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Abstract 

Inferring Genetic Co-dependencies To Identify New Vulnerabilities In Cancer 

Thomas J Matthew 

 

 
Translation of cancer genomic data into cancer therapies and companion 

diagnostics remains a primary challenge in personalized medicine.  Much of this 

challenge is due to the difficulty of identifying genetic co-dependencies that lead to 

clinically actionable drug targets.  Targeting many of the known essential gene 

products are not always selectively efficacious because these targets may be 

common to both malignant and benign cells.  However, essential genes that are 

associated with particular genomic alterations in cancer cells, like those from 

synthetic lethality, can potentially provide a source of tumor-specific drug targets.   

 

To help aid novel drug discovery, I developed a computational approach called 

CLOvE, a multi-omic approach that identifies co-dependencies in pairs of genes. 

These co-dependencies are inferred from context-dependent changes in 

expression, where CLOvE assigns high scores to those genes with the greatest 

compensatory change in expression.  These scores may suggest synthetic lethal 

interactions, which may uncover clinically actionable essential genes.  These 

methods were developed in CCLE cell lines and validated with RNAi and CRISPR 

viability data.  CLOvE identifies meaningful expression changes, assigns high scores  
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to known essentials, reveals known synthetic lethal connections, and implicates 

many possible new connections.  This approach could provide a tool to accelerate 

both target discovery and biomarker discovery, to develop drugs suitable for a 

specific cancer, and identify and stratify patients who may benefit from these 

treatments. 
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To Grace.  
May you live in a world without cancer. 
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CHAPTER ​1 
Motivation: Beginning in Thymoma 

 

 

 

 

 

Summary 

● Served as an analyst for the Thymoma Analysis Working Group as part of 

The Cancer Genome Atlas (TCGA) consortium, June 2015 to October 2017 

● Used PARADIGM and TumorMap to investigate and define the molecular 

subtypes of Thymic Epithelial Tumors (TETs) 

● Co-Authored the largest study of TETs to date ​(Radovich et al. 2018)   

“The Integrated Genomic Landscape of Thymic Epithelial Tumors” 

● Identified molecular basis for aggressiveness in Thymic Carcinomas 

● Used an integrative approach to find similarities between molecular tumor 

state and World Health Organization subtypes of TETs 

● Informed my interest in network biology and differential analysis 
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Introduction 

Thymoma is the most common form of thymic epithelial tumors, or TETs.  TETs are 

the most rare form of malignancies, affecting almost exclusively adults (with an 

average of 70 years of age) TETs have an incidence of just 0.15 cases in 100,000 

person-years in the United States ​(Engels 2010)​.  The standard care for TETs is 

surgical resection of the thymus.  Prognosis for most TETs is relatively good.  In 

advanced cases of TETs, the median 5-year conditional survival is 69%, but 

patients have an 81% 5-year survival if they live to 10 years post-diagnosis ​(E. Kim 

and Thomas 2015; Scorsetti et al. 2016)​.   Despite these encouraging survival rates, 

the International Thymic Malignancy Group Interest Group has maintained that all 

TETs have malignant potential, and should not be considered benign ​(Travis et al. 

2015)​.  Common malignancy routes are shown in Figure 1. More malignant cases 

were shown to cause a 3-fold increase in the risk of metastasis due to some 

pre-existing and unknown etiologic factor ​(Engels and Pfeiffer 2003; Souadjian, 

Silverstein, and Titus 1968)​.   What is known, however, is the clear link between TET 

and autoimmune diseases. 
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Figure 1. Process of Invasion of Thymoma. Reproduced from “Staging system of thymoma” 
(Masaoka 2010)​. 
 

TETs are neoplasms of the anterior mediastinum, which is centered in the upper 

thorax, posterior to the sternum, anterior to the heart, between the thoracic inlet and 

the diaphragm ​(Wychulis et al. 1971)​.  The anterior mediastinum contains 

predominantly fat, lymph nodes, and the thymus gland ​(Strollo, Rosado de 

Christenson, and Jett 1997)​.  The thymus is a component of the immune system 

where its primary function is to host the maturation of T-cells, which function to 

determine and control the immune response ​(J. F. Miller 1961)​.  Due to the central 

role of the thymus in the immune system, TETs may often be associated with 

autoimmune diseases, in particular thymoma-associated myasthenia gravis (TAMG) 

(Castleman 1966)​.  TAMG is an autoimmune syndrome caused by inappropriate 

binding of antibodies to signaling proteins in the neuromuscular junctions, leading to 

failure of neuromuscular transmission ​(Conti-Fine, Milani, and Kaminski 2006)​.  This 

leads to weakness and ultimately failure of control in the ocular, bulbar, and limb 
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muscles, controlling sight, speech, and movement, respectively.  Risk of both 

TAMG and degree of malignancy is described in the classification of TETs. 

 

TETs are classified into both stages of advancement and histological subgroups. 

The Masaoka system refined earlier attempts by Bergh and Wilkins and Castleman 

to stage thymomas, using more surgically-relevant criteria to accurately distinguish 

pleural and pericardial invasions ​(Bergh et al. 1978; Wilkins and Castleman 1979)​. 

The Masaoka-Koga system stages TETs from one (I) to four (IV), in increasing order 

of metastasis, summarized in TABLE  ​(Detterbeck et al. 2011; Masaoka et al. 1981)​.   

 

Stage I  Macroscopically completely encapsulated and microscopically no capsular 
invasion 

Stage II  1. Macroscopic invasion into surrounding fatty tissue or mediastinal pleura, 
or 
2. Microscopic invasion into capsule 

Stage III  Macroscopic invasion into neighboring organs, i.e., pericardium, great 
vessels, or lung 

Stage Iva  Pleural or pericardial dissemination 

Stage IVb  Lymphogenous or hematogenous metastasis 

Table 1. Criteria of Clinical Stages.  Adapted from Masaoka et al. ​(Masaoka et al. 1981)​. 

 

Besides staging, TETs can be separated into two main groups, thymic carcinoma 

(TC) and thymoma, which is the largest of the two ​(Engels 2010)​.  Further 

classification of TETs into subgroups is defined by histology according to the World 

Health Organization (WHO) histological classification system developed for thymic 

epithelium ​(Okumura et al. 2002)​.  Thymoma is separated into those with a spindle 
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or ovoid shape (type A), dendritic or “plump” shape resembling epithelium (type B), 

further separated into B1, B2, and B3 that reflect increasing epithelioid appearance 

and degree of lymphocyte infiltration, and finally thymic carcinoma (type C) 

(Okumura et al. 2002)​.  Part of the TCGA investigation was to establish some 

genomic underpinnings to these different subclasses of thymoma across multiple 

molecular platforms 

 

 

 

A 

 

A tumor comprising a homogenous population of neoplastic epithelial cells 
with spindle/oval shape, lacking nuclear atypia, and accompanied by few or 
no non-neoplastic lymphocytes 

AB  A tumor in which foci with the features of type A thymoma are admixed with 
foci rich in lymphocytes: the segregation of two patterns can be sharp or 
indistinct 

B1  A tumor that resembles the normal functional thymus in that it combines large 
expanses with an appearance practically indistinguishable from that of normal 
thymic cortex with areas resembling thymic medulla 

B2  A tumor in which the neoplastic epithelial component appears as scattered 
plump cells with vesicular nuclei and distinct nucleoli among a heavy 
population of lymphocytes; perivascular spaces are common 

B3  A tumor comprising predominantly epithelial cells with a round or polygonal 
shape and exhibiting mild atypia admixed with a minor component of 
lymphocytes; foci of squamous metaplasia and perivascular spaces are 
common 

Table 2.  Definitions of WHO Classification of Thymic Epithelial Tumors. Adapted from 
Okumura et al.  ​(Okumura et al. 2002)​. 
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Previous attempts to define molecular classes of TETs focus on separate platforms 

and do not take an integrative approach of multiple platforms.  In 2002, using an 

analysis of microarrays, a positive correlation was identified between c-JUN, a 

component of the proto-oncogenic transcription factor AP-1, and Masaoka stage in 

thymoma ​(H. Sasaki et al. 2002)​.  Another group extended this study to include a 

significance test of an additional 50 genes ​(Lee et al. 2007)​.  Later in 2009, another 

effort investigated the molecular profiles of thymoma and thymic carcinoma, 

demonstrating TCs were subject to increased copy aberrations (both amplifications 

and deletions) and somatic mutations in KIT, a receptor tyrosine kinase and 

proto-oncogene ​(Girard et al. 2009)​.  Associations between distinct clusters of RNA 

expression and histologic classification, as well as pathway enrichment analysis that 

revealed an expression signature associated with recurrence and metastasis ​(Badve 

et al. 2012)​.  This pathway analysis led to the development DecisionDx-Thymoma, a 

nine-gene expression profile test used to predict metastasis risk in thymoma 

patients ​(Gökmen-Polar et al. 2013)​.  Exome sequencing performed across 28 

patients revealed some high-frequency somatic mutations in type A and AB, which 

include GTF2I, general transcription factor II ​(Petrini et al. 2014)​.  Overexpression of 

microRNA (miRNA) cluster on chromosome 19 associated with PI3K/AKT activation 

was also identified in type A and type AB TETs ​(Radovich et al. 2016)​. Many other 

attempts to characterize thymoma led to the identification of genes and gene 

signatures pertaining to anti-apoptosis, histone modification, DNA methylation, and 

chromatin remodelling ​(Bellissimo et al. 2017; Huang et al. 2013; Petrini et al. 2014; 

Y. Wang et al. 2014)​. 
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Despite the body of work to analyze TETs, there have been few instances of more 

comprehensive analysis.  This may be to blame for lack of clinical success in 

targeted treatments for TETs ​(Chen, Gharwan, and Thomas 2014)​.   To this end, the 

goal of the TCGA-THYM was to present a deeply comprehensive, integrative, 

multi-platform approach to uncover the genomic landscape of these tumors. 

 

 

Data 

Clinical and pathological characteristics for 117 patient samples was collected and 

evaluated according to WHO criteria.  A total of 105 patients had thymoma, 10, 48, 

12, 25, and 10 having type A, AB, B1, B2, and B3 respectively.  Of the remaining 

patients, 10 had TC and 2 had micronodular thymoma (MNT).  32 patients (27%) 

had TAMG, with another 7 (6%) having some other form of autoimmune disease, 

diagnosed at the median age of 52 and 62 years, respectively.  Histological 

subtypes A and B were associated with TAMG (p=0.00015), but not with with TC 

(p=0.0015).  Upon a media follow-up time of 38.3 month, 10 patients had recurrent 

malignancies, and  8 patients died. Recurring malignancies presented as pleural 

involvement in 80% of those cases. Higher rates of progression free survival was 

most strongly associated with early Masaoka stage (p=0.000375), but also with 

lower T stage and non-Hispanic ethnicity.  Overall survival improved most with 
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types A and B1-2 (p=0.008), but also younger age of diagnosis and higher tumor 

lymphocyte component. 

 

Figure 2. Landscape of DNA Mutation in TETs.  Reproduced from “The Integrated Genomic 
Landscape of Thymic Epithelial Tumors” ​(Radovich et al. 2018)​. 
 

First, whole exome sequencing was performed and subsequently analyzed with 

MutSig2CV to identify any recurrent somatic mutations ​(Lawrence et al. 2013)​. 

HRAS, TP53, NRAS, and GTF2I were the top four most significantly mutated genes, 

with GTF2I having the highest mutational frequency (39%) in type A and AB 

thymomas (Figure 2).  This analysis also revealed that TETs have the lowest 

mutational burden of any adult cancer of the 21 other cancers profiled by TCGA, 

besides the childhood cancers of rhabdomyosarcoma (RHAB) and medulloblastoma 

(MED).  Somatic copy number alterations (sCNAs) were observed only in the 

minority tumors with few recurrent mutations (in B2, B3, and TC), and were rarely 
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seen in all other majority of other samples. RNAseq was also performed, which 

revealed no fusion events, either viral or bacterial components. 

 

 

 

Figure 3. Tumor Mutational Burden of THYM compared to the rest of TCGA samples. 
Reproduced from “The Integrated Genomic Landscape of Thymic Epithelial Tumors” 
(Radovich et al. 2018)​. 
 

Given the goal of investigating thymoma with a multi-platform approach, gathering 

data from all possible platforms for these 117 patients was the utmost importance. 

Data from platforms including sCNV, mRNA (messenger RNA), miRNA, DNA 

methylation, and reverse phase protein array (RPPA) were collected.  Pavana Anur, 

Katherine Hoadley, and myself were responsible for an integrated analysis of these 

platforms.  In particular, I was responsible for analytically and visually representing 

the key molecular differences among the TET subtypes using two tools developed 
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in the Stuart Lab of UC Santa Cruz: PARADIGM and TumorMap.  The culmination of 

this effort would ultimately become Figure 3 of the paper. 

 

Methods 

Like other previous efforts to define subtypes, subtyping TETs was difficult. The 

complexity and subtlety of histological structure, as well as the subjective nature of 

such exercises, leads to inconsistencies in the field.  Using an integrative approach 

was necessary to understand more objectively molecular differences between these 

subtypes. 

 

To this end, we adopted a cluster-of-cluster assignments approach described 

previously by the TCGA ​(Cancer Genome Atlas Network 2012)​. Using the centroid of 

each cluster formed in each particular platform, we calculated a correlation matrix 

that related each sample to each centroid from each platform.  Subsequently, the R 

package ConsensusClusterPlus_1.24.01 was used to calculate a hierarchical 

clustering with pearson correlation distance over 1000 iterations and a 90% 

sampling rate. consensus clustering of samples from this weighted matrix. 

Consensus clustering allowed integration of the disparate platforms and the ability 

to identify relatedness between and across subtypes 
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PARADIGM is a computational model that identifies significantly altered pathways 

from an integrated analysis of copy number and gene expression of a patient or 

sample ​(Vaske et al. 2010)​. This integrated analysis is performed in the context of 

pathway entities. These entities comprise biological molecules, small molecules, 

complexes, or abstract concepts that represent cellular processes such as 

apoptosis or endothelial cell migration ​(Schaefer et al. 2009)​. The PARADIGM 

graphical model represents such entities as nodes and generates an integrated 

pathway activity (IPA) for each entity of a patient. A gene IPA score, for example, 

refers to the final active protein inferred from copy number, expression, and 

signaling from other genes in the pathway Figure 4. Here we use PARADIGM to 

generate IPA scores for each of the 117 TET patients. 

 

 

Figure 4. Overview of the Paradigm Method.  Reproduced from Vaske et al. ​(Vaske et al. 
2010)​. 
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We clustered PARADIGM IPAs using the UCSC consensus clustering RData script 

v.1.0.0 available though ​medbook.ucsc.edu​. These PARADIGM inputs were merged 

real IPAs to be clustered by samples (patients). The clustering conditions used a 

k-means algorithm, average final linkage, and 500 repetitions with a k-max of 10. 

Clustered heatmaps of patient IPAs were graphed with attribute color assignments. 

As a quality check, we computed a silhouette score for each k to measure 

goodness of fit for each patient in a cluster. The silhouette score used Euclidian 

distance to compute both similarity of a patient with other patients in a cluster, and 

separation of patients in different clusters ​(Rousseeuw 1987)​. To perform 

significance testing on cluster attribute enrichment, we applied Benjamini-Hochberg 

p value correction (BH FDR) on Fisher Exact p values to compute False Discovery 

Rate (FDR). This produced a ranked list of clinical attributes based on p value per 

cluster, annotated with FDR. 

We also employed a complementary approach known as TumorMap, which 

generates a map of samples for interactive ​exploration​, ​statistical analysis​, and data 

visualization using the Google Maps API (application program interface). Samples 

are arranged on a hexagonal grid based on similarity: samples with similar genomic 

profiles are placed near each other in the map, whereas dissimilar samples are 

placed further away. Clusters of samples that appear as “islands” in the map 

indicate groups of samples that share genomic features.  
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Figure 5. Tumor Map Construction.  Reproduced from Yulia Newton ​(Newton 2016)​. 
 

TumorMap is a tool that generates a map of cancer samples for interactive 

exploration, statistical analysis, and data overlay visualization. These visualizations, 

which employ the Google Maps API, arrange samples on a hexagonal 

2-dimensional grid based on a sample-by-sample similarity matrix. Samples can be 

annotated according to different attributes to allow the user to explore new 

associations in clinical data. Maps can be from a single platform or multiple merged 

platforms. This later approach uses Bivariate Standardization similarity space 

Transformation (BST), adapted from Faith et al’s CLR, to integrate multiple similarity 

matrices into a single matrix of sample-sample associations ​(Faith et al. 2007)​. Here 

we use an integrative approach to reveal the relationship between the molecular and 

clinical attributes of TET patients based on a multi-platform co-cluster analysis. 

We first created a sparse sample-by-sample similarity matrix from each of the 

platform clusters. This similarity matrix comprises the top 10 highest ranked 
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Spearman correlations per sample as implemented by the sklearn.metrics.pairwise 

submodule ​(Pedregosa et al. 2011)​. We performed this rank on each of the platform 

clusters, and combined them with the BST pipeline. The BST pipeline averages Z 

scores of each sample-sample similarity between platform matrices, resulting in a 

single similarity matrix. This single matrix was inputted to the physics-based layout 

engine DrL, an open source version of VxOrd created by Sandia National Labs 

(Martin et al. 2011)​. DrL treats sample similarities as spring constants and searches 

for a spatial configuration among samples that minimizes system tension. This 

ultimate spatial configuration was mapped in 2D using TumorMap v0.5, using an 

interactive session on medbook.ucsc.edu, and colored samples by clinical attribute. 

 

Results 

PARADIGM pathway analysis, TumorMap clustering, and the complementary COCA 

approach yielded several key associations between histological subtype and 

molecular landscape.  COCA revealed 4 cluster groups that associated with WHO 

subtypes (p<0.0005): group 1 with type B, group 2 with TC, group 3 with type AB, 

and group 4 with a mix of both A and AB, as shown in FIGURE-INTEGRATIVE. The 

results of the TumorMap analysis agreed with the results of COCA, revealing four 

distinct molecular clusters that were highly correlated with WHO histological 

subtype and COCA classifications. 
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We performed single-platform analyses as well as multi-platform PARADIGM 

analysis, employing copy number and RNA expression.  PARADIGM allowed is to 

identify unique pathways and genomic hallmarks of each cluster, and overlaid these 

onto the TumorMap to differentiate the clusters FIGURE-INTEGRATIVE-D. 

Single-platform analyses demonstrated that type A and AB tumors are 

characterized by GTF2I mutations and overexpression of a large miRNA cluster on 

chromosome 19q13.4, while type C tumors are characterized by loss of 

chromosome 16q. Examination of the PARADIGM findings revealed upregulation of 

tumor suppression (p53) and downregulation of oncogenes (MYC/Max, MYB, and 

FOXM1) in the A-like cluster (Figure 3D). The opposite is seen in the AB-, B-, and 

C-like clusters where tumor suppression is downregulated (p53, and TAp73a), and 

oncogenes are upregulated (MYC/Max, MYB, FOXM1, and E2F1) (Figure 3D). These 

results agree with the known increased clinical aggressiveness observed in type B 

and TC TETs and their overall poorer overall survival compared to other subtypes. 

 

Further analysis characterized tumors with GTF2I mutations, which is summarized in 

Figure 6. These mutations were found to be exclusively mutated at the codon 

L424H in type A and 70% of type B tumors. GTF2I L424H mutations were not 

observed in more than 10,000 TCGA tumor samples.  Analysis of both RPPA and 

expression, GTF2I mutants were found to be strongly associated with pathways 

pertaining to cell morphogenesis, tyrosine kinase signaling, and WNT signalling 

pathways.  These agree with previous observations from a knockout experiment in 

mice of the family member GTF2IRD1 ​(Corley et al. 2016)​. Conversely, GTF2I 
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mutants saw less pathway activity in terms of apoptosis, cell cycle, DNA damage, 

androgen signalling, RAS and mTOR signalling.  GTF2I mutants also did not have a 

strong clinical associating with MG. 

 

Autoimmunity is strongly associated with TETs and no other TCGA cancer type, 

with MG occuring in 30% of TET cases ​(Zekeridou, McKeon, and Lennon 2016)​. 

Given the significant link between thymomas and autoimmunity, the group focused 

on the integrated molecular features of TAMG.  Figures relevant to TAMG related 

analyses are shown in Figure 7. As expected from previous observations, reported 

cases of MG were higher with type B thymoma, and in cases of aneuploidy ​(Cufi et 

al. 2014; Zettl et al. 2000)​.  The link between aneuploidy and TAMG has been 

thought to be just due to its association with type B.  However, the association 

depends more on the aneuploidy than developing type B thymoma, as MG was 

detected before thymoma.  TAMG samples also had increased transcript levels of 

previously described auto-antigens that react with AChR, titn, and RYR receptors 

(Dalmau et al. 1992)​.  These include CHRNA1 (3.0 fold increase), and 

RYR1/RYR2/RYR3 (5.5 fold increase), and NEF, a midsize filament gene, which 

contains sequences that express epitopes for AChR and titin ​(Marx et al. 1992; 

Masuda et al. 2012; Mygland et al. 1994; Schultz et al. 1999)​. 

 

Thymic carcinomas were the last single group that was analyzed.  Though they 

represent less than 10% TET cases, they lead to a more difficult course of treatment 

and poorer prognoses on average.  Therefore, it was necessary to go beyond the 

16  

https://paperpile.com/c/h8jl71/YXoR
https://paperpile.com/c/h8jl71/SybD+Og9v
https://paperpile.com/c/h8jl71/SybD+Og9v
https://paperpile.com/c/h8jl71/XNOQ
https://paperpile.com/c/h8jl71/kQEr+nQiM+56NW+aep6
https://paperpile.com/c/h8jl71/kQEr+nQiM+56NW+aep6


 

traditional histological definition, which notes that TC appears more similar to 

epithelial tumors,  and explore their molecular landscape.  These findings are 

summarized on Figure 8.  An analysis of sCNA in TC showed a chromosomal arm 

loss at chromosome 16q in 8 of the 10 samples, in line with previous sCNA 

investigations of TC ​(Zettl et al. 2000)​. Chromosome 16q is known to harbor tumor 

suppressors including, CYLD, CBFB, CDH1, CDH11, CTCF, and ZFHX3, which may 

explain its more aggressive rates of metastasis.  In addition, TC also had the highest 

TMB of all tested TET subtypes, 19% enrichment of indels vs 5% for all other tested 

TETs, and microsatellite instability leading to loss of the DNA repair gene MLH1. 
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Figure 6. Integrative Unsupervised Clustering of Subtypes from Five Data Platforms. 
Reproduced from “The Integrated Genomic Landscape of Thymic Epithelial Tumors” 
(Radovich et al. 2018)​. 
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Figure 7. Patterns of sCNA and gene expression Associated with Autoimmunity. 
Reproduced from “The Integrated Genomic Landscape of Thymic Epithelial Tumors” 
(Radovich et al. 2018)​. 
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 Figure 8. Genomic Analysis of Thymic Carcinomas.   Reproduced from “The Integrated 
Genomic Landscape of Thymic Epithelial Tumors” ​(Radovich et al. 2018)​. 
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Conclusion 

TETs are a rare and heterogeneous form of cancer.  In this investigation, TET 

subtypes, previously defined by histology, have now been defined based on the 

integrated molecular landscape of thymoma.  This effort represents the largest 

study to date on cancers of the thymus, comprising 5 data platforms on 117 patient 

samples.  Despite inconsistencies in histological studies, we have uncovered part of 

the molecular basis that defines these observed subtypes.  In the area of TAMG, we 

found expression of certain self-reacting antigens can now be added to the 

hallmarks of autoimmunity in TETs.  We also further showed the very specific 

mutations of GTF2I that are unique to thymoma that may lead to future 

advancements in the diagnosis and treatment of TETs.    
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CHAPTER ​2 
Background of Synthetic Lethality:  

From Bench, to CPU, to Clinic 
 

 

 

 

Summary 

● Cancer represents an unmet medical need worldwide, necessitating new 

understanding and approaches to targeted therapy 

● Cancer is inherently chaotic, and thus inherently vulnerable with the concept 

of Synthetic Lethality (SL) 

● SL was first screened for at the bench, later inferred computationally, and 

now being introduced to the clinic 

● Inferring more SL gene pairs is a worthwhile approach in identifying new 

therapeutic targets in cancer 
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Unmet Need 

The world is becoming a safer place, and yet cancer is becoming more prevalent. 

In 2018, cancer was responsible for 1 out of every 6 deaths worldwide, claiming 9.6 

millions lives ​(Bray et al. 2018)​.  Socioeconomic factors at play contribute to this 

paradox. Whether it is attributed to rising income, increased access to education, 

favorable fiscal policy, improved human rights conditions, or dozens of other 

factors, the human population is getting older.  By 2100, people over the age of 60 

years will comprise 33% of the worldwide population, increased from just 10% in 

the year 2000 ​(Lutz, Sanderson, and Scherbov 2008; Desa 2015)​.  As the average 

age increases, so does the prevalence of cancer: 18.1 million new cases in 2018 is 

projected to grow 24 million cases in 2035 ​(Bray et al. 2018; Ferlay et al. 2015; 

Pilleron et al. 2019)​. Cancer is both a public health concern, as well as a serious 

economic concern. 

 

It is estimated that in 2014, cancer had a total economic impact of US$1.16 trillion 

(Stewart, Wild, and Others 2014)​.  The most direct cost can be seen in the cost of 

medicinal therapies to treat cancer, with over $150 billion spent in 2018, according 

to the IQVIA Global Oncology Trends Report ​(IQVIA 2019)​.  These medicines play a 

major role in the management of cancer, and as cancer becomes more prevalent 

worldwide, these medicines will fall into greater demand.  To reach a “grand 
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convergence” in health, new treatments must be developed to meet this demand, 

but not with a one-size-fits-all approach ​(Boyle et al. 2015; Jamison et al. 2013)​. 

 

Personalized medicine is the practice of assigning clinical intervention based on the 

specific needs of a patient and their disease.  Though standards of care are 

becoming more patient-specific,  current diagnosis and treatment campaigns adopt 

a more one-size-fits all approach along general stratum of cancer types defined by 

histology ​(Sudhakar 2009)​.  

 

Cancer patients, or those who may develop cancer, stand to reap the greatest 

benefit from personalized medicine since generally-defined tumor strata do not 

reflect the molecular heterogeneity of cancer.  This rough understanding of cancer 

classification was reflected in first-generation chemotherapeutics. These past 

oncology interventions hinged on potent but nonspecific therapies that were 

generally cytotoxic and known for their radical side-effects.  Drugs like 

generally-acting DNA-damaging drugs, topoisomerase inhibitors, and mitotic 

inhibitors have both narrow therapeutic windows and high therapeutic indices, 

defined by a narrow dose range and a low lethal-to-effective dose ratio, respectively 

(Kaelin 2005)​.  While effective in destroying tumor cells,  non-specific pharmacology 

also leads to the destruction of healthy cells, promoting harmful or potentially fatal 

off-target effects in the patient taking these drugs. 
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Fortunately, a greater understanding of cancer genomics has informed a new age of 

targeted drug discovery.  Support for the effectiveness of essential gene targeted 

therapies in oncology is exemplified in the clinical success of HER2 drugs, 

especially trastuzumab and lapatinib, and in the role of biomarkers on the 

development of drugs and companion diagnostics ​(Cheng, Koch, and Wu 2012)​. 

However, many other forms of cancer lack such specific treatment and therefore 

represent an unmet medical need.  To address this need, it is crucial to understand 

the evolutionary basis for tumor heterogeneity and the essential genes associated 

with poor clinical prognoses. 

 

 

Evolution & Vulnerability 

Cancer is a disease characterized by dynamic perturbations of the genome 

(Jerby-Arnon et al. 2014)​.  These perturbations can exist in pathways and processes 

common among both healthy and cancerous cells.  However, unlike in cancerous 

cells, normal cells exhibit lower rates of spontaneous mutations because changes 

can be adequately detected and addressed by the mechanisms that protect 

genomic fidelity.  Those mechanisms provide a selective pressure on the cancer 

cells, leading to an increased rate of mutation sufficient for tumorigenesis.  It is this 

rate of mutation and the nature of the surviving mutations that cause the emergence 

of cancer subclones that come to underlie tumor heterogeneity and further separate 
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the cancer genome from host genome.  To understand the potential drivers of 

tumorigenesis, it is important to recognize cancer as a genomic disease marked by 

the evolutionary cycles of replication, mutation, and selection. 

 

More than 6 decades ago, pathological analysis of tumors showed stepwise 

progression through increasingly malignant states ​(Greene and Newton 1948)​.  This 

demonstrated that cancer is a dynamic disease, with greater incidence of genetic 

instability in tumors attributed to sequential selection of more aggressive forms of 

cancer ​(Nowell 1976)​.  The experimental process of transforming human cells to 

models of cancer demonstrate the multitude of genetic steps required for 

tumorigenesis: initiation of proliferation, down-regulation of apoptosis, and 

activation of angiogenesis ​(Bergers, Hanahan, and Coussens 1998)​.  These iterative 

and stepwise changes at the genotypic level, conferring advantage at the 

phenotypic level, support the comparison between cancer evolution and Darwinian 

evolution ​(Foulds 1954; D. Hanahan and Weinberg 2000)​.  Seeing common 

phenotypic trends in cancer evolution allowed researchers to standardize classes of 

biological pathways unique to cancer. 
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Figure 9. Therapeutic Targeting and the Hallmarks of Cancer. The new hallmarks of cancer                           
are shown with examples illustrating their druggability. Genome instability and mutation                     
(dark blue), shown with the treatment example of PARP inhibitors, is an enabling                         
characteristic that both drives tumorigenesis and represents a therapeutic “Achilles’ Heel”.                     
Synthetic lethality may be used to identify additional genes essential for tumorigenesis                       
arising from genome instability, as they are with PARP inhibitors. Reproduced from Hanahan                         
and Weinberg ​(Douglas Hanahan and Weinberg 2011)​. 
 

Evolutionary pressure within the tumor microenvironment drives cells towards 

favorable mutations in pathways corresponding to proliferation and metastasis.  In 

particular, these pathways relate to the 6 cancer hallmarks first proposed by 

Hanahan and Weinberg ​(D. Hanahan and Weinberg 2000)​.  These initial hallmarks 

include: self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue 

invasion and metastasis, limitless replicative potential, sustained angiogenesis, and 

evasion of apoptosis ​(D. Hanahan and Weinberg 2000)​.  Though the genetic basis 

for cancer typically lies in one of these hallmarks, these hallmarks were expanded to 
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include dysregulation of cellular energetics and avoidance of immune detection 

(Figure 9).  Along with these new additions to the hallmarks, the idea of genome 

instability is now believed to underlie the premise of the first 6 hallmarks and indeed 

the concept of the evolving cancer genome ​(Douglas Hanahan and Weinberg 2011)​. 

This concept of instability is both a mechanism of tumorigenesis and potential 

“Achilles’ Heel” in revealing druggable targets and predicting treatment sensitivity. 

One such mutation type that guides our understanding of cancer is the 

loss-of-function mutation. 

 

Cancer is a disease characterized by two complementary mutation types: dominant 

gain-of-function (GoF) and recessive loss-of-function (LoF) mutations ​(D. Hanahan 

and Weinberg 2000)​.  These mutations produce phenotypes in cancer that may 

include any or all of the 6 hallmarks described by Hanahan and Weinberg.  GoF are 

activating mutations that induce expression of some new function, acting as a 

dominant allele, and produce some new phenotype (​Figure 10​.e) ​(Griffiths et al. 

2000)​.  A differential phenotype in a GoF mutation, like over-expression of a protein 

in cancer relative to normal, allows for a target-driven paradigm of drug discovery. 

This paradigm just focuses on targets present in cancer that are not otherwise 

present.  Genes involved in GoF mutations are also called oncogenes. 
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Figure 10. Schematic of various types of alterations. The wild type locus (a) contains no                             
mutations and produces a sufficient amount of gene product. A null or complete                         
loss-of-function (b) occurs in both chromosomal arms that causes total loss of the gene                           
product. Two possibilities for hypomorphic loss-of-function mutations are represented with                   
heterozygous null mutation (c) and a homozygous leaky mutation (d) that results in less total                             
gene product than in the wild type scenario. Haploinsufficiency occurs when a critically low                           
concentration of gene product is produced, as in (c) or (d), which results in an aberrant                               
state. In a hypermorphic state (e) an excess of gene product is produced on one of the                                 
chromosome arms, but can also be homozygous. Adapted from Griffiths ​(Griffiths et al.                         
2000)​. 
 

An oncogene results in protein products that induce or maintain tumorigenesis 

through processes that relate, in one way or another, to the aforementioned cancer 

hallmarks.  Perhaps the most well-characterized GoF targets are in the family of 

protein tyrosine kinases (PTKs), a broad family of 90 kinases involved in 

cell-signaling pathways involved in growth, differentiation, adhesion, and apoptosis 

(Levitzki and Gazit 1995; Robinson, Wu, and Lin 2000)​.  G-coupled protein 

receptors (GPCRs), a PTK subfamily, are signal transducers often overexpressed on 

the surface of cancer cells.  Their differential overexpression in cancer, and status 

as surface proteins, make GPCRs an obvious drug target typical of a GoF mutation. 

In fact, 42 GPCRs are identified to play a role of 14 cancer types ​(Dorsam and 
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Gutkind 2007)​, showing their role in a target-driven paradigm.  LoF mutations, by 

contrast, represent a more intractable target, warranting a systematic effort to find 

druggable essential genes for patients with oncogenic LoF mutations. 

 

LoF mutations are referred to as inactivating mutations because they attenuate the 

function of a gene or gene product. A gene with homozygous LoF that results in a 

complete loss of gene function is known as amorphic (​Figure 10​.b), while a 

heterozygous LoF marked by decreased gene activity is known as hypomorphic 

(​Figure 10​.c) or leaky (​Figure 10.​d) ​(Wilkie 1994)​ .  Even in this hypomorphic state, 

diploid cells that retain a copy of the wild type (WT) gene can often overcome a LoF 

mutation and recover a WT phenotype from the remaining WT allele ​(Griffiths et al. 

2000)​.  This particular example heterozygosity characterizes LoF as a recessive 

mutation, since the mutant phenotype is not expressed over the dominant WT 

phenotype. 

 

However, some LoF mutations show a differential phenotype, termed 

haploinsufficiency, which is both a feature of cancer genome instability, and a 

possible source of synthetic lethality.  ​Haploinsufficiency occurs when a diploid 

organism has just one functional copy of a gene as a result of a mutation on the 

other copy ​(Deutschbauer et al. 2005)​.  In this case, the single functional copy does 

not produce enough gene product sufficient for a WT phenotype, thus resulting in 

an aberrant phenotype.  ​In cancer, heterozygous LoF mutations can act on 

tumor-suppressor genes, reducing their protein products to below functional 
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threshold, and promoting tumorigenesis.  Haploinsufficiency can be a causal factor 

of cancer, (e.g., BLM, ATM) or cancer driver occurring in pathways pertaining to cell 

cycle regulation (e.g., Rb), proliferation (e.g., TGFb), DNA damage checkpoints (e.g., 

p53), apoptosis (e.g., PTEN, COPA), and DNA repair enzymes (e.g., SETD2) ​(Dittmer 

et al. 1993; Goss et al. 2002; Spring et al. 2002; Lodish 2008; Sudo et al. 2010; 

Song, Salmena, and Pandolfi 2012)​.  Haploinsufficiency is an important concept in 

identifying and targeting  vulnerabilities in cancer. 

 

Developing drugs for these “lost” genes with a target-driven paradigm remains a 

difficult problem in cancer drug discovery.  Reasons for this challenge are threefold: 

1) absence of a tumor suppressor gene in cancer is the absence of a druggable 

target, 2) restoring the function of a mutated gene is intractable, and 3) determining 

the status of a tumor suppressor gene is often ambiguous ​(Y. Liu et al. 2015; H. 

Wang et al. 2006)​.  One strategy to overcome the challenges of directly drugging a 

LoF mutation involve taking pathway-level approach to look beyond the primary 

mutation for a druggable target.  A pathway level approach to drug discovery, often 

called the context-driven paradigm, requires bioinformatic tools to assess genetic 

interactions that give cancer cells new and unique druggable vulnerabilities. 

Development of these tools hinge on biological phenomena that guide the 

mechanism of modern small-molecule cancer treatments. One therapeutic 

mechanism is based on the concept of synthetic lethality. 
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Concept 

Synthetic lethality (SL) occurs when simultaneous loss of two genes causes a dead 

or sick phenotype, while a single loss in either gene does not cause a decrease in 

viability (​Figure 11​).  You can think of SL in terms of furniture.  Consider a table to 

represent a cell, and each leg of the table to represent a group of four essential 

genes, either related or unrelated in function.  If you remove just one table leg, the 

table, with some balancing, can manage to stand on its remaining three legs.  Those 

remaining legs are now more important to keeping the table upright.  The remaining 

legs are now essential.  Remove one additional leg, or any two legs simultaneously, 

and the table will topple over and become non-functional. 

 

 

Figure 11.  Definition of synthetic lethality.  Basic mechanism of synthetic lethality (SL) in 
regards to a Loss-of-Function (LoF) event.  Wild type (WT) cells, those without LoF event 
(lighting bolt) in either gene A or gene B (dark green), are normal cells.  Cells with a 
heterozygous LoF  in either gene A or gene B (light green) may have poorer or unchanged 
health relative to WT.  A homozygous LoF in both gene A and gene B (red) may induce an SL 
outcome, including a sick or apoptotic phenotypic. 
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Sometimes a SL relationship is best visualized as a pathway essential to cell 

survival.  In the figure below, SL is represented in a pathway diagram between a 

normal patient sample, S​N​, and a malignant patient sample, S​M  ​(​Figure 12​).  In S​N​, the 

hypothetical sub-pathway pathway p​x​ originates at source, node 1, and proceeds 

sequentially through the products of gene A and gene B to the sink, node 2.  This 

preference for sub-pathway pathway p​x​ is reflected in a normal copy number of 

genes A and B, and a simultaneously low expression of genes C, D, and E, used in 

the alternative sub-pathway p​y​.   

 

However, in S​M​, both gene B copies are lost among genomic perturbations 

occurring in that particular cancer type, perhaps by arm-level deletion.  S​M​ thus 

loses the ability to carry out the preferred sub-pathway p​x​. This malignant cell would 

be fated for destruction if it were not for an alternative pathway p​y​ occurring through 

genes C, D, and E.  S​M​ can therefore use the redundant sub-pathway to maintain 

the overall function of this essential pathway.   

 

Using the redundant pathway p​y​ in the context of a loss of p​x ​puts an increased 

importance on the genes C, D, and E.  This establishes an acquired vulnerability in 

S​M​ of any of these three genes, or gene products, that could be targeted by a drug 

therapy.  Such a drug therapy would cause a loss of redundancy in this essential 

pathway, and given the loss of the preferred sub-pathway, would trigger preferential 

death of the malignant cell S​M​.  However, a loss context could occur in any gene of 

either sub-pathway to create a potential SL link (in red), and therefore a collection of 
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essential genes. Though topical in the treatment cancer, researchers observed 

these SL links long before the establishment of cancer as a genomic disease. 

 

Figure 12.   Pathway view of synthetic lethality (SL). The fictional pathway originating at node 
1 and progressing to node 2  performs a function is essential to cell survival (right).  A 
sample from a normal patient, S​N​, proceeds through the preferred sub-pathway p​x​, which 
relies on the products from genes A and B (top right).  To remain energetically favorable, S​N 
reveals down regulation of genes in the alternative sub-pathway p​y ​(left). In a malignant 
patient sample, S​M​, pathway p​x ​is lost due to a copy number deletion in gene B.  However, 
S​M ​can still rely on the alternative sub-pathway p​y​ perform to crucial functions, as seen in the 
increased expression of genes C, D, and E (left).  If any of the genes or gene products 
belonging to sub-pathway p​y ​were to be targeted in S​M​, then the malignant cell would lose 
both sub-pathways, lose the essential function of the entire pathway, and die.  Such 
potential targets are shown as SL links of genes between the loss context of B and the 
genes C, D, and E (right, red lines).  However, these SL links could occur transitively, and in 
any combination of loss nodes and essential nodes (center, red lines). 

 

Bridges et al. described the first SL pairing in 1922, when attempting to assemble 

the first large linkage map in ​Drosophila melanogaster​ ​(C. B. Bridges 1922; Calvin 

Blackman Bridges, Brehme, and Others 1944)​.  Dobzhansky later coined the term 

synthetic lethality in 1946 to describe complementary lethal phenotypes in 

Drosophila pseudoobscura​ when crossing WT heterozygote flies with 
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complementary lethal genes ​(Dobzhansky 1946)​.  Crossing over between two 

chromosomes, containing genes that are not individually lethal to homozygotes, 

created a heterozygous offspring with a recessive lethal phenotype​(Dobzhansky 

1946)​.  These two studies laid the foundation for experiments meant to intervene 

and interrogate SL relationships.  

 

Interventional SL relationships first involved drugging an essential “secondary” gene 

with a similar systemic function to a primary loss-of-function gene.  These first 

cases of synthetic genetic interactions, as they were called, were observed in yeast: 

first with histone H2B subtypes, and then in the Ras family ​(Rykowski et al. 1981; 

Kataoka et al. 1984; Tatchell et al. 1984)​. Guarente formalized the concept as 

synthetic lethality in 1993 ​(Rykowski et al. 1981; Kataoka et al. 1984; Tatchell et al. 

1984; Guarente 1993)​.  Hartwell later performed an experiment in yeast showing 

single knockout of either a DNA proofreading or DNA mismatch repair caused high 

mutation rate and proliferation, while a double knockout induced apoptosis 

(Hartwell et al. 1997)​.  This experiment shows that SL pairs can have  similar 

functions, serving as the biological basis for the clinical success of PARP inhibitors 

mentioned later in this proposal.  The work of Hartwell and others laid the 

groundwork for a number of systematic high-throughput screening approaches in 

model organisms.   
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Bench 

Budding yeast was one of the first model organisms to be used in the systematic 

search of SL interactions. In 2001, Tong et al used a synthetic genetic array (SGA), 

which employed laboratory automation to cross a haploid query strain, or the “loss 

context”, with an array of haploid deletion mutants ​(Tong et al. 2001)​.  The 

subsequent double-mutant meiotic progeny could be examined for “sick” 

phenotypes of reduced fitness, such as slowed growth rate.  Double mutants 

showing these sick, or SL, phenotypes indicate a functional relationship between 

query and a mutant gene in the array.  SGA was applied to 204 genes with roles 

predominantly in cytoskeletal organization, cell polarity, and DNA synthesis to 

generate a network of 291 genetic interactions.  The genetic interactions showed a 

proliferation of SL pairs within gene modules, but also showed SL pairs can bridge 

orthogonal modules, such as DNA synthesis and DNA repair.  The study lacked 

enough potential combinations, however, to produce a comprehensive network 

map in yeast. 

 

SGA was later applied to all modules of the ​S. Cerevisiae​ genome and uncovered 

relationships between gene function and synthetic lethality.  The study by Costanzo 

et al captured approximately 5.4 million gene pair candidates, comprising nearly 

75% of the yeast genome, and found that 13 of the 17 modules were enriched for 

SL interactions between genes of similar function ​(Costanzo et al. 2010)​.  This use 
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of SGA also uncovered SL pair enrichment that bridged disparate functions. 

Bridging commonly occurred from processes related to chromatin and transcription, 

whose genes were often the highest connected nodes in their network.  However, 

many of the non-related processes had wide variation in number of SL bridge 

events.  Costanzo et al demonstrated that a linear model of gene-specific 

properties, derived from ANOVA, could predict genetic interaction hubs, thus 

explaining variance in SL pairs ​(Costanzo et al. 2010)​.  For example, a lack of SL 

bridge events in drug and ion transport modules was attributed to their higher rate 

of duplication and other copy number variabilities, two properties tested to be 

negatively correlated with SL pairs ​(Dunham et al. 2002)​. 

 

Advancements in systematic genotypic-phenotypic screening of model organisms 

led to high-throughput screening approaches in cancer cell lines.  This was because 

the task of identifying gene function by phenotypic changes in lower model 

organisms was similar to screens identifying essential genes in cancer.  The biggest 

difference in cancer screens are the phenotypic endpoints they measure.  In cancer 

cells, the desired phenotypic to measure pertains to viability.  These viability 

phenotypes would later be explored in myriad screens using small molecules, RNAi, 

and other gene editing techniques that allowed a tumor-centric investigation of 

essential genes.  Applying such essentiality screens to cell lines in the context of SL 

is a natural extension of target discovery in cancer. 

Identifying druggable SL pairs in cancer cells can be performed in the context of 

combinatorial therapies using a chemogenomics screen.  Whitehurst et al designed 
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a cell-based, high-throughput combination screen, which transfects cells with a 

library of siRNA while simultaneously treating the cells with compounds that inhibit 

tubulin ​(Whitehurst et al. 2007)​.  The siRNA and the compound act like the partners 

in an SL pair, with the compound acting as the LoF context in its target and the 

siRNA blocking the translation of an essential gene.  Since the cells were treated 

with subthreshold concentrations of antineoplastic compounds, a siRNA condition 

that resensitizes the cells to the compound must repress a tubulin-specific essential 

gene.   

 

Paclitaxol, which stabilizes microtubule assembly, was one such antineoplastic drug 

Whitehurst et al used as an SL surrogate ​(Schiff, Fant, and Horwitz 1979)​.  Many of 

the essential genes that surfaced from this chemosensitizer screen are implicated in 

microtubule assembly, proteasome subunits, and mitotic checkpoints ​(Whitehurst et 

al. 2007)​.  The function of these essential genes, especially the microtubule 

assembly, are supported in the in previous literature to modulate sensitivity to 

paclitaxol ​(Jordan and Wilson 1998; Oyaizu et al. 2001)​.   Due to the positive results, 

this SL chemosensitizer screening strategy can be considered a success.  This 

screen and associated chemogenomics screens represent both a possible 

validation strategy for SL pairs found ​in silico​, as well as a trove of data from which 

to infer essential genes from physical features of screened compounds ​(Rognan 

2007)​.  
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Computation 

The first attempts to identify SL interactions used data from high-throughput genetic 

and genetic-compound screens.  Data produced in these screens, combined with 

the proliferation of omic data, allowed recent efforts to computationally infer SL 

interactions.  However, the first inference of SL pairs in cancer did not come directly 

from SL experiments performed in cell lines.  These inferences were originally drawn 

from the corpus of SL interactions experimentally found in yeast.  While there is 

currently sufficient data in human cell lines and tissues to infer SL interactions, 

examining a previous approaches is worthwhile to highlight a possible route for 

filtering SL pair candidates of false positives, providing a training data for an 

inference scheme, or for validating predicted essentiality. 

 

Conde-Pueyo et al used phylogenetic inference that mapped genetic orthologs from 

yeast SL networks to human genes to identify new essential genes ​(Conde-Pueyo et 

al. 2009)​.  At the time, the SL screening data was predominantly available in the 

form of genetic profiling in yeast ​(Tong et al. 2001; Pan et al. 2004; Ooi et al. 2006; 

Boone, Bussey, and Andrews 2007)​.  Mapping orthologs in this way is justified since 

genome integrity and cell-cycle related genes from yeast are conserved in higher 

organisms and have close relation with drivers of tumorigenesis ​(Yuen et al. 2007)​. 

Although not all SL pairs may be conserved between yeast and human, SL 

interactions at the pathway level have a higher probability of being evolutionarily 
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conserved, as seen in the high rate of SL pair conservation observed among 

eukaryotes ​(Yuen et al. 2007; Measday et al. 2005; Tarailo, Tarailo, and Rose 2007; 

Dixon et al. 2008)​.  The authors stress that this approach not about supporting SL 

conservation between distantly-related species.  Rather, the authors emphasise the 

role this methodology has in obviating large chemical SL screens, a utilitarian 

purpose that belies SL inference.  What makes this strategy work is the reliance on 

known biology from a model organism. 

 

The above approach shows promise in its use of genetic ontologies to incorporate 

biological knowledge into an SL network.  Given the high rate of false positives from 

experimentally derived SL pairs, it is necessary to use a filtering method to remove 

these extraneous results ​(von Mering et al. 2002; J. P. Miller et al. 2005)​. Filtering 

occurred after Conde-Pueyo et al applied yeast networks from BioGRID genetic 

interaction repository to human orthologs using Ensembl ​(Stark et al. 2006; Hubbard 

et al. 2007)​.  Three databases were used for filtering: 1) COSMIC, used to filter 

genes already associated with cancer, 2) GO, used to filter genes by function (ie. 

cell cycle, or DNA repair), and 3) DrugBank, used to map gene targets to existing 

drugs for filtering on tractability ​(Bamford et al. 2004; Ashburner et al. 2000; Wishart 

et al. 2008)​.  The use of these genetic and pharmacological ontologies to filter false 

positives of little biological relevance or druggability is an important step to consider 

in the search for actionable synthetic lethal pairs. 
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DAta mIning SYnthetic lethality identification pipeline (DAISY) is a recent attempt to 

infer SL maps in cancer, whose methods can be applied to the CLOvE approach. 

This pipeline used neural network model predictions in three different inference 

procedures to each produce a set of SL and SDL pairs: 1) genomic survival of the 

fittest (SoF), 2) shRNA-based functional screens, and 3) pairwise gene expression 

(​Figure 13​) ​(Jerby-Arnon et al. 2014)​.  SoF uses somatic copy number mutations 

(SCNA) with somatic mutation data to identify pairs of inactive genes without a 

corresponding partner gene deletion (SL) or overactive genes without a 

corresponding partner deletion (SDL).  The group carried out the same inference 

strategy on functional shRNA screens, looking at SCNA data in conjunction with 

shRNA knockdowns.  Finally, pairwise gene coexpression created a gene set by 

which to restrict all possible gene pairs from the first two inferential procedures, to 

create a final network comprising the intersection of all three gene sets. 
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Figure 13. The DAISY Workflow. Three different inference procedures (1) are applied in 

parallel to identify SL and SDL gene pairs. The SL and SDL networks are then assembled 

from gene-pairs that are identified by all three procedures as SLs or SDLs, respectively (the 

intersection colored in blue). ​Reproduced from Jerby-Arnon (​(Jerby-Arnon et al. 2014) 

 

 

DAISY also employed two neural net models that could predict the relation between 

target gene and drug sensitivity.  One model predicted gene-cell pair relation to infer 

gene essentiality by cell line.  The other model predicted drug-cell pair relation to 

infer drug efficacy by cell line.  Each type of model used a set of 53 genomic 

features extracted from gene neighborhood and other genomic features by each cell 

line.  The group used two models from two gene essentiality datasets: one based on 
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a compendium of pooled shRNA screens, and the other from a genome-wide 

essentially assessment termed Project Achilles ​(Cheung et al. 2011; Marcotte et al. 

2012; Cowley et al. 2014)​.  Training data for drug-pair relations came from IC50 

values from the Cancer Genome Project (CGP) and from the Cancer Therapeutics 

Response Portal (CTRP) ​(Garnett et al. 2012; Basu et al. 2013) .  Use of these 1

biological and pharmacological features revealed known SL pairs BRCA1-PARP, 

BRCA2-PARP, and DHFR-MSH2, and related them to drug efficacy and ultimately 

patient survival.  The final relation to drug selection and prognosis is of great 

interest in the area of personalized oncology, and one of the potential applications 

of the discussed approach. 

 

DAISY does, however, have several limitations which can be addressed with an 

improved gene recommender.  One limitation is the inherently noisy data from large 

scale genomic data and shRNA screening, which can be normalized across a library 

of non-targeting shRNA.  DAISY also doesn’t account for other mechanisms of gene 

regulation like epigenetics that could be incorporated into the SL sets with an 

appropriate weighting scheme.  The ability of DAISY to predict gene essentiality to 

relevant biological models also remains unknown, but could call for a limited target 

validation campaign in cell lines and perhaps in animal models.  Coexpression can 

also be affected by genomic linkage and thus chromosomal proximity.  DAISY also 

1 IC50 is a pharmacological measurement of drug sensitivity defined as a half-maximal dose, 
or a drug concentration that destroys 50% of cancer cells via inhibition.  EC50 is related to 
IC50 in terms of IC50, but is typically applied to agonist drugs. Area under activity curve 
(AUAC) is the integral of either IC50 or EC50, and is another measurement of drug 
sensitivity.  
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lacks a filter for SDL pairs based on proximity, which could be a feature of the 

CLOvE approach.  Though DAISY successfully identified known SL pairs in relation 

to clinical outcomes, this methodology has clear limitations that can be addressed 

in an improved gene inference strategy. 

 

There is an effort to aggregate and curate known SL pairs, including those from 

DAISY, which the discussed approach could use as both a predictive aid and a 

distribution platform.  Guo and colleagues created SynLethDB as a repository for SL 

pairs, in addition to serving as a platform for statistical analysis and visualization of 

SL interactions ​(Guo, Liu, and Zheng 2016)​.  The 34,089 SL pairs in SynLethDB are 

58.5% human and 38.8% yeast, with the remainder split between the model 

species mouse, fruit fly, and worm ​(Guo, Liu, and Zheng 2016)​.  What makes 

SynLethDB particularly useful is the system it uses to score the confidence of SL 

activity in a gene-gene interaction pair. 

 

SynLethDB stores and scores SL pairs collected from biochemical assays 

(chemogenomics and RNAi), computational inference (DAISY), other SL databases 

(BioGRID, Syn-Lethality, and GenomeRNAi), and literature mining ​(Stark et al. 2006; 

Li et al. 2014; Schmidt et al. 2013)​.  Pairs are given continuous confidence scores 

based on weights assigned to the type of experiment method used to validate that 

particular pair.  Paris with more than one experimental type are combined using the 

probability disjunction formula. These scores can serve as a gene-gene interaction 

filter, a source of important feature extractions based on a large corpus of SL 
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research, or as a tool to validate predictions of gene essentiality.  The latter use is 

recommended in this proposal as a final validation measure.  It is also worth noting 

that SynLethDB could also incorporate both the results of the discussed approach, 

as well as a distribution of the recommender itself for user-supplied data. 

 

Collateral vulnerability is related to the concept of SL by virtue of genome instability 

in cancer, and is worth noting as a possible strategy in identifying essential genes in 

cancer.  Whereas one of the SL partner genes is typically a LoF event in a known 

tumor suppressor gene (TSG), collateral vulnerability involves LoF events in 

bystander genes ​(Knudson 2001)​.  These bystander genes may not be TSGs 

themselves, but they create a loss of genetic redundancy that can be exploited in a 

similar fashion to an SL-based inference scheme and subsequent treatment 

campaign. 

 

Amplifications of oncogenes and deletions of tumor suppressor genes often happen 

at the level of the chromosome arm ​(Y. Liu et al. 2015)​.  Though these events are 

positively selected as tumorigenic driver mutations, these mutational events lead to 

non-advantageous alterations, or passenger mutations, in neighboring genes on the 

affected chromosome ​(Nijhawan et al. 2012)​.  Functional redundancy, in the form of 

homologous genes, attenuates viability effects in the case of heterozygous LoF in 

an essential housekeeping gene, and enables cell survival ​(Vavouri, Semple, and 

Lehner 2008)​.  As demonstrated in yeast, reduced redundancy that leads to 

homologous LoF in an essential gene causes decrease of fitness and death ​(DeLuna 

45  

https://paperpile.com/c/h8jl71/XPu2h
https://paperpile.com/c/h8jl71/UIYqA
https://paperpile.com/c/h8jl71/Qd2a6
https://paperpile.com/c/h8jl71/3n6Ar
https://paperpile.com/c/h8jl71/3n6Ar
https://paperpile.com/c/h8jl71/SK7lB


 

et al. 2008)​.  Therefore, pharmacological inhibition of redundant gene products, or 

collateral vulnerabilities, in cancer could be used as an effective strategy for target 

discovery. 

 

Muller et al tested the collateral vulnerability hypothesis in GBM cells and identified 

a druggable target in the enolase (ENO) family of genes.  Investigators identified the 

homozygous loss of ENO1 in GBM using TCGA data to query homozygously 

deleted essential-redundant housekeeping genes ​(Muller et al. 2012)​.  ENO1, a gene 

product responsible converting 2-phosphoglyceric acid into phosphoenolpyruvate 

during glycolysis, is mutated in chromosome 1 in GBM cells but is permitted due to 

the paralog ENO2 widely expressed in neurons ​(Wold 1971; Poyner and Reed 1992; 

Kobayakawa et al. 2007)​.   

 

Muller et al found that shRNA knockdowns in ENO1-deficient mouse xenografts 

lead to tumor ablation ​(Muller et al. 2012)​.  This was also tested in ENO-1 deficient 

cell lines using phosphonoacetohydroxamate (PhAH), a potent inhibitor of 

Recombinant ​T. brucei​ enolase ​(Navarro, Gomes Dias, and Mello 2007)​.  

Homozygous ENO-1 mutant cell lines experienced an 80% decrease at <5uM of 

ENO inhibitor PhAH versus WT controls, while heterozygous mutants experienced 

similar loss of viability at a 50uM dose ​(Muller et al. 2012)​.  This experiment 

demonstrates that tissue-specific vulnerabilities can be exploited for therapeutic 

effect, but require a systematic approach to identification as recommended in this 

proposal. 
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Another important example of collateral vulnerability in cancer is in the mutual 

exclusivity of ARID1A and ARID1B.  The ARID gene products are responsible for 

one of the five subunits of the ​SWItch/Sucrose Non-Fermentable (SWI/SNF) 

nucleosome remodeling complex and are mutated across several cancer types 

(Cairns et al. 1994; Wiegand et al. 2010; Guan, Wang, and Shih 2011; Jones et al. 

2012)​.  Though ARID1A is mutated in many human cancers, Helming et al identified 

ARID1B, a mutually exclusive homolog of ARID1A that stabilizes the SWI/SNF 

complex in cancer cells and allows proliferation ​(Helming et al. 2014)​.  Mutual 

exclusivity refers to the presence of either ARID1A or ARID1B in the SWI/SWF 

complex ​(Wu and Roberts 2013)​.   

 

Helming and colleagues identified this complex in a systematic screen of the 

essentiality dataset from Project Achilles.  This dataset, v2.4, comprised essentiality 

data from pooled lentiviral shRNA screens in 216 cell lines with a 

proliferation/survival endpoint ​(Cheung et al. 2011)​.  From these data, Helming et al 

used the Probability Analysis by Ranked Information Score (PARIS) to find genes 

essential to specific mutational contexts ​(Helming et al. 2014)​.  PARIS is an 

information-based feature selection method that identifies a target profile ​t​, like the 

LoF of a tumor suppressor, and matches essentiality profiles ​x​ at the level of either 

gene or shRNA.  This match is based on a rescaled normalized information score 

(RNMI). The RNMI takes the normalized mutual information (NMI), a ratio of the 

mutual information ​I​ and joint entropy ​H​ (NMI) of both ​t​ and ​x​, multiplied by the 
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correlation coefficient of the two profiles, adding directionality to the score ​(Cowley 

et al. 2014)​.  This scoring metric enables a wide dynamic range and sensitivity to 

non-linear correlations, which could serve as an important feature to predict SL pair 

importance.  

 

One important consideration in collateral vulnerability are those cases of 

hemizygous loss, which are far more prevalent in cancers than homozygous loss 

(Nijhawan et al. 2012)​.  One important approach, CYCLOPs (copy number 

alterations yielding cancer liabilities owing to partial loss), investigated hemizygous 

essentiality ​(Nijhawan et al. 2012)​.  This approach used shRNA screening data from 

Achilles with copy number data from CCLE and TCGA to identify genes where RNAi 

knockdown produced a viability phenotype in cell lines with a partial loss of that 

same gene ​(Nijhawan et al. 2012)​.  One CYCLOPs gene, PSMC2, encodes an 

essential member of the 19S proteasome ​(Kaneko et al. 2009)​. While, normal cells 

express excess PSMC2, cancer cells with partial PSMC2 copy number loss cannot 

form the proteasome and enter apoptosis upon PSMC2 knockout.  Such an 

example demonstrates partial collateral vulnerability in an otherwise innocuous 

passenger mutation. 

 

The CYCLOPs approach classified cell lines as homozygous, hemizygous, or copy 

neutral using GISTIC log2 copy number ratios less than -1.28, less than -0.1, and 

between -0.05 and 0.05 respectively.  Nijhawan and collaborators assessed mean 

gene dependency scores from the Achilles data using ATARiS, which scores genes 
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according to greatest effect on viability phenotype in an RNAi screen ​(Shao et al. 

2013)​.  These mean scores for samples with partial and total loss per gene were 

both compared to cell class permutations that maintained similar tissue distribution. 

Classifying cell lines by complete or partial loss and comparing some form 

essentiality scores within each group represents a reasonable method to identify SL 

pairs from collateral vulnerability. 

 

Hypermutation, an outcome of the hallmark of genome instability, can provide 

further elucidation of driver mutations in cancer.  Mutations exist throughout the 

cancer genome, but are characterized as either driver or passenger mutations, as 

described previously.  Driver mutations aid in tumorigenesis and are therefore 

positively selected.  Identifying such genes require showing a difference, or bias, in 

accumulating these mutations over the background rate of mutations.  Creating a 

score based on this bias can then be used to rank or filter SL pairs, since genes 

with higher mutational bias scores may have greater reliance on their partner SL. 

 

Early efforts to identify mutational bias examined recurrence of alterations.  This 

approach ranked genes based on the probability of observing a number, or 

recurrence, of non-synonymous single nucleotide variants (nsSNV) in a set of 

samples ​(Sjöblom et al. 2006; Greenman et al. 2007)​.  Assigning bias score based 

on recurrence may assign higher importance to driver genes that arose earlier in 

clonal expansion, and thus assign low importance to later mutations that may have 

low recurrence despite high functional impact (FI) ​(Shah et al. 2012)​.  It is thus 
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important to consider FI and recurrence when creating identifying driver genes in an 

SL pair.   

 

One solution is to use several bioinformatics methods to score the FI of somatic 

mutations, average these scores at the gene level, and assess their statistical bias 

compared to rate of background mutation.  Lopez-Bigas and Gonzalez-Perez first 

recommended this statistical approach in their description of Oncodrive-fm using 

the homology-based SNV detectors SIFT, PPH2, and Mutation Assessor 

(Gonzalez-Perez and Lopez-Bigas 2012)​.  SIFT examines protein sequence 

homology using PSI-BLAST and scores residue changes position-specific 

substitution matrices with Dirichlet priors​(Altschul et al. 1997; Kumar, Henikoff, and 

Ng 2009)​.  PPH2 (PolyPhen2) uses both sequence conservation and structural 

features structure from SWISS-PROT​(Boeckmann et al. 2003; Adzhubei et al. 2010)​. 

Mutation Assessor scores patterns in amino acid residues that deviate from aligned 

homologs using a clustering algorithm called combinatorial entropy formalism 

(Reva, Antipin, and Sander 2011)​.  Two possible extensions to these SNV detections 

are MAPP and Align-GVGD, which incorporate physicochemical features of amino 

acid substitutions ​(Stone and Sidow 2005; Mathe et al. 2006)​. 

 

As suggested by Lopez-Bigas and colleagues, the above SNV detection methods 

can be averaged at the gene level to create a unified FI score.  Other 

non-synonymous mutations, like stop SNVs (stSNVs) and frameshift indels 

(fsindels), can affect tumorigenesis.  These mutations’ impact on protein function is 
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not captured with the above mutation detectors, but can be inferred.  High nsSNV 

scores can be attributed to stSNVs and fsindels since they cause the most 

significant amino residue changes.  Lopez-Bigas and colleagues suggested these 

very assumptions, then averaged the FI for a gene across all tissues, and compared 

the difference to the null set to generate an empirical ​P​-value ​(Gonzalez-Perez and 

Lopez-Bigas 2012)​.  The ​P​-value for a gene was calculated by selecting a set of 

possible mutations equal in length to the number of mutations observed in that 

gene.  Selection occurred 1 million times with replacement, producing a fraction of 

selections (​P​-value) that had an FI that was greater than or equal to the observed FI 

of the gene ​(Gonzalez-Perez and Lopez-Bigas 2012)​.  Such significance testing is a 

reasonable approach in assessing the importance of mutants in a SL pair, and is 

considered in the CLOvE approach. 

 

There exists a range of potential vulnerabilities in a cancer cell.  Hypermutation, 

copy aberrations, and subsequent expression changes all serve as clues on the 

path to identify these new cancer vulnerabilities.  However, these clues must be 

considered in totality, examined for their relative importance, and used to build a 

case for a compensatory mechanism that gives rise to synthetic lethality.   
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Clinic 

SL has seen much success in the clinic due to the increased selective targeting of 

malignant cells, and simultaneous indifference to normal somatic cells.  One such 

class of SL cancer therapies are the inhibitors of poly ADP-ribose polymerases 

(PARPs).  These include compounds Olaparib, Rucaparib, and Niraparib, which 

have been approved for ovarian cancer following the trials Olympiad ​(Robson et al. 

2017)​, ARIEL2 ​(Swisher et al. 2017)​, and NOVA ​(Mirza et al. 2016)​, respectively. 

These medications are shown to be effective in ovarian cancers harboring a BRCA 

mutation.  The relationship between BRCA and PARP is without question the best 

known example of SL in cancer.   

 

SL interactions in cancers with BRCA1 and BRCA2 loss were described as a set of 

‘BRCAness’ hallmarks and were later shown to be useful selectively targeting 

cancer ​(Y. Liu et al. 2015)​. The rationale for initially pursuing this target is revealed 

when one explores the role of BRCA in the cell.  BRCA genes are responsible for 

homologous recombination (HR). HR is a type of genetic recombination during 

which cells repair double-stranded breaks (DSBs) in DNA.  BRCA genes are 

therefore essential in protecting genomic fidelity during cell proliferation and are an 

important biomarker for predicting risk of breast or ovarian cancer ​(Antoniou et al. 

2003)​.  The family of poly ADP-ribose polymerases (PARPs) play an analogous role 
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to BRCA in DNA repair, but do so at the single-strand level using either nucleotide 

or base excision repair single stranded breaks (SSBs) ​(Lindahl et al. 1995)​. 

 

 

 

Figure 14.  Synthetic lethality of PARP in BRCA mutation carriers. BRCA and PARP 
represent genes whose gene products are responsible for repairing double strand breaks 
(DSBs) and single strand breaks (SSBs), respectively.  Each representation of a cell type 
comes from a patient with breast cancer who is treated with a PARP inhibitor.  Normal 
somatic cells, in yellow, loose their ability to repair SSBs when treated with a PARP inhibitor. 
These cells accumulate DSBs during replication, but are then repaired due the presence of 
at least one copy of BRCA, allowing normal cells to survive.  Unlike these normal cells, 
tumor cells that experience a loss of heterozygosity (LoH) event in BRA, in purple, cannot 
rely on BRCA to repair the accumulated DSBs, and thus initiate apoptosis.  However, some 
tumor subclones that retain a wild-type copy of BRCA, in red, can fix their accumulated 
DSBs and lead to PARP inhibitor resistance.  Resistance may also occur due to the reliance 
of another gene product which may initiate an alternate DNA repair mechanism.  Such a 
compensatory mechanism can be inferred from a network view of synthetic lethality as 
recommended in this proposal. Reproduced from Polyak and Garber ​(Polyak and Garber 
2011)​. 
 

 

In cancers with a LoF mutation of BRCA and an inhibition of PARP through 

therapeutic intervention, single-strand breaks are allowed to accumulate throughout 

the cancer genome.  When the cell is in S-phase, the single-strand breaks are 
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copied as double strand breaks at the DNA replication fork, and double-strand 

breaks accumulate in turn ​(McLornan, List, and Mufti 2014)​.  Without BRCA to 

provide HR to repair this new DNA damage, the cancer genome becomes so 

aberrant as to induce apoptosis (​Figure 14​).  Normal cells with active BRCA are able 

to overcome the formation of DSBs from replicated SSBs caused by PARP 

inhibition.  This leads to a wider therapeutic window: survival of normal cells with a 

simultaneous sensitization and lowered viability of BRCA deficient cancer cells. 

 

The SL approach first gained therapeutic support in-vitro with BRCA deficient cells 

dosed with PARP inhibitors, as performed by Bryant et al.  The BRCA2-negative cell 

line V-68 was found to have a 90% decrease in viability compared to a similar 

BRCA-positive cell line V-79 dosed with 20uM of a PARP inhibitor NU1025 ​(Bryant 

et al. 2005)​.  Mouse xenografts of these cell lines also experienced at least 50% 

tumor debulking within 10 days of NU1025, with 60% of mice experiencing either 

complete or partial remission ​(Bryant et al. 2005)​. These early experiments gave way 

to RNAi screens that uncovered DNA damage response regulator CDK5 and the 

role it plays as a sensitizer to PARP inhibition ​(Turner et al. 2008)​.  PARP inhibitors 

eventually appeared in the clinic.  In its clinical trial, olaparib, an FDA-approved 

PARP inhibitor, showed a 41% objective response rate in patients with 

BRCA-deficient ovarian cancers ​(Tutt et al. 2010)​.  The premise of SL demonstrates 

practical therapeutic utility, and warrants a method to identify additional druggable 

targets. 
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An important result of the PARP-BRCA pair was the translation to other cancers 

with DSB mutations, namely endometrial cancers.  Approximately 80% of 

endometrial cancers have mutations in phosphatase and tensin homolog (PTEN) 

(Mutter et al. 2000)​. In addition to regulating the PI3K-AKT-mTOR pathway, a LoF 

event in PTEN contributes to genetic instability due to defective HR repair of 

accumulated DSBs ​(Shen et al. 2007)​.  Given the analogous role of BRCA and 

PTEN, there was clear motivation to test for PARP sensitivity in this major class of 

cancer.  Dedes et al dosed endometrial cancers with PARP inhibitor KU0058948 

and found a ~90% viability reduction in PTEN deficient cancers versus cancers 

without PTEN mutations ​(Dedes et al. 2010)​.  This sensitivity ultimately resulted in 

the development of other PARP inhibitors, like ABT-888, with clinical investigations 

expanded to different cancers prone to missing DSB repair mechanisms, like 

lymphomas and colorectal cancer ​(Kummar et al. 2011; S. K. Liu et al. 2008/8; 

Pishvaian et al. 2011)​. 

 

Conclusion 

PARP inhibitors are a triumph of SL in the clinic, which validate continued drug 

discovery efforts based on SL, but they are only the beginning.  Continuing these 

efforts requires the use of new SL pair-finding methodology in target identification. 

Historically, this methodology SL relied on the extending  SGA-related techniques to 

experimentally identify and validate SL targets.  Computational approaches have 
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given way to new ideas about how to interrogate these SL connections further.  The 

new approach demonstrated here, CLOvE, seeks to address the limitations of these 

previous approaches and extend our understanding of SL interactions to further 

drug discovery in cancer. 
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CHAPTER ​3 
Description of CLOvE:  

The Method & The Data 
 

 

 

 

Summary 

● CLOvE is a computational approach to infer SL interactions arising from 

context-dependent changes in expression 

● Developed in Cancer Cell Line Encyclopedia (CCLE) cell line samples 

● Description of CLOvE pre-processing, filtering, computation, and 

post-processing steps 
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Introduction 

Modern cancer interventions rely on targeted therapies to achieve maximal efficacy 

and minimal harm.  Most of these targeted therapies arose from identifying and 

exploiting genetic vulnerabilities unique to cancer ​(J. Luo, Solimini, and Elledge 

2009)​.  One such vulnerability, oncogene addiction, describes a cancer cell’s 

overreliance on a driver gene.  Although inhibiting oncogenes like EGFR or MET 

have clinical merit, there are potentially more targets that exist as passenger drivers 

(Haber et al. 2005; Gherardi et al. 2012)​.   These passenger drivers are often due to 

genetic dependencies that arise from genomic instability within the cancer cell ​(J. 

Luo et al. 2009)​.  Synthetic Lethality is one approach to uncover the genetic 

interactions that define these non-oncogenic drivers, and perhaps identify new 

possibilities for cancer treatment. 

 

Synthetic lethality (SL) refers to a relationship between two genes where a defect in 

a single gene is permissible, whereas defects in both genes cause cell death 

(Ashworth, Lord, and Reis-Filho 2011)​.  A better understanding of these interactions 

led to the development of the most recent wave of chemotherapeutic agents, which 

include PARP inhibitors for BRCA-deficient breast cancer ​(Tutt et al. 2010; Bajrami 

et al. 2012)​.  The ongoing search for these SL interactions might lead to more 

specific and efficacious therapeutic approaches. 
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Initially, SL interaction networks were derived exclusively in the laboratory via 

high-throughput screens in model organisms ​(Byrne et al. 2007; Costanzo et al. 

2010; Typas et al. 2008; Ma, Tarone, and Li 2008)​.  Similar techniques were applied 

to the study of cancer through screening cell lines with libraries of RNAi and small 

molecules ​(Bassik et al. 2013; Brough et al. 2011; Laufer et al. 2013; McDonald et 

al. 2017)​.  However, even with advances in laboratory automation, it is not feasible 

to test every combination of possible SL gene pairs.  Computational approaches, 

therefore, can provide a more systematic view of all possible SL interactions that 

may exist in a type of cancer.  

 

Though there are several recent approaches to computationally infer SL networks, 

they are not without limitations.  Many early computational efforts to predict SL 

were carried out in model organisms as a way to validate and build upon previously 

known SL pairs in those organisms, which do not accurately reflect the genomic 

landscape of cancer ​(Wong et al. 2004)​.  However, those approaches carried out on 

cancer have their own particular limitations.  One method uses mutual exclusion to 

infer SL across mutation and copy number, but is not adequately validated and is 

constrained by prior pathway knowledge ​(Ciriello et al. 2012)​. Another method uses 

genomic and transcriptomic data to capture SL pairs in a single cell line, but relies 

heavily on noisy shRNA screening data ​(Jerby-Arnon et al. 2014)​.  Yet another 

proposed method also uses mutual exclusion in copy number and mutation 

separately across a subset of Pan-Cancer TCGA samples, but fails to make 

comparisons across these platforms and ignores the role of the transcriptome in 
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determining genetic dependencies ​(Mina et al. 2017)​.  There is a clear need for a 

tool to infer synthetic lethality that takes into consideration of genomic and 

transcriptomic data across both cell types and patient samples.  

 

Here we propose a method to identify context-dependent changes in expression. 

Like some computational approaches before it, this approach finds pairwise genetic 

dependencies.  However, unlike previous approaches, this method looks takes a 

multi-omic approach to find meaningful increases in expression that may be 

associated with genetic dependency.  The transcriptome is a  reasonable proxy for 

proteome, especially for those gene products implicated in cancer ​(Young et al. 

2001; Shankavaram et al. 2007; B. Kim et al. 2015; Vogel and Marcotte 2012)​. 

Therefore, identifying meaningful changes in expression may serve as an indicator 

for possible synthetic lethal interactions, and potentially new drug targets. 

 

 

Population Description 

CLOvE was first developed using cell line data.  The first source of molecular data 

comes from the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE).  CCLE was 

a collaborative effort between the Broad Institute, Novartis Institutes for Biomedical 

Research, and the Genomics Institute of the Novartis Research Foundation.  It 

contains a collection of at least five platforms of molecular data, including copy 
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Number, mRNA expression, RPPA, RRBS, and mRNA expression (RNAseq), taken 

from at least 1046 Cell Lines spread among 24 tissue types (Fig 8) ​(Barretina et al. 

2012)​.  Mutation, copy number, and expression are the primary sources of data 

used in the development of CLOvE.   

 

One reason for using CCLE data is that it served as a pilot to future SL networks 

inferred from TCGA samples.  By comparing the predicted SL results from cells and 

tissues, it is possible to glean insights into the applicability of cell line models of 

tumor essentiality.  Possible changes, if any, of final SL predictions between cells 

and tissues may affect the use and interpretation of experiments that use 

immortalized cells recapitulate tumors.  Secondly, predicting essential genes in cell 

lines is a goal unto itself.  While many can debate the contrived nature of cell 

models, cell-based assays and screens are an established mainstay in drug 

development and target identification ​(Balis 2002; Allen et al. 2005; Sharma, Haber, 

and Settleman 2010; Weinstein 2012; Wilding and Bodmer 2014)​.  Predicting SL 

networks in cells alone supports the current trend of targeted cell-based screens in 

target discovery ​(Garnett and McDermott 2014)​. 

 

Using CCLE data has three distinct advantages.  First, a high diversity and 

respectable depth of many cell lines can capture tissue-specific SL interactions. 

Second, the Broad hosts varied and comprehensive molecular data from which to 

infer SL targets, including mRNA, copy-number, mutation calls, and 

pharmacological profiling.  The wide use of CCLE cell lines as model systems also 
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opens the possibility of one-off screens. Third, cell lines are a cost effective and 

feasible system for in-vitro validation, as mentioned as an extension to CLOvE 

validation in chapter 5.  Apart from these advantages, cell lines are a favorable 

system to model because they are an important stepping stone to patient samples. 

 

 

Figure 15.   An overview of tissue site origins for CCLE cell lines.  The CCLE data set 
includes 1046 Cell Lines spread among 24 tissue biopsy locations. The most represented 
cell lines come from lung cells and blood cells (comprising hematopoietic and lymphoid 
tissue), at 187 and 181 cell lines, respectively.  All but 4 tissues (prostate, biliary tract, 
salivary gland, and small intestine) are represented by more than 20 cell line samples. 
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Data Preparation 

Creating the initial network of SL candidates was inspired by the search for 

compensatory changes in expression following a copy-loss event.  However, 

compensatory changes, as measured by expression, are often associated with the 

tumor types from which each of these cell lines are derived ​(Domcke et al. 2013)​. 

Tissue specific expression is shown in Figure 16.  In order to remove potentially 

confounding expression signals between patients of different tumor types.  Though 

other means to remove confounding factors exist in the CLOvE workflow (discussed 

in Post-Processing),  it is recommended that CLOvE be run at least within tumor 

groups.  This subsampling of cell lines, and their respective data from each 

platform, will allow a fairer intragroup comparison of possible compensatory 

changes.  These compensatory changes were first examined in two matrices of 

genomic data from CCLE, mRNA expression (RNA) and copy number variation 

(CNV) and later combined with mutational data.  
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Figure 16.  Expression Tends to Cluster by Tissue-Specific Origin.  Cell lines were clustered 
based on mRNA expression data that was limited to the top 5000 genes with the greatest 
variation across 949 cell lines. Colored bars represent different tumor origins.  Though some 
cell types, like ovarian (*) are dispersed across many clusters, most cell lines tend to 
separate from one another.  This is illustrates that inter-tissue comparisons in CLOvE may 
show differential expression between tissue types, rather than true compensatory changes. 
However, in heterogeneous tissues like ovarian, different subtypes may present the same 
confounding factors of expression (upper right panel).  These differences warrant correction 
and need to be addressed.  Reproduced from Domcke ​(Domcke et al. 2013)​. 
 

CNV data is taken from Affymetrix SNP6.0, a high-density single nucleotide 

polymorphism (SNP) array.  These arrays were converted to single probe values 

used to infer copy number based on linear calibration curves specific to that probe 

set, normalized to normal HapMap samples as log​2​(CN/2), and segmented with the 

circular binary segmentation (CBS) ​(International HapMap Consortium 2003; Olshen 

et al. 2004; Barretina et al. 2012)​.  CBS segments these array copy number 

experiments into contiguous groups to not only model contiguous losses or 
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amplifications that reflect biology, but to minimize the noise from individual markers. 

Next, segments were median centered to zero, quality checked, and run through the 

Genomic Identification of Significant Targets in Cancer (GISTIC) 2.0 algorithm 

(Mermel et al. 2011)​.  GISTIC accounts for underlying alterations, whether at specific 

foci or for an entire arm, to form an improved background rate of alternation.  These 

CNA coordinates were mapped to the hg19 (NCBI build 37) coordinates to provide 

gene-level copy number using the UCSC Genome Browser ​(Kent et al. 2002; 

Wolfsberg 2011)​.  A boolean mask of ​n x m ​matrix of ​n​ genes and ​m​ samples was 

then created from this data, where 1 reflects a loss and 0 reflects no loss of a 

particular gene in a particular sample.  These calls were used to define the context 

across the cohort of samples in the CLOvE analysis. 

 

Mutation, in addition to copy number, can be responsible for a LoF context. 

Mutation data was downloaded from the COSMIC database v56, and cell lines were 

annotated according to the tumor types, and with a set of 1651 genes from a hybrid 

capture set ​(Barretina et al. 2012)​.  Further characterization of mutations at specific 

loci were generated using mass spectroscopy genotyping based on the OncoMap 

platform ​(Thomas et al. 2007)​.  This consisted of 456 genotyping assays comprising 

392 mutations and validated with non-multiplexes assays.  Later, REVEALER, a 

computational method to identify genomic alterations correlated with LoF 

phenotypes, generated binary mutation calls for each gene in each of the 1651 cell 

line samples ​(J. W. Kim et al. 2016)​.  These REVEALER mutation calls were used to 

populate a ​n x m ​matrix of ​n​ genes and ​m​ samples.   Later, the union of mutation 
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and copy data were combined into a single context with inclusive disjunction, often 

referred to the logical ​or​ operator.  The rationale for combining mutation and copy 

number in this way is based in functional loss “by any means necessary.”  In this 

case, CLOvE is cause-agnostic, focusing only on loss despite the reason for that 

loss. 

 

 

Figure 17. Copy number alterations combined with mutations.  Both copy number, ​A​,  and 
mutation, ​M​, data are binarized into ​n X m​ matrices of ​n​ genes and ​m​ samples.  Each binary 
variable represents the presence (1) or absence (0) of a context gene.  When combined 
disjointly as a union A | M, a context may be called if a context is detected in either ​A​ or ​M​. 
If either matrix used has a different dimension, an inner merge is taken to preserve samples 
or genes with data in both platforms. 

  

 

Expression data is taken from Affymetrix U133+2 arrays and converted to a single 

probe using Robust Multi-array Average (RMA).  RMA is a three step normalization 

procedure for Affymetrix data comprising background correction, quantile 

normalization and summarization ​(Irizarry et al. 2003; Barretina et al. 2012)​.  This 

normalization removes batch effects and improves the quality of comparison 

between samples.  Expression data was further wrangled into a ​n x m​ matrix of ​n 

genes and ​m ​samples containing only “present” calls.  These expression 

measurements are measured as a response to changes in context. 
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Pre-Processing 

CLOvE determines the significance in expression change in a population of samples 

with a loss context versus samples without a loss context.  The general 

pre-processing work-flow is represented as a schematic Figure 18.  CLOvE requires 

at least two matrices of data: a binary matrix of context, and a matrix of expression 

values.  The data is read, filtered for confounding copy number effects in 

expression, filtered again according to user-defined cutoffs, then prepared for 

CLOvE analysis.  CLOvE then runs iteratively over all possible pairs with a 

randomized null model running in parallel.  Upon completion, CLOvE prepares a 

results for each pair, comprising the CLOvE score, p-value, and other summary 

statistics, sorted in descending order of significance.  These results can be pivoted 

to form a matrix or a bipartite graph. 
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Figure 18. Overview of the pre-CLOvE workflow.  Prepared context and expression files are 
read from CSV or TSV format into a matrices of context x sample and expression x sample, 
respectively.  Each matrix is standardized to contain the intersection of samples and genes 
(not shown).  (​A​) The context matrix is binarized, and (​B​) the expression matrix is pre-filtered 
for any increase in expression due to an amplification.  (​C​) Pre-filtered matrices are then 
filtered again according to user parameters.  This includes a minimum threshold, applied 
across the cohort of samples, for number of samples in a gene context condition, ​n​, and 
minimum variance for a gene’s expression, ​σ​2 ​.  (​D​) A copy of the filtered expression matrix is 
randomly permuted (shuffled) to randomize associations between context and expression, 
and paired with the filtered expression matrix to form the null set (grey arrow).  Similarly, the 
un-permuted and filtered expression matrix is paired with the filtered context matrix to form 
the observed set (red arrow).  (​E​) These respective sets are fed into CLOvE, which computes 
the observed and null statistical tests in parallel.  The results of which can be transformed 
into context x sample matrices, or visualized as a bipartite graph. 

 

 

A context matrix of counts (e.g. SCNA, mutation calls) and a matrix of expression 

measurements (e.g. microarray, RNAseq counts) is read in from a comma or tab 

delimited file into a dataframe.  Both matrices are coerced into the same ​m 

dimensions of samples by subsampling intersecting samples are present in both 

data sets.  This is done to allow masking context samples completely onto 

expression samples.  Additionally, the expression gene vector is subsampled to 

those genes also intersecting with the context gene vector.  This is to ensure that no 

gene with expression measurements lacks context measurements. An example of 
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the latter is an important factor in prefiltering, or exclusion, of expression genes that 

are associated with an amplification signal.  Such genes introduce a confounding 

effect, potentially leading to misattribution in the rise in expression, i.e. believing the 

increase expression is due to a compensatory mechanism, rather than an 

underlying amplification that is actually driving higher expression.  Note that genes 

unique to the context dataset are not excluded, as having a larger m dimension of 

these genes does not affect this filtering step and includes more potential SL pairs. 

 

After pre-filtering, CLOvE prompts the user for filtering parameters.  These 

parameters filter out genes with very low variance in expression, σ​2​, and genes with 

very low numbers, n, of either context positive or context negative samples. 

Filtering these genes is important for the statistical test the CLOvE later performs, 

as very low variance and small sample sizes may cause an increase in type I errors, 

with offending pairs scoring artificially high.  The user selects cutoff thresholds 

based on graphs rendered when context and expression data are loaded.  These 

graphs show the distribution of each parameter, and is marked with the first, 

second, and third standard deviation, in increasing order of stringency, as a guide. 

To ease the cutoff threshold decision, they may refer to a plot showing drop off in 

number of comparisons based on parameter selection (Figure 19). However, in a 

test of all combinations of parameters for both drop off and mean separation from 

null, default values of  n=7 and v=0.2 offered the most optimal trade off (t=7.64, 

p=2.53e-14). 
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Figure 19.  Pair drop-off across range of CLOvE parameters.  Minimum variance threshold 
(left) and minimum context samples (right) are plotted against percent of pairs remaining. 
Choosing no filters would mean 100 percent remain, but the bars begin to show a decrease 
in the number of CLOvE pairs as the parameters get more stringent.  These data were 
generated by performing CLOvE computations in breast cancer cell lines with each 
parameter, while holding the other parameter constant.   Recommended default values are 
n=7 and v=0.2. 

 

After selecting the appropriate filters for variance and population size, a copy of the 

expression matrix is permuted in order to generate a null distribution to perform 

significance testing on CLOvE.  The null distribution was performed as above for the 

non-CLOvE and CLOvE comparison, but performed with a permuted RNA labels set 

from same tissue.  Permutation of the labels is performed with the numpy permute 

module.  This module is an implementation of the Mersenne Twister, a widely used 

pseudorandom number generator ​(Matsumoto and Nishimura 1998)​.  The null 

distribution maintains structural variants like CNV while only permuting the a copy of 

the transcriptome in the same tissue.  This effectively destroys any pattern of 

meaningful CLOvE pairing within tissue and represents the null hypothesis that 

expression does not change with copy-loss context. 
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Calculation 

CLOve then begins calculation of both sets of context and expression matrices. 

This process is depicted in Figure 20.  CLOvE seeks to determine if two expression 

vectors taken from different contexts are significantly different than each other using 

a variation of the Student’s t-test called Welch’s t-test ​(Welch 1947)​.  Welch’s t-test 

was chosen because it offers a more reliability over a Student’s t-test when the two 

samples to be compared have unequal variances or unequal sample sizes, or both 

(Derrick, Toher, and White 2016; Ruxton 2006)​.  However, like the Student’s T-test, 

Welch’s test also assumes that both samples are normally distributed, and this is 

true given the normalization procedure for expression data discussed previously 

and represented in Figure 20.A. 
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Figure 20. CLOvE calculation of context-dependent expression.  (​A​) After shuffling, a filtered 
context and expression matrices are paired up in observed (red) and permuted (grey) sets. 
Each of these pairs contains a vector of ​y​ genes and ​x​ genes, corresponding to context and 
expression, respectively.  (​B​) These are fed into CLOvE scoring expression in parallel.  (​C​) 
CLOvE scoring is illustrated here at the gene level using a box plot.  Here, expression 
difference of a single gene are compared between another gene’s conditions having a loss 
context (context=1) and not having a loss context (context=2).  (​D​) CLOvE is an iterative 
process, so this analysis is repeated for the cartesian product of gene vectors x and y to get 
all possible pairs.  (​E​)  These pairs are aggregated into distributions of CLOvE scores, 
converted into cumulative density functions (not shown), and a KS statistic is computed 
between them as a quality control step. 

 

CLOvE therefore employs a Welch’s t-test to compute a score for a pair of context 

and expression genes, where  x̄, S, and n are the sample mean, variance, and size, 

respectively (Figure 20.B).  This t-test is computed using the stats package as part 

of SciPy ​(Oliphant 2007)​.  Graphically, a single CLOvE analysis can be represented 

as a t-test performed across two groups of a box plot (Figure 20.C).  However, 

CLOvE scores all possible combinations of genes that could exist in a potential 

compensatory pair.  The set of compensatory pairs is represented by a Cartesian 

product of the context vector of genes with the expression vector genes, except in 

the case of self-links (Figure 20.D).  Self-links are cis-acting links that cannot 
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represent a typical compensatory pair, since the deletion of a LoF cannot 

compensate for its own expression .   CLOvE pairs are then iteratively calculated 2

over this set of possible pairs in both the null and permuted set to create two 

distributions of scores (Figure 20.E).  To test the significance of the scores over all, 

the two distributions are transformed into cumulative distributions, and the 

non-parametric Kolmogorov-Smirnov (ks) test is performed between them to 

generate a D-value of difference and a p-value of significance. 

 

 

Post-Processing 

Along with the t-statistic for each pair, a p-value is also computed as the probability 

of observing a t-statistic at least as extreme as observed for that pair.  This gives a 

large distribution of p-values, many of which will fall victim to what is commonly 

termed the multiple comparison problem.  This problem is characterized by a 

prevalence of type 1 error, or a large number of false positives due to the relatively 

large number of tests that could receive exceptionally low p-values purely by 

chance.  Therefore, it is important to adjust the significance of each pair using a 

modified “Bonferronitype” procedure described by Benjamini and Hochberg 

(Benjamini and Hochberg 1995)​.  These adjusted p-values are included along with 

2 ​However, these cis-acting self-links could be an interesting source of essential 
genes that increase transcription depeding copy loss, and are investigated later. 
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the original p-values, in addition to the summary statistics from each pair for 

potential downstream analyses. 

 

Some pairs may also be removed to limit the amount of confounding factors present 

in computed CLOvE scores.  Some of these confounding factors are accounted for 

in the selection of tissue-specific samples at the outset, as mentioned previously. 

This limits the number of comparisons showing differential expression between 

tissue types, and increases the likelihood of top scoring CLOvE pairs to reflect 

actual compensatory changes.  However, many cell types comprise molecularly and 

histologically distinct subtypes that need to also be accounted for.   Part of CLOvE 

post-processing includes running a differential expression analysis between 

user-specified conditions, and eliminating compensatory pairs harboring any of the 

top k most significantly different genes. 

 

Given the purpose of CLOvE to identify new cancer vulnerabilities, it becomes 

necessary to collapse pairs into single genes.  In this scheme, a single score 

corresponds with a single gene in a specific sample, rather than the scored 

interaction between two genes in a pair calculated across all samples.  This 

transformation of CLOvE scores is termed here as vulnerability vectorization.  The 

resulting sample-specific vector is product between the CLOvE matrix, ​C​, and the 

context vector, ​y​, of a particular sample for the vulnerability vector, ​v​, shown in 

Figure 21.  This post-processing step is needed to measure the connectedness, or 

degree, that a particular gene has within a CLOvE interaction network.  Higher 

74  



 

counts indicate more connections to a particular differentially expressed gene, and 

may indicate a compensatory mechanism to many simultaneous  contexts in the 

cell.  From a practical standpoint, vulnerability vectorization is also needed to 

transform CLOvE scores to a non-pairwise format that can be used to compare this 

approach against genes essentiality scores from other external sources for 

validation.  These validation efforts are discussed later. 

 

Figure 21.  Vulnerability Vector represents degree of connections in a CLOvE network. 
CLOvE scores genes based on the differences in expression level of each gene in vector ​x​, 
between the presence and absence of each context gene in vector ​y​ across a cohort of 
samples.  This is represented as the CLOvE matrix ​C​.  A context vector ​a​ is referenced from 
a particular sample from that cohort.  The product of matrix C with sample context vector, ​a, 
generates a vulnerability vector for that particular sample, ​v​.  Therefore, ​v​ represents the 
sum of all CLOvE relationships that tie to a specific gene’s expression across all genes in ​x​. 
Each score represents the connectedness, or degree, of a gene in a CLOvE network. 
Vulnerability vectors are important for understanding the relative importance of a gene to a 
particular sample. 

 

Ultimately, CLOvE produces a bipartite graph comprising interactions between 

expression and context.  In addition to a single CLOvE ​t​-test for each pair, a 

p-value, and BH-adjusted p-value, as well as components that define Welch’s t-test 

are also included for potential downstream analysis.  These same results are 
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produced for the permuted set of CLOvE pairs that make up the null distribution. 

The comparison between the observed and null is an important first step in 

assessing the informational quality of the CLOvE approach. 

 

Dependencies 

 

CLOvE is run entirely in python 3.7 using common packages available through the 

Anaconda package management system ​(Analytics 2016)​.   These are summarized 

in Table 3.  CLOvE was developed in a Jupyter-IPython notebook, an interactive 

python environment.  Pandas, a library of optimized python data structures, was 

used heavily in conjunction with computational libraries numpy and scipy.  Graphing 

was handled with Matplotlib, with a Seaborn interface.  All of the packages used are 

free and open source. 

 

Package  Function  Citation  Website 

Pandas  Data structures  (McKinney and Others 2010)  pandas.pydata.org 

Numpy  General Computation  (Van Der Walt, Colbert, and 

Varoquaux 2011) 

numpy.org 

Scipy  Statistics  (Oliphant 2007)  scipy.org 

Matplotlib  Graphing  (Hunter 2007)  matplotlib.org 

IPython  Environment  (Pérez and Granger 2007)  ipython.org 

Table 3. Python Packages used by CLOvE. 
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CHAPTER ​4 

Exploring CLOvE:  
Known Entities and Potential Suspects 

 

 

 

 

Summary 

● CLOvE shows a significant difference from random across different cell 

types 

● Known synthetic lethal pairs have higher CLOvE scores compared to 

random 

● CLOvE pairs occurring in-cis may also reveal dependencies 

● Gene pairs involved in apoptosis pathways have high CLOvE scores  

● Essentiality scores in RNAi and CRISPRi viability screens show agreement 

with CLOvE scores   
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QC and Validation 

To assess the significance of the CLOvE analysis, it was necessary to compare the 

scores of observed pairs with the permuted distribution of CLOvE pairs.  This 

comparison was done to test whether CLOvE pairs are informative, or if they merely 

reflect random noise.  The first validation was performed in context selection, first in 

just breast cell lines.  Breast cell lines were initially chosen because of their 

reasonably large population size on CCLE, well defined subtypes, and known SL 

pairs for comparison to CLOvE results. 

 

The specific question was whether CLOvE could show us pairs that were 

significantly different than pairs computed on a permuted expression profile, the null 

distribution, over three context conditions.  These context conditions included copy 

number, mutation, and copy number and mutation.  The combinatory condition 

represents a logical ​OR​ operation between mutation and copy number, as 

previously described. 
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Figure 22.  Comparison of possible CLOvE contexts.  CLOvE was run in CCLE breast using 
binary context values of either only copy number (left), only mutation (right), and a 
combination of the two (center).  In each context, a distribution of observed (red) and null 
(gray) ​t​-statistics from the CLOvE output was generated, and compared within each group. 
In order of greatest separation from mean was copy number, mutation, and the combined 
context, with KS values of 0.06, 0.41, and 0.49, respectively (p<0.001).  All observed values 
had positive medians, meaning higher expression on average when in the presence of a loss 
context.  This shift in context-associated expression detected by CLOvE may provide some 
insight into possible compensatory mechanisms. 

 

Comparing these three context conditions showed a meaningful separation from the 

null distribution calculated in each case.  Such separation is represented graphically 

as a grouped boxplot, where all observed distributions show positive median 

t​-statistics compared to the grouped null distributions from each condition (Figure 

22).  A positive score indicates a higher level of expression when another gene is 

lost than when it is not lost.  Since each observed distribution has higher median 

t​-statistics compared to random expression profiles, each of these three potential 
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context choices is telling us something informative about possible compensatory 

changes to the transcriptome, some of which may reflect SL interactions. 

 

Figure 23.  Observed versus null separation for CLOvE across 24 cell lines.  For each cell’s 
primary source, a KS test measured the separation of observed CLOvE scores from null 
CLOvE scores.  The p-values of that separation are plotted here in negative log scale.  A low 
p-value, or high -log(p),  indicates a non-random relationship between context and 
expression, highlighting possible compensatory activity in each cell, as measured by CLOvE. 
Breast, kidney, and bone comprised the highest significance of all tissue comparison.  A 
p-value threshold equivalent to p=0.01 is shown, where any sample above that line has a 
smaller, more significant p-value (dotted line). To show that this is not solely due to tissue 
population size, dots are scaled to the number of samples in that tissue.   

 

Next, CLOvE was run in all available cell lines in CCLE by tissue of origin, to 

understand whether the approach can be generalized to other cell types besides 

breast.  CLOvE was run in each of the 24 cell lines with enough samples to meet the 

requirements of the pre-filtering process.  From this computation, CLOvE pairs and 

their differential scores from both the observed and null sets were placed into their 

respective distributions, and checked for similarity with a KS test.   The p-value from 

each observed vs null KS test in each tissue was  ​-log​10​ transformed, with the 

highest transformed value representing the most significant deviation of the 

observed from the null distribution.  The distribution of observed CLOvE scores 
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shows a significant difference from null across 20 of the 24 different cell types 

(Figure 23).  Visually representing the differences in median observed CLOvE 

t​-statistics compared to median permuted ​t​-statistics, shows all observed medians 

are greater than their respective null medians and all greater than zero (​Figure 24)​. 

The cell type where CLOvE has potentially the most utility is breast, as it has the 

most significant difference from the mean in terms of both distance from median to 

median and p-value from a KS test. 

 

Figure 24. Comparison of tissue sources most significantly different from random.  The top 8 
tissues are displayed as a ball and stick plot of median ​t​-test reported for the observed 
distribution (red) or null distribution (gray), ordered in decreasing order of p-value. 

 

CLOvE pairs were further validated against known synthetic lethals.  In this case, 

known synthetic lethals were pulled from the SynLethDB database of curated 

synthetic lethal pairs  ​(Guo, Liu, and Zheng 2016)​.  These results are summarized in 

Figure 25. An intersection of these values with the computed CLOvE values 

produced a distribution of known synthetic lethals.  A sample of CLOvE scores that 
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did not appear in that database was subsampled to the same number of pairs, and 

are termed “potential” pairs.  Similarly, a subsample of cis-acting pairs was also 

computed.  Pairs in cis are defined here as being pairs where the compensatory 

gene is the same as the context gene.  Of course, if a compensatory gene is 

completely lost, it cannot compensate for itself.  Like in all previous analyses, the 

null distribution was also computed and randomly subsampled to the same number 

of pairs. 

 

 

Figure 25. Comparison of CLOvE pairs to known synthetic lethals.  (Left) CLOvE pairs that 
mapped to known SL pairs taken from SynLethDB, a repository for synthetic lethal 
interactions.  Potential CLOvE pairs represent a subsample of all CLOvE pairs that are not 
known to be of a SL interaction.  Cis pairs are those where the context gene is the same as 
the compensatory gene.  The known distribution of CLOvE had a slightly higher median 
score from null (​t​=7.15, p<0.001) than did the distribution of potential CLOvE scores 
compared to null (​t​=6.72, p<0.001), since the known distribution of CLOvE scores is 
completely enriched for synthetic lethal pairs.  This is encouraging, as known SL pairs would 
be expected to higher CLOvE scores.   It is also expected that the cis-acting pairs would 
predominately less than zero, since copy or mutational loss would be expected to have a 
deleterious effect for the expression of that gene.  However, some positive CLOvE scores 
from that set merit attention. 

 

Known pairs tend to have higher median CLOvE score compared to SL pairs from 

the null distribution (​t​=7.15, p<0.001).  This is encouraging, since CLOvE scores 
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would have to be higher in cases of known SL pairs if CLOvE is to be considered as 

effective in providing evidence of SL interactions.  Potential CLOvE pairs also had a 

higher median score compared to null (​t​=6.72, p<0.001), suggesting that there may 

be some pairs that score highly in CLOvE that are unknown in the literature as being 

a compensatory or SL. 

 

 

Anti-Apoptotic Subnetwork 

Some of the highest scoring CLOvE pairs in breast tissue that are not recognized as 

known SL pairs, are found to participate in the apoptosis pathway.  The fact that 

they exist in the same pathway supports the functional rationale as to how SL 

occurs.  Looking at the most connected nodes in this sub network, CRIP1 (n=12) 

and ERBB3 (n=13), reveals an interesting relation to apoptosis.   

 

ERBB3/HER3 encodes a gene for an epidermal growth factor (EGF) that is known to 

be highly expressed in some cancers, including the major subtypes of breast 

cancer.  When it dimerizes to other EGFs, ERBB3 activates the PI3K/AKT/mTOR 

signaling pathways known to increase cell proliferation and differentiation ​(Carraway 

and Cantley 1994)​.  One node connected to ERBB3 through a CLOvE in a pair is 

BCL2, a gene that codes for a pro-survival proteins.  These BCL2 proteins prevent 

the release of caspase-9 and cytochrome c, effectively stalling apoptosis ​(Cory and 

83  

https://paperpile.com/c/h8jl71/I2ID
https://paperpile.com/c/h8jl71/I2ID
https://paperpile.com/c/h8jl71/xlqJ


 

Adams 2002)​.  From the CLOvE network, when BCL2 is lost, ERBB3 increases in 

expression.  Since cell life is effectively shortened in BCL2 deficient cells, it is 

plausible that cells must then rely on ERBB3 and the anti-apoptotic pathway it 

promotes.  This compensatory mechanism, identified by CLOvE, is the mechanism 

of action behind patritumab, lumretuzumab, istiratumab, and 12 other current 

investigational compounds to target ERBB3/HER3 ​(Fitzgerald et al. 2014; Kawakami 

et al. 2014; Mishra et al. 2018; Schneeweiss et al. 2018)​. 

 

 

Figure 26. Significant CLOvE pairs in genes functionally related by apoptosis.  (Left) The 
nodes are genes and the edges, or lines, that connect them depict CLOvE interactions of 
significance (p< 0.01) after correcting p-values multiple tests.  These connections are 
occurring in genes not known to be synthetically lethal with each other. (Right) Interactions 
are transformed into a bipartite graph showing each node as belonging to context or 
expression.  All genes are still involved in the apoptotic pathway.   

 

 

CLOvE in-cis 

CLOvE pairs occuring in-cis do not necessarily meet the canonical definition of 

synthetic lethal, which states that the loss states of two different genes must be 
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mutually exclusive.  In the case of cis-CLOvE, this is where the loss of a gene is 

associated with an increase of its very own expression.  The first experiment to 

identify cis-CLOvE pairs was modified to only include hemizygous loss events from 

the copy number data.  This was done to reflect a hemizygous or leaky context loss.  

 

As expected, a majority (n=2982) of the total usable cis pairs (n=3268) had a 

negative CLOvE score, reflecting a loss of expression during a context loss event in 

that same gene (Figure 27).  The remaining 9% of usable samples (n=286) were 

found to have positive CLOvE scores, reflecting an increase in expression with 

partial loss of that gene.  Upon correcting p-values, the most significantly positive 

gene was BACH2 (​t​=5.18, p=0.000139), which plays a role in cancer. 

 

 

Figure 27. Description of cis-CLOvE pairs.  Restricting the copy number to just cases of 
hemizygous loss, allows for potential cases of a leaky essential phenotype.  Running CLOvE 
against this data produced 4797 pairs that were ultimately reduces to 3268 pairs due to 
reasons of missing data and sparsity. As expected, of those usable cis-CLOvE pairs, a 91% 
majority were negative (n=2982).  A 9% minority of positive cis-CLOvE pairs (n=286) 
indicates a case where partial loss of a gene is associated with its expression gain.   

 

BTB Domain And CNC Homolog 2, or BACH2, is a leucine zipper transcription 

factor ​(S. Sasaki et al. 2000)​.  BACH2 coordinates transcription activation or 

repression along with another transcription factor, MAFK ​(Oyake et al. 1996)​. 
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Although overexpression of BACH2 has been found to increase sensitivity to some 

chemotherapies response, some studies have shown that tumor growth is impaired 

in mice deficient in BACH2 ​(Kamio et al. 2003; Roychoudhuri et al. 2016)​.  In these 

BACH2-deficient mice, it was found that BACH2 inhibited CD8+ T-cells and the 

cytokine IFN-γ in the tumor microenvironment, effectively operating as a tumor 

promoter and immunosuppressive factor.   

 

There are many explanations for why BACH2 is revealing itself as a high scoring 

cis-CLOvE.  These could include sample heterogeneity, selective pressure from 

chemotherapies and other tumor factors.  However, a leaky phenotype is a possible 

explanation of its status as a cis-CLOvE.  This phenotype could be the result of a 

hemizygous loss of BACH2, causing a decrease in tumorsupressive ability, and 

favoring cells that can respond by increasing the level of these transcripts. 

Although exploring the possible mechanism is beyond the scope of CLOvE, it 

illustrates some of the insights to be gained from different aspects of this approach. 

 

 

Congruency 

Synthetic lethal pairs of genes which are related by function or pathway tend toward 

higher rates of essentiality.  For example, PARP1 and BRCA1 are both involved in 

recombinatorial repair, MTOR and PTEN both regulate protein kinase B signalling, 
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and ATR and MYC are both involved in DNA damage response, to name a few. 

Though not all SL pairs have such an easily defined functional relationship, it was 

worthwhile to test if observed CLOvE scores, as a whole, had higher scores 

between genes in have higher CLOvE scores than unrelated genes.  Of those 

related genes, it would be expected that two related genes would have similar 

CLOvE partners.  Comparing similarities between the SL pairs to which two genes 

belong is the idea of congruence. 

 

Thinking of the ancient Sanskrit proverb “the enemy of my enemy is my friend,” 

consider a SL network as a social network of enemies: if two entities share common 

enemies, they can be considered “friends” ​(Rangarajan 1992)​.  This idea of 

congruence was made popular when using SL networks to infer compensatory 

pathways and gene function from congruent genes in yeast genomics ​(Ma, Tarone, 

and Li 2008; Ye et al. 2005)​.  Here, congruent networks add a layer of corroborative 

evidence to SL candidates that serve a compensatory function across a well defined 

gene module or pathway. 

 

BRCA and PARP can be corroborated by investigating the congruent network 

between the BRCA genes which cause PARP compensation.  BRCA1 and BRCA2, 

both damage repair genes, are outliers with a pearson coefficient of 0.35 compared 

to their mean out-of-module correlation of 0.073 .  This expected result shows 

CLOvE can identify genes with similar function, as BRCA1 and BRCA2 are both 
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“friends” that serve to repair double-strand break repair, with a common “enemy” of 

PARP. 

 

Figure 28. Congruent networks show degree of similarity between genes.  A putative SL 
network shows SL pairs A-B, A-D, A’-C and A’-D.  The congruence calculated  as the 
pearson correlation between the CLOvE scores in common between A and A’ (green dotted 
box).   

 
 
 

Applying a congruence filter of above 0.9 revealed the top hit of HRAS (a 

proto-oncogene) and SDCCAG8 (Serologically Defined Colon Cancer Antigen 8). 

HRAS-SDCCAG8 was identified as a hit in both SynLethDB and in an RNAi screen 

that investigated SL relationships in RAS mutants ​(J. Luo et al. 2009)​.  This shows 

the utility of combining multiple networks with other corroborating evidence to 

identify SL interactions. 
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Viability 

CLOvE shows differential, context-dependent changes in expression, but are these 

expression changes at all indicative of essentiality? To help answer this question, 

experimental data from viability experiments was correlated with CLOvE scores to 

measure the strength of association between CLOvE score and essentiality.  The 

first data we used to compare these breast cancer cell lines was DEMETER. 

 

 

Figure 29. The DEMETER approach used to validate CLOvE.  This approach aggregates 
RNAi data, segregates on-target effects from off-target effects, and uses a predictive model 
to assign dependency scores for each gene.  RNAi experiment data from 501 cell lines was 
ultimately used to identify 769 dependencies. Reproduced from “Defining a Cancer 
Dependency Map” ​(Tsherniak et al. 2017) 
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DEMETER is an essentiality score based on viability data from cell-based screens in 

RNAi ​(Tsherniak et al. 2017)​.  These screens were systematic attempts to identify 

genes in cancer essential for survival and proliferation, but were often confounded 

by off-target effects ​(Birmingham et al. 2006; Cowley et al. 2014; B. Luo et al. 2008; 

Marcotte et al. 2012, 2016)​.  Rather than use these data directly to validate CLOvE, 

computational approaches like DEMETER offers a computational approach to 

aggregate these data, quantify on-target vs off-target effects, and predict 

essentiality ​(Tsherniak et al. 2017)​.  A similar algorithm and its viability scores, 

ATARiS, was initially considered as a possible validation set ​(Shao et al. 2013)​. 

However, ATARiS was ultimately eschewed in favor for DEMETER, since DEMETER 

models miRNA seed sequences that are often the source of shRNA off-target 

effects, and does so without the need for prior knowledge. 

 

To relate DEMETER scores with CLOvE, CLOvE scores were transformed to fit the 

same data structure as DEMETER.  Pairwise scores from CLOvE were collapsed 

from a network to a single vulnerability vector, as explained previously, to produce a 

single score for each gene in each sample.  This score is a count of the number of 

connections, or degree, which a particular gene has in the CLOvE network.  Higher 

counts indicate more connections to a particular differentially expressed gene, and 

may indicate a compensatory mechanism to many simultaneous contexts in the 

cell. 
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Figure 30.  Correlation of CLOvE scores with DEMETER essentiality.  CLOvE pairs 
transformed to vulnerability vectors were correlated with RNAi-based essentiality scores 
from the DEMETER computational model.  These comparisons were made in each cell line, 
correlating the vulnerability vector with the DEMETER score using Kendall’s tau-b, a 
rank-based concodence measurement.  Cell-to-cell comparisons in observed CLOvE pairs 
(red), and permuted pairs (gray) are graphed above, where each dot represents a single cell 
line.  The concordance for the observed CLOvE vulnerabilities is very high with DEMETER 
essentiality, and nearly zero in the null model (​t​=19.1, p=1.15e-24). 

 

A subsample of intersecting breast cell lines were selected from both DEMETER 

and CLOvE, of which each was subsampled again for an intersecting set of genes. 

In an iterative approach, Kendall’s tau-b, a rank-based correlation measurement, 

was applied to test the association between gene vulnerability in CLOvE and in 

DEMETER.  This correlation was also repeated in the null dataset formed from the 

permuted CLOvE set (Figure 30).  This demonstrated a positive association (𝜏​B​>0) 
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between CLOvE, in strong contrast to the null distribution(t=19.1, p=1.15e-24).  This 

indicates a non-random association between the degree of CLOvE vulnerability and 

DEMETER essentiality scores. 

 
Figure 31. Comparison of CLOvE Vulnerability Vector to DepMap essential-status.  CLOvE 
vulnerability vectors were computed for all breast cancer cell lines that intersect with those 
found in DepMap, a compendium of cancer dependency experiments using CRISPR and 
small molecule.  Single gene vulnerability vectors were compared between groups of genes 
considered essential by DepMap (red), vs those considered to be non-essential (gray).  All of 
the 10 intersecting cell lines had markedly higher VV counts for genes considered essential 
vs those considered non-essential (​t ​=19.1, p=1.25e-80).  This supports the tendency of 
high CLOvE VV scores to be associated with essentiality. 

 

Assessing the association between CLOvE vulnerability vectors and gene 

essentiality continued at the level of the cell.  Degrees of vulnerability derived from 

CLOvE were compared in genes determined be to essential or nonessential, 

according to binarized essentiality calls from the Achilles CRISPR interference 

dataset ​(Aguirre et al. 2016; Han et al. 2017)​.  Comparing distributions of CLOvE 

vulnerabilities in essential versus nonessential genesets show a clear separation 

((t=19.1, p=1.25e-80), with essential genes having a higher median CLOvE 

vulnerability than non-essential genes (​Figure 31)​.  Since this comparison is limited 
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due to availability of breast cell lines available in this dataset, it is necessary to 

repeat this analysis across all cell lines.  Despite this limitation, it is clear that CLOvE 

vulnerability vectors associate with essentiality.  However, more validation is 

needed. 
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CHAPTER ​5 

Continuing CLOvE:   
Can it recapitulate ​in-vitro​? 

 

 

 

Summary 

● CLOvE requires biologically relevant validation for high-scoring, yet 

uncharacterized gene pairs 

● A possible ​in-vitro​ RNAi-based phenotypic screen is proposed 

● A possible ​in-vitro​ CRISPR-based phenotypic screen is proposed 
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Motivation 

CLOvE was developed with the purpose to identify new essential genes in cancer 

based on synthetic lethality.  To satisfy this purpose, future directions for CLOvE 

must include validating the synthetic lethal candidates found in this approach. 

These can first take the form of continued validation in-silico, but ultimately must 

extend to validation in biological systems in-vitro, or possibly in-vivo.  This chapter 

proposes these next steps for future development of CLOvE.  

 

Pre-Screen 

CLOvE pairs have already been compared to compendiums of viability data begot 

from RNAi and CRISPR knockdown viability experiments.  Many other datasets 

exist that use the same population of samples, CCLE cell lines, in small molecule 

screens that also test for viability.  The  Cancer Therapeutics Response Portal 

(CTRP) is one such compendium of small molecule viability data.  The CTRP 

comprises annotated viability data for 481 compounds tested in 860 cell lines, in 

addition to statistical tools to perform pathway enrichment analysis, cell and sample 

clustering, and sensitivity correlations ​(Basu et al. 2013; Rees et al. 2016; 

Seashore-Ludlow et al. 2015)​.  Using this data could be beneficial in relating CLOvE 

scores of particular high-scoring genes to compound viability in those same cell 

lines. 
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The first step would be to identify cell lines with copy loss contexts that are 

significantly associated with increased expression of another compensatory gene. 

Within this group of cell lines, examine the viability data for compounds targeting 

each gene product involved in all CLOvE pairs.  Computing the correlation for all 

CLOvE scores against the viability measurements like AUC could reveal domains of 

the CLOvE distribution that yield the most predictive power in inferring drug 

sensitivity. 

 

RNAi 

Due to limitations in size of the CTRP, many significant genes implicated by CLOvE 

will not have viability data reported in the cell lines of interest.  In this case, 

performing a cell-based phenotypic viability screen would be beneficial.  This 

screen could be characterized as a chemogenomic, or a screen using selected 

panels of small molecule inhibitors to create a viability loss in a knockout cell.   This 

screen would use either pooled shRNA or siRNA to silence genes of a particular 

context in cell lines that constitutively express that gene.  Both groups of cells 

would then be treated with a library of compounds in serial dilution to produce dose 

response curves using a viability assay.  Particular aspects of this experiment are 

discussed below and are shown in Figure 32. 
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Figure 32. Schematic of possible RNAi validation screen. 1) shRNA or siRNA is loaded with 
transfection reagent onto multiwell plates. 2) Cell lines, previously frozen, are taken out of 
culture once stabilized and plates into the same multiwell plates to transfect.  3) Plates are 
made in duplicate and placed into an incubator for up to 3 days.  4) One set of plates are 
removed to check growth curves and get a neutral control for luminescence with added 
reagent, and then 5) read and analyze those growth plates.  6) To the second set of 
transfected plates, add a library of compounds in serial dilution.  7) Let the compound 
incubate briefly, then add a viability reagent, and 8) visualize the differences in the dose 
response curve created.  (Inset) a model plate map is included, with half the columns 
dedicated to knockdown transfection vs no-knockdown transfection, and the rows in order 
of increasing compound concentration from top to bottom of plate. 

 

Screens will be performed in either 96- or 384-well assay plates, and treatment 

conditions will be transferred from similarly-formatted library plates pre-stamped 

with commercially available compounds or RNAi.  In either screening scenario, the 

treatment will be added to plates pre-seeded with cells 24-36 hours prior. 

Lipofectamine​®​, a lipid-based transfection reagent, will be chosen for an RNAi 

screen due to its reproducibility and ease of use.  Treatment incubation will 

commence for an additional 24-36 hours before the endpoint assay.  The assay 

endpoint, cell viability, will be assessed with luminescence using Cell-Titer Glo​®​, or 

fluorescence using LIVE/DEAD​®​ Cell Vitality stain.   
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Though many experimental protocols exist in the literature, some assay 

development is required to optimize the experimental conditions of the screen. 

Such variables include RNAi/compound concentration, length of treatment 

incubation, and selection of controls.  Compound screens could include 

staurosporine as a positive control, and vehicle (DMSO) as a negative control.  RNAi 

screens could include common housekeeping genes (POLR2A, AKT, or PLK1) as 

positive controls, and commercially available non-targeting siRNA as negative 

controls.  Non-targeting siRNA should be validated as having off-target proliferation 

loss of no less than 90% compared to transfection vehicle alone. 

 

CRISPR 

Using CRISPR interference may be a better alternative to the RNAi approach 

detailed above, mostly for the reduction in off target effects compared to RNAi. 

Such an experiment would include selecting cell lines that are copy-deficient for a 

particular gene.  There are many cell types known for specific lesions, such as 

deficiency of VHL (von Hippel-Lindau, a well known SL context partner), which is 

often found in clear cell renal carcinomas.  However, finding these cell lines for a 

lesser known SL gene would involve examining the context data for mutational or 

SCNA calls in that gene.   
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Whole genome libraries exist for sgRNA that have been well validated, including 

AVANA, which could be used for screening the possible compensatory gene 

(Doench et al. 2016)​.  However, a focused approach would be favored over a library 

wide-approach, especially in the case of a combined small molecule screen.  In 

such an experiment, CRISPR interference creates the loss-context and the small 

molecule inhibits the compensatory gene.   

 

 

Figure 33. Transcriptional programming with engineered scRNA.  Engineered CRISPR 
scRNA can be used for simultaneous activation and repression.  Reproduced from 
“Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds” 
(Zalatan et al. 2015)​. 
 

An extension of a basic CRISPR screen would test the viability effect of altering 

levels of context loss or expression gain.  Specially-engineered CRISPR scaffold 

RNA (scRNA) have been described to offer variable levels of both activation and 
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repression ​(Zalatan et al. 2015)​.  With the addition of different activators or 

repressors to the scRNA, variable levels of activation or repression can be achieved. 

The possibility for fine tuning these transcriptional programs increases with 

simultaneous activation and repression.  For example, a scRNA experiment could 

repress context gene BCL2 (Com-KRAB repressor).  This repression would occur 

simultaneously with repressing ERBB3 (KRAB repressor), partially activating ERBB3 

(MCP or PCP activator), and fully activating ERBB3 (multivalent MCP+PCP 

activators).  Measuring the effect of viability changes on these conditions for a 

variety of contexts and compensatory genes could reveal the molecular basis for SL 

sensitivity. 

 

Conclusion 

CLOvE identifies non-random, context dependent expression changes.  The 

expression changes found with CLOvE have included genes that are known 

synthetic lethals.  High scoring CLOvE pairs are also enriched in genes that 

participate in the same functional pathways.  Finally, CLOvE scores and their 

resulting vulnerability vectors are seen to associate with essentiality, as validated in 

phenotypic screening data performed in with both RNAi and CRISPR.  Some 

potential synthetic lethals have been discussed, especially those participating in the 

same functional pathways.  However, more validation is needed, not just for the 

CLOvE approach itself, but for the uncharacterized pairs at the far right edge.  Here 
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in this far flung tail may lie a druggable target, one that can be recapitulated ​in-vitro​, 

in-vivo​, and perhaps, one day, in a patient. 
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