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Abstract 

This paper presents a theoretical analysis of the asymptotic complexity 
inherent in a load balancing algorithm in a loosely-coupled network, where 
processor communication is achieved by message passing. The load balancing 
complexity depends· on the network topology and the overhead of processor 
communication for each polling strategy. The best, worst, and average case 
analysis of the load balancing algorithms for the various polling topologies 
are presented. The polling strategies considered are local, global, and random 
polling. The complexity is presented as a function of the number of processors 
in the network. 

1 Introduction 

A major advantage of a distributed system is the possibility of achieving load balanc­
ing and fault tolerance. When the current load of a processor exceeds its processing 
capability, other underloaded processors, if there are any, might be able to share the 
load to better utilize the processors and to maximize the system throughput. Further­
more, if there exist multiple paths between any pair of processors, a limited degree of 
fault tolerance against processor and/ or channel failures can be achieved. The proces­
sors could com~unicate despite communication channel and/or intermediate processor 
failures. The degree of fault tolerance that can be achieved depends on the degree of 
processor and/or channel redundancy provided in the system - e.g., the system topology. 
Therefore, careful analysis is needed to achieve the maximum fault tolerance with the 
minimum cost possible. 
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A distributed system considered in this paper has a point-to-point interconnection 
structure [LPS81], where each processor can communicate by explicit message passing 
through the communication channels. If two processors are not directly connected, the 
message can be forwarded by the intermediate processors. 

This paper examines the complexity of a typical fully distributed and asynchronous 
dynamic load balancing algorithm. The algorithm is distributed in that there is no central 
processor that controls the load balancing activity, and any processor can initiate the load 
balancing activity independent of the other processors. The algorithm is asynchronous 
in that the processors do not need to be synchronized to achieve load balancing. Once 
the source and destination processor are determined, the load balancing activity can take 
place independent of other processors. The algorithm is dynamic in that the processor 
selected for job execution can vary dynamically depending on the each host's load when 
the load balancing activity is initiated. The main focus of this paper is to examine 
the asymptotic complexity inherent in a dynamic load balancing algorithm in a loosely­
coupled network, as a function of the system topology and the number of the processors 
in the system. 

The load balancing activity can be initiated by either the idle processors or by t;Iie 
overloaded processors. The former is called a receiver-initiated algorithm while the latter 
is called a sender-initiated one. The idle processors could "demand" more loads to better 
utilize the processing power. This approach, however, requires careful design because it 
could lead to unnecessary invocation of load balancing algorithms if the system overall is 
underloaded. Each processor could query other processors demanding more jobs which 
are not available. Load balancing algorithms based on this approach have been published 
by [NH85,LK87] among others. The load balancing activity, however, could be initiated 
by the overloaded processors seeking idle processors to share the loads. Since the load 
balancing activity itself is executed as a processor, the load on the already overloaded 
processor will be increased. However, this situation can be avoided by the careful defini­
tion of "overloading". For example, if the load at a processor exceeds a certain limit, say 
98 3 of the processing power, the processor could be defined "overloaded" and initiate 
the load balancing activity. The processor could then be logically overloaded, but not 
physically overloaded. The parameter can be carefully adjusted by the system designers 
or maintainers depending on the overhead incurred by the load balancing activity. 

If no idle processor can be found when the load balancing is attempted, the system 
is called saturated. If a system saturation occurs, load balancing cannot be achieved 
and other measures need to be considered. For example, the system could reject any 
other new job submission or terminate the least critical jobs until the system saturation 
disappears. 

Section 2 reviews previously proposed dynamic load balancing algorithms. A dis­
tributed asynchronous dynamic load balancing algorithm is proposed in section 3. Since 
the algorithm is fully distributed, the algorithm requires that the processor initiating the 
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load balancing activity poll the relevant processors to provide their current load infor­
mation. The polling overhead, however, depends on the system topology and the scope 
of polling desired. Section 4 provides an analysis of the effect of system topology on the 
polling complexity, followed by the conclusions. 

2 Related Research 

The problem of load balancing in a distributed system has been a topic of much research 
in the past. The load balancing problem also has been called either load sharing or 
processor placement problem in the literature. In general, it is a part of global scheduling 
problem to achieve the optimal system performance. A comprehensive survey of the 
subject was provided by Wang and Morris[WM85]. 

When a job is submitted in a distributed system environment, it will be executed by 
one of the processors that has the resources the job requires. This initial scheduling of the 
job submitted is called the processor placement problem. This strategy can be viewed 
as a load balancing algorithm because the processor can be selected so as to balance 
the load among all the processors. A strategy of choosing the processor with the lightest 
node is used in the Purdue Engineering and Computer Network [HCG*82], where 9 DEC 
computers are interconnected. The processor placement problem usually assumes that 
job scheduling is irrevocable in that the job is executed on the processor selected and no 
further job migration is allowed. The load balancing algorithms, however, may allow the 
jobs in the queue to migrate. The tradeoff is between the possibility of improving the 
system throughput by allowing any waiting jobs to migrate and the increased complexity 
and overhead of the load balancing algorithm. The processor placement problem and the 
load balancing problem are equivalent if no migration of the process is allowed after the 
initial job scheduling. The possibility of allowing a job to migrate during the execution 
is not considered since the overhead of moving running processes generally outweighs the 
potential benefits. 

The existing load balancing algorithms can be classified by the scope of balancing and 
the adaptiveness to the system state as follows: local vs global and static vs dynamic 
load balancing algorithms. 

In a local load balancing algorithm, only the processors directly connected to the 
initiating processor are considered. In a global load balancing algorithm, all the pro­
cessors in a distributed system network must be considered. Although the successive 
application of local load balancing activities usually leads to global load balancing, it is 
not necessarily t.he case. For example, Lin and Keller [LK8 7] propose a dynamic load 
balancing algorithm where the load is classified as light, moderate, or heavy. The load is 
transferred from the heavily loaded processor to the lightly loaded one if the two proces­
sors are directly connected. No load balancing activity occurs at the moderately loaded 
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processors. If all the immediate neighbors of heavily or lightly loaded processors are 
moderately loaded, no load balancing activities take place as shown below. 
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Global load balancing algorithms, on the other hand, require increased overhead because 
all the processors in the network have to be consulted. In an effort to overcome the 
limitation of the local load balancing algorithms, random load balancing algorithms have 
been proposed in the literature, where a subset of processors in the network are ·selected 
randomly for consultation on their load regardless of their distance to the processor 
initiating the load balancing activity. 

Dynamic load balancing policy takes the current system state into consideration so 
as to react to changes in load. Static algorithms, on the other hand, make load balancing 
decisions independent of the current system state. While static policies are simpler to im­
plement and analyze, they may not be as effective as the dynamic ones. The performance 
of a load balancing algorithm is usually measured by the average job turnaround time. 
Several approaches to design and analyze dynamic load balancing algorithms have been 
suggested. Wang and Morris[WM85] define several classes of dynamic load balancing 
algorithms: diffusion, contract bidding, and state feedback. 

In a diffusion approach, the load balancing is achieved by having the neighboring 
nodes communicate and cooperate so that the load from the overloaded processor is 
shifted to the underloaded processors. Either a local or a global load balancing algorithm 
can be implemented. The diffusion approach is general enough to include the "dipstick" 
approach where the job is executed locally unless the load does not exceed a prespecified 
limit. The processor welcomes the load from qther overloaded processors if the current 
load is below a prespecified minimum. An algorithm proposed by Lin and Keller [LK87] is 
an example of the diffusion approach. The effectiveness of these load balancing algorithms 
depend on the communication overhead, job transfer overhead, and the careful selection 
of the boundary load where the load balancing activity occurs. The communication 
overhead in the diffusion approach is analyzed in section 4. 
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The bidding approach can be used in a workstation network environment where there 
are a number of servers and clients attached to the network. Both sender-initiated and 
receiver-initiated algorithms can be implemented in a bidding approach. In a sender­
initiated approach, the sources broadcast the job and collect the bid from the servers. 
The server with the lowest bid (e.g., most lightly loaded) runs the job. An idle server 
could send a "request for bids", indicating its willingness to take additional jobs to im­
plement the receiver-initiated load balancing algorithm. The probabilistic load balancing 
algorithm can also be classified as a bidding approach. When a job is to be executed 
remotely, a remote processor will be selected with some probability or at random. The 
selected processor can be consulted if its current load is low enough to accept the job. 
Examples of the bidding or probabilistic approach include the algorithms proposed by 
Hsu and Liu[HL86], and Eager, Lazowska, and Zohorjan [ELZ86J. It is interesting to 
note that a simulation study[ELZ86] shows that simple algorithm such as random host 
selection are about equally effective as complicated algorithms. 

In a state feedback approach, the current load on each host in the system is collected 
and updated periodically. Any new job submitted is routed to the most lightly loaded 
processor, as used in Purdue ECN. In a loosely-coupled network environment, the over­
head of periodically updating the load information on each host can be significant. If 
the load information is updated less frequently, the possibility of poor judgement due to 
the out-of-date load information could result in a reduced system output. An examples 
of the state feedback approach is the algorithm proposed by Hae and Johnson[HJ86]. A 
token circulates the network periodically, collecting and updating the load information 
on each host. Whenever a new job is submitted, the host with the lightest load is selected 
as an execution site. 

Another approach is a heuristic approach suggested by Elf[Efe82]. Given the set 
of jobs and the interprocess communication cost among the jobs, the module cluster 
algorithm forms clusters to which a processor can be assigned so as to minimize the com­
munication cost among the clusters. If load imbalancing results, the module reassignment 
algorithm shifts the jobs until the load is balanced. 

3 A Dynamic Load Balancing Algorithm 

A proposed algorithm assumes that the following information is either available or can 
be computed: 

• A distributed system consists of N processors, denoted by P Ei, whose processing 
power is denoted by Pi (1 :::; i :::; N). 

• The average load of processor i at any time is denoted by li (1 :::; i :::; N). Thus, a 
processor is overloaded if li >Pi· The load balancing algorithm is independent of 
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the algorithm that computes the load. 

• The minimum distance between any two processors is defined by the N by N 
matrix MD, where M Dij is the minimum distance between the processors i and 
j. Distance from any processor to itself is 0. The distance does not have to be the 
physical distance between the processors. Other measures such as communication 
and job transfer overhead or the number of intermediate processors on the path 
can be used. 

A typical dynamic load balancing algorithm is given below: 

(1) loop 
(2) the initiating processor, say P Ei, polls relevant neighbors on current load ; 
(3) P Ei finds an idle processor P E3 such that (p3 - l3) - M Dij is positive and maximum; 
( 4) if such P Ej is found 
(5) then transfer Pi - l3 amount of load from P Ei to P Ej 
( 6) else the system is saturated 
(7) end loop; 

The processor initiating the load balancing activity depends on whether sender­
initiated or receiver-initiated algorithms are used. The initiating processor must poll 
other processors on their current load information. The scope of polling depends on 
whether global or local load balancing policies are adapted. The load balancing activity, 
shown in lines (2) through (5), chooses the target processor where the net benefit of load 
balancing (reduced load - transfer overhead) is maximized. 

The complexity of the above algorithm shown in line (3) and ( 4) is O(N), where N 
is the number of processors in the system. The complexity of line (2) depends on the 
distributed system topology and whether local or global load balancing is desired. If 
local load balancing is desired, the polling of the current load of each processor is limited 
only to the immediate neighbors, whereas global balancing requires all processors in the 
distributed system to be polled. The relationship between system topology and polling 
complexity is the subject of the next section. 

4 Polling Complexity and System Topology 

This s~ction investigates the complexity of polling the relevant processors over the net­
work for various system topologies. The analysis consists of best, worst, and average case 
for both local and global polling. The complexity of random polling is also analyzed. 
This knowledge can be used by the distributed system designer to choose the topology 
to minimize the polling overhead. 
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The overhead of polling is measured as the number of messages required for com­
munication among the relevant processors. In the case of local polling where only the 
immediate neighbors are consulted, this is equivalent to the number of messages that 
the initiating processors must generate. Global load balancing, on the other hand, may 
require some intermediate processors to store and forward the polling messages if no 
direct link is available. The number of times the messages are stored and forwarded 
before reaching the destination is measured as the global polling overhead. The study 
conducted by Lazouska and others[LZCZ84] shows that the processor cost of packaging 
data for transmission, routing cost by the intermediate processor, and unpackaging upon 
reception far outweigh the communication network costs of transmitting the data. 

The distributed system topology is modeled as a connected (undirected) graph where 
each processor is represented as a node and any direct ( du:plex) c::ommunication channel 
between two processors is represented as an edge. The minimum number of edges in the 
graph is N - 1 since N nodes must form a connected graph. The maximum number of 
edges in the graph is en when the graph is fully connected. 

4.1 Local Polling 

4.1.1 Best Case 

The best case is when the system topology is linear, where the number of immediate 
neighbors is one or two. Thus, the polling complexity is 0(1 ). 

4.1.2 Worst Case 

If the system is fully connected, a processor has to poll all N - 1 neighbors. Thus, the 
complexity is O(N). 

4.1.3 Average Case 

The average number of edges in a connected graph with N nodes varies from N - 1 if 
the graph is linear to en if graph is fully connected. If every topology is equally likely 
to occur, the average number of edges connected per node is given as follows: 

E (sum of all integers between N - 1 and en) 
- N *(number of integers between N - 1 and (~)) 

"en . "N-2 . 
L.Ji=l 2 - L.Ji=l 2 

N * ((1'£) - (N - 2)) 
(N-1)(N+2) 

4N 
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= O(N) 

Therefore, the average local polling complexity is O(N). 

4.2 Global Polling 

The complexity of global polling can be analyzed using the minimum distance matrix 
MD, where MDij is the minimum number of edges re.quired to traverse from node i to 
j. Thus, the number of times the message has to be stored and forwarded before delivery 
is used as a complexity measure. The matrix is symmetric by definition and the values 
of all the diagonal elements are zero. 

4.2.1 Best Case 

The best case is 0( N) when the system is fully connected since each processor will make 
N -1 polls to its neighbors (e.g., MDii = 1). 

4.2.2 Worst Case 

The worst case occurs when the system has a linear topology. If we assume that only 
the destination examines the actual contents of the message in a point-to-point network, 
global polling requires sending N - 1 messages, where intermediate edges on the path 
varies from 1 to N - 1. Therefore, the complexity is Ef::11 i == N(~-l) == O(N2 ). 

4.2.3 Average Case 

The average global polling complexity is same as the average value of the sum of a row or 
a column of the matrix. From the definition of the matrix, the following can be derived: 

• The matrix MD is symmetric and the N diagonal elements have value zero. 

• There are at least N - 1 elements with value 1. That is, the graph has at least 
N -1 edges. 

• The other (N 2 
- 2N + 1) elements have a value between 1 and (N - 1). 

Suppose the maximum element of a row or a column is k (1 :::; k :::; N - 1 ), where 
k is assumed to be chosen equally likely. From the definition of the matrix MD, the 
following can be-derived: 

• The diagonal element has value 0. 

• There are k elements with values 1 through k since there are exactly k - 1 inter­
mediate nodes on the longest path. 
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• The other elements (N - k - 1) can have any value between 1 and k. Again, it is 
assumed that any value between 1 and k can be chosen with equal likelihood. 

The average value of the sum of a row if the maximum element is k is then 

which is (N-l~(k+i). For example, if the system is fully connected, the value of k is 1, 
requiring N - 1 messages. However, if the system is linearly connected, k is N - 1, 
requiring N(~-l) polls. These values match the results presented in the best and worst 
case analysis. 

Since it is assumed that the maximum value k is assumed to be chosen equally likely 
between 1 and N - 1, the expected sum of the elements of a row or a column is then 

1 (~1 
(N - l)(k + 1)) 

N -1 k=t 2 

N-l(k+l) 
I:-
k=l 2 

(N2 + N - 2) 
4 

Therefore, the average complexity of the global polling is O(N2 ). 

4.3 Random Polling 

In addition to the local or global polling strategies, a random polling strategy has been 
proposed in the literature [HL86,ELZ86J. In a random polling strategy, the processor 
initiating the load balancing activity randomly selects a subset of processors in the net­
work to consult on their current load information. It is assumed that each processor is 
equally likely to be selected regardless of the its distance to the polling processor. 

The complexity of random polling algorithm can be analyzed using the minimum 
distance matrix, MD, developed in the previous subsection. It is shown that the average 
complexity of global polling, which is equivalent to the average sum of a row or a column 
f • • d' t t . • (N2+N-2) o rmnimum IS ance ma rix, IS 4 • 

Suppose m out of the N - 1 processors (excluding the polling processor itself) are 
polled randomly. The complexity of the random polling strategy is then equivalent to 
the average sum of arbitrary m elements of a row or a column of the minimum distance 
matrix, which is 

(N2 + N - 2) m 
4 N-1 

because each element is assumed equally likely to be selected. Therefore, if the number 
of processors randomly polled is proportional to the number of processors in the net­
work, e.g., O(N), the complexity of random polling strategy is O(N2

). This complexity 
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is equivalent to that of the global polling strategy. If, however, the number of polled pro­
cessors is constant and independent of the network size, the random polling complexity 
is O(N), which is equivalent to that of the local polling. 

5 Conclusion 

This paper proposes a new asynchronous load balancing algorithm and presents a theo­
retical analysis of its inherent asymptotic complexity in a distributed system with loosely­
coupled network. The complexity, represented as a function of the number of processors 
in the network, N, depends on the network topology and the scope of load balancing 
(polling strategy), is shown below: 

Strategy Best Case Average Case Worst Case 
Local 0(1) O(N) O(N) 

Polling Linear topology Arbitrary topology Fully-connected topology 
Global O(N) O(N2

) O(N2
) 

Polling Fully-connected topology Arbitrary topology Linear topology 
Random 0( N) if number of processors polled is constant 
Polling 0( N 2

) if number of processors polled is proportional to N 

Therefore, it is shown that the polling overhead outweighs the target selection over­
head. This analysis can be considered conservative because the cost of message store 
and forward by an intermediate processor is assumed to be the same as that of each 
comparison t_o select the target in the polling processor. In a real implementation, the 
cost of message pa~sing is likely to be considerably greater than that of a comparison. 

The complexity of random polling strategy has also been analyzed. It is shown that 
the random polling complexity is equivalent to that of the local polling if the number of 
polled processors is constant and independent of the network size. If the number of polling 
processors is linearly proportional to the size of the network, the polling complexity is 
same as that of the global polling strategy. 
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