, say
98 3 of the processing power, the processor could be defined "overloaded" and initiate
the load balancing activity. The processor could then be logically overloaded, but not
physically overloaded. The parameter can be carefully adjusted by the system designers
or maintainers depending on the overhead incurred by the load balancing activity.

If no idle processor can be found when the load balancing is attempted, the system
is called saturated. If a system saturation occurs, load balancing cannot be achieved
and other measures need to be considered. For example, the system could reject any
other new job submission or terminate the least critical jobs until the system saturation
disappears.

Section 2 reviews previously proposed dynamic load balancing algorithms. A dis­
tributed asynchronous dynamic load balancing algorithm is proposed in section 3. Since
the algorithm is fully distributed, the algorithm requires that the processor initiating the

2

load balancing activity poll the relevant processors to provide their current load infor­
mation. The polling overhead, however, depends on the system topology and the scope
of polling desired. Section 4 provides an analysis of the effect of system topology on the
polling complexity, followed by the conclusions.

2 Related Research

The problem of load balancing in a distributed system has been a topic of much research
in the past. The load balancing problem also has been called either load sharing or
processor placement problem in the literature. In general, it is a part of global scheduling
problem to achieve the optimal system performance. A comprehensive survey of the
subject was provided by Wang and Morris[WM85].

When a job is submitted in a distributed system environment, it will be executed by
one of the processors that has the resources the job requires. This initial scheduling of the
job submitted is called the processor placement problem. This strategy can be viewed
as a load balancing algorithm because the processor can be selected so as to balance
the load among all the processors. A strategy of choosing the processor with the lightest
node is used in the Purdue Engineering and Computer Network [HCG*82], where 9 DEC
computers are interconnected. The processor placement problem usually assumes that
job scheduling is irrevocable in that the job is executed on the processor selected and no
further job migration is allowed. The load balancing algorithms, however, may allow the
jobs in the queue to migrate. The tradeoff is between the possibility of improving the
system throughput by allowing any waiting jobs to migrate and the increased complexity
and overhead of the load balancing algorithm. The processor placement problem and the
load balancing problem are equivalent if no migration of the process is allowed after the
initial job scheduling. The possibility of allowing a job to migrate during the execution
is not considered since the overhead of moving running processes generally outweighs the
potential benefits.

The existing load balancing algorithms can be classified by the scope of balancing and
the adaptiveness to the system state as follows: local vs global and static vs dynamic
load balancing algorithms.

In a local load balancing algorithm, only the processors directly connected to the
initiating processor are considered. In a global load balancing algorithm, all the pro­
cessors in a distributed system network must be considered. Although the successive
application of local load balancing activities usually leads to global load balancing, it is
not necessarily t.he case. For example, Lin and Keller [LK8 7] propose a dynamic load
balancing algorithm where the load is classified as light, moderate, or heavy. The load is
transferred from the heavily loaded processor to the lightly loaded one if the two proces­
sors are directly connected. No load balancing activity occurs at the moderately loaded

3

processors. If all the immediate neighbors of heavily or lightly loaded processors are
moderately loaded, no load balancing activities take place as shown below.

r-----,
I I

Heavy 1---t\/11 odera•i+"----:: Light :

r-----,
I I

I I
L ____ ...J

odera•l'P----:: Light ,__: --+W•odera e
I I

r-----,
I I

L ____ ...J

: Light 1:--
1 ---ttit• odera11-P.---1 Heavy

I I
L ____ ...J

Global load balancing algorithms, on the other hand, require increased overhead because
all the processors in the network have to be consulted. In an effort to overcome the
limitation of the local load balancing algorithms, random load balancing algorithms have
been proposed in the literature, where a subset of processors in the network are ·selected
randomly for consultation on their load regardless of their distance to the processor
initiating the load balancing activity.

Dynamic load balancing policy takes the current system state into consideration so
as to react to changes in load. Static algorithms, on the other hand, make load balancing
decisions independent of the current system state. While static policies are simpler to im­
plement and analyze, they may not be as effective as the dynamic ones. The performance
of a load balancing algorithm is usually measured by the average job turnaround time.
Several approaches to design and analyze dynamic load balancing algorithms have been
suggested. Wang and Morris[WM85] define several classes of dynamic load balancing
algorithms: diffusion, contract bidding, and state feedback.

In a diffusion approach, the load balancing is achieved by having the neighboring
nodes communicate and cooperate so that the load from the overloaded processor is
shifted to the underloaded processors. Either a local or a global load balancing algorithm
can be implemented. The diffusion approach is general enough to include the "dipstick"
approach where the job is executed locally unless the load does not exceed a prespecified
limit. The processor welcomes the load from qther overloaded processors if the current
load is below a prespecified minimum. An algorithm proposed by Lin and Keller [LK87] is
an example of the diffusion approach. The effectiveness of these load balancing algorithms
depend on the communication overhead, job transfer overhead, and the careful selection
of the boundary load where the load balancing activity occurs. The communication
overhead in the diffusion approach is analyzed in section 4.

4

The bidding approach can be used in a workstation network environment where there
are a number of servers and clients attached to the network. Both sender-initiated and
receiver-initiated algorithms can be implemented in a bidding approach. In a sender­
initiated approach, the sources broadcast the job and collect the bid from the servers.
The server with the lowest bid (e.g., most lightly loaded) runs the job. An idle server
could send a "request for bids", indicating its willingness to take additional jobs to im­
plement the receiver-initiated load balancing algorithm. The probabilistic load balancing
algorithm can also be classified as a bidding approach. When a job is to be executed
remotely, a remote processor will be selected with some probability or at random. The
selected processor can be consulted if its current load is low enough to accept the job.
Examples of the bidding or probabilistic approach include the algorithms proposed by
Hsu and Liu[HL86], and Eager, Lazowska, and Zohorjan [ELZ86J. It is interesting to
note that a simulation study[ELZ86] shows that simple algorithm such as random host
selection are about equally effective as complicated algorithms.

In a state feedback approach, the current load on each host in the system is collected
and updated periodically. Any new job submitted is routed to the most lightly loaded
processor, as used in Purdue ECN. In a loosely-coupled network environment, the over­
head of periodically updating the load information on each host can be significant. If
the load information is updated less frequently, the possibility of poor judgement due to
the out-of-date load information could result in a reduced system output. An examples
of the state feedback approach is the algorithm proposed by Hae and Johnson[HJ86]. A
token circulates the network periodically, collecting and updating the load information
on each host. Whenever a new job is submitted, the host with the lightest load is selected
as an execution site.

Another approach is a heuristic approach suggested by Elf[Efe82]. Given the set
of jobs and the interprocess communication cost among the jobs, the module cluster
algorithm forms clusters to which a processor can be assigned so as to minimize the com­
munication cost among the clusters. If load imbalancing results, the module reassignment
algorithm shifts the jobs until the load is balanced.

3 A Dynamic Load Balancing Algorithm

A proposed algorithm assumes that the following information is either available or can
be computed:

• A distributed system consists of N processors, denoted by P Ei, whose processing
power is denoted by Pi (1 :::; i :::; N).

• The average load of processor i at any time is denoted by li (1 :::; i :::; N). Thus, a
processor is overloaded if li >Pi· The load balancing algorithm is independent of

5

the algorithm that computes the load.

• The minimum distance between any two processors is defined by the N by N
matrix MD, where M Dij is the minimum distance between the processors i and
j. Distance from any processor to itself is 0. The distance does not have to be the
physical distance between the processors. Other measures such as communication
and job transfer overhead or the number of intermediate processors on the path
can be used.

A typical dynamic load balancing algorithm is given below:

(1) loop
(2) the initiating processor, say P Ei, polls relevant neighbors on current load ;
(3) P Ei finds an idle processor P E3 such that (p3 - l3) - M Dij is positive and maximum;
(4) if such P Ej is found
(5) then transfer Pi - l3 amount of load from P Ei to P Ej
(6) else the system is saturated
(7) end loop;

The processor initiating the load balancing activity depends on whether sender­
initiated or receiver-initiated algorithms are used. The initiating processor must poll
other processors on their current load information. The scope of polling depends on
whether global or local load balancing policies are adapted. The load balancing activity,
shown in lines (2) through (5), chooses the target processor where the net benefit of load
balancing (reduced load - transfer overhead) is maximized.

The complexity of the above algorithm shown in line (3) and (4) is O(N), where N
is the number of processors in the system. The complexity of line (2) depends on the
distributed system topology and whether local or global load balancing is desired. If
local load balancing is desired, the polling of the current load of each processor is limited
only to the immediate neighbors, whereas global balancing requires all processors in the
distributed system to be polled. The relationship between system topology and polling
complexity is the subject of the next section.

4 Polling Complexity and System Topology

This s~ction investigates the complexity of polling the relevant processors over the net­
work for various system topologies. The analysis consists of best, worst, and average case
for both local and global polling. The complexity of random polling is also analyzed.
This knowledge can be used by the distributed system designer to choose the topology
to minimize the polling overhead.

6

The overhead of polling is measured as the number of messages required for com­
munication among the relevant processors. In the case of local polling where only the
immediate neighbors are consulted, this is equivalent to the number of messages that
the initiating processors must generate. Global load balancing, on the other hand, may
require some intermediate processors to store and forward the polling messages if no
direct link is available. The number of times the messages are stored and forwarded
before reaching the destination is measured as the global polling overhead. The study
conducted by Lazouska and others[LZCZ84] shows that the processor cost of packaging
data for transmission, routing cost by the intermediate processor, and unpackaging upon
reception far outweigh the communication network costs of transmitting the data.

The distributed system topology is modeled as a connected (undirected) graph where
each processor is represented as a node and any direct (du:plex) c::ommunication channel
between two processors is represented as an edge. The minimum number of edges in the
graph is N - 1 since N nodes must form a connected graph. The maximum number of
edges in the graph is en when the graph is fully connected.

4.1 Local Polling

4.1.1 Best Case

The best case is when the system topology is linear, where the number of immediate
neighbors is one or two. Thus, the polling complexity is 0(1).

4.1.2 Worst Case

If the system is fully connected, a processor has to poll all N - 1 neighbors. Thus, the
complexity is O(N).

4.1.3 Average Case

The average number of edges in a connected graph with N nodes varies from N - 1 if
the graph is linear to en if graph is fully connected. If every topology is equally likely
to occur, the average number of edges connected per node is given as follows:

E (sum of all integers between N - 1 and en)
- N *(number of integers between N - 1 and (~))

"en . "N-2 .
L.Ji=l 2 - L.Ji=l 2

N * ((1'£) - (N - 2))
(N-1)(N+2)

4N

7

= O(N)

Therefore, the average local polling complexity is O(N).

4.2 Global Polling

The complexity of global polling can be analyzed using the minimum distance matrix
MD, where MDij is the minimum number of edges re.quired to traverse from node i to
j. Thus, the number of times the message has to be stored and forwarded before delivery
is used as a complexity measure. The matrix is symmetric by definition and the values
of all the diagonal elements are zero.

4.2.1 Best Case

The best case is 0(N) when the system is fully connected since each processor will make
N -1 polls to its neighbors (e.g., MDii = 1).

4.2.2 Worst Case

The worst case occurs when the system has a linear topology. If we assume that only
the destination examines the actual contents of the message in a point-to-point network,
global polling requires sending N - 1 messages, where intermediate edges on the path
varies from 1 to N - 1. Therefore, the complexity is Ef::11 i == N(~-l) == O(N2).

4.2.3 Average Case

The average global polling complexity is same as the average value of the sum of a row or
a column of the matrix. From the definition of the matrix, the following can be derived:

• The matrix MD is symmetric and the N diagonal elements have value zero.

• There are at least N - 1 elements with value 1. That is, the graph has at least
N -1 edges.

• The other (N 2
- 2N + 1) elements have a value between 1 and (N - 1).

Suppose the maximum element of a row or a column is k (1 :::; k :::; N - 1), where
k is assumed to be chosen equally likely. From the definition of the matrix MD, the
following can be-derived:

• The diagonal element has value 0.

• There are k elements with values 1 through k since there are exactly k - 1 inter­
mediate nodes on the longest path.

8

• The other elements (N - k - 1) can have any value between 1 and k. Again, it is
assumed that any value between 1 and k can be chosen with equal likelihood.

The average value of the sum of a row if the maximum element is k is then

which is (N-l~(k+i). For example, if the system is fully connected, the value of k is 1,
requiring N - 1 messages. However, if the system is linearly connected, k is N - 1,
requiring N(~-l) polls. These values match the results presented in the best and worst
case analysis.

Since it is assumed that the maximum value k is assumed to be chosen equally likely
between 1 and N - 1, the expected sum of the elements of a row or a column is then

1 (~1
(N - l)(k + 1))

N -1 k=t 2

N-l(k+l)
I:-
k=l 2

(N2 + N - 2)
4

Therefore, the average complexity of the global polling is O(N2).

4.3 Random Polling

In addition to the local or global polling strategies, a random polling strategy has been
proposed in the literature [HL86,ELZ86J. In a random polling strategy, the processor
initiating the load balancing activity randomly selects a subset of processors in the net­
work to consult on their current load information. It is assumed that each processor is
equally likely to be selected regardless of the its distance to the polling processor.

The complexity of random polling algorithm can be analyzed using the minimum
distance matrix, MD, developed in the previous subsection. It is shown that the average
complexity of global polling, which is equivalent to the average sum of a row or a column
f • • d' t t . • (N2+N-2) o rmnimum IS ance ma rix, IS 4 •

Suppose m out of the N - 1 processors (excluding the polling processor itself) are
polled randomly. The complexity of the random polling strategy is then equivalent to
the average sum of arbitrary m elements of a row or a column of the minimum distance
matrix, which is

(N2 + N - 2) m
4 N-1

because each element is assumed equally likely to be selected. Therefore, if the number
of processors randomly polled is proportional to the number of processors in the net­
work, e.g., O(N), the complexity of random polling strategy is O(N2

). This complexity

9

is equivalent to that of the global polling strategy. If, however, the number of polled pro­
cessors is constant and independent of the network size, the random polling complexity
is O(N), which is equivalent to that of the local polling.

5 Conclusion

This paper proposes a new asynchronous load balancing algorithm and presents a theo­
retical analysis of its inherent asymptotic complexity in a distributed system with loosely­
coupled network. The complexity, represented as a function of the number of processors
in the network, N, depends on the network topology and the scope of load balancing
(polling strategy), is shown below:

Strategy Best Case Average Case Worst Case
Local 0(1) O(N) O(N)

Polling Linear topology Arbitrary topology Fully-connected topology
Global O(N) O(N2

) O(N2
)

Polling Fully-connected topology Arbitrary topology Linear topology
Random 0(N) if number of processors polled is constant
Polling 0(N 2

) if number of processors polled is proportional to N

Therefore, it is shown that the polling overhead outweighs the target selection over­
head. This analysis can be considered conservative because the cost of message store
and forward by an intermediate processor is assumed to be the same as that of each
comparison t_o select the target in the polling processor. In a real implementation, the
cost of message pa~sing is likely to be considerably greater than that of a comparison.

The complexity of random polling strategy has also been analyzed. It is shown that
the random polling complexity is equivalent to that of the local polling if the number of
polled processors is constant and independent of the network size. If the number of polling
processors is linearly proportional to the size of the network, the polling complexity is
same as that of the global polling strategy.

10

References

[Efe82] Kemal Efe. Heuristic models of task assignment scheduling in distributed
systems. IEEE Computer, 50-56, June 1982.

[ELZ86] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load
sharing in homogeneous distributed systems. IEEE Transaction on Software
Engineering, SE-12(5):662-675, May 1986.

[HCG*82] Kai Hwang, William J. Croft, George H. Goble, Benjamin W. Wah, Faye A.

[HJ86]

[HL86]

[LK87]

Briggs, William R. Simmons, and Clarence L. Coates. A unix-based local
computer network with load balancing. IEEE Computer, 55-66, April 1982.

Anna Hae and Theodore J. Johnson. A study of dynamic load balancing in
distributed system. In Proceedings of A CM Sig Comm Symposium on Com­
munications, Architectures, and Protocols, pages 348-356, August 1986.

Chi-Yin Huang Hsu and Jane W. S. Liu. Dynamic load balancing algorit~ms
in homogeneous distributed systems. In International Conference on Dzs­
tributed Computing Systems, pages 216-223, 1986.

Frank C.H. Lin and Robert M. Keller. The gradient model load balancing
method. IEEE Transaction on Software Engineering, SE-13(1):32-38, Jan­
uary 1987.

[LPS81] E.W. Lampson, M. Paul, and H.J. Siegert, editors. Distributed Systems.
Springer-Verlag, 1981.

[LZCZ84] E.D. Lazowska, J. Zahorjan, D.R. Cheriton, and W. Zwaenepoel. File Access
Performance of Diskless Workstation. Technical Report 84-06-01, University
of Washington, Seattle, June 1984.

[NH85] Lionel M. Ni and Kai Hwang. Optimal load balancing in a multiple processor
system with many job classes. IEEE Transaction on Software Engineering,
SE-11(5):491-496, May 1985.

[WM85] Yung-Terng Wang and Robert J.T. Morris. Load sharing in distributed sys­
tems. IEEE Transactions on Computers, C-34(3):204-217, March 1985.

11

