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Abstract

The increasing cost of manufacturing the complex Integrated Circuits (ICs) and ever-rising compe-

tition to shorten time-to-market have given rise to the trend of fabless manufacturing. Moreover,

the addition of various players in the product manufacturing lifecycle has endangered the security of

Intellectual Properties (IPs). “Logic locking” and “IC camouflaging” are amongst the most prevalent

protection schemes that can thwart various hardware security threats. However, the state-of-the-

art attacks such as Boolean Satisfiability Attack (SAT-attack) and approximation-based attacks,

question the efficacy of the existing defense schemes.

Recent solutions to protect hardware designs from various hardware security threats have em-

ployed a myriad of obfuscation techniques. However, these solutions have mostly focused on specific

design elements such as “SAT-hardness”. Despite meeting the focused criterion such as “SAT-

hardness” for maximizing security, obfuscated designs are still vulnerable to the newly evolving

attack vectors. To mitigate this problem and provide a better solution for thwarting SAT-attack

and evolving attack vectors, Look-Up Table (LUT)-based obfuscation is studied. This work provides

an extensive analysis of LUT-based obfuscation by exploring several factors such as LUT technol-

ogy, size, number of LUTs, and replacement strategy as they have a substantial influence on the

Power-Performance-Area (PPA) and security of the design.

For making the reconfigurable logic obfuscation efficient in terms of design overheads, this work

further proposes a novel architecture using LUT. Additionally, a study is conducted with different

threat models and attack vectors to show that the security provided by the proposed primitive is

superior to that of the traditional ways of LUT-based obfuscation.

While many existing works have focused on mitigating the well-known SAT-attack and its deriva-

tives, there hasn’t been much research on preventing Power Side-Channel Attacks (P-SCAs), which

have the capability to retrieve the sensitive contents of the IP in a non-invasive manner. Using P-

SCA for unlocking the obfuscated circuit, does not require the laborious task of simulating powerful

SAT attacks. For maximizing the security, and curbing P-SCA, the work proposes a “defense-in-

depth obfuscation” which builds on our existing LUT-based solution. The proposed obfuscation

is tailored such that LUT-based obfuscation incurs minimal overheads while providing a full-scale

robust solution to secure the hardware.
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Additionally, this work invents a security-driven design flow, which uses off-the-shelf industrial

Electronic Design Automation (EDA) tools for easier obfuscation of the design. This proposed flow

is meticulously crafted in a way such that it is non-disruptive to the current industrial physical design

flow. To enable this flow one must overcome some obstacles; as there is a lack of frameworks and

unified methods that can validate the security and functionality of obfuscated designs. This work

has discussed the challenges of validating the security and functionality of obfuscated designs and

further presents the methodology for verifying the functionality of the LUT-based obfuscated IP (pre

and post-fabrication). Additionally, Security Evaluation Platform for Hardware Logic Obfuscation

using Intelligent Artificial Neural Net (SEPIANN) is proposed to validate the security of the design.

This system-level framework instantaneously estimates the obfuscation strength in terms of attack

resiliency time eliminating the need to simulate de-obfuscation using the SAT-attack.

Finally, the work shows the application and scalability of the proposed work by fabricating

various security and computing cores by obfuscating them with the LUT-based obfuscation.
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Chapter 1

Specific Aims of the Research

1.1. Aim I - Breaking the trade-off between design overheads and security for LUT-based obfus-

cation.

Maximizing profits while minimizing the risk in a technologically advanced silicon industry has

motivated the globalization of the fabrication and electronic hardware supply chains. However,

with the increasing magnitude of successful hardware attacks, the security of hardware IPs has been

compromised. Many existing security works have focused on resolving a single vulnerability such as

SAT-attack while neglecting the possibility other threats. The lack of the obfuscation method that

can provide security against various threat has motivated us to propose a novel approach for securing

hardware IPs during the fabrication process and supply chain via logic obfuscation by utilizing

LUT-based obfuscation. The first part of this research aims to study and deploy the LUT-based

obfuscation that protects against most of the hardware security attacks while breaking the trade-off

between security and imposed overheads. Moreover, the work establishes a standard security-driven

flow for deploying LUT-based obfuscation, which is non-disruptive to standard Application-Specific

Integrated Circuit (ASIC)-design flow.

1.2. Aim II - Providing multi-layer defense mechanism.

While LUT-based obfuscation can thwart most attacks, a successful security scheme usually uses a

defense-in-depth mechanism. With the constant evaluation of the attack vectors, reliance on single

security primitive is not recommended, and thus in this part, the aim is to realize the “defense-
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in-depth” obfuscation using LUT. Moreover, the logic obfuscation community uses a threat model,

which assumes the key for restoring the functionality of the obfuscated IP is stored in the tamper-

proof memory, where an attacker can’t access its content. However, in reality, due to the surge of

P-SCA, it is possible to retrieve the content of the tamperproof memory without simulating SAT-

attack, and thus, the work focuses on making the obfuscation resilient to P-SCA. The work proposes

a multi-layer defense mechanism called Deep-Learning Power Side-Channel Attack Mitigation using

Emerging Reconfigurable Devices and Logic Locking (LOCK & ROLL). LOCK & ROLL utilizes

Magnetoresistive Random-Access Memory (MRAM)-based LUT called Symmetric Magnetoresistive

Random-Access Memory-based Look-up Table (SyM-LUT) with Scan-Enable Obfuscation Mecha-

nism (SOM), which is the key element that provides “defense-in-depth” solutions for restoring the

trust in Silicon.

1.3. Aim III - Validating the security of an obfuscated IP.

Finally, numerous defense mechanisms exist for an IP owner who wants to protect his IP against

various hardware security threats. As the defense mechanisms’ success depends on the underlying

characteristics of the IP being secured, evaluating and validating the security of the IP after the

integration of obfuscation logic against various attacks is a highly crucial step. However, the secu-

rity evaluation against SAT-attack can take a few days to months using a contemporary method of

simulating the attack. A mechanism that can instantaneously assess the strength of different ob-

fuscation schemes against SAT-attack is the need of the hour. This work proposes the methodology

for validating the security and the functionality of the LUT-based Logic-Locked IP Cores.

Outline

The research proposes a full-fledged solution to mitigate hardware security threats. The follow-

ing chapter introduces the concept of hardware obfuscation, security, and attack vectors/threats.

Lookup table-based obfuscation and its empirical evaluation against SAT-attack is covered in Chap-

ter 4. Further, this section introduces a novel architecture that breaks the trade-off in chapter 5

to make LUT-based obfuscation a more viable means of obfuscation. To render maximum security

against various threat vectors, chapter 6 uses LUT-based obfuscation to deploy a defense-in-depth
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solution in the hardware security domain. Finally, Chapter 7 discusses the methodology to verify

the security of the obfuscation instantaneously using neural networks, and Chapter 8 introduces

obfuscation flow and the results from the fabricated version of the IPs obfuscated with LUT. The

conclusion of the work is drawn in Chapter 9.
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Chapter 2

Introduction

2.1. Hardware Security

With the rapid advancement in semiconductor technology due to “technology scaling,” the dimen-

sions of the ICs have been reducing which has led to the increasing transistor density on a die.

Today, the device integration density has continued to double every two years, following “Moore’s

Law.” This trend has led to a rapid increase in the computational power of IC from its advent into

manufacturing in the 1960s. However, this growth has not been cheap. The complexity in design

increases the time-to-market, manufacturing costs, and recurring and non-recurring test costs at

different levels of abstraction. The IP production house has to account for these by-products of

Moore’s Law to sustain itself in today’s competing market. This need has led to heavy reliance on

the:

1. Third-party fabrication services for cheaper manufacturing and testing

2. Third-party soft/hard IP core vendors to reduce design time, increase reliability with pre-

verification, and hence time-to-market.

Today, the design, manufacturing, and assembly of modern ICs consisting of millions and bil-

lions of transistors with intricate fabrication processes are backed by a complex network of global

suppliers. For example, one of the United States (US)-based semiconductor companies has 7, 300

suppliers spread over 46 states in the US, and more than 8, 500 suppliers that are geographically lo-

cated outside of the US. [7]. The globalization of the fabrication process and hardware supply chain
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benefits mainly from the diverse and varied skills of human resources and geographical advantages

of suppliers.

In the fabless model, the IP is made available to Contract Manufacturers (CM) responsible for

mass production. The ICs are then tested, with the good ones being sent to the next stage of the

supply chain, whereas the rest is either recycled or dumped as an e-waste. The next phase of the

supply chain consists of the Authorized Sellers/Distributors supplying the semiconductor chips to

Original Equipment Manufacturers (OEM).

Consumers heavily rely on the company’s reputation for providing the end product, which

depends on the Original Chip Manufacturer (OCM) reputation. The end applications can range

from simple day-to-day hand-held gadgets to critical ones potentially dealing with health, safety,

and security. Any vulnerability introduced in the IC supply chain ripples back and forth through

the chain regarding economic damages, reputation, and consumer health and safety.

Monitoring the flow of the final products becomes a daunting, impossible task once the IP

leaves the design house through brokers, sub-contractors, OEM, and their CM. In recent years,

thousands of independent distributors and brokers have set up shop outside the traditional supply

chain consisting of simply OCMs and their Authorized Distributors with the help of e-commerce.

Consumers are offered products with better availability and possibly lower costs, so they often

fall prey to spurious brokers. One of the reasons for such spurious products being present in the

market is e-waste recycling. Environmental awareness has resulted in electronics waste (e-waste) no

longer ending up in landfills; instead, they have been known to be recycled by removing electronic

components from scrap circuit boards sent for “recycling.” These used components can then be

refurbished and remarked to indicate new and/or higher-performing parts. Some component buyers

might also end up buying out-of-production chips with lower performance. The OCM, OEM, and

CM remain oblivious to these forged products in the supply chain until/unless they register huge

failure rates or warranty claims. At this point, the damages can be irreparable.

An inference to the above discussion is with the dissolution of control over the IC supply chain

where most of the security challenges are introduced, such as overproduction, trojan insertion,

Reverse Engineering (RE), IP theft, and counterfeiting [8] to name a few. Figure 2.1 shows the

various hardware security threats during multiple stages of IP manufacturing.

To curb various threats involved during IP manufacturing, Hardware Obfuscation was intro-
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Figure 2.1. Various hardware security threats involved in Fabless manufacturing process.

duced. Hardware Obfuscation is a technique that makes understanding or RE of a design difficult.

To protect hardware IP from these threats, the design must be unintelligible, even in decrypted

form. Hardware obfuscation provides the option to effectively hide and disable the design while

facilitating structural testing and static/dynamic parameter analysis during manufacturing. This

convenience makes obfuscation a desirable method for security and an active field of research.

Numerous obfuscation techniques, namely logic locking and camouflaging, have been proposed

to thwart existing hardware security threats. Increased interest within the logic locking and IC

camouflaging research community has persuaded Mentor Graphics, a major Computer-aided design

(CAD) tool provider, to release TrustChain, which is a CAD framework that supports logic locking

and camouflaging as a means of curbing various hardware security threats [9]. However, recently

introduced attacks have exploited vulnerabilities in various available logic obfuscation schemes.

SAT-attack is one of the most effective de-obfuscation/de-camouflaging techniques. Such attacks

vectors can RE a target design even when state-of-the-art logic locking and camouflaging protection

mechanisms [10, 11] are used.

For the working of SAT-attack, it requires a reverse-engineered netlist along with an oracle copy.

An oracle copy is the activated, working copy of the obfuscated design. Although IC RE for netlist

extraction is a slow and expensive process, it has become more practical today with the advent of

advanced imaging and probing techniques such as focused ion beam (FIB) and scanning electron

microscopy (SEM). To RE the design, an attacker needs to perform delayering, high-resolution

imaging or X-raying, and image processing to retrieve the netlist from a fabricated IC. If the

adversary is a foreign government or competitive ill-intended organization, acquiring this expensive

imaging equipment is possible. Therefore, sensitive designs, like military-grade ICs, need to be kept

secure from such threats.

To curb the SAT-attack, recent works in the domain of reconfigurable obfuscation make use of
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diverse approaches like increasing the number of reconfigurable blocks [12] to reinforce the security

against the SAT-attack. However, on closer study, it is observed that security can be compromised

despite considering all substantial and compelling factors for reconfigurable logic obfuscation.

Many studies try to mitigate SAT-attack using different techniques/methods. Yet, the red-

teaming efforts in the hardware security community have continued to find the vulnerability in

the proposed techniques. Some techniques are impractical due to their overheads, while others are

vulnerable to evolving attacks in the community. This study aims to develop a full-scale solution

that can prevent existing attacks while providing maximum security in case of zero-day attacks.

Moreover, this work discusses the methods to verify functionality and security in case of obfuscated

design.

The work discusses the background, basic terminology in the hardware security community, and

the current problem in the following chapter.
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Chapter 3

Background

3.1. Logic Locking

Logic Locking is a type of hardware obfuscation that aims to conceal the functionality of the design

by inserting additional logic gates. These gates can be key-programmable (KPG) XOR/XNOR

gates or KPG MUXes for interconnection. The ambiguity is created in the circuit due to the newly

added gates. The programmable key for restoring the original functionality of the IP is stored in

the tamper-proof memory. The strength of the logic obfuscation depends on the number of gates

inserted, and the location of the gate insertion [13–15]. Logic obfuscation is weak when the inserted

key gates are isolated, or their effect can be muted. If mutable gates are employed, the attacker

can determine the key bits within a second. However, it can be strengthened by inserting key gates

such that their effects are not mutable. One of the logic locking techniques, Strong Logic Locking,

insert gates at the position where input cannot be easily sensitized to output. Figure 3.1 shows

Strong Logic Locking.

Another obfuscation technique thwarts the RE attempt using camouflaging, which doesn’t re-

quire extra KPG gates. This technique blocks the RE attempt by replacing existing gates in the

design with camouflaged gates. In one embodiment of IC camouflaging, the layouts of logic gates are

designed to look identical, resulting in an incorrect extraction. For example, in Figure 3.2 Standard

Cell Versus Camouflaged Cell, the layout of regular NAND cell and NOR cell look different and

are hence easy to RE. However, the layout of camouflaged NAND cell and NOR cell look identical

and difficult to differentiate. When deceived into incorrectly interpreting the functionality of the

8



Figure 3.1. Strong Logic Locking [2]. The attacker can not sensitize either K1 or K2 to a primary output
O1 or O2.

camouflaged gate, the attacker may obtain a reverse-engineered netlist that is different from the

original.

Figure 3.2. Standard Cell Versus Camouflaged Cell [3] (a) NAND Cell (b) NOR Cell (c) Camouflaged NAND
Cell (d) Camouflaged NOR Cell

After proposing various techniques for hardware security, attacks such as justification or sen-

sitization [16] were developed to RE the design using heuristic techniques; however, with more

advanced logic obfuscation, the community has shown success in extracting the keys using Auto-

matic Test Generation Pattern (ATPG) and SAT-attack [11]. The novel SAT-attack is discussed in

the following section.

3.2. Overview of the SAT-Attack

Boolean Satisfiability Attack (SAT-attack) [11] is used for determining the correct key of the obfus-

cated or logic-locked circuit. The SAT-attack is an “oracle-guided attack” where the threat model

assumes that an attacker has access to the activated IC and the locked netlist, which can be re-

trieved through invasive RE [17]. The SAT solver input is a Boolean formula in conjunctive normal
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form (CNF) obtained from the transformation of the obfuscated netlist. The CNF representations

of various logic gates are represented in Table 3.1.

Table 3.1. Tseytin Transformation of Basic Logic Gates [1]

Gate Operation CNF (sub-expression)

C = AND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = NAND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = OR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = NOR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = BUFF(A,B) C = A (A ∨ C) ∧ (A ∨ C)

C = NOT(A,B) C = A (A ∨ C) ∧ (A ∨ C)

C = XOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

C = XNOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

C = MUX(S,A,B) C = A.S +B.S (S ∨A ∨ C) ∧ (S ∨A ∨ C) ∧ (S ∨B ∨ C) ∧ (S ∨B ∨ C)

SAT attack iteratively eliminates the incorrect keys based on specific input patterns, called

Distinguishing Inputs (DIP) [11]. DIPs are found using a miter circuit, which was initially used

to check the two hardware designs’ equivalence. The miter circuit is built using two copies of the

locked netlist obtained after invasive RE efforts, with their outputs XORed together. The input is

common to both instances of the locked netlists, which are part of the miter circuit, but each locked

netlist is programmed with a different key. The DIP is found when the output of the two circuits

differs, making the XOR gate or miter circuit “1” output. These two different outputs indicate

that one of the keys is wrong, and the input that helped us distinguish between the keys is termed

distinguishing input. The DIP is applied to the oracle circuit to identify the correct output. The

SAT-attack in every iteration tries to find a new DIP until no new DIP exists. This algorithm

reduces the search space for finding the correct key with fewer queries (iteration) that need to be

done with the oracle circuit. The following section discusses the process of SAT-attack in further

details.

3.3. Working of the SAT-Attack

Every key input combination is considered a candidate key before invoking the SAT solver to find

the key. Let’s denote the Set of Candidate Keys (SCK). If one can find an input xd, and two distinct

key values K1 and K2 in SCK such that C(xd,K1, Y1) ̸= C(xd,K2, Y2), the input xd would be a

DIP [11]. This is because the selected input can prune the SCK and find at least one incorrect key
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which can be removed from SCK. In addition, each time a new DIP is found, the SCK search space

for function FDI should be updated. This could be achieved by forcing the FDI to check each pair

of new keys, K1 and K2, against all DIPs. A Complete- DIP-set is a set of DIP inputs that reduce

the SCK to the Set of Valid Keys (SVK). SCK reduces to SVK when one no longer can find a DIP

using the updated FDI . At this point, if a key is valid across the complete-DIP-set, it is the correct

key for all other inputs [11].
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(KPC)

KPG

KPG

KPG

KPG

CLocked(X,Y) C(X,K,Y) C(X,K1,Y1)ꓥC(X,K2,Y2) ꓥ(Y1!=Y2) 
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Figure 3.3. (a) Transforming an obfuscated circuit to (b) Key-Programmable Circuit and (c) Key Differen-
tiating Circuit. (d) DIVC circuit for validating that two input keys produce the correct output with respect
to a previously discovered DIP. (e) SCKVC circuit for validating that both input keys are in SCK set and
produce the correct output for all previously discovered DIPs. (f) SAT circuit for finding a new DIP.

Figure 3.3 (b) shows a reverse-engineered netlist, where all obfuscated cells or camouflaged cells

from Figure 3.3 (a) are replaced with KPG cells. KPC denotes this circuit). To build the FDIP ,

two copies of the KPC are used, their non-key inputs (X) are tied together, and their outputs are

XORed. This circuit produces logic 1 when the output of two instantiated KPCs for the same input

X, but different keys K1 and K2 are different. As suggested in Figure 3.3 (c), this circuit is denoted

as KDC or miter circuit.

The candidate keys in the SCK can produce the correct output for all DIPs that have previously

been discovered and tested on the KPC circuit. To test the keys for one DIP, the circuit in Figure

3.3 (d) is instantiated. In this figure, FC is the working copy of the chip, and its output is used for

testing the correctness of both KPCs for a given DIP and two key values. This circuit is denoted

as Distinguishing Input Validation Circuit (DIVC). To test the keys for all DIPs, as illustrated in

Figure 3.3 (e), the DIVC circuit is duplicated D times, with D being the number of current DIPs

tested and the output of all DIVC circuits ANDed together. The resulting circuit is a validation

circuit for SCK the set denoted as Validation Circuit for Set of Candidate Keys (SCKVC).

If two keys, K1 and K2, produce the correct output for all previously tested DIPs (SCKVC

evaluates to true) but produce different results for a new input Xtest, then Xtest is a DIP that
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further prunes the SCK. This, as illustrated in Figure 3.3 (f), could be tested by using an AND

gate at the output of SCKVC and KDC circuits. The resulting circuit forms a SAT solvable circuit

denoted by SATC. When SATC evaluates to true, the KDC has tested a pair of keys, K1 and K2,

that produce two different results for an input Xtest, and the SCKVC circuit has confirmed that

both K1 and K2 belong to the SCK set. Hence, the input Xtest is yet another DIP. Each time

a new DIP is found, the SCKVC should be updated by adding another DIVC circuit to test the

newly discovered DIP. This process is continued until SAT solver no longer finds a solution to the

final SAT circuit. In this case, any key remaining in the SCK set is the correct key for the circuit.

Every time the SAT solver is executed on the SAT solver side, it learns a new set of conflict clauses.

It is essential to store the learned clauses and use them in the following invocation of the SAT

solver to prevent SAT solver from re-learning these clauses. Hence, as illustrated in Figure 3.3 (f),

a Learned-Clause Avoidance Circuit (LCAC) is added to the SATC to check for learned conflict

clauses.

As illustrated in Algorithm 1, the SAT-attack follows the SATC construction process explained

in Figure 3.3. The SCKVC circuit does not contain any logic in the first iteration since there is no

previously tested DIP. Hence, it is set to 1 (true). The KDC circuit is built based on its definition

using the equation in Figure 3.3.c. ANDing the KDC and SCKVC circuits builds the SATC circuit.

SATF function is a call to SAT solver. Considering the to-be-assigned variables in the SATC circuit

are X, K1, and K2, the SAT solvers return an assignment to these variables and a list of conflict

clauses (CC) learned during SAT execution. SATF returns UNSAT if no such assignment exists.

The while loop is controlled by the return status of the SAT solver. In every pass through the while

loop, a new DIP is found. Hence, the SATC circuit should be modified (lines 7-10). The parts of the

SATC circuit that are updated are the SCKVC and LCAC. After finding each DIP, an additional

DIVC is added to SCKVC to validate the keys generated in the following invocation of SAT solver

for the newly found DIP. In addition, the freshly learned CCs are added to LCAC. The CF is a

call to the functional circuit that returns the correct output for each newly found DIP. Finally, the

SATC circuit is formulated at line 10 for the following invocation of SAT solver.

The while loop is executed until no other DIP is found. At this point, any key in the SCK set is

the correct key. To obtain a correct key, the DIVC circuit is modified to take a single key denoted as

KeyGenCircuit. Hence, KeyGenCircuit has input K, and its output is valid if K satisfies all previous

12



Algorithm 1: SAT-based Attack Algorithm [11]
1 SAT_Attack (Circuit Cobf , Circuit Corg);

Input : Obfuscated Circuit, Oracle Circuit
Output: Key to unlock the functionality of the obfuscated circuit

2 i ← 0;
3 F1 ← C(X, K1, Y1) ∧ C(X, K2, Y2);
4 while SAT(Fi ∧ (Y1 ̸= Y2)) do
5 Xd[i] ← sat_assignment (Fi∧(Y1 ̸=Y2));
6 Yd[i] ← eval(Xd[i]);
7 Fi+1 ← Fi ∧ C(Xd[i], K1, Yd[i]) ∧ C(Xd[i], K2, Yd[i]);
8 i ← i+1 ;
9 end

10 Correct_Key ← sat_assignment(Fi | K1);

constraints imposed by previously found DIPs. A simple call to a SAT solver at this point returns

a correct key assignment. If the SAT solver does not produce a valid key, the obfuscation, locking,

or camouflaging technique is invalid. Note that the SAT-attack in each iteration, as explained in

Algorithm 1 and illustrated in Figure 3.4, reduces the SCK by constraining the SATC with new

clauses added to the SCKVC and LCAC. But it does not explicitly check to find the keys in SCK.

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK) Set of Invalid Keys (SIK)

Figure 3.4. SCK set reduces in each pass through the while loop in Algorithm 1 as a new DI is discovered
and is added to SATC circuit.

The discussion above shows how the logic locking obfuscation can be broken using SAT-attack.

However, an additional pre-processing step is required for the camouflaged gate, where the reverse-

engineered netlist with camouflaged gates is replaced with a MUX. The input to the MUX is the

choice of gates that a camouflaged gate can implement, and the select input to MUX is treated as

a key input. For example, to represent a camouflaged gate from Figure 3.2, one can use 2:1 MUX,

with the input of MUX being NAND gate and NOR gate, and the select line can choose between

the correct functionality implemented by the camouflaged gate.
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3.4. Resisting SAT-Attack

Many works in the area of hardware security seek to increase the number of iterations required to

retrieve the correct key for unlocking the circuit to thwart the SAT-attack. Stripped Functionality

Logic Locking (SFLL) is the state-of-the-art method requiring exponential SAT iterations to find

the correct key. However, the continued success of red-teaming efforts led by the hardware security

community, work in [18], and [19] exploits the vulnerability in the SFLL method implementation

and shows that the obfuscation key can be found within several minutes. Moreover, obfuscation

similar to SFLL [20], such as SAR-Lock [21] and Anti-SAT [22], obfuscations fall into categories of

one-point function, which evaluates to correct output upon applying a specific input pattern. The

one-point obfuscation-based techniques require SAT-attack to apply many inputs to find the correct

key. However, the output corruptibility offered by such techniques is very low, which means that

the circuit works almost identical to the oracle circuit even when the wrong key is used [23].

In the quest to resist the SAT-attack, the community also formulated obfuscation techniques

that resisted the obfuscated netlist’s transformation to SAT problems. Delay-based locking or cyclic

obfuscation are among a few of the examples that defy the SAT-attacks. However, shortly after

introducing these obfuscation techniques, the attacks such as cycSAT and Satisfiability Module The-

ories (SMT) attacks were able to model the cyclic or behavioral locking into an SAT or SAT+theory

solvable logic problems [24].

The solution to resist SAT-attack involves using reconfigurable blocks such as the LUT, where

using large LUT sizes provides us with increased key size and number of functions that LUT can

render. In LUT-based obfuscation, the combination of gates is replaced with LUT instead of adding

key gates. The key in a LUT-based obfuscation is the memory element that configures/realizes the

functionality of the LUT. The following section first illustrates the LUT-based obfuscation and its

effect on security and design overheads.
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Chapter 4

Lookup Table Obfuscation

This chapter expands upon the idea of LUT-based obfuscation and it is organized as follows: Section

4.1 describes the idea of leveraging LUT for securing IPs against SAT-attack. Section 4.2, Section

4.3 and Section 4.4 discusses the effect of various factors that can directly impact security and design

overhead of an IP obfuscated using LUT-based obfuscation. As an outcome of the research covered

in this chapter, this work has contributed to [4, 25, 26].

4.1. Lookup Table-based obfuscation

In obfuscation using LUT, the gates are selected from the design and are mapped to the LUTs.

For example, to obfuscate a 2-input AND gate with LUT, one can replace the AND gate in the IP

with the LUT whose configuration bits are set to {0,0,0,1} (Based on the truth table of AND gate).

Obfuscation using LUT thus results in a netlist as a hybrid mixture of ASIC and programmable

Field-Programmable Gate Array (FPGA) styles. In the LUT-based obfuscation, the keys that

denote the logical function of the LUT can be stored in a tamper-proof (Secure) non-volatile memory.

Without prior knowledge of the content of the non-volatile memory contents, the attacker doesn’t

have access to the IP’s intended functionality and thus refrains the attacker from RE the IP. Figure

4.1 shows the LUT-based obfuscation, where part of the circuit is mapped to the LUT.

While storing the LUT configuration bits in tamperproof memory thwarts the attacker from

understanding the content and functionality of the LUT, the attacker can still use SAT-attack to

restore the content of the LUT. The attack on the LUT-based obfuscation using SAT-attack is

15



i1
i2

i3

i4
i5

i6
i7

g1

g2
g5

g7

g6

g3

g4G1

G3

G2

G4

G5

G7

G9

G8

G6

g8

g9

i1
i2

i3

i4
i5 i6

i7

g1

g2

g5

g3
G1

G3

G2

G5
G8 g8

g9

L1

MTJ0
MTJ1

MTJ2
MTJ3

g8

g5
g2

0

0

1

1

Mapped to LUT4

LUT4

LUT2

(a)                                                                                                 (b)

L2

Figure 4.1. (a) Sample circuit used for obfuscation with gates G4, G6, G7, G9 selected for obfuscation (b)
Obfuscation with LUT with representation of the LUT for SAT-attack simulation.

described here. The SAT-attack simulation does not offer the ability to model the LUT directly.

Hence, LUT-based obfuscation is modeled using the MUXes, where each LUT is replaced with a

(2+)-level MUX. Figure 4.1 (b) shows the representation of the LUT of size 2 for SAT simulation.

The LUT of size 2 is built using 2:1 MUX. Since the attacker is interested in finding the LUT’s

configuration bits’ content, which represents the functionality imparted by the LUT, the memory

cells of the LUT are treated as the key inputs. The SAT-solver tries to find the value of these

key inputs during the de-obfuscation process. After replacing all the LUT with their equivalent

representation using MUXes, one can perform the SAT-attack.

Having shown the ways to attack LUT-based obfuscation using SAT-attack, one obvious way

to hinder SAT-attack would be to use the larger sizes of the LUT in large quantities. However, it

would also result in increased design overheads. Therefore, in LUT-based obfuscation, the question

to address is (1) whether to use a few numbers of large LUTs or (2) use more numbers of small LUT

sizes to defend against the SAT-attack. To answer this question, the work performs an extensive

design-for-security space exploration for LUT-based obfuscation using four critical factors, namely

(1) LUT technology, (2) LUT size, (3) number of LUTs, and (4) replacement strategy to find the

impact of each on SAT-resiliency in the following section.

4.2. Impact of LUT Technology

This section discusses the design implementation of the MTJ-based LUT, followed by the impact

of the SRAM and MTJ-based LUT on the design overheads.
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4.2.1 Design and Integration of Spin Transfer Torque-based Look-up Table

As Spin Transfer Torque-based Look-up Table (STT-LUT) has shown higher efficiency in terms

of design overheads [12], this work considers STT-LUT in this work. STT technology can pro-

vide incredible features like (1) higher integration density than Static Random Access Memory

(SRAM), (2) high endurance and retention time, (3) near-zero leakage, and (4) soft error resilience

[4]. Additionally, STT-LUT has shown to be highly integrative in the Complementary Metal-Oxide

Semiconductor (CMOS) fabrication process [12]. Thus, STT-LUT, due to its virtue of on-die re-

configurability, enables us to achieve high performance and security against various hardware RE

threats.

Additionally, for STT-LUT, reconfigurable bits can be stored in a Magnetic Tunnel Junction

(MTJ) inserted between metal layers. MTJs are constructed of two ferromagnetic layers: a free layer

and a fixed layer, and a thin oxide layer [6]. In the STT switching approach used in Spin Transfer

Torque Magnetoresistive Random Access Memory (STT-MRAM), applying a bidirectional charge

current through the terminals of the MTJ using a Metal-Oxide Semiconductor (MOS)-based circuit

will result in the generation of a spin current. The spin current is used to change the magnetic

polarity of the free layer to represent: 1) a high resistance or Anti-Parallel (AP ) state and 2) a low

resistance or parallel (P ) state. The content stored in the MTJs is vulnerable to the de-layering

process involved in the RE of the IP. The MTJ, in this manner, serves as the tamperproof memory

to store the configuration of the LUT. The custom part of the design is implemented using the

standard cell-based ASIC design flow. The resulting designs are static since the ASIC standard

cells are implemented in the static logic style. This limits the LUT design to have a static type

interface for connection with the static ASIC standard cells. Also, in the existing STT-LUT design

styles, a dynamic circuit such as a dynamic sense amplifier resides in between the LUT’s input and

the output. However, this type of setting is not suitable for the obfuscation in static style [27].

In contrast, this work proposes STT-LUT with a design concept in which the path from the LUT

inputs to the LUT output is a MUX, as shown in Figure 4.3 (a). The MUX of the LUT is a 2n

to 1 (2n : 1) CMOS MUX implemented in static style, which can be written as a synthesizable

Register-Transfer Level (RTL) code for automatic implementation and optimization by the logic

synthesizer tool in the process of design compilation.
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Figure 4.2. MTJ latch with Scan Chain Programming.

Each configuration bit is stored by a MTJ latch with scan chain programmability, as shown in

Figure 4.2. The MTJ latch uses a pair of differentially programmed MTJs for non-volatile storage,

a pre-charge sense amplifier for sensing the state of the MTJs, and three write driver schemes for

parallel writing both MTJs simultaneously with each MTJ receiving full voltage swing, offering

more write current. The Sense Enable (SE) signal must be low during the write operation, and

the Write Enable (WE) signal must be low during the sensing operation. To avoid conflict of state

between the pre-charge state of the sense amplifier (when SE=0) and the state of the write driver

outputs in the write mode, the pre-charge path to VDD is disconnected via the PMOS driven by the

WE signal. The MTJ latch uses a dynamic latched sense amplifier that needs to be fired (SE low

to high pulse) once on every power-up to convert the resistive state of the MTJs into the volatile

voltage states at the outputs (Q and QB). In this configuration, the MTJs are read-only once, and

for the remaining time in the active mode, the LUT read power and delay are determined by the

static MUX. Moreover, by not reading from the MTJs repetitively in the active mode as in the

dynamic STT-LUT styles, the stress is removed from the MTJs, enhancing their lifetime. Another

critical thing to note here is that the scan chain used to program the LUT is separate from the

one used in the design for testing and thus does not require critical MUX to switch from functional

mode to test mode.

The MTJ latch is designed in a full-custom manner and needs to be optimized for sensing
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Figure 4.3. (a) Proposed STT-LUT with Scan Chain Programming (b) Full custom layout of MTJ latch in
standard cell format and area breakdown between different blocks

reliability and area. The custom-designed MTJ latch is delivered as a standard cell for integration

into the ASIC design flow. The full-custom design and optimization of the one-bit MTJ latch cell

are performed in the Synopsys generic 28nm process [28]. The write drivers tend to require large

transistors to produce sufficient current needed for MTJ write. The write transistors need to be

optimized so that the write operation can succeed under Process Variation (PV). This experiment

performed statistical transistor sizing optimization on the write driver for achieving a near-zero (less

than 0.1%) write failure rate under process variation. After the write driver sizing optimization, the

read path (i.e., the sense amplifier) transistor sizes are statistically optimized for achieving less than

0.1% sensing failure rate at the smallest possible area. Moreover, a minimum-sized scan flip-flop is

inserted in front of the MTJ latch to store the data written to the MTJ latch. These scan flip-flops

will form a scan chain for loading the configuration bits to the MTJ latches in a design. Figure

4.3 (b) shows the full-custom layout of the one-bit MTJ latch designed in a standard cell layout

format (fixed height). The write drivers occupy most of the layout area (37.5%) since the MTJ write

current is still significant. Notice that the MTJ devices are stacked on top of this layout between

two metal layers (assuming M3 and M4) and do not occupy the 2D area. M3 pins are placed for

connection to the MTJ layers.

4.2.2 STT-Based LUT versus CMOS-based LUT

Figure 4.4 shows the comparison of the area of the MTJ latch and STT-LUTs, along with the areas

of other standard cells in 28nm. The MTJ latch area is 6× to 15× that of basic logic gates and

3× larger than rhe SRAM-based D flip-flop. The MTJ latch, however, shows much less leakage
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power. It has 7× to 11× less leakage power than basic CMOS logic gates and is 20× smaller than

SRAM-based D-FF.

1E-3

1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

P
o
w

er

Leakage Power (nW)

Total Active Power (µW)

0

0.2

0.4

0.6

0.8

1

1.2

(a)

1E0

1E1

1E2

1E3

1E4

1E5

1E6

0

5

10

15

20

A
re

a 
(u

m
2
)

D
el

ay
 (

n
S

)

Delay (nS)

Area (µm2)

(b)

Figure 4.4. Comparison of (a) Power, (b) Delay, and Area of STT-LUT and Standard Cells in 28nm

The delay and active mode power of the STT-LUT are determined by the multiplexer part of

the LUT, which is optimizable by the logic synthesizer. Figure 4.4 compares delay and active mode

power for various fan-in STT-LUTs with standard cells. LUT2 to LUT7 have delays comparable

to the standard cell delays. Due to the large MTJ latch area, LUTs are noticeably larger than

the standard cells, and their area increases exponentially with fan-in. The power of STT-LUTs

is significantly less than the standard cells due to low leakage MTJ latches. Therefore, relying on

STT-LUT will render a lower overhead footprint.

4.3. Effect of Replacement Strategies

The location of the gate(s) selected for the obfuscation is one of the critical factors that define the

strength of the obfuscation [11]. The replacement strategy finds the gate for obfuscation based on

heuristics. LUT-based obfuscation needs to select the gates for replacement; however, an effective

replacement strategy needs to meet several conditions to provide resiliency against the SAT-attacks.

The two most essential requirements are (1) low corruptibility and (2) avoiding unintentionally

correct key generation. By considering these conditions, this section introduces a replacement

strategy and compares it with the random placement strategy [13]. To better evaluate the impact
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of each condition, three different strategies are compared in this work as follows.

4.3.1 Random Selection (RND)

In the random selection algorithm, the gates are selected for obfuscation randomly. This method

works as a baseline for comparison as opposed to the independent selection in [12].

4.3.2 Low Output Corruptibility (LC)

The state-of-the-art SAT-solvers use the Conflict Driven Clause Learning (CDCL) algorithm to find

the solution. The CDCL works by searching for the conflicting clauses to learn clauses effectively and

comparing the two outputs of the same netlist upon applying the input pattern with different keys

helps find the conflicting clause. If the Hamming Distance (HD) between the two obtained outputs

is high, finding the conflicting clause and distinguishing input is easy. An obfuscation strategy

that influences more than one primary output (PO) of a circuit on the application of a wrong key

input will result in a higher hamming distance, and the probability of hamming distance > 1 will be

significant; (more than one primary output differs from the Oracle). This phenomenon is also known

as the property of the obfuscation strategy to have high output corruptibility. High corruptibility

leads to higher hamming distances, which provides the SAT-solver with an opportunity to find the

conflict clauses much faster, resulting in lower de-obfuscation time. Due to this phenomenon, the

maximum of one output must be different when a wrong key is applied to increase SAT execution

time. This is called having low output corruptibility; if fewer (the best is 1) outputs are different

after applying different keys and input. This phenomenon can also be thought of as reducing the

observability in the presence of obfuscation, such that the effect of the wrong key can only be

observed at fewer primary outputs. Due to this, sensitizing the key input to the primary output

becomes intricate.

For the IP to exhibit the low output corruptibility, Breadth-first-search is employed on the

circuit graph, where gates are treated as a node and edges are the connection between the logical

gates. While traversing from Logical Cone Output (LCO) toward the inputs, a dictionary with all

the gates and their corruptibility will be created, which allows us to pick the combination of the

gates with the lowest output corruptibility. After traversing, based on the number of gates targeted

for obfuscation, multi-objective optimization is performed to maximize the number of gates selected
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for obfuscation while minimizing the output corruptibility.

4.3.3 Avoiding Unintentionally Correct Key Generation (LC_NoGen)

As the LUT is a reconfigurable unit, it can implement 22
n possibilities where n is the size of the

LUT. Obfuscating two gates back to back with LUTs can generate additional correct keys. When

the number of correct keys is increased, the SAT solver’s search space to find the working key

reduces the de-obfuscation time. Consider an example where two “NOT” gates are replaced with

LUTs. In this scenario, if the LUTs are configured as buffers instead of “NOT,” the circuit will

still be equivalent to the oracle, and thus there exist 2 correct keys instead of 1. This means the

probability of finding a key is doubled instantaneously. Therefore, obfuscating the gates with LUTs

directly connected in a back-to-back fashion significantly decreases the SAT solver’s search space.

Due to the virtue of the reconfigurability in the LUTs, the number of correct keys must be reduced,

and thus extra care should be taken to avoid this condition.

Considering the above case of avoiding the obfuscation of two directly connected gates, this work

proposes a LC_NoGen replacement strategy. The pseudocode for the LC_NoGen replacement

strategy is illustrated in Algorithm 2.

The algorithm involves traversing the graph followed by dictionary creation. The dictionary is

filtered to eliminate the back-to-back gates and gates that contribute to the critical path. Further,

an optimizer maximizes the gate coverage while reducing output corruption. The complexity of

traversing the graph with V vertices and E edges is given as O(V +E). With fewer modifications,

the dictionary creation and filtering can be done while traversing the graph, and thus, the overall

complexity for traversing the graph and dictionary creation is given as O(V +E). The optimization

problem, on the other hand, is a combinatorial optimization problem. While finding the optimal

set of gates for obfuscation is an NP-hard problem. Thus off-the-shelf Integer Linear Programming

(ILP) solvers are leveraged to get the sub-optimal solution using an approximation algorithm. The

problem of gate selection with minimum output corruptibility is treated as a variant of a classical

problem of minimum vertex cover. The task is to choose a minimum number of nodes that maximize

the cover. The gates selected by the optimizer are replaced with the LUT, and the work illustrates

that by considering the LC_NoGen, the Security per PPA overhead footprint is improved. The

proposed algorithm can also be scaled to other obfuscation techniques for inserting the obfuscation
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Algorithm 2: Avoiding Unintentionally Correct Key Generation (LC_NoGen)
1 LC_NoGen (Circuit Corg);

Input : Original Circuit
Output: Obfuscated Circuit

2 foreach LCO in Logic_cones do // LCO: Logic Cone Output
3 gate_list = BFS(LCO); // Get all gates in the logic cone;
4 foreach gate in gate_list do

// Find all the Output gates of Logic Cone, which are affected by each
gate.;

5 gate.listLCOs = find_affected_LCOs(gate);
6 end
7 end
8 foreach ( gate in circuit) do
9 foreach (LCO in gate.listLCOs) do

10 tag_key(LCO);
11 if isExist(tag_key(LCO)) then
12 dictionary.add(gate);
13 end
14 else
15 dictionary.add(gate);
16 dictionary.addtag((tag_key(LCO));
17 end
18 end
19 end
20 CriticalPath = PrimeTime(Get Critical Path);

// Get List of gates that are on Critical Path using Synopsys PrimeTime.
Afterwards also remove gates that are adjacent to each other to avoid
back-to-back LUT replacement. Remove gates on critical path list;

21 foreach ( tag in dictionary) do
22 foreach ( gate in tag) do
23 if isExist(Parent(gate) in tag)
24 or isExist(gate in CriticalPath) then
25 dictionary[tag].delete(gate);
26 end
27 end
28 end

// find tag_key which have maximum gate coverage with lowest Output
Corruption;

29 tag_key = Optimize ();
30 foreach ( gate in tag_key) do
31 Replace_LUT(gates, target_no);

// Replace gates with LUT;
32 end
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(scale up), and (3) Number of LUTs (scale out) in ISCAS-85 c7552 [4]

as this algorithm finds the optimal place for inserting a gate that minimizes the output corruptibility.

After developing replacement strategies tailored for LUT-based obfuscation, they are evaluated

against the SAT-attack. Benchmark C7552 from ISCAS-85 is obfuscated with the different discussed

obfuscation strategies for the experiment. Figure 4.5 illustrates the performance of the discussed

obfuscation strategies against the SAT-attack. With the improved obfuscation strategies, the de-

obfuscation time of the SAT solver is increased, and in most cases, obfuscation using the LC_NoGen,

strategy outweighs the Random and LC obfuscation, which shows that high security can be obtained

with a lower number of gates obfuscated. The lower number of gates used for obfuscation results in

lower PPA overhead. However, while providing higher security at the cost of lower PPA overheads,

these obfuscation schemes tend to have low output corruptibility.

While on the other hand, it can be observed that for the LUT with size 8 and above, obfuscating

∼1% of overall gates with any obfuscation strategy also renders the timeout states for the SAT solver.

Moreover, one can get the security against the SAT-attack and the increased output corruptibility

for a random obfuscation scheme using a large LUT size. Therefore, by scaling up the size of the

LUT for obfuscation, the LUT-based obfuscation can break the trade-off of SAT-resiliency with

output corruptibility. Increasing the size of the LUTs increases the resiliency of the IP regardless

of the replacement strategy.

The experiment also shows that using a larger LUT size overweighs the benefits of using a

better gate replacement policy at the expense of increased design overheads. Another observation

from the experiment is that a change in the obfuscation coverage from 1% to 3% (i.e., changing the

number of LUTs inserted in the circuit) also increases the runtime of the SAT-solver. Thus, in the
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next section, the effect of the size of LUT vs. the number of gates obfuscated (obfuscation coverage)

on the circuit resiliency is discussed in more detail.

4.4. LUT Size versus Number of LUTs

To get the best security results using LUT-based obfuscation, it is wise to leverage the large size

of the LUT because increasing the LUT’s size can thwart the SAT-attack and increase the output

corruptibility. This advantage of using larger LUT sizes is that LUTs are modeled using the log2(n)-

level MUX-based structure, and with the increasing size of LUT, the SAT-attack will replace them

with the deep MUX trees. The SAT-attack leverages the CDCL algorithm to find the distinguish

input. However, when the symmetrical structure of the MUX tree is used for the obfuscation, there

is no shortleaf in finding the conflict clause while running the SAT-attack. The increasing size of

LUT grows the MUX tree deep, and consequently, the search space and the efforts for finding the

conflicting clause are increased, making the resulting instance an SAT-hard. The following example

shows how the de-obfuscation time rises exponentially, with larger LUTs to find the keys’ value.

For larger LUT sizes, combinations of gates are replaced using large LUT. Figure 4.1 (a) shows

an example of the large-sized LUTs used for the obfuscation. The 2-input gates (G4, G6, G7, G9)

are replaced using LUT of size 4. The LUTs are represented using MUX-tree as shows in Figure 4.1

(b) for SAT-attack simulation. To evaluate the effect of LUT size vs. the number of LUTs, multiple

gates with varying LUT sizes and various gates with a varying count of LUT are used.

Figure 4.6 shows SAT execution time with more details on the ISCAS-85 C7552 benchmark for

different sizes of LUTs used for obfuscation. This experiment shows a similar trend of leveraging
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larger LUT size provides higher resiliency than utilizing more LUTs for obfuscation. SAT execution

time increases at the near exponential rate in both directions, i.e., scale-up (increasing the size of

LUTs) and scale-out (increasing the number of LUTs). However, obfuscating only a single gate

with a LUT of size 13 can render a timeout state for the SAT solver.
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Figure 4.7. LUT scale up vs. scale out: Comparison between the Impact of LUT size and Number of LUTs
on SAT Execution Time [4].

To further substantiate these results and understand and compare the impact of LUT scale up

vs. scale out on SAT execution time, a regression model is utilized to demonstrate the relationship

between SAT execution time and these two parameters. Figure 4.7 provides two different scenarios

to accurately model the relationship between SAT de-obfuscation time and the size of LUTs, and

the number of LUTs. In figure 4.7 (a), one factor (LUT size or number of LUTs) is fixed in each

curve. LUT size is constant in one of them, while the number of LUTs is swept from 1 to 29. In

another curve, the number of gates obfuscated is constant, and the size of LUTs has been swept from

2 to 8. Based on the independent (one-variable) exponential regression model illustrated on curves,

it is clear that the LUT scale-up has significantly more influence on SAT execution time than the

LUT scale-out. Figure 4.7 (b) shows another similar situation that proves that the LUT scale-up is

more effective than the LUT scale-out. Also, according to a multi-dimensional linear regression, the

impact coefficient of the number of gates obfuscated using LUT on SAT execution time is 72.347.

However, the impact coefficient of using a large size of LUT is 1969.25. This regression coefficient

demonstrates that LUT size is the most important factor for security purposes than the number of
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LUTs used and replacement strategies. Therefore, to render the best security, one should replace

a few gates with large LUT sizes instead of opting for obfuscating more number of gates with small

LUT sizes.
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Figure 4.8. Normalized area and power overhead of LUT-based obfuscation. Points that result in SAT
execution time out are marked as SAT-resilient configuration [4].

The thorough experiment on LUT-based obfuscation by considering (1) LUT technology, (2)

LUT size, (3) number of LUTs, and (4) replacement strategy, it can be concluded that scaling up

the size of the LUTs for obfuscation yields the excellent resiliency against state-of-the-art attacks.

However, the investigation on PPA shows a sharp increase in the design overheads when using

the large size of LUT. Figure 4.8 shows the Area and Power overhead for LUT-based obfuscation.

Every point from Figure 4.6 was synthesized using Synopsys Design Compiler using TSMC 65nm

library to obtain the power and area overheads. To render the timeout state for SAT solver using

the LUT-based obfuscation, the PPA incurred is at least 10× the baseline version of C7552 with

no obfuscation. The enormous obfuscation overhead due to leveraging the traditional LUT-based

obfuscation makes the LUT-obfuscation an idealistic method for hardware security. This experiment

also lets us find the smallest LUT size required for resulting in SAT-resilient obfuscation with lower

PPA. For this example, the LUT of size 8 results in SAT-timeout with the lowest PPA among

all samples, and thus in the following experiments, the LUT of size 8 is used as the baseline for
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comparing obfuscations.

Given the benefits of the LUT-based obfuscation, and to realize it as a realistic solution, the

work must 1) radically reduce the PPA overheads and 2) not compromise the security against

the various attacks. However, both the goals are contradictory to each other with the discussed

LUT-based obfuscation. One can reduce the size and number of LUTs, but that compromises the

security against the SAT-attack. The following section proposes a novel LUT design that benefits

from configurable barriers for obfuscation and mitigates the incurred area and power overheads.
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Chapter 5

Breaking the design and security trade-off of

Lookup Table-based Obfuscation

This chapter expands upon the idea of breaking the tread-off between security and design overheads

in LUT-based obfuscation. The organization of the chapter is as follows: Section 5.1 identifies the

areas of improvement for resisting the SAT-attack. Section 5.2, discusses the idea of using LUT for

creating SAT-hard block that can resist the SAT-attack. Section 5.3.1 outlines the experimental

setup to empirically prove the resiliency of proposed primitive against SAT-attack. The results are

present in Section 5.3.2. Finally the obfuscation is compared against state-of-the-art obfuscation

primitive in Section 5.3.3 and the scalability of the approach is demonstrated in Section 5.3.4. As

an outcome of the research covered in this chapter, this work has contributed to [4, 25, 26].

5.1. SAT-Attack and Lookup Table-based Obfuscation

LUT-based obfuscation has the potential to resist SAT-attack but requires extra efforts to reduce

overhead while maintaining resiliency. While the hardware security community has leveraged other

obfuscation, this work tries to establish that LUT-based obfuscation is truly the best way to ob-

fuscate a design. Recently many SAT-resilient obfuscation techniques use one-point functions to

guarantee SAT-resiliency. One-point functions in obfuscation are logic locking circuitry added into

the circuit, and the effect one-point function is concentrated at one single point. This makes the

resulting instance SAT-hard which makes the process of SAT-solver inefficient, as it has to brute
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force almost through all combinations. However, since the effect of logic locking is concentrated at

one point, the rest of the circuit is functional even with the wrong key. Using removal techniques,

which use structural examination, has demonstrated that obfuscation based on one-point function

can easily be removed from the circuit. This means finding the root node of the AND-tree and

removing that part from IP. Since logic locking adds extra gates, it is vulnerable to removal and

SAT-attack. LUT-based obfuscation, in contrast, replaces the gates, and removing LUTs doesn’t

help the attacker in RE the circuit.

Moreover, using large LUT sizes for obfuscation increases SAT resiliency as it creates a SAT-

hard instance. The resulting instance is SAT-hard as the CDCL algorithm, which is responsible

for finding the DIP, needs to consider the increased search space. However, with the larger LUT

sizes, the LUT obfuscation renders an idealistic method, and to make it an efficient obfuscation

method, one must break the trade-off between the security offered by the LUT-based obfuscation

and the imposed PPA overheads. In the proposed method, the work focuses on the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm (or one of its derivatives) used to perform CDCL. Utilizing

the knowledge from the working of SAT-based attack, this work proposes SAT-hard problem using

the small size of the LUT such that increased security can be obtained at the lower PPA footprint

compared to the traditional LUT-based obfuscation.
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Figure 5.1. Median Number of Recursive DPLL Tree Pruning/Backtracking for Random 3-SAT Formulas,
based-on the Ratio of Clauses to Variables [1, 5].

For the SAT-attack modeling, the obfuscated netlist is represented using the MUX tree, as

discussed in Chapter 4. In the SAT solver, the ratio of the clause to variable can be used to

evaluate the obfuscation strategy’s security quantitatively. The resulting obfuscation instance can

be called SAT-hard if the clause to variable ratio is around 4.3 [29]. Figure 5.1 shows that the
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ratio from 3 to 6 provides much higher DPLL calls, and 4.3 [29] clauses per variable is the best

ratio for generating the most computational SAT-hard instance, generating the highest number of

DPLL calls. For example, a 100-variable and 300-clause instance (clause/variable = 3 is called

“under-constrained” because there are many satisfying assignments), or a 100-variable and 5000-

clause instance (clause/variable = 50 is called “over-constrained” because the contradictions can

often be easily found) can be solved using the SAT solver very quickly. However, the SAT solver

takes a long time to solve a 3-SAT instance constructed with 100 variables and 450 clauses.

Table 3.1 shows the Tseytin transformation [30] of various logic gates into their respective CNF

expression. Only XOR/XNOR and MUX have 4 clauses per gate. This is when the clauses to

variables ratio are 1 and 4/3 in MUX and XOR/XNOR, respectively. Despite the observation that

the XOR/XNOR has a larger clause to variables ratio for a single gate, MUXes provides a better

building block for constructing SAT-hard circuits. This is because: (1) with no unit propagation and

purification, for having four variables, a MUX can make the recursive DPLL tree one level deeper,

and (2) unit propagation and purification steps in the DPLL algorithm provide more simplified

and smaller formula using enhanced Gaussian elimination while the contribution of XOR/XNOR

gates is much higher [31]. Hence, MUXes need more DPLL recursive tree prunings/backtrackings

than XORs/XNORs. Moreover, since unit propagation and purification satisfy fewer equations or

clauses, the clause to variable ratio will increase.

5.2. Creating SAT-hard instances using Lookup Table

The next step for building an SAT-hard problem is to push the clause to the variable ratio in the

desired range of 3 to 6 (4.3 being the best)[29]. This prevents the propagation and purification

algorithm from simplifying the circuit before branching into a recursive DPLL tree. This agenda of

pushing the clause to the variable ratio in the desired range can be achieved by building a MUX

tree. This property can be utilized to reinforce the security offered by the conventional LUT-based

obfuscation. This work combine the traditional LUTs with an extra layer of LUT whose input size

is fixed to 2. The size of the small LUTs is restricted to 2 to impose lower PPA overheads. The

resulting novel LUT combines a large LUT with the addition of the smaller LUTs at its input. The

scenario can be visualized as adding MUX-tree by large LUT, supplemented by another 2-input
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LUT, which resides at the select line of the previously inserted MUX-tree as shown in Figure 5.2

(b). By adding 2-input LUT, the MUX-tree can be imagined to grow in 2-D space (For example,

a traditional LUT can be represented by the MUX tree growing in the horizontal direction, and

the addition of MUXes on their select lines grows the MUX-tree in the vertical direction.) The

proposed modification of adding another layer of LUTs to the LUT-based obfuscation benefits the

IP from both reconfigurable and routing obfuscation. The additional layer of LUT increases the

possible function of the large LUTs, thus increasing the search space for the SAT-solver. To restore

the functionality of the IP, one has to find the correct functionality of both the small and large LUT

simultaneously. For the n-LUT2 followed by LUTn, the number of possible functions implemented

are

Fpossible = n× 22
2︸︷︷︸

Functions implemented by LUT2

× 22
n︸︷︷︸

Functions implemented by LUTn

(5.1)

When the output of one LUT feeds into the input of another LUT indirectly, the number of

possible functions grows even more rapidly.

Ftotal = FLUT1 × FLUT2 (5.2)

Moreover, the attacker difficulty is increased as the observability of the effect of change in key

bits of the previous LUT is masked by the current LUT. Indirectly cascading LUTs in LC_NoGen

further decreases the observability.

Increased difficulty due to MUX-tree increases the search space, while reduced observability

elevates the security offered by the proposed novel LUT. With the growing search space, the prob-

ability of finding a correct key is significantly reduced. The probability of finding a single key when

2 LUT7 + 7:LUT2 are added to the circuit is given by

P =
1

1.452496e+ 81
(5.3)

where

• 1.452496e+81 is a number of functions implemented by 2 LUT7 + 7:LUT2 which are cascaded

indirectly.

As the security obtained by the novel LUT is superior to the traditional LUT, one can reduce
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Figure 5.2. (a) Proposed novel (LUTn+n:LUT2) (b) SAT-representation of proposed obfuscation with size
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the LUT size required for the obfuscation, resulting in lower PPA and thus breaking the trade-off

between security and the PPA.

Figure 5.2 (a) shows the generic version of the proposed novel LUT. For obfuscation using

traditional LUT, the gates are identified and replaced using LUT8 as LUT8 renders the timeout

scenario as shown in Figure 4.8 with the lowest possible PPA. On the contrary, in the novel LUT,

the gate is always replaced with the combination of 2-input LUT and LUTn such that n < 8, where

n is the size of LUT. Part (b) of the figure shows LUT4, preceded by 4-LUT2. For the de-obfuscation

process using the SAT-attack, one can model the novel LUT block with the equivalent circuit shown

in Figure 5.2 (b).

Once the gates have been replaced with the proposed novel LUT, the clause to the variable ratio

of the obfuscated block is within 4-5 creating a SAT-hard instance. Figure 5.3 denotes the clause

to the variable ratio of both pre-obfuscation (Original) and obfuscated circuit.

5.3. Experimental Evaluation

5.3.1 Experimental Setup

To explore the design space and determine the impact of LUT size, the number of LUTs, and the

replacement strategy, a cluster computing environment with 53 Dell computing nodes were used,
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Figure 5.3. Effect of obfuscation on the Clause to Variable Ratio.

each with dual Intel Xeon CPUs. The total number of cores ranges from 16 to 24, with RAM

varying from 64GB to 512GB.

Benchmarks from ISCAS-851, ISCAS-892 and Common Evaluation Platform (CEP)3 are used

for the experimental evaluation. The benchmarks are listed as part of Table 5.1. The CEP is a

system on a chip design that represents typical microelectronics used by the Department of Defense

(DoD) and includes instrumentation and government-specific benchmarks. These benchmarks are

synthesized and flattened using the Synopsys Design Compiler.

Table 5.1. Benchmarks used for Experimentation with their gate counts.

Source ISCAS CEP

Benchmark C2670 C7552 B12 FIR IIR AES DES GPS
Gate Count 894 1,290 2,017 11,875 12,067 20,795 98,341 177,263

The adversary’s aim is to retrieve the key to unobfuscated the IP using SAT-attack. For empirical

evaluation, the primitive is subjected to SMT-attack [24], which is the super-set of SAT-attack and

the newly developed state-of-the-art attack. The newly developed SMT-attack uses a primary

SAT-solver with extra theory solvers. Combining two solvers allows the SMT-solver to model a

more complex problem, thus resulting in a strong attack. The SMT-attack tries to find the correct

key (LUT-configuration bits in the context of LUT-based obfuscation) that can restore the circuit’s

correct functionality. For security evaluation, the runtime of the SAT-attacks is used as an empirical

yet essential metric. Each SAT-runtime presented in this work is the average run of 10 different
1http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/
2http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/
3https://www.ll.mit.edu/r-d/projects/common-evaluation-platform
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SAT-solver execution. The obfuscation technique aims to render maximum security at the lower

PPA overheads. The outcome of the experiments conducted in this study shows that the proposed

LUT can deliver security at minimal PPA footprints, increasing the viability of the reconfigurable

based obfuscation.

This work empirically track and explore the execution time of the SMT solver by sweeping the

size of large LUT from 4 to 7. Also, a run-time limit of 5 days (432× 103 seconds) for SMT attack

is set to demonstrate timeout states. The timeout state of 5 days is chosen to demonstrate the toy

example that breaks the trade-off between the security and the imposed PPA. However, a larger

timeout state can be achieved by obfuscating using a larger LUT size or increasing the number of

obfuscated gates.

For this experiment. The identified gates are replaced with STT-LUT technology, as described in

4.3.3, to produce an obfuscated netlist. Synopsys Design Compiler with the TSMC 65nm technology

library is used for the overhead estimation. The reported overhead in this work is reported with

respect to the unobfuscated design and it is inclusive of the overhead incurred due to the scan-chain

mechanism used to load the values in MTJs. With the automation provided using the ASIC Iterative

Security-driven Design Flow discussed in this work, the delay overhead is eliminated in almost all

the cases for novel LUT-based obfuscation. Thus only area and power overhead are discussed in

fine granularity. In the iterative flow, the LC_NoGen algorithm gets the timing report from the

PrimeTime and removes the gates on the critical paths from the graph, which is used for finding the

gates for obfuscation. The SAT-attack does not support the Verilog files for the SAT-simulation;

the in-house developed python script also converts the obfuscated Verilog files to the SAT-supported

bench files.

5.3.2 Security Analysis against SAT-based Attack

Figure 5.4(a) illustrates the Design Space Exploration (DSE) performed on the “C7552” benchmark

by leveraging novel LUT-based obfuscation. By varying the size and the number of LUTs used for

novel LUT-based obfuscation, the de-obfuscation time against the SMT-solver is plotted. The SMT-

solver timeout states can be rendered using traditional LUT-based obfuscation by obfuscating 14

gates with LUT size 8. LUT size 8 is considered per the experimental results obtained in Figure 4.8;

Recall that the combination of obfuscating 14 gates with LUT size 8 renders the lowest PPA with
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Figure 5.4. Comparison of the proposed primitive where the size of the LUT is varied from 4 to 7 with the
traditional LUT-based obfuscation. Figure (a) shows the de-obfuscation time of various obfuscated samples
using SMT-solver and Figure (b) shows the PPA incurred by the proposed primitive [4].

timeout state for SAT solver among all the configurations tested in Figure 4.8. However, with the

proposed LUT. Replacing just over 2 gates with LUT7 + 7:LUT2
4 or replacing 6 gates with LUT6

+ 6:LUT2 renders the obfuscation resiliency to create a timeout scenario. This increased resiliency

with the smaller size and number of the LUT breaks the trade-off between PPA and security. This

finding justifies the fact that the resiliency of the novel LUT provided by LUT size 6 and 7 is on

par with that of the traditional LUT with size 8. This added security is due to the virtue of the

SAT-hard instance created by the LUT preceded by the LUT configuration. The results further

show that one can yield significant computational challenges for SAT-based attacks, which grow

exponentially with the increasing size of LUT.

While leveraging the small size of the LUT, such as LUT sizes 4 and 5 for novel LUT, the number

of gates required to achieve SAT-resiliency (timeout states) is more. Nevertheless, the overheads

imposed by LUT of size 4 and 5 is far less than that of LUT size 8, and thus it can be concluded that

the novel LUT with size 4 and 5 provides a high ratio of security per added design overhead than

the traditional LUT of size 8. It is worth noting that all instances of obfuscation using novel LUT

render SAT-attack timeout, resulting in the on par resiliency level using traditional obfuscation

using LUT size 8. Figure 5.4(b) validates the previous statement by showing that obfuscating 14

gates with novel LUT using size 4 adds 3.58× overhead compared to 14.76× overhead added by

traditional LUT of size 8.

4LUTm + n:LUT2 represents novel LUT where n LUTs of size 2 is preceded by LUTm, where LUTm represents LUT
of size m.
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The reduction in area and power is applicable for all of the experiments conducted as part of

this work. The normalized area and power overhead from Figure 5.4(b) for novel LUT incurred

lower overheads than the LUT obfuscation using LUT8. It also warrants that using a large size of

fewer LUT, i.e., using just 2 LUT7 results in the lowest PPA and on par resiliency. As the resiliency

provided by novel LUT increases as the function of the size of the LUT, one should replace a

few gates with large LUT sizes, as it renders SAT-resiliency while incurring permissible overheads.

These results are also consistent with the experimental results obtained from Figure 4.6.
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Figure 5.5. SMT-solver execution time to find the unlocking key when the benchmark is obfuscated with
different size and number of LUTs. The number and size of the LUTs to be replaced are determined by the
key size which is constrained in this experiment and denoted by the number above each individual bar [4].

To further reinforce the conclusion of using large LUT sizes in fewer quantities for better security

against hardware security threats, this study performed another experiment where the key size used

for obfuscation is constrained. The number of key bits is indicative of the overheads imposed. More

key bits require more fuses to store configuration bits and a large selection tree. Increasing keys

thus results in increased power and area overhead. By adding the constraint on the key bits, this

work indirectly adds a constraint on the area, power, and the number and size of the LUT used

for the obfuscation. The “AES” benchmark is utilized for this experiment, and the key lengths are

constrained to sizes 110, 160, 360, and 400. With the constraint on the key lengths, one can use

LUT of sizes 4 up to 6, and the number of gates replaced using the LUT is shown in Figure 5.5 over

the bars. For example, when the key size is 360, one can have at max 2 novel LUT6 + 6:LUT2 or 6

LUT5 + 5:LUT2 or 9 LUT4 + 4:LUT2. For each configuration, SMT-solver’s de-obfuscation time is

plotted, and it can be visualized that the time required for de-obfuscation using a large size of LUT

in fewer quantities yields in significant SAT runtime across all 4 key lengths. Using just 4 novel
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LUTs of size 6; the SMT-attack encounter the timeout scenario, which is more than leveraging 12

novel LUTs of size 4 for obfuscation. This increased resiliency is created due to the virtue of using

large LUT sizes and the large MUX trees that are added to the circuit. Leveraging the large size

of the LUT obfuscates the actual function in the space, which grows exponentially as the function

of LUT size. When the key lengths are equal, the overhead added is roughly equal. With the same

overhead footprint or key size, using the large LUT size provides maximum resiliency. Thus, one

should use large LUT sizes in fewer quantities for obfuscation using the novel LUT. Furthermore, the

experiment concludes that security grows faster than the added overhead, or the additional security

comes with lower PPA overheads when the large LUT size in fewer quantities is used. Using such

configurations, the proposed novel LUT breaks the trade-off between security and design overhead.
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Figure 5.6. Comparison of Proposed LUT obfuscation with the traditional LUT-based obfuscation in terms
of (a) Design Area overhead (b) Design power overheads. The number of LUTs and the size of the LUTs
are chosen such that the obfuscated netlist results in the SMT-attack timeout with minimal PPA overheads.
The iterative security-driven flow discusses in Section 8.1 can be leveraged to obtain these netlists. The
added overhead for both traditional and obfuscated netlist is provided in reference to each benchmark’s
unobfuscated version. The figures are indicative of the fact that in proposed LUT-based obfuscation, the
resiliency rendered by each LUT at comes at much lower costs of design overheads. [4]. Number on the top
of the bars denote the overheads. where 1× denotes no overhead and 1.03× means 3% overhead.

Figure 5.6 shows the power and area overhead for the different benchmarks using the proposed

LUT of size 7. Size 7 is used because the LUT of size 7 resulted in a lower PPA, as seen in

Figure 5.4 (b). Timing results are omitted as all of the designs have maintained their initial timing

specifications. As LUT7 + 7:LUT2 is the optimal PPA configuration, it incurred a small timing

overhead while providing significant security performance. The overheads imposed by the novel LUT

are compared with the traditional LUT-based obfuscation with LUT8. LUT8 is used for comparison,

as it resulted in the SAT-resilient obfuscation while incurring the lowest PPA overhead, as seen in

Figure 4.5. Compared to the LUT8-based traditional obfuscation, the novel LUT with LUT7 comes
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with 8× and 2× average reductions in area and power overheads without sacrificing security. While

one can argue that overheads for circuits such as “C7552” are very high, the circuit size of “C7552”

is tiny (only 1290 gates). However, with the larger circuits like “AES,” “DES,” or “GPS” which is a

representative of a real world IPs, the incurred overheads are justifiable rendering this technique a

more efficient solution.

5.3.3 Comparison with other Obfuscation Methodologies

In this section, the proposed methodology is compared against the state-of-the-art works. SFLL-HD

[32] and Anti-SAT attack [22] are SAT-resilient attacks, as the SAT-attack requires an exponential

amount of queries to retrieve the keys.

For the comparison, various designs are obfuscated such that SAT-attack results in a timeout

state while trying to retrieve the keys with minimum obfuscation overhead. Larger key sizes are

required for the obfuscation primitives studied in this section for comparison against the proposed

LUT-based obfuscation to result in timeout states. This is because the time out for SAT-attack

simulation is set to 5 days, and most of the work uses few hours or couple of days as the runtime

limit.

Table 5.2. Overhead comparison of various obfuscation techniques.

Power overhead analysis Area overhead analysis SMT-Attack runtime

Benchmarks Proposed SFLL-HD AntiSAT InterLock Proposed SFLL-HD AntiSAT InterLock Proposed SFLL-HD AntiSAT InterLock

C2670 53.27% 23.3% 33.74% 47.51% 91.53% 72.45% 73.42% 107.5% ∞ ∞ ∞ ∞
C7552 20.4% 19.1% 18.5% 20.8% 91.53% 72.45% 78.42% 88.5% ∞ ∞ ∞ ∞
B12 18.5% 18.8% 20.3% 17.04% 60.52% 38.64% 57.63% 55.14% ∞ ∞ ∞ ∞
FIR 17.3% 14% 14.2% 13.8% 43.05% 30.86% 28.41% 39.54% ∞ ∞ ∞ ∞
IIR 10.08% 3.8% 3.6% 8.46% 8.44% 7.91% 7.46% 8.6% ∞ ∞ ∞ ∞
AES 2.75% 1.2% 1.8% 2.6% 4.94% 3.19% 3% 4% ∞ ∞ ∞ ∞
DES 2.46% 1.1% 1.05% 1.9% 3.27% 2.59% 2.78% 3.18% ∞ ∞ ∞ ∞
∞ denotes SMT-attack timeout.

From table 5.2, it is evident that the SFLL-HD and AntiSAT result in much lower Area and

Power overhead than the proposed LUT-based obfuscation. This is true for the smaller benchmarks.

However, with the increasing size of the benchmark, the LUT-based obfuscation overheads are

comparable to both obfuscation primitives. Besides, it can be noted that Anti-SAT and SFLL-HD

leverage a one-point function and thus has lower output corruptibility. This makes the SFLL-HD

and Anti-SAT vulnerable to approximation SAT-attacks [33] and removal attacks [34]. Though

they have small design overheads for implementation, their applicability for obfuscation purposes

is questioned. Fall-attack demonstrated in [35] shows that the key for SFLL-HD can be retrieved
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without having access to the oracle design.

On the other hand, LUT-based obfuscation allows the user to randomly replace the gates in

the circuitry, thereby allowing the user to increase the output corruptibility while being resilient

to SAT-attack, the approximation attack and removal attacks. Moreover, this study compares the

state-of-the-art InterLock obfuscation, a unified routing and logic obfuscation technique [1]. The

overhead for leveraging the Key programmable routing block size 64 is comparable to the proposed

LUT-based obfuscation. It requires around 320 key programmable routing blocks where each block

consists of 2 LUT2 and 4 2:1 MUX. Moreover, using the size of 64 for yielding SAT-resiliency

requires 10-stages of routing, making this obfuscation hard to deploy in a circuit. Proposed LUT-

based obfuscation, on the other hand, can be deployed quickly and provides comparable overheads

when compared to the state-of-the-art obfuscation primitives.

As discussed earlier, LUT-based obfuscation remains resilient to removal attacks, as removing

the LUT from the circuit strips away circuit’s functionality. The SAT-attack tries to find the

configuration key for the LUT that can unlock the circuit, but the ample obfuscation space put

forth by LUT-based obfuscation renders the SAT-attack futile. For the most significant design,

such as DES obfuscated with proposed LUT-based obfuscation, when subjected to the SAT-attack

results in error (internal error in “lglib.c”: more than 894,489,346 variables). This shows that attacks

cannot unlock the 100% correct functionality of the circuit using LUT-based obfuscation.

The proposed obfuscation was also compared against AppSAT [33]. For AppSAT, the termina-

tion criteria are determined by the error rate, which is one of the inputs to the attack. 50 random

queries were performed (default setting of AppSAT) on the oracle attack after the key, which is given

to us after the 20 iterations of the AppSAT. It is misleading to calculate the error rate using such a

small amount of input patterns for the obfuscation with high output corruptibility [32]. When the

number of queries are increased to 1000, AppSAT resulted in a timeout state. Nonetheless, the key

given by the AppSAT when the number of queries was 50 or 1000 does not fully unlock the circuit’s

functionality.

5.3.4 Exploration of Large Benchmark

A large GPS benchmark from the CEP benchmark is chosen to show the efficiency of the proposed

LUT insertion strategy. The benchmark is obfuscated with the optimal LUT7 + 7:LUT2 LUT
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configuration discussed in previous sections to result in timeout scenario. For obfuscation, Civilian

Acquisition (CA) code generator module inside of GPS was selected. The obfuscation resulted in

0.4% power and 0.3% area overhead. This design achieved an SAT-attack timeout with an area and

power overhead of less than half a percent. This result affirms the trend established in the survey of

small and medium-sized designs in the preceding sections: the power and area overheads required

to implement the optimal SAT resilient LUT configuration amortizes as the design size

Through the various experiments and development, it is evident that LUT-based obfuscation

can be used to resist many of the existing threats. However, having a single means of defense is not

a great strategy to assure the best security. The constant red-teaming efforts in the research area

have been able to find vulnerabilities in many of the obfuscation schemes, and thus for providing

best zero-day attack security, this work further realizes the LUT-based obfuscation as a “defense-

in-depth” mechanism. The next chapter illustrates the idea of a “defense-in-depth” tool.
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Chapter 6

Robust “Defense-in-depth” solution using

LUT-based Obfuscation

LUT-based obfuscation discussed in this work aims to thwart SAT-attack by exposing the SAT-

solver to vast key search space. Similar approaches from the reconfigurable domain use a Magneto-

Electric Spin-Orbit (MESO) device for obfuscation [36], which can offer both reconfigurability and

dynamic morphing to thwart the SAT-attack. Since most of the works try to mitigate SAT-attacks

by increasing the time required to find a solution, it is possible that with the increasing computing

power and new research directions, it would be possible to break SAT-resilient techniques with new

SAT-solvers.

The study in Section 6.1 shows the potential of using Power Side-Channel Attack (P-SCA) to

understand the underlying behavior of the hardware by monitoring side-channel information, such

as power consumption in particular. Using P-SCA with Machine Learning (ML) techniques can

reveal the secret key required to unlock the obfuscated design. Therefore, there is a need for a

technique to eliminate the SAT-attack and the ML -assisted P-SCAs. Thus, Deep-Learning Power

Side-Channel Attack Mitigation using Emerging Reconfigurable Devices and Logic Locking (LOCK

& ROLL) is proposed in Section 6.3.

Section 6.3.2 and Section 6.3.3 discusses how LOCK & ROLL resists SAT-attack and eliminates

the threat of SAT-attack. Moreover, it provides resiliency to P-SCA and other attacks. This LUT-

based solution provides “Defense-in-Depth” for current and any future zero-day attacks at minimal
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design overheads. This chapter discusses the implementation and the empirical evaluation of the

proposed primitive.

The contributions of LOCK & ROLL are as follows:

• The work proposes a Symmetrical Magnetoresistive Random-Access Memory based Look-up

Table (MRAM-LUT) which successfully resists the ML-assisted P-SCA by attaining near-zero

power variation in the output.

• The proposed obfuscation can still resist SAT-attack while maintaining a reliable and low-

overhead solution with a wide read margin for LUT-based obfuscation.

• This work discusses the Scan Enable Obfuscation Mechanism (SOM), which is used to elimi-

nate the SAT-attack.

• This work empirically evaluate the proposed primitive against ML-assisted P-SCA and demon-

strate its comprehensive security coverage.

• Finally, the work empirically assesses the resiliency offered by the proposed “Defense-in-Depth”

primitive against various attacks to demonstrate the broad applicability and resiliency of the

LOCK & ROLL.

As an outcome of the research covered in this chapter, this work has contributed to [37, 38].

6.1. Power Side-Channel Attacks (P-SCA)

In the CMOS circuit, to change the state of the logic device, i.e., from zero to one or vice versa, the

voltage is applied. This transition from one state to another reflects a side-channel signature, which

can be captured through power consumption of the system or other electrical properties. Since

the amount of power required in the system is proportional to the manipulated data, the power

traces collected during the processing or transition of states contain vital information. Even a single

transistor’s effect can appear as a weak correlation in power measurements [39].

The proposed LUT-based obfuscation can be created using the architecture proposed in the

work [6]. In this case, the P-SCA can be utilized to find the content of the LUT configuration.

To demonstrate the process of RE using P-SCA, the current of 2-input LUT for different functions
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Figure 6.1. Read current traces of a 2-input MRAM-LUT in [6]. (Y-axis: Read Current in Amps; X-axis
samples in collected data)

implemented by the LUT is measured using HSPICE simulation. Figure 6.1 shows how a LUT im-

plemented based on the circuit proposed in [6] draws different currents when implementing different

functions. Without a need for advanced algorithms, by comparing the current drawn from the LUT

under test with standard measurements, the functionality of the LUT can be readily inferred. This

experiment shows how the obfuscation key can be accessed without executing the SAT-attack.

6.2. P-SCA resilient LUT-based Obfuscation

The primitive proposed in this section builds on top of the LUT-based obfuscation discussed. It

still uses the n-LUT2 followed by LUTn configuration for providing resiliency against SAT-attack,

but the architecture of the LUT is modified and it is discussed in the following section.

6.2.1 Symmetrical MRAM-LUT (SyM-LUT)

Generally, M -input LUTs have 2M memory cells to implement M -input Boolean functions. A

select tree MUX circuit is utilized to select the memory cell that holds the correct value of the

function implemented by the LUT. This work proposes Symmetric Magnetoresistive Random-Access

Memory-based Look-up Table (SyM-LUT) design, where the memory storage element is re-designed

and optimized for increased security.

The memory storage in this design uses complementary MTJ memory cells, which helps in

realizing different states of memory while maintaining equal overall resistance for determining states

“0” and “1”. Moreover, the proposed SyM-LUT provides a reliable and energy-efficient operation
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due to a wide read margin.

Figure 6.2. The circuit-level diagram of the proposed 2-input SyM-LUT using STT-MTJ devices.

Figure 6.2 depicts a 2-input example of SyM-LUT design. As shown in Figure 6.2, SyM-LUT

contains two select tree MUXes, which use Pass Transistors (PG) and Transmission Gates (TG)s.

The proposed SyM-LUT can be reconfigured using the WE, and WE signals to perform a write

operation. When WE and WE are asserted, each memory cell can be connected separately to the

Bit Line (BL). BL and BL connect to the specific memory cell using inputs A and B. By setting

BL and BL, one can change the content of the memory cells.

Additionally, in each write operation, the content of each memory cell is changed in a comple-

mentary fashion. As a result, MTJi and MTJi always hold opposite values. In particular, assuming

the data stored in the MTJ1 is in the P or low-resistance state, then MTJ1 will be in the AP or

high-resistance state and vice versa.

After termination of the write operation, the PC signal is asserted to pre-charge the intermediary

output nodes OUT and OUT, and then by disabling the PC signal and asserting the Read Enable

(RE) and RE signals, the discharge path is enabled and read the data stored in the MTJs. Signals

RE and RE enable the read path from OUT and OUT to GND. This will result in a race condition

between the two branches of sense amplifier, which will be used the observe the resistance difference

between the MTJi and MTJi. The select tree MUXes controls the output of LUT according to the
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Table 6.1. Parameters of 2-terminal STT-MTJ device.

Parameters Description Value
MTJArea lMTJ × wMTJ × π/4 15nm× 15nm× π/4

tf Free Layer thickness 1.3 nm
RA MTJ resistance-area product 9 Ω · µm2

T Temperature 358 K
α Damping coefficient 0.007
P Polarization 0.52
V0 Fitting parameter 0.65
αsp Material-dependent constant 2e-5

input signals A and B. Thus, when storage elements are connected to the bit line, the voltage at

the junction of two MTJ’s provides enough margin to distinguish between two states i.e., “0” and

“1” stored in each complementary MTJ storage allowing for a reliable read. This value of the LUT

function is observed at the output nodes OUT and OUT. In this manner, the LUT provides a wide

margin while maintaining a similar power profile while reading “0” and “1”.

To define the functionality of each 2-input SyM-LUT, a set of keys are shifted in via the Bit line

BL signal, and by controlling A and B inputs, memory cells whose contents need to be updated can

be selected. For example, for the “AND” function, A and B inputs are used to select each memory

cell in the order of AB, such as 11, 10, 01, and 00, while the keys to configure the functionality of

the LUT are shifted through the BL as 1, 0, 0, and 0, respectively.

HSPICE circuit simulator is used to validate the functionality of the proposed SyM-LUT using

45nm CMOS technology and the STT-MRAM model developed in [40]. The states of the MTJ are

determined according to the angle, θ, between the magnetization orientation of the ferromagnetic

layers. This work have adopted the MTJ device parameters from [6]. Table 6.1 lists the experi-

mental parameters used herein to model the MTJ devices. Figure 6.3 shows the transient response

of the proposed SyM-LUT while the Figure 6.3 depicts an implementation of a 2-input “XOR”

gate utilizing SyM-LUT. As shown, the HSPICE simulations verify the correct functionality of the

proposed SyM-LUT.

Furthermore, this work performs Monte Carlo (MC) simulation to analyze the reliability of

reading and write operations of SyM-LUT in the presence of PV. The simulation helps cover a wide

range of PV scenarios that may occur in the fabricated device. The MC simulation is performed with

10, 000 instances considering the effects of PV on the CMOS peripheral circuit and the MTJs. In

particular, the variation of 1% for the MTJ’s dimensions along with 10% variation on the threshold
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Figure 6.3. Simulation waveform for implementation of a 2-input XOR gate using SyM-LUT.

voltage and 1% variation on transistors dimensions are assessed [6]. According to the MC simulation

results, SyM-LUT provides reliable write performance resulting in less than 0.0001% write errors in

10, 000 error-free MC instances. Additionally, since the states of the MTJs are complementary, they

provide a wide read margin, and as a result, there are less than 0.0001% read errors caused by PV

based on the 10, 000 error-free MC simulation results for all the different gates that implemented

using SyM-LUT.

6.2.2 SyM-LUT’s Resiliency against P-SCA

The side-channel analysis focuses on the variation in the electrical characteristics of the circuit to

gain access to the confidential information in the circuit. The power traces are targeted to measure

the read current of the LUT under test. By varying the input of the LUT, the select tree selects

various MTJs for sensing their content. The various state of the MTJs result in different currents.

The MC simulation data from HSPICE provides the values of the MTJ read current in the presence

of PV. The threat vector used in this work assumes that the attacker can use an invasive approach

to probe the current.

If the SyM-LUT is representing “XOR” gate, as shown in Figure 6.3, 4 different read current

measurements for reading four different states of the SyM-LUT (i.e., read current measurement

47



Figure 6.4. Read current trace samples of 2-input SyM-LUT implementing various functions using Monte
Carlo instances.

when (1)A=0, B=0; (2)A=0, B=1; (3)A=1, B=0; (4)A=1, B=1) can be measured. Among 4

different states, the current measurement for MTJ with content “0” and the current measurement

for MTJ with content “1” should show a difference for the P-SCA to succeed in learning the content

of the MTJs. Using MC simulation with 10, 000 instances for each logic gate implemented, power

trace and current values for all MTJs are gathered. Figure 6.4 demonstrates the read currents of the

MTJs from the MC simulation. The same trend is observed over the rest of the simulation generated

to evaluate of the proposed LOCK & ROLL approach. As shown in Figure 6.4, the contents of the

MTJs cannot be easily distinguished, which is not the case in the traditional implementation of

the LUT. Therefore, to empirically assess the security of the proposed primitive, this work employs

ML-assisted techniques to reverse-engineer the contents of the MTJs.

As a part of ML-assisted techniques for reverse engineering, a classification model using Random

Forest, Multi-class Logistic Regression, and Support Vector Machine (SVM) is used. For this

experiment, the 4 traces of power for reading different states for 16 logic functions implemented by

LUT size 2 is used. The LUT of size 2 has two inputs and the features used for ML are Read Power

when the two inputs are (1)A=0, B=0; (2)A=0, B=1; (3)A=1, B=0; (4)A=1, B=1.

For Multi-Class Logistic Regression, polynomial features of degree 4 are used for fitting. To

avoid overfitting, the data lasso regularization is used. Moreover, in Logistic Regression, the Multi-

Class Cross-Entropy is used as a Loss function. The number of classes is 16 for LUT of size 2. In

Random Forest, entropy is used as the criterion to determine the quality of the split. In the case

of the SVM Radial Basis Function (RBF) is used as a kernel function. For the empirical evaluation
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Table 6.2. Performance of ML-assisted P-SCAs on SyM-LUT

Algorithm Accuracy F1-Score
Random Forest 31.55% 0.319
Logistic Regression 30.75% 0.304
SVM 28.09% 0.302
DNN 34.9% 0.343

of the SyM-LUT, a total of 640, 000 different samples using MC simulation for 16 class labels are

generated, and 10-fold cross-validation techniques along with accuracy and F-1 score as a metric

are used to evaluate the performance of the ML algorithm. For data pre-processing, feature scaling

and outlier filtering using z-scores are used. Table 6.2 shows the resiliency of the proposed primitive

to thwart P-SCAs.

Proposed mechanism is evaluated against P-SCAs that are assisted using the Deep Learning

(DL) techniques. A Deep Neural Network (DNN) is used to classify the functionality implemented

by the LUT using the power traces obtained from the HSPICE simulation. The work in [41] has

shown that DNN can bypass misalignment countermeasures in the ML-assisted P-SCAs. The input

to the DNN is the scaled power trace vector with the value ranging from 0 to 1 for better convergence.

The output layer of the architecture uses a softmax activation with a categorical cross-entropy as a

loss function. The softmax activation provides a probability distribution over all possible functions

implemented by the LUT. The DNN architecture uses the fully-connected layers with the Relu

activation function and Adam optimizer for training the model. The 640, 000 data traces are used

for training, and the model is evaluated using 10-fold cross-validation. The accuracy of the DNN

model was ∼35%.

All models have more than 90% classification accuracy on traditional LUT-based architectures.

However, as soon as the same architecture of the ML model is used to reverse engineer SyM-LUT,

it fails to classify or learn the functionality implemented by the LUT. Even upon re-training the

model with read currents from SyM-LUT’s MC simulation, the model shows no success in reverse

engineering the content of the LUT.

Thus, the inability of the models to distinguish between the states of MTJs proves the ability

of the SyM-LUT to mitigate the P-SCA. Moreover, the attacker will need to obtain a training set

initially, which can be a challenge. A symmetrical circuit design implementing two identical select
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tree MUXes that minimize power consumption through circuit optimization and complimentary

MTJs results in robust security primitive. Thus, the outcome of the experiments proves that SyM-

LUT maintains a near-zero power variation in the output and thus is resilient to P-SCAs.

6.3. Proposed LOCK & ROLL

6.3.1 Scan-Enable Obfuscation Mechanism

As demonstrated above, SyM-LUT can be a great candidate to resist P-SCA attacks. Pairing

SyM-LUT with LUT-based obfuscation discussed in this work [4] makes it SAT-resilient. However,

to eliminate the threat of SAT-attack, this work adds the Scan-Enable Obfuscation Mechanism

(SOM), which aims to provide a multi-layer defense mechanism. It enables the circuit to eliminate

the threat of SAT-based attacks and its derivative along with other powerful attacks, such as Scan

attacks and removal attacks, to name a few. This work first discusses how SAT-attack can be

eliminated, followed by how the proposed solution provides resiliency against other evolving attack

vectors. Figure 6.5 depicts a 2-input example of SyM-LUT design with SOM.

As depicted in Figure 6.5, once the write operation is terminated, by asserting the RE and RE

signals, one can read the data stored in the MTJs. The read operation of the SyM-LUT with SOM

is similar to SyM-LUT, and the value of the LUT function is observed at the output nodes OUT

and OUT, as shown in Figure 6.5.

The scan chain locking in the proposed primitive is designed to offer resiliency to both P-SCA

and SAT-attack. The SyM-LUT features the SOM circuitry, which is activated when the scan

chain is enabled. The SAT-attack uses the scan chain to scan in the input to the oracle circuit and

scan out the oracle response. Scan Enable (SE) is activated when the scan chain is enabled. The

output of the LUT at this point will be affected by the data stored in MTJSE . The MTJSE bits

are configured to either “0” or “1” at random. These values are known to the trusted IP owner;

however untrusted entities do not know these values. Since the value in MTJSE is stored randomly,

not all circuits will be provide the same output if SE is enabled. During the read operation using

scan-chain, whenever the SE is asserted, the data stored in MTJSE and MTJSE will determine

whether the actual function makes it to the OUT or the random value in MTJSE makes it to the

OUT.
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Figure 6.5. The circuit-level diagram of the proposed 2-input SyM-LUT with SOM using STT-MTJ devices.

Similar to SyM-LUT, the HSPICE circuit simulator is used for validating the functionality of

the proposed SyM-LUT with SOM using 45nm CMOS technology and the STT-MRAM model

used in [6]. Figure 6.6 illustrates an implementation of the XOR gate using SyM-LUT with SOM

configured to the value of “0”. It can be observed in Figure 6.6 that the content of the MTJSE

is updated to provide the obfuscated output. Additionally, a MC simulation study is performed

to examine the reliability of the proposed SyM-LUT with SOM in the presence of PV. Similar to

the SyM-LUT, SyM-LUT with SOM also maintains error-free write and read operations. SyM-

LUT demonstrates less than 0.0001% write errors and less than 0.0001% read errors caused by PV

based on the 10, 000 error-free MC simulation results for each gate implemented using SyM-LUT

with SOM. The Sym-LUT with SOM also exhibits the same current trace, as shown in Figure 6.4.

Analysis using ML techniques is performed to infer the functionality implemented by Sym-LUT

with SOM, and the results depicted in Table 6.3 show that the functions implemented by the LUTs

cannot be distinguished.

The experimental setup to verify the resiliency against P-SCA is the same as that of SyM-LUT.

Table 6.2 shows the resiliency of the proposed primitive to thwart the P-SCA. For the evaluation,

decision tree and the random forest model was used. 10-fold cross validation was used in the
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Figure 6.6. Simulation waveform for implementation of a 2-input XOR gate using SyM-LUT with MTJSE

being set to value of “0”.

experiment and the performance was evaluated using accuracy and F-1 scores as a metric. For both

tree classifier, various hyperparameter tuning was done, and the best results are presented in the

table. For the random forest classifier, the number of estimators was as large as 512 with no bounds

on the length of the tree. Considering a similar P-SCA evaluation performed on SyM-LUT, the

results prove that SyM-LUT with SOM is also resilient to P-SCAs.

Table 6.3. Performance of ML-assisted P-SCAs on SyM-LUT with SOM

Algorithm Accuracy F1-Score
Random Forest 31.6% 0.322
Logistic Regression 30.93% 0.310
SVM 26.36% 0.284
DNN 35.01% 0.357

6.3.2 Elimination of SAT Attack and It’s Derivatives!

The SAT-attack is thwarted because the oracle responses are incorrect when the DIPs from the

SAT-attack are applied to the oracle circuit. The keys deduced using these responses will be wrong,
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and the attacker won’t be able to reverse engineer the functionality of the obfuscated IP. Compared

to [36, 42], which also thwarts the SAT-attack using their dynamic nature of obfuscation, the

SyM-LUT provides better applicability. The primitive in [36, 42] can only be used in the IP that

can tolerate a few error margins; however, the LUTs are static in the proposed work. Thus the

circuit works error-free during the normal functioning and allows the primitive to be used widely

for obfuscation. Moreover, in the proposed primitive, the LUT itself creates the SAT-hard instance

despite its location in the circuit [4], thus not requiring the IP designer to rely on the heuristics

approaches. The IP owner can identify the circuitry they want to secure and insert the SyM-LUT

with SOM.

6.3.3 Security Coverage of LOCK & ROLL

Since the LOCK & ROLL builds on top of the proposed LUT-based obfuscation, it provides security

against many SAT-attacks and its derivatives, as discussed in 5.3.3. In this section, the work focuses

on how LOCK & ROLL can be used to increase the security of the design against various other

infamous attack vectors.

The HackTest [43] attack can reverse engineer the obfuscated circuit by utilizing the ATPG

test vectors which the IP manufacturer provides to the testing facility. The ATPG test vectors

are usually generated to offer the highest level of fault coverage. Using the testing data provided,

the actual response of the oracle IP upon application of the test vectors can be recorded, and the

functionality of the obfuscated gates can be deduced/resolved. The SyM-LUT-based obfuscation

and its dynamic nature to morph the functionality based on the contents of the MTJ can circumvent

the HackTest attack. To protect against HackTest, the fabricated IP is programmed with the keys,

Kd, which are different from the original intended keys, Ko. The ATPG test patterns are generated

using Kd and given to the testing facility. Moreover, testing the IP does not require the IP to be

functional [43, 44]. The test patterns are generated for key Kd such that it provides maximum fault

coverage and the ability to test the IP for any faults. Once the IP is tested and returned to the

trusted regime, the LUTs can be configured using the correct keys Ko.

Another attack, i.e., ScanSAT, tries to model the obfuscated scan chain as a logic locking

problem for leveraging the SAT-attack. In the proposed SyM-LUT primitive, when the Scan chain

is activated, the Scan Lock circuitry is activated and now becomes part of the circuit. When the
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resulting circuit is modeled using the SAT-attack [11], the circuit is originally SAT-hard due to

LUT-based obfuscation. Moreover, this work has discussed how the SOM thwarts the SAT-based

attack in Section 6.3. The secure cell saves the key value for activating the IP and the values from

the secure cell can be propagated using the methodology discussed in the Scan and Shift attack. For

programming, in the proposed the SyM-LUT, a separate scan chain is used. The keys are shifted

in for the configuration of various SyM-LUT blocks, and the scan-out port of this entire scan chain

is blocked. This prevents the attacker from reading the values of MTJ during the writing stage. In

the proposed primitive, the MTJs are non-volatile, and thus the programming of the MTJs using

this entire chain will only be performed in the trusted regime, thus mitigating the threat of Scan

and Shift attack. The structural analysis of the LUTs yields no concrete information that can help

in eliminating the LUTs from the circuit. Thus unlike other obfuscation, the proposed primitive

is resilient to the removal-based attack. In this manner, SyM-LUT with SOM offers a multi-layer

defense mechanism to provide resiliency against various attacks.

The LUT-based obfuscation in this way can thwart many attacks. In the following sections,

this work discusses the methodology to validate the security and functionality of the obfuscation,

as validation is one of the essential steps of Physical Design while fabricating an IP.
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Chapter 7

Security Validation of an Obfuscated IP

The current practice of evaluating the obfuscation resiliency against the SAT-attack consists of

simulating the attack for an indefinite time until it de-obfuscate the design. This simulation time

can be several days, weeks, or even months until the SAT-attack can de-obfuscate the design. Given

the uncertainty of de-obfuscation time using the SAT-attack, the simulation method for assessing

and quantifying the security is not practical. It can introduce an indefinite delay in the IP design

flow.

This chapter discusses the methodology that can be leveraged instantaneously to validate the

security added by the LUT-based obfuscation. This will ease the DSE process performed as part

of optimization during physical design flow, thereby making LUT-based obfuscation a convenient

method for restoring the trust in silicon.

7.1. Quantifying Security

This work has conducted several experiments to understand the effect of SAT-attack on various

gate replacement policies and obfuscation. The observations are summarized as follows: a) the

de-obfuscation time of the SAT-attacks highly depends on different parameters such as the location

of the obfuscated gates, type of obfuscated gates, obfuscation coverage or key size, gate mutability,

and the topology of the underlying circuit [11]; b) verifying whether obfuscation is SAT resilient or

not might take an undetermined amount of time, especially when employing SAT-hard obfuscation

techniques. In most cases, experiments for validating SAT-attacks are run for a couple of days, but
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in this work, the runtime of simulations is extended for as much as 5 days for better evaluation of

the obfuscation.

Numerous defense mechanisms exists for an IP owner who wants to protect his IP. As the

defense mechanisms’ success depends on the underlying characteristics of the IP being secured,

evaluating and validating the security of the IP after the integration of obfuscation primitive is a

highly crucial step. However, security evaluation against a powerful SAT-attack can take a few days

to months using a contemporary method of simulating the attack. Therefore, a mechanism that

can instantaneously assess the strength of different obfuscation schemes against various attacks is

the need of the hour.

This work focuses on the SAT-attack because the SAT-attack can be used to break many of the

existing obfuscation techniques [14, 45, 46]. Other methods such as removal attacks and structural

attacks cannot be quantified. They either succeed or fail, and the success of such primitives mostly

depends on the expertise of the attacker. Whereas, in the case of the SAT-attack, it is widely

available to deploy and relatively easy to use. Therefore, an IP owner can not overlook the possibility

of their designs being subjected to the SAT-attack.

Even in the case of Scan-based circuitry, i.e., SyM-LUT with SOM failing, there must be a clear

metric on how much security the LUT-based obfuscation can provide before the content of the LUT

is stolen.

Many of the proposed schemes demonstrate the efficacy of their obfuscation scheme by simulating

the attacks for a few hours to a few days [32, 45, 47, 48]. Obfuscation schemes such as SFLL-HD0

[32] are more sophisticated to study as they have functions like hamming distance, obfuscation

coverage, key length, and gate selection algorithm that can influence the SAT-runtime and the

designer has a large security design space which they must explore before finding and deploying

optimal and secure obfuscation strategy. However, it is not optimal nor feasible for the IP designer

to brute-force through all the possible combinations of the parameters that influence the security of

the design and evaluate them by simulating attacks for an indefinite amount of time. Therefore, this

challenge in the Hardware Security domain calls for a framework that can assess the obfuscation’s

security accurately and quickly.

Given the dire need for quantifying and evaluating the security, the problem is yet highly under-

explored in the community because of the significant challenges listed here:
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i Difficulty characterizing the hidden and sophisticated algorithmic mechanism of attackers.

Over recent years, many de-obfuscation methods have been proposed with various techniques

[49] to thwart hardware security threats. These include methods with sophisticated theories,

rules, and heuristics, to name a few. The behavior of such highly nonlinear and strongly-

coupled systems is prohibitive for conventional simple models (e.g., linear regression and sup-

port vector machine [50]) to characterize.

ii Difficulty extracting determinant features from discrete and dynamic graph-structured ICs.

The inputs for the de-obfuscation time estimation problem are the circuit or IP topology

(netlist) with gates selected for obfuscation. Conventional feature extraction methods are not

intuitive to apply to such types of varying-structured data without significant information

loss. Hence, it is highly challenging to intactly formulate and seamlessly integrate features as

mathematical forms that can act as an input to conventional machine learning models.

iii The Requirement of high efficiency (speed) and scalability. The ability to perform obfuscation

space exploration and deploy a defense depends on the speed and scalability of the framework.

The faster the defender can estimate the de-obfuscation runtime, the more candidate set or

obfuscation samples can be evaluated and verified against the attack. The ability to weigh

in various choices can lead to a better obfuscation scheme being deployed. Moreover, the

estimation speed (latency) of the framework must be insensitive to obfuscation strategy and

the circuit topology.

To model the effect of obfuscation and address all of the open challenges described above, the

work proposes a Security Evaluation Platform for Hardware Logic Obfuscation using Intelligent

Artificial Neural Net (SEPIANN) framework. This fundamental framework for de-obfuscation time

prediction is based on the CNF representation of the obfuscated circuit. The graph neural network

model is trained on instances of the obfuscated circuit to capture obfuscation’s trend and effect on

the design to be secured. Later, the resulting model is leveraged to extrapolate de-obfuscation time

instantly, which, on the contrary, would have taken weeks or months to de-obfuscate. This resulting

model allows the IP owner to sweep various obfuscation metrics (such as obfuscation coverage,

different obfuscation methods, gate selection) and helps in evaluating the security instantly, thereby

eliminating the need to wait for an indefinite amount of time. The SEPIANN, in this manner, can
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also be employed as an Electronic Design Automation (EDA) tool for hardware security assessment

during IC design and development process.

The contributions of this work are outlined as follows.

• Formulate a graph learning SEPIANN framework to predict the de-obfuscation time through

SEPIANN’s CNF-NET1, which is a graph-based neural network.

• Automatically extract the properties of the circuit/IP represented in the form of CNF utilizing

a multi-order graph learning technique, which is utilized to estimate the de-obfuscation time.

• Design an energy-based neural layer to process varying sizes of graph data. For unifying the

dynamic topology of the CNF graph, this work innovatively leverages the energy of a restricted

Boltzmann machine to quantify the complexity of the CNF. The bipartivity of the CNF graph

is utilized to optimize the computational cost.

• Deploy, assess, and validate the SEPIANN framework on various benchmarks.

As an outcome of the research covered in this chapter, this work has contributed to [51–58].

7.1.1 SAT Resiliency Pit-Fallacies

As aforementioned, most research work claims the resiliency of their proposed obfuscation against

the SAT-attacks and the variants of SAT-attack by the method of simulation. Using a subset of

small-scale benchmarks, the time-constrained simulation demonstrates the obfuscation’s effective-

ness. Albeit the trend might look promising in terms of resiliency for the selected benchmarks, the

SAT-resiliency does not scale with the number of obfuscated gates or the percentage of obfuscated

gates. The SAT-attack runtime is not a simple function of obfuscation percentage. As discussed

earlier, the circuit’s topology also plays a pivotal role in determining the SAT resiliency for a given

obfuscation scheme.

One way to validate SAT resiliency could be to find the number of correct keys for the circuit.

For this purpose, ApproxMC3 [59] is utilized, which is the SAT-based tool used to count the number

of valid solutions for a given problem in each SAT-attack iteration. It has been demonstrated that

more than one set of a key can be valid for a given obfuscated circuit, and the work in [47] has

1CNF-NET framework is the principal component of the SEPIANN
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demonstrated this effect. Suppose the number of correct keys is less while the total key search space

is vast. In that case, the probability of finding the correct key decreases, and one can build the

probabilistic model to determine the likelihood of guessing the correct key. The SAT-solver requires

pruning additional DIPs to find the keys when only a small subset of keys are valid for a given

circuit. However, it is found that using ApproxMC3 [59] to count possible correct solutions is not

scalable when the circuit size increases.

To estimate SAT-solver runtime, the work further investigated the SATZilla [60] framework; a

portfolio-based SAT selection algorithm that chooses the best SAT-solver given a problem. One of

the essential criteria for selecting the SAT-solver is faster execution time. However, the execution

time of different SAT-solvers that can be used to solve a problem is unknown to the algorithm. Thus

SATZilla initially tries to predict the SAT-solver’s performance and runtime. This cost-sensitive

classification is used for every pair of solvers in the portfolio, and the solver that receives the highest

score is chosen for solving the problem. The framework relies heavily on domain knowledge for this

classification task to identify features that characterize the problem instances. The chosen feature

must relate to instance hardness and should be relatively cheap to compute [60]. In hardware secu-

rity, obfuscation strategies have been tailored based on the experiences and rules hand-crafted by

domain experts. Therefore, the features extracted are also based on heuristics and a case-by-case

obfuscation strategy that may induce bias. Inspired by the SATZilla’s cost-sensitive classification as

the indicative metric of SAT-solver’s performance, this work utilizes the features used in SATZilla.

However, instead of using heuristic features for runtime estimation, other features are automatically

extracted and learned from the raw input by the Graph Convolutional Network (GCN). The fol-

lowing section introduces the Graph Convolutional Network (GCN) and their deployment for SAT

runtime prediction.

7.1.2 Graph Neural Networks

Recently, there has been an increasing interest in applying deep learning for various graph data

[61], such as social networks, molecular structure, road networks, and brain connectivity. Many

graphs and geometric convolution methods have been proposed recently for modeling graph data.

The spectral convolution methods [62, 63] are the mainstream algorithms developed as the graph

convolution methods. The graph convolution methods are based on the graph Fourier analysis [64].
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Inspired by the polynomial approximation proposed in [65], graph convolutional neural networks

(GCNNs) [62] were able to leverage the idea of Convolutional Neural Network (CNN) in dealing

with the Euclidean data for modeling graph-structured data. Kipf and Welling proposed GCNs

[63], which naturally integrate the connectivity patterns and feature attributes of graph-structured

data and outperform many state-of-the-art methods such as GCNN. Another category of graph

CNN is a spatial domain method such as Diffusion Convolutional Neural Network (DCNN) [66],

which is considered as a diffusion process (random walk) on the graph. DCNN generate different

features by applying a diffusion kernel of different size. MoNet[67] also have generalized spectral

and spatial methods in the non-Euclidean domains (graphs and manifolds) to learn local, stationary,

and compositional task-specific features.

Preliminaries

First, let us introduce the utilized notations for GCN [62, 63]. The graph signals are defined on

undirected graphs G = (V, E ,A), where V is a set of n vertexes, E represents edges, and A = [aij ] ∈

{0, 1}n×n is an unweighted adjacency matrix. A signal x : V → R defined on the nodes may be

regarded as a vector x ∈ Rn. Combinatorial graph Laplacian [68] is defined as L = D −A ∈ Rn×n

where D is degree matrix.

Fourier basis

Element 
wise product

Spectral 
signal

Output

Figure 7.1. Graph Convolutional Network workflow.

The processing of signals in a GCN is performed as follows. The Laplacian is diagonalized

by the Fourier basis U⊺, so eigendecomposition can be applied as L = UΛU⊺ where Λ is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., Λii = λi. The
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graph Fourier transform of a signal x ∈ Rn is defined as x̂ = U⊺ x ∈ Rn and its inverse as x =

U x̂ [64, 69]. To enable the formulation of fundamental operations such as filtering in the vertex

domain, the convolution operator on the graph is defined in the Fourier domain such that f1 ∗ f2 =

U [(U⊺ f1)⊗ (U⊺ f2)], where ⊗ is the element-wise product, and f1/f2 are two signals defined on

vertex domain. The intuitive workflow of GCN is shown in Figure 7.1. It follows that a vertex

signal f2 = x is filtered by another spectral filter which is defined as f̂1 = U⊺ f1 = g(Λ) as:

g ∗x = U [g(Λ)⊙ (U⊺ f2)] = Ug(Λ)U⊺ x.

Note that a real symmetric matrix L can be decomposed as L = UΛU−1 = UΛU⊺ since U−1 =

U⊺ . Similar works in [62, 65] apply polynomial approximation on spectral filter g so that graph

topology and node attributes such as gate type can be combined in spectral-domain by convolutional

operation.

g ∗x = Ug(Λ)U⊺ x

≈U
∑
k

θkTk(Λ̃)U⊺ x (Λ̃ =
2

λmax
Λ− IN)

=
∑
k

θkTk(L̃)x (UΛk U⊺ = (UΛU⊺)k)

where Tk is the coefficients of Chebyshev approximation. Further, Kipf and Welling [63] provide

simplification tricks based on previous works as shown below.
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g ∗x

≈θ0 IN x+ θ1L̃x (expand to 1st order)

=θ0 IN x+ θ1(
2

λmax
L− IN))x (L̃= 2

λmax
L− IN))

=θ0 IN x+ θ1(L− IN))x (λmax=2)

=θ0 IN x− θ1D
-1
2 AD-1

2 x (L=IN −D-12 AD-12 )

=θ0(IN+D-1
2 AD-1

2 )x (θ0=−θ1)

=θ0(D̃
− 1

2 ÃD̃− 1
2 )x (renormalization:Ã=A+ IN,

D̃ii=
∑

j Aij),

the above GCN in matrix form can be rewritten as:

gθ ∗X ≈ (D̃
− 1

2 ÃD̃− 1
2 )XΘ

which leads to symmetric normalized Laplacian with raw feature. GCN has been analyzed using

smoothing Laplacian [70]:

y = (1− γ)xi + γ
∑
j

ãij
di

xj = xi − γ(xi −
∑
j

ãij
di

xj)

where γ is a weight parameter between the current vertex xi and the features of its neighbors xj , di

is the degree of xi, and y is the smoothed Laplacian. This smoothing Laplacian has a matrix form:

Y = x− γD̃
−1

L̃x

= (IN−D̃
−1

L̃)x (γ = 1)

= (IN−D̃
−1

(D̃− Ã))x (L̃ = D̃− Ã)

= D̃
−1Ãx.

The above formula is random walk normalized Laplacian as a counterpart of symmetric nor-
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malized Laplacian. Therefore, GCN is nothing but a first-order Laplacian smoothing that averages

neighbors of each vertex. By utilizing graph topology, attributes of the nodes, and graph convo-

lutional networks, the resulting framework can be utilized for security evaluation in the hardware

security domain.

Restricted Boltzmann Machine (RBM)

Another problem that needs to be addressed to evaluate the security is that the GCNs require

the graph data to be of fixed size or the same structure; however, it is often not feasible in the

real world. Two different versions of obfuscated netlist may differ in length, and thus to address

this challenge, the work studied the Boltzmann Machines (BM) representation. BMs [71–76] were

initially introduced as a general approach for learning an arbitrary probability distribution over

binary vectors. Variants of BM include other kinds of variables, such as the restricted Boltzmann

machine [77] that have long ago surpassed the popularity of the original BMs. Invented under the

name harmonium, Restricted Boltzmann Machines (RBM) are some of the most common building

blocks of deep probabilistic models. In particular, the graph structure of the RBM is a bipartite

graph with no connection permitted between any variable in the observed layer between any units in

the underlying layer. Like the general Boltzmann machine, the RBM is an energy-based model with

the joint probability distribution specified by its energy function. The energy-based model provides

an aggregation methodology for representing a graph of dynamic size. This energy aggregation

using the RBM is used with the GCN in SEPIANN to deal with the varying size of the circuit.

7.2. SEPIANN: CNF-NET and De-obfuscation Time Prediction

To address the challenges of the SEPIANN, the work proposes a CNF-NET based on clause-literal

bipartite graph operators. Figure 7.2 shows an overview of the proposed CNF-NET. The architecture

of CNF-NET is described here.

7.2.1 CNF Bipartite Graph Representation

First, the converted CNF of an obfuscated circuit is modeled as an undirected and signed bipartite

graph, which uses one node type for clauses and the other for literals. This CNF bipartite graph is
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Figure 7.2. Architecture of CNF-NET: 1) extract CNF graph from obfuscated circuit; 2) derive multiple
order information from graph representation (section 7.2.1); 3) apply energy kernel to aggregate intermediate
features (section 7.2.2); 4) utilize distribution layer on graph properties to sample runtime.

exemplified in Figure 7.3 and defined as G(E, V literal, V clause), where V literal, V clause indicate the

set of literal and clause nodes, respectively. The sign of an edge between a literal l and a clause c

denotes whether l is negated or not in c. That means the edge value is: (1) (positively connected)

if l is in c, and l is positive; (2) -1 (negatively connected) if l is in c, and l is negative, i.e., l; (3) 0

(disconnected) if l is not in c.

Based on the formulation discussed above, one can denote the ith CNF bipartite graph as

Gi(Ei, V
literal
i , V clause

i ), with adjacency matrix Ai ∈ RNi×Ni , where Ni = |V l
i | + |V c

i | is the total

number of literal and clause nodes. Typically, the CNFs for different obfuscations i, j of a given

circuit (or across different circuits) are different, leading to Ai ̸= Aj given i ̸= j.

The CNF bipartite graph provides a comprehensive representation of the CNF without infor-

mation loss, thus enabling the end-to-end framework to automatically learn the critical underlying

features. Moreover, based on the experiments, the CNF bipartite graph and its multi-order version

have been powerful representations in capturing additional meanings/information from the CNF

representation of an obfuscated IP. Representation in the CNF bipartite graph allows us to study

the effect of previous stages’/logical gate(s) on a given gate. Multi-order expands the number of

stages to be considered to represent the circuit effectively. The following section illustrates how

to extract the 1st and 2nd-order information, which can be further extended to extract higher-

order information. This multi-order information can be used as an immediate representation of an

obfuscated IC to explore the patterns associated with the de-obfuscation runtime estimation.

1st and 2nd-order CNF bipartite graph information: The 1st order information is the connectivity

between literals and clause, i.e., adjacency matrix A. This helps in capturing the effect of a gate

on its children node. Considering the CNF presented in Figure 7.3, 1st order information, i.e., A, is

shown on the left side of Figure 7.4, which only has zero values for the diagonal blocks and non-zero
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Figure 7.3. An example showing the conversion from CNF to 1st order graph.

Figure 7.4. A simple example showing (left): adjacency matrix of 1st order graph: A, which models the
example in Figure 7.3; and (right): adjacency matrix of 2nd order graph: A2. There are 5 clauses: clause
C1 = {¬A,B}, clause C2 = {¬x1, B,D}, clause C3 = {x1, C,D}, clause C4 = {x2, C}, clause C5 = {¬x3, D}.

values for other parts, each of which is an incident matrix. Since the incidence matrix is symmetric

in A, only one blue block is sufficient to represent A without any information loss, leading to

significant computational savings. The 2nd order graph holds 2nd order connectivity, which can be

obtained by taking a square of the adjacency matrix, i.e., A2. The resulting matrix A2 indicates

the connections only between the same type of nodes. As shown on the right side of Figure 7.4,

the values in the diagonal blocks are all zero, which is precisely the reverse case of the 1st order

adjacency matrix. Therefore, one can refrain from adding the A2 into the model as the resulting

value is redundant. Section 7.2.2 discusses a method that fully utilizes this property to reduce the

computation cost dramatically. Note that AN is implemented by matrix power: AN =
∏N A.

Odd and even order information: The 3rd order adjacency matrix, i.e., A3, indicates the con-

nectivity with 3rd order neighbors. The representation also has the non-zero values in the diagonal
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blocks while zeros elsewhere (similar to the 1st order adjacency matrix, shown on the left of Figure

7.4). Similarly, the 4th order adjacency matrix is similar to the 2nd order adjacency matrix. This

means that a significant amount of computations can be saved when considering higher-order graph

information in the same way as discussed in the case of 1st and 2nd-order graphs. There is a trade-

off between efficiency and order number, as more orders indicate more information at the cost of

additional computational resources. Based on the experimental evaluations and the obtained per-

formances, it is evident that 1st and 2nd order information is sufficient to achieve a reasonably good

performance in this work. However, multiple order information could be extracted and embedded

for further complex problems. The way to utilize this multi-order information is described below.

7.2.2 Energy-based Operators for CNF Graph

The energy model is used to encode the CNF bipartite graph such that the representation of

varying-size CNF bipartite graphs can have a unified dimension for the machine learning technique.

Once the multi-order information from the CNF is extracted, the multi-order information is used

effectively to learn the mapping from the CNF bipartite graph to the non-deterministic runtime

using the proposed framework. However, this task cannot be effectively handled by existing graph

classification or regression models because of the input and output’s unique properties. Unlike

the conventional graphs, the correlation among the neighboring logical nodes in the CNF bipartite

graph does not indicate “proximity” or “similarity.” Instead, it indicates the logical relation with

signed edges in a variable-size bipartite graph. A novel graph encoder layer has been proposed by

leveraging and extending the energy of the Restricted Boltzmann Machines (RBM) to address this

unique issue. The following subsections expand on the CNF graph’a building process and propose

a representation method for obfuscated IP using CNF-based graph.

RBMs for CNF Bipartite Graphs

By innovatively treating the literals and clauses as visible and hidden units, the CNF bipartite

graph can be modeled by RBM. The energy of the original RBM is defined as:

E(v, h) = − a⊤v︸︷︷︸
visible

− b⊤h︸︷︷︸
hidden

− v⊤Wh︸ ︷︷ ︸
interaction

, (7.1)
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Where v and h are the values of visible and hidden nodes, respectively, and a, b, W are weights

to learn. The first term in equation (7.1) is the energy of visible nodes, the second term is the

energy of hidden nodes, and the last term is the interaction energy between visible and hidden

nodes. Inspired by the two group modeling, v and h represent a literal and a clause in the CNF

bipartite graph, respectively. Similarly, an energy form is defined for characterizing a CNF: E =

−α · Eliteral − β · Eclause − γ · Einteraction, where Eliteral, Eclause, and Einteraction are the energies

of literals, clauses, and their connections, while α, β, γ are the weights of them, respectively. Since

SAT runtime estimation over CNF is a highly nonlinear process, the traditional linear function has

been generalized into a new nonlinear version:

E = fΦ(Eliteral, Eclause, Einteraction), (7.2)

where fΦ is a neural network function controlled by parameter Φ. The following section provides

the study of bipartite connection energy Einteraction followed by Eliteral, Eclause. Based on RBM,

Einteraction is defined as a linear function of literals:

Einteraction =
∑
m

∑
n

vmwm,nhn, (7.3)

where vm is a literal and hn is a clause in one single CNF bipartite graph Gi. However, Einteraction

is not necessarily a sum function. Therefore, Einteraction is obtained by generalizing convolutional

graph layers into bipartite graphs.

While most of the existing work in graph deep learning operators focuses on graphs with fixed

topology, in this work, the size and topologies of the CNF bipartite graph can vary across different

instances dramatically. To solve this problem, a kernel for aggregating interaction information in

one graph is designed. Specifically, a d-dimensional vector of pseudo coordinates is associated with

[v, h]. Moreover, this work defines a weighting kernel ZΘ(·, ·), so that for one CNF bipartite graph

Gi, it can obtain:

Einteraction =
∑
m

∑
n

ZΘ(E(vm, hn)) · E(vm, hn), (7.4)

where ZΘ(·) projects the [v, h] into a new value as the weight of [v, h], and E(vm, hn) represents the

interaction or edge value between vm and hn, which can be 1, -1 or 0. Similarly, Eliteral, Eclause are
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generalized as:

Eliteral =
∑
m

Ent(vm) · vm, and Eclause =
∑
n

Ent(hn) · hn, (7.5)

where v and h indicate attributes of literal and clause, respectively, while Ent denotes entropy

function. Therefore, the final model for CNF is:

E = fΦ(
∑
m

Ent(vm) · vm,
∑
n

Ent(hn) · hn,

∑
m

∑
n

Ent(E(vm, hn)) · E(vm, hn)),

(7.6)

Energy Model Multi-Order Graph Operators

Equation (7.6) above does not consider the sign of the edges between literals and clauses. Hence,

positive and negative information is encoded separately: E = {E+, E−}. The corresponding inci-

dence matrix INC ∈ R|V literal|×|V clause| is utilized to capture the sign information. In the following

section, the normalization is performed to ensure that each instance is comparable and that the

learning of the model is not affected by the varying scale of the designs.

Normalized positive and negative edge distribution in clause scope (NPNC): Count positive and

negative edges for each clause, and consider the normalization of both positive and negative counts:

{ c+literal(i)

c+literal(i) + c−literal(i)

}|V literal|−1

i=0
,
{ c−literal(i)

c+literal(i) + c−literal(i)

}|V literal|−1

i=0

which can be obtained by column-wise summation on positive values only and negative only of

incidence matrix.

Normalized positive and negative edge distribution in literal scope (NPNL): Similar to the

NPNC, positive and negative degrees are counted for each literal, and the normalization per literal

is taken. There will be 2|V literal| number of features:

{ c+clause(i)

c+clause(i) + c−clause(i)

}|V clause|−1

i=0
,
{ c−clause(i)

c+clause(i) + c−clause(i)

}|V clause|−1

i=0
(7.7)

which can be obtained by row-wise summation on positive value only and negative value only of

the incidence matrix.
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The 2nd order of the graph with adjacency matrix A2 denotes the literal-wise and clause-wise

mutual information, which corresponds to the top left and bottom right block, respectively, in the

right subfigure of Figure 7.4. Their physical meaning is:

• Literal-wise: frequency of two literals appearing in the same clause.

• Clause-wise: frequency of two clauses sharing the same literal.

Intuitively, whether two literals share the same clause or not is more pivotal than how many times

they share. The model leverages the second-order graph information to emphasize this vital trait

further and reduce the computational complexity. For example, literal A and B are not connected

in the first-order graph (Figure 7.3), but they are linked in the second-order of the graph since A

and B share the same clause C1 = {¬A,B}. This can be obtained by setting all non-zero values of

A2 to 1. The “0/1” value means if two literals appear in the same clause at least once. Therefore,

Equation (7.5) is applied to calculate the energy of this graph, and two feature maps are built for

the model. Once the circuit transformation is performed, using energy calculation, the CNF-NET

predicts the runtime for SAT-attack.

7.3. Summarizing the SEPIANN

To address the challenges discussed earlier, this work proposed the SEPIANN framework. This sec-

tion summarizes the working of the entire framework. The input to the framework is the obfuscated

netlist and label (de-obfuscation time using SAT-attack). This work considered the SAT-attack

proposed in [11]. However, any other SAT-attack(s) for de-obfuscation runtime evaluation could be

used. For the security evaluation using SEPIANN, SAT runtime is used as the metric for represent-

ing SAT resiliency. This process of generating and collecting data, i.e., the netlist and corresponding

de-obfuscation time for a given attack, is termed data acquisition. This generated data is further

used for training the ML model. Before this data is fed to the model, it requires pre-processing,

which involves transformation to CNF and creating the adjacency matrix shown in Figure 7.2.

Thus, the challenge of netlist modeling, which consists of representing the CNF in an intact and

structured way for further processing, is addressed in the proposed SEPIANN. The conversion to

CNF captures the vital information of the circuit, i.e., the type of gates and the circuit’s topology.
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Algorithm 3: CNF-NET

1 CNF-NET (G, Ti);

Input : G = {G1,G2, ...,GN}, the real runtime Ti for instance Gi

Output: a neural network function with parameters Φ, Θ, parameters of fully connected

layers(τ), and distribution parameter σ

2 Transform from obfuscated circuit Gi into CNF representation CNFi and derive bipartite

graph; // Data Preprocessing

3 Extract adjacency matrix A from this bipartite graph and calculate power series

(multi-scale) : {A1,A2, ...,AN};

4 θ = {Θ,Φ, τ, µ, σ};

5 Initialize θ with standard Gaussian;

6 while δ convergences do // update CNF-NET

7 Apply the energy kernel on literals and clauses;

8 Apply the energy kernel on the connection between literals and clauses (Eq. 7.4) ;

9 Calculate the overall energy E and then feed E into fully connected layer (Eq. 7.2);

10 Get a intermediate predicted value t, and apply distribution et as predicted time;

11 Calculate residues δ = T − et;

12 Compute derivatives to update parameters: θ ← θ + α∇θδ, where α is learning rate;

13 end

The data is sampled and divided into training and testing sets. The ML uses the training set for

training the model, while the testing set is used for model validation. After data is generated, the

proposed SEPIANN leverages a CNF-NETwork (CNF-NET) to overcome the challenge of learning

the mapping of CNF along with distribution kernel to model the non-deterministic behavior of

SAT-attack. CNF-NET is the proposed cardinal part of the SEPIANN framework, which builds

the model for predicting the de-obfuscation runtime. Algorithm 3 presents the pseudo-code of the

CNF-NET in the proposed SEPIANN framework. Initially, the obfuscated circuit is represented as

an adjacency matrix (line 2). The intermediate output of this operation is the CNF bipartite graph,

as introduced in Section 7.2.1.

Following this, multiple order information is extracted from the CNF bipartite graph. By lever-
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aging the bipartite graph’s property, the computational cost is significantly reduced without loss

of generality. The first two orders of the CNF bipartite graph are considered in this model, and

it is easy to extend to any order. Using the odd order information from the CNF bipartite graph

results in an incidence matrix, which is less than 25% of the adjacency matrix of the CNF bipartite

graph. However, one can also use even order information and save space and computation cost as

discussed in Section 7.2.1. This step significantly reduces the computational cost compared with

typical graph neural networks. This strategy improves the efficiency of the SEPIANN such that it

can be scaled for larger circuits and for large de-obfuscation time estimation.

After extracting the raw features of the CNF bipartite graph, an energy-based [78] kernel, an

innate part of CNF-NET, is proposed in Section 7.2.2, used to model the dynamic-size data. This

new kernel calculates the energy, which identifies the complexity of the corresponding CNF bipartite

graph. This assists the SEPIANN in modeling the non-deterministic property of SAT runtime to

produce the final output. To handle the dynamic size of CNF, the energy concept from RBMs is

employed to aggregate literal and clause distribution into the fixed dimension. The energy aggre-

gation is treated as a features of the targeted obfuscated IC. A distribution kernel is applied in

the last layer to model the runtime variance for different instances. This distribution kernel can be

replaced with other suitable distributions, such as the logarithmic or exponential kernel.

The final model generated using this process can be deployed to predict the runtime for the

newly generated netlist. Algorithm 1 presents a case study using an exponential distribution. Then

specific parameter optimization (i.e., Adam) of DNN is employed. Based on the built model, during

the inference, the de-obfuscation time for a given obfuscation scheme and a given SAT-attack (or

its variant) can be predicted instantaneously.

Using SEPIANN, the prediction takes less than a few seconds, enabling us to perform DSE

more efficiently and enabling the defender to deploy better obfuscation. By utilizing graph neural

networks, the proposed model derives determinant features from raw input in a supervised fashion.

To perform the runtime prediction for different attacks, one must repeat the data acquisition step

and include that information in the training data for inference. The proposed SEPIANN framework

is obfuscation and attack agnostic.
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7.4. Evaluation of SEPIANN

The input to the framework is the obfuscated netlist and label (de-obfuscation time using SAT-

attack). This work considered the SAT-attack proposed in [11] for security validation. However,

any other derivatives of SAT-attack(s) for de-obfuscation runtime evaluation could be used. The

data for initial training of the model is obfuscated netlist and time taken by the SAT-attack to

reverse engineer them. Various benchmarks shown in Table 8.1 are used for generating obfuscated

netlist, and they are further obfuscated with LUT-based obfuscation discussed in this work [4]. The

size of LUT and obfuscation coverage is varied for generating the initial dataset for training. The

total dataset consists of roughly 21000 obfuscated instances. Before this data is fed to the model, it

requires pre-processing, which involves transformation to CNF and creating the adjacency matrix.

The data is sampled and divided into 80% training and 20% testing sets.

To demonstrate the effectiveness of the SEPIANN for security validation, the Pearson and

Spearman coefficients are used. Positive scores of 1 indicate the network’s capacity to predict the

trend of runtime. While another metric, i.e., Mean Squared Error (SSE), shows the prediction error.

For calculating the MSE scores, the log of the runtime is used. From the results, it is evident that

the MSE doesn’t go beyond ∼3, meaning that the reported runtime has at max the delta of +/-

1000 seconds (15 minutes) while predicting for larger benchmarks. From table 7.1, it is evident that

for all the benchmarks, MSE is low, and Pearson and Spearman have a positive correlation.

Table 7.1. Performance of Design Security Analyzer

Benchmarks MSE Pearson Spearman Benchmarks MSE Pearson Spearman

B01 1.241 0.95 0.97 DES Area 2.81 0.93 0.91
B02 1.26 0.91 0.89 DES Perf 2.38 0.92 0.92
B04 1.30 0.93 0.90 SHA-3 2.54 0.94 0.91
B12 1.8 0.95 0.93 8-bit CPU 3.1 0.91 0.90
AES 2.76 0.94 0.88 32-bit RISC-V 3.30 0.90 0.89

The obtained results also show the effectiveness of the proposed framework in considering and

utilizing the graph features. This advantage confirms that the proposed model can learn the features

that impact the security metric and mimic the runtime trend. Overall, the performance of CNF-

NET is stable across different benchmarks while exhibiting excellent performance in predicting and
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capturing the runtime trend. The higher correlation and smaller MSE for the benchmarks like AES,

DES, and RISC-V show the scalability of the CNF-NET for larger IP designs.

Figure 7.5. Prediction performance on B04 and B12 benchmarks: x-axis is various obfuscated instances and
y-axis denotes the predicted runtime compared with real runtime (label of data).

The performance of the SEPIANN is evaluated against several state-of-the-art regression models

such as Linear Regression (LR), LASSO [79], Epsilon-Support Vector Regression (SVR). Besides, a

neural network for predicting runtime work, DistNet [80], is also employed for comparison. Finally,

from the state-of-the-art graph deep learning models, DCNN [66] is also chosen for comparison since

it can learn graph embedding directly on a set of dynamic-size graphs.

General regression models cannot directly learn patterns on graph data; hence, several predefined

features such as the size of the clause, size of literal, the ratio of the clause, and literal are utilized

for predicting the runtime. Figure 7.5 shows the performance of various methods on two benchmark,

i.e., B04 and B12 for illustration purposes. It is evident that the SEPIANN is able to capture the

trend of runtime across various obfuscated IPs efficiently.

As per the discussion earlier, there are many moving targets such as obfuscation coverage, netlist

topology, and obfuscation scheme, to name a few, that contribute to the de-obfuscation time of the

SAT attack. However, using SEPIANN, one can model the effect of various netlist topology and

obfuscation scheme. This work further conducts an experiment to demonstrate the effectiveness of

SEPIANN for runtime prediction against different gate placement policies, i.e., (LC_NoGen and

73



Figure 7.6. Prediction performance on samples from benchmark under different obfuscation policies
(LC_NoGen and Random), here X-axis denotes obfuscation percentages while Y-axis demonstrate the de-
obfuscation time in seconds.

Random). As shown in Figure 7.6, the predicted values (solid red lines) well characterize the trend

of test instances (blue bars) throughout different obfuscation policies. Thus, one can predict the

outcome of the obfuscation scheme for various benchmarks without the need to simulate the attack.

Figure 7.7. Real runtime compared with prediction time on y-axis and different obfuscated instances on
x-axis for benchmarks B04 and B12 respectively.

As discussed, another goal of the SEPIANN is to evaluate security instantaneously, accurately,

and efficiently. As shown in Figure 7.7, the prediction time of CNF-NET is compared with the

real attacker’s runtime (i.e., running the SAT-based attack). CNF-NET took a small amount of

time (1.0187 seconds on average) after training for predicting the de-obfuscation runtime. This
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indicates that with SEPIANN, one can predict security, which in this case is SAT runtime in almost

one second as compared to an attack simulation, which can take an uncertain amount of time (to

de-obfuscate the design).

Having established the methodology to instantaneously validate the security, in the following

section, the work establishes a integration tool flow for adding LUT-based obfuscation in the design.
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Chapter 8

Integration of Tool Flow

Following the discussion on validating the security, this chapter proposes the methodology for in-

tegrating obfuscation and validating the functionality. This step ensures the smooth integration of

the obfuscation in the traditional Physical Design flow. In the proposed technique, LUTs for ob-

fuscation are inserted [4] after the completion of the initial synthesis stage. The proposed strategy

only requires predictable and straightforward modifications to the design test methodology. There-

fore, the obfuscated design can be moved through the remaining stages of the physical design flow

without any additional accommodations while allowing the ability to validate the functionality and

security of the design.

Most obfuscation works have presented their results from experimental results. However, this

is the first work that validates the claims of LUT-based obfuscation by fabricating the test IC.

Additionally, this work also presents a case study for LUT-based obfuscation using both volatile

and non-volatile versions. The case study also involves the effect of the obfuscation key sizes on

security and design overheads.

In the following sections, the Physical Design flow for LUT-based obfuscation is introduced,

followed by the discussion on the functional validation of the IP, and concludes with the results

obtained from the fabricated obfuscated IP. As an outcome of the research covered in this chapter,

this work has contributed to [4, 25, 26, 51].
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Figure 8.1. Iterative-based Security-driven Design Flow for PPA optimization with optimal security solution.

8.1. ASIC Iterative Security-driven Design Flow

This section provides an overview of the proposed methodology used to obfuscate the design using

the proposed LUT-based obfuscation.

For the integration of the STT-LUT, the LUT is defined as the Verilog module, which contains

the instances of MTJ or NV latch cell and the RTL-level code of an input multiplexer. When

the gates are identified for the obfuscation, they are replaced with the proposed novel LUT block,

which is nothing but the new netlist with NV-LUTs containing the RTL code of the multiplexer.

Upon insertion of these blocks into the netlist, the firm macros containing the RTL of multiplexers

are re-synthesized and optimized for optimizing the overheads. The iterative-based design flow is

introduced to optimize the design overheads further while inserting the novel LUT in the security

design.

Figure 8.1 illustrates the proposed concept of the iterative security-driven ASIC design flow for

overhead optimization1. The main aim of this iterative flow is to find optimal gates for obfuscation

such that overheads are mitigated. As per the conclusions drawn in the previous chapter, the LUT’s

size is the most influential factor for SAT-resiliency, and even for a random gate selection, LUT-

1gray part in Figure 8.1 is iterative to obtain the best result.
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obfuscation results in SAT timeout, as seen in Figure 4.6. This gives the user flexibility to choose

gates, as they do not have to abide by a particular obfuscation rule or policy. Even if the gate-

selection policy (LC_NoGen) discussed in this work is used for finding the gates for the obfuscation,

the proposed flow is non-disruptive to the industrial design flow. In the proposed flow, the netlist

is passed as the input along.

Any High-level synthesis tools or RTL-syntheses tools can be used to generate the netlist after

the insertion of the novel LUT. In house developed Python scripts are used as a wrapper around

industrial tools such as Synopsys DC, PrimeTime, and VCS to automate the flow. The given flow

supports the netlist generated with any library and does not restrict the designer in library support.

The script first creates a Verilog Module Object (VMO) data structure of the standard cell library,

which is then used to define the synthesized netlist abstractly. The result is a complete map of the

flattened netlist, defined as interconnected VMO instances.

The script reads a configuration file, which contains the list of the gates to be replaced and

the configuration of the LUT to generate the Configurable Logic Elements (CLE). The gates to

be replaced are given by the LC_NoGen, or by the user. The configuration of a given LUT is

defined by the number of inputs to both the primary and preceding LUT. The generated CLE is

added to the standard cell VMO collection and replaces the VMO instances of the gates in the

top layer selected for the replacement. The program creates and runs an exhaustive test bench to

extract the individual CLE configuration keys in parallel using a logic simulator (i.e., VCS). The

output configuration keys are then chained together to form the top-level configuration key. The

script finally generates RTL blocks that are inserted within the synthesized netlist, and after a final

synthesis stage, the synthesized obfuscated design is provided along with its configuration key.

There are two modes of LUT insertion supported by the script. The first insertion mode assumes

that a separate IP block will be included in the design to hold all configuration keys (i.e., an e-

fuse, MTJ, or ReRAM macro). In this mode, configuration bits will not be scanned into the LUTs

directly instead into the macro, holding the configuration key in a non-volatile state. In this manner,

the configuration key being driven by the non-volatile IP are simply top-level inputs to the LUT

module. While in the second mode, the LUTs contain the non-volatile bit-cells (including read/write

circuitry). In this mode, LUTs have a dedicated scan chain to shift in configuration bits to write

to the NV bit-cells.
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If the addition of obfuscation modules violates the constraint of the design (i.e., slack violation),

then the iterative flow can be leveraged. The iterative flow reports the type of violation. For the

timing violation, the LC_NoGen finds new sets of gates such that they are not on the critical

path of the design, and timing violations can be removed. For area and power, the iterative design

flow requires altering the number and the size of the LUT before creating a new design revision.

The gate selection, replacement, and re-synthesis processes are iteratively performed until the PPA

constraints, and the security constraints are satisfied. For validating the security instantaneously,

SEPIANN can be leveraged. This flow primarily benefits from design-space exploration (DSE) and

adds additional overhead in performing the DSE but guarantees optimal design configuration. For

the circuit benchmarks obfuscated in this work, at most 4 levels of iteration were sufficient to meet

security and design constraints. By excluding the gates on the critical paths, the LC_NoGen finds

the gates for obfuscation while eliminating the timing overheads.

To verify logical equivalency between the original target benchmark and the obfuscated version,

the Synopsys Formality tool is used, which is used for formal verification. Moreover, to avoid missing

functional bugs introduced by altering the gate-level netlist, the test benches are also designed such

that the logical function provided by the target gates is exercised. In the case of the LUT-mapped

design, an initialization task is required to load the configuration key. Once loaded, the original

testbench can be run. This initialization-dependent testbench is run after re-synthesis as part of

the constraint checking phase depicted in Figure 8.1.

Once the timing, area, and power constraints are met, the traditional ASIC design flow can be

utilized before sending the design to the foundry. A dummy LUT configuration key with the test

data vector could be provided for the third-party vendor to test the IP. Once the fabricated IP is

returned in the trusted regime, one can load the correct configuration key using the scan chain.

8.2. Configuring the LUT Unit Obfuscation Cell

The LUT unit obfuscation cell configuration depends on the logical function the cell is replacing

and the input selection. To program the cell, two methods may be used. A dedicated scan chain is

used if Configuration Bit (CB)s are to be loaded in externally. CBs may be driven internally from a

non-volatile macro cell to bolster security. In this configuration, CBs may be directly driven to their

79



Figure 8.2. Synopsys VCS pre-silicon simulation for verification of obfuscated IP. The simulations include
validation of a) original design, b) low, c) medium, and d) high obfuscated versions.

respective LUTs, and programming is performed in the manner required by the non-volatile macro

cell. A Python script converts the netlist to a graph of module objects, determines uncorrelated

dummy input options, then randomly selects a number of them depending on the obfuscation needs.

Then the script replaces the target cells with LUT unit obfuscation cells and connects them to the

input list. Synopsys VCS logic simulator is used to generate logical CBs, and the Python script

combines them with Python-generated input obfuscation CBs to create the configuration bit-stream.

8.3. Validating Obfuscated Designs

A target design is considered in a “locked” state if the proper configuration is not applied. After

configuration, the target design will return to its specified functionality. A short programming task

is completed, followed by the original design testbench to validate that an obfuscated design is

functional. This task may be appended to the initial block of a Hardware Verification Language

(HVL) testbench for pre-silicon validation. In the case of a scan chain, this task drives the input

signals to the CB scan chain, as shown in Figure 8.2. If a non-volatile cell macro is used, the task

drives the configuration logic of the macro cell, and upon configuration, the CB contents are driven

directly to the CB input of the respective LUTs.

In this work, four different versions of the IP are fabricated, with varying obfuscation coverage,

to study the effect of obfuscation on security and overhead. To select the appropriate benchmark,

address_0 and address_1 are set to 00, 01, 10, or 11 for selecting the test chip’s original, low,

medium, and high obfuscated versions.
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8.4. Design and Implementation of Test Chip

After validating the security and the functionality of the obfuscated design, one must perform the

post-fabrication functional verification. This experiment demonstrate the process of validating the

functionality of the obfuscated design while verifying the claims of LUT-based obfuscation [4] using

the data obtained post-fabrication rather than relying on the results obtained from simulation. The

functionality test conducted here ensures that the design performs functional when the correct key

is applied and enters obfuscated state when the wrong key is used.

(a) GDSII of chip1 (left) and chip2 (right) (b) Die photo of chip1 (left) and chip2 (right)

Figure 8.3. (a) GDSII and (b) Die of chip1 and chip2

Two test chips, as shown in Figure 8.3, were implemented and fabricated in TSMC 65nm tech-

nology to validate the LUT-based logic locking method. Chip1 contains three popular encryption

engines (AES, DES, and SHA-3), a custom ALU, and other benchmarks. Chip2 contains three

designs: a logic-locked 32-bit RISC-V microprocessor core and its original counterpart. All bench-

marks incorporated in both chips are shown in Table 8.1. LUT-based obfuscation is evaluated by

implementing the LUTs in volatile and non-volatile forms while sweeping the length of obfuscation

key to provide readers with qualitative and quantitative results. Figure 8.4a shows the architecture

of chip1, which contains 10 different benchmarks, each of which has four versions - original, low

obfuscated, medium obfuscated, and high obfuscated. The key length in the low, medium, and high

obfuscated designs is 288, 576, and 3168 bits, respectively. A single LUT8 + 8×LUT2 is used in

low obfuscation, while medium obfuscation contains 2, and high obfuscation contains 11 LUT8 +

8×LUT2. LUT8 + 8×LUT2 refers to the Large LUT of size 8, whose 8 inputs are driven by the

small LUT of size 2, as described in [4].

A General-Purpose IO (GPIO) block selects one of the designs connected to the top-level IO

pins for testing. To demonstrate different key storage methods, the key bits for low and medium

obfuscated designs are stored in non-volatile e-fuse registers, whereas those of the high obfuscated
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(a) Chip1 architecture (b) Chip2 architecture

Figure 8.4. Overall Architecture for chip1 (a) and chip2 in (b)

Table 8.1. Benchmarks included in test chip

Source Benchmark Description Total # of cells

OpenCore

DES_area DES optimized for area 2,085
DES_perf DES optimized for performance 15,851

AES AES cipher 10,787
SHA-3 SHA-3 Encryption core (Keccak 512) 13,702

ITC’99

B01 FSM that compares serial flows 34
B02 FSM that recognizes BCD numbers 26
B04 Compute min and max 310
B12 1-player game (guess a sequence) 2656

Custom ALU Multiplier/Adder/AND 136
OpenCores CPU 8-bit microprocessor 1620
PicoRV32 CPU 32-bit RISC-V microprocessor 6892
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designs are stored in volatile SRAM registers. E-fuse was chosen as it was the only embedded

non-volatile memory available in the target fabrication technology; however, non-volatile LUTs

can be made of any embedded non-volatile technology and are preferable with enhanced security

against reverse engineering. This work also studied SRAM storage as an alternative low-cost option

for fabricating LUT-based obfuscation as SRAM storage is readily available in standard CMOS.

However, it requires external and secure non-volatile key storage. Through this experiment, the

intention is to show that proposed LUT-based obfuscation can be utilized with different memory

storage technologies.

8.5. Post-Silicon Validation of LUT-based Logic-Locked Cores

8.5.1 Post-silicon Test Fixture

After fabrication, the post-silicon functional validation is performed on each benchmark using an

Intel Aria 10 development kit as a test instrument. A Printed Circuit Board (PCB) with a socket

for the chip to allow simple interfacing between the Field Programmable Gate Array (FPGA) and

the test IC was developed as part of this work. The test structure is configured in the manner shown

in Figure 8.5. This configuration is deployed to hardware, as shown in Figure 8.6.

Design 
Under Test

DUT)

FPGA (Arria 10)

Inputs to DUT

Outputs from DUT

chip_clk

VDD I/O VDD Core

Controller

Input Pattern 
Memory

Comparator

A
dd

re
ss

Output Pattern 
Memory

clk_tester

start_test

Clock 
Divider

sram_key_load
fuse_key_load

SCLK

FCLK

address0

address1

11

Figure 8.5. Diagram of FPGA-based Silicon validation setup for validating the functionality of obfuscated
IP post fabrication.
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For testing, the test vector input/response patterns are cached inside the FPGA and are selected

via an address line from the controller. After a test vector is applied, the response is checked with

the expected result. Test vectors are derived from the original test benches to validate the individual

benchmarks. Both SRAM and e-fuse-based LUTs are validated, and the controller module on the

FPGA performs all configuration programming before applying test patterns in the same manner

as pre-silicon validation. Through this small-scale experiment, this work shows how post-silicon

validation can be achieved.

Figure 8.6. Test setup using the Intel Aria 10 development kit.

The video for testing and validating the obfuscated IP can be found here https://youtu.be/

syhJz5Xk9_c and https://youtu.be/2cTZ36tpFK4.

8.5.2 Post-silicon validation results

All benchmarks are tested using test vectors generated from the original test bench of each design.

To select the benchmark variant, control signals are added. Keys are loaded upon pressing a push-

button switch. The LEDs have been assigned on the FPGA test setup to identify failure or the

success of the testing process. To show that the test bench properly stimulates the obfuscated cells,

incorrect keys are also programmed for each benchmark, and failure is observed for improperly

programmed design.

Following the functionality validation results, this work have also validated the claim of LUT-
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Figure 8.7. Study of (a) Standby power and (b) area for various obfuscation levels and benchmark for LUT-
based obfuscation.

based obfuscation [4]. Figure 8.7 shows the standby power and area footprint of the fabricated

designs. All 3 variants, i.e. (Low, Medium, and high), result in SAT timeout. These SAT-resilient

benchmarks have an average of 7% area overhead for low obfuscated configuration while 14% and

262% for medium and high obfuscation. Standby power scales dramatically as the security level is

improved with 33.93%, 45.93%, and 903.92% in the low, medium, and high cases, respectively. It

must be noted that all versions of the design can resist the SAT-attack.

On the other hand, the LUT-based obfuscation incurs only 0.03%, 3.53%, and 17.82% average

active power overheads for low, medium, and high obfuscations, respectively. These results validate

that standby power and area dominate PPA cost as LUT unit cell size is increased. The timing

information is not included as the part of the results as all designs maintained their original target

frequency of 200 MHz for the RISC-V core and 100MHz for all other benchmarks.
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Chapter 9

Conclusion & Future Work

9.1. Conclusion

This work studied logic locking using reconfigurable logic, i.e., Lookup Table, and performed a

comprehensive analysis of LUT-based obfuscation. The initial experimental results showed that the

size of LUT is the most influential and straightforward factor in meeting SAT resiliency. However, it

introduces significant and unacceptable PPA overheads. To mitigate the overhead due to the large

LUT sizes, the work introduces a customized LUT that breaks the trade-off between security and

design overheads. The introduced obfuscation using the proposed custom LUT reduces the design

overhead to an acceptable range without compromising the SAT resiliency. After obfuscation using

the proposed primitive, the obtained overhead results indicate that the proposed obfuscation is an

effective and scalable solution against today’s state-of-the-art attacks.

For providing maximum resiliency against zero-day attacks, the work proposes the idea of

‘defense-in-depth’ using a Power Side-Channel Attack (P-SCA) resilient block, which uses emerging

reconfigurable devices and logic locking. The resulting primitive blocks traditional and ML-assisted

P-SCA while eliminating the threat of SAT-attack. The obfuscation proposed in this work is also

shown to be resilient against various other attacks such as removal/structural attack, HackTest,

Scan, and Shift attack, to name a few.

The work expands on the methodology of integrating and validating the LUT-based obfuscation.

Security Evaluation Platform for Hardware Logic obfuscation using Intelligent Artificial Neural

Net (SEPIANN) is proposed for security validation. This system-level framework instantaneously
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estimates the obfuscation strength in attack resiliency time, eliminating the need to simulate de-

obfuscation using the SAT attack. The cardinal part of the SEPIANN framework is a conjunctive

normal form (CNF)-based bipartite graph network (CNF-NET), a novel convolutional graph-based

neural network. CNF-NET leverages the conjunctive normal form (CNF)-based bipartite graph to

characterize the SAT problem’s complexity and incorporates the energy-based layers to encode an

obfuscated IC to predict the runtime distribution. This end-to-end framework thus automatically

extracts the determinant features to predict de-obfuscation runtime for state-of-the-art SAT attacks.

The ability to instantaneously assess the security of design allows the user to perform design-

space-exploration for the optimal design of the IP. The proposed flow is non-disruptive to the current

physical design flow for obfuscation using LUT. The easier integration of the proposed design flow

uplifts the chances of realizing the LUT-based obfuscation as a promising candidate for restoring

trust in silicon.

Finally, nonvolatile internal (e-fuse) and volatile external (SRAM) LUT key configuration-based

designs were fabricated to demonstrate the practical implementation of LUT-based obfuscation.
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9.3. Future Work

The LUT-based obfuscation can offer a ‘defense-in-depth’ solution. However, the integration of the

LUTs in the design is performed at the very end of the design process. A new methodology can

be devised where the process of securing the IP can be modified such that IPs are designed since

the beginning of their life cycle to provide resiliency against state-of-the-art attacks. This ideology

follows the quote ‘security should be baked in, not bolted on.’ Such an approach can allow the

designer to optimize obfuscation’s security and overhead impact.

To allow for the integration of security at the earlier stages of IP development, one should be

able to identify and map parts of the design to LUT and quantify its effect on security and design.

Moreover, the ideology of software and hardware co-design can be utilized to provide multi-layer

security.

While multi-layered security is the only way to fly, the primitive proposed in this work heavily

relies on the MRAM. The MRAM technology is still in its development phases, and future work

can focus on finding alternative solutions that can make the proposed primitive industry-ready.
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Appendix

Automated Tool for LUT-based Obfuscation

To thwart the prevailing RE attempts on the IP, LUT-based obfuscation is discussed. LUT-based

renders superior attack resiliency against the state-of-the-art SAT-attack and various other attacks

as discussed in Section 5.3.3 and Section 6.3.3. In this section, fully automated Graphical User

Interface (GUI) that automates the process of obfuscating a given netlist and gives the user the

ability to simulate the SAT-attack on the obfuscated netlist is introduced.

The GUI flow is effectively captured in Figure 11.1. The input to the GUI (Module 1) is the

RTL or synthesized Netlist, which needs to be obfuscated. In the case of the synthesized netlist

given as an input, the user needs to provide the path to the Standard Cell Library, which was used

for synthesizing the netlist. This tool converts the given netlist into the flattened netlist using the

Synopsys GTECH library for further processing. The tool uses this flattened netlist throughout the

entire flow of the obfuscation.

The tool offers the user a choice to obfuscate a netlist using Low-output Corruptibility with

no back-to-back LUT placement, also known as LC_NoGen as discussed in Section 4.3.3 (Module

2), or the user can modify the config file and provide a custom list of selected gates. When the

user wants to leverage the tool to find the set of gates for obfuscation, the user must specify the

number of gates that needs to be obfuscated along with the size of the LUT that should be used for

obfuscation. After providing all user inputs (i.e., Netlist from Module 1, obfuscation coverage, size

of LUT), the tool finds the gates for obfuscation. The module also generates the config file and the

bench files needed for the SAT simulation.

For the gate selection process, the in-house developed python script (Module 2) generates the

graph of the flattened netlist before it is passed as an input to the function that selects the gates
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Figure 11.1. Automated LUT-based Obfuscation Flow

according to the replacement policies. The Low output corruptibility with no back-to-back gate

replacement, i.e., LC_NoGen policy bundled in the tool increases efforts and the number of itera-

tions needed to find the correct key when the SAT-attack is performed. The ILP model is used to

minimize the output corruptibility, which optimally selects the gate. The python script generates

the two bench files, i.e., oracle and the obfuscated bench files, along with the config file, which will

be utilized later for the backend process. The obfuscated bench file has the gates replaced using the

customized LUT, where the user specifies the size of the large LUT. Additional 2-input LUTs are

added to the input of the large LUT to render the customized LUT block. The customized LUT

further aggravates the level of security offered by the LUT while having minimal design overheads

compared to the traditional LUT-based obfuscation. The bench files can simulate the SAT-attack

in Module 3.

Before synthesizing the final netlist, the user can leverage the SAT-attack simulation (Module 3).

SAT-attack requires the oracle netlist and obfuscated netlist in bench format without the presence

of the sequential elements. The SAT-attack also has a specific limitation in terms of gates that

can be simulated; however, the bench format generated by the in-built script (Module 2) generates

the bench format that can be simulated directly using the SAT-attack. The SAT-attack has been
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bundled as part of the GUI and is compatible with the pre-existing SAT-attack frameworks. Instead

of simulation SAT-attack, SEPIANN model can also be leveraged. The input to the SEPIANN can

be the obfuscated bench file generated by the tool.

After the SAT simulation, if the obfuscated bench file satisfies the security constraints, the

GUI can be leveraged to render the final obfuscated netlist. The flattened netlist that was earlier

generated in Module 1 and the list of the gates to be obfuscated is passed for generating the final

obfuscated netlist.

The backend script (Module 4) requires the flattened netlist and the config file for obfuscating the

netlist. The script first creates the Verilog Module Object (VMO) data structure of the standard cell

library and further maps it to the flattened netlist, which results in the VMO instance. The script

reads the configuration file, which contains the list of the gates to be replaced and the configuration

of the LUT to generate the Configurable Logic Elements (CLE). The generated CLE is added to the

standard cell VMO collection and replaces the VMO instances of the gates in the top layer selected

for the replacement.

The program creates and runs an exhaustive test bench to extract the individual CLE configu-

ration keys in parallel using a logic simulator (i.e., VCS). The output configuration keys are then

chained together to form the top-level configuration key. The in-house script generates the mix-style

RTL that outputs the VMO instances as a gate-level netlist, while the CLE elements are written

out as an RTL file. The script for the last time calls the synthesizer to synthesize the mixed RTL

file into a netlist. The output of this Module 4 is a Design Key and an Obfuscated Netlist.

To allow for the SAT simulation post synthesizing, we have added another set of a script (Module

5) that generates the bench file (oracle and obfuscated) from the synthesized verilog file. The script

reads the key-value generated from the VCS and assigns the key values in the bench format such

that it remains in a valid format to simulate the SAT-attack. SAT-attack post-synthesis might

be required, as the synthesis tools change the netlist to a certain degree for optimizing the PPA

overheads. The output of this module is the configuration key and the netlist (.v format), along

with the bench files for SAT simulations. The flexibility in the input format and the functionality

offered by the automated tool flow is shown in Figure 11.2. The GUI has four sections/modules

that carry out the various tasks and give the user various options.

The key specification of the automated tool flow is summarized below.
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Figure 11.2. Flexibility and Functionality offered by the Customized LUT-obfuscation GUI Tool

1. Synthesizing the RTL, mix-style RTL, or synthesized netlist to standard flatten netlist using

the SAED 32nm library and create the bench file for SAT-simulation.

2. Finding the gates by leveraging various replacement policy. The tool also provides the over-

riding methods where the user can provide gates for generating the obfuscated netlist.

3. The tool offers full control over obfuscation coverage and LUT size used for obfuscation.

4. SAT simulation can be performed, and the tool handles all necessary bench file conversion.

The tool enables the user to leverage SEPIANN framework for finding the SAT-resiliency

instantly.

Figure 11.3. Synthesize Module (Module 1)

Figure 11.3 shows the GUI interface with Four different modules and an about page. It provides

the user with a search box to find the relative paths and run that individual module. Each module
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Figure 11.4. Gate Replacement Module (Module 2)

Figure 11.5. SAT-Attack Module (Module 3)

Figure 11.6. Final Obfuscation Module (Module 4)
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Figure 11.7. SAT-attack post obfuscation (Module 5)

Figure 11.8. About Page
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provides its usage and the files that are required. The modular design of the GUI gives the user

to understand the obfuscation process and repeat the experiment if necessary, without the need to

start from the beginning.
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Acronyms

BL Bit Line.

SE Sense Enable.

SE Scan Enable.

WE Write Enable.

ASIC Application-Specific Integrated Circuit.

ATPG Automatic Test Generation Pattern.

BM Boltzmann Machines.

CA Civilian Acquisition.

CAD Computer-aided design.

CB Configuration Bit.

CC conflict clauses.

CDCL Conflict Driven Clause Learning.

CEP Common Evaluation Platform.

CLE Configurable Logic Elements.

CM Contract Manufacturers.

CMOS Complementary Metal-Oxide Semiconductor.

CNF conjunctive normal form.

CNN Convolutional Neural Network.
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DCNN Diffusion Convolutional Neural Network.

DIP Distinguishing Inputs.

DIVC Distinguishing Input Validation Circuit.

DL Deep Learning.

DNN Deep Neural Network.

DoD Department of Defense.

DPLL Davis-Putnam-Logemann-Loveland.

DSE Design Space Exploration.

EDA Electronic Design Automation.

FIB focused ion beam.

FPGA Field-Programmable Gate Array.

GCN Graph Convolutional Network.

GUI Graphical User Interface.

HD Hamming Distance.

IC Integrated Circuit.

ILP Integer Linear Programming.

IP Intellectual Property.

KDC Key-Differentiating Circuit.

KPC Key-Programmable Circuit.

KPG key-programmable.

LCAC Learned-Clause Avoidance Circuit.

LCO Logical Cone Output.
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LOCK & ROLL Deep-Learning Power Side-Channel Attack Mitigation using Emerging

Reconfigurable Devices and Logic Locking.

LUT Look-Up Table.

MC Monte Carlo.

MESO Magneto-Electric Spin-Orbit.

ML Machine Learning.

MOS Metal-Oxide Semiconductor.

MRAM Magnetoresistive Random-Access Memory.

MRAM-LUT Magnetoresistive Random-Access Memory based Look-up Table.

MTJ Magnetic Tunnel Junction.

OCM Original Chip Manufacturer.

OEM Original Equipment Manufacturers.

P-SCA Power Side-Channel Attack.

PG Pass Transistors.

PO primary output.

PPA Power-Performance-Area.

PV Process Variation.

RBF Radial Basis Function.

RBM Restricted Boltzmann Machines.

RE Read Enable.

RE Reverse Engineering.

RTL Register-Transfer Level.

SAT Satisfiability.

SAT-attack Boolean Satisfiability Attack.
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SCK Set of Candidate Keys.

SCKVC Validation Circuit for Set of Candidate Keys.

SEM scanning electron microscopy.

SEPIANN Security Evaluation Platform for Hardware Logic Obfuscation using

Intelligent Artificial Neural Net.

SFLL Stripped Functionality Logic Locking.

SMT Satisfiability Module Theories.

SOM Scan-Enable Obfuscation Mechanism.

SRAM Static Random Access Memory.

SSE Mean Squared Error.

STT Spin Transfer Torque.

STT-LUT Spin Transfer Torque-based Look-up Table.

STT-MRAM Spin Transfer Torque Magnetoresistive Random Access Memory.

SVK Set of Valid Keys.

SVM Support Vector Machine.

SyM-LUT Symmetric Magnetoresistive Random-Access Memory-based Look-up

Table.

TG Transmission Gates.

US United States.

VMO Verilog Module Object.
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