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Summary

The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over ten-thousand tumor-
normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring
analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers (MC3) project,
our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data
to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects
introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and
analysis methods over time. We present best practices for applying an ensemble of seven mutation-
calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes
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3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been
made available to the research community along with the methods used to generate them. This
project is the result of collaboration from a number of institutes and demonstrates how team
science drives extremely large genomics projects.
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The MC3 project is a variant calling of over 10,000 cancer exome samples from 33 cancer types.
Over 3 million somatic variants were detected using 7 different methods developed from
institutions across the United States. These variants formed the basis for the PanCan Atlas papers.

Introduction

The cost of sequencing is dropping rapidly while the costs of computing and data storage are
dropping more slowly in comparison (Stein, 2010), making it difficult to deploy core
analysis on raw data in genomics cohorts. It is often too expensive for individual labs to each
use a one-off method on all their data. A more efficient approach is to design, test and
develop cohort-wide analysis by multi-lab consortiums with results that can be shared with a
larger group of analysts. Scaling computational systems and genomic analysis to work for
these large data sets requires the coordination of many institutions, many experiments, and
many computational techniques. Aside from logistical problems, there are several technical
issues that encumber large-scale analyses, revealing unmet needs: 1) deployment of
reproducible computing methods in new computing environments 2) the ability to deploy
methods without manual intervention 3) the biases of single methods and the need for
consensus and 4) the large amount of noise and false positives that come from data including
both germline sequencing, heterogeneous tumor sequencing, and low variant allele fraction
of observed reads.
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There are a number of cancer genomics projects working to do analysis on increasingly large
datasets (Table 1) (Barretina et al., 2012; Brunner and Graubert, 2018; Campbell et al.,
2017; Hartmaier et al., 2017; Turnbull, 2018; 2017). The Cancer Genome Atlas (TCGA), for
example, was a massive effort in multi-center cooperation, computational tool development,
and collaborative science. However, the protocols and tools for identifying and
characterizing tumor sequence variants evolved over time and were not uniformly applied
across the project. When somatic variant callers were first compared—early in the TCGA
timeline (2012)-a surprisingly large number of unique calls were identified for each
method(Kim and Speed, 2013). To address some of these preliminary issues, TCGA
organized multi-center mutation calling (MC2), which focused on consensus call sets of
calling efforts from the Broad, UCSC, Washington University, and Baylor. By the
conclusion of the MC2 effort simply moving these data from one site to another became a
daunting task—let alone correcting for potential batch effects or caller-specific biases.
Although the MC2 produced high-quality calls within each tumor-specific analysis working
group (AWG), there were still differences in the callers, parameters, and filters used from
project to project. Another effort of large-scale sequencing aggregation was implemented at
the Broad Institute, in the effective deployment of the Firehose system (https://
gdac.broadinstitute.org/), which automatically ran a suite of tools, designed at the Broad, to
perform variant calling on all TCGA samples. While these data addressed consistency across
tumor-types, these data were not amenable to custom design by groups outside of the Broad.
In 2014 the ICGC-TCGA Somatic Mutation Calling DREAM challenge (Ewing et al., 2015)
created an open leaderboard to benchmark variant calling methods from groups around the
world. The DREAM challenge identified methods with a large variety of techniques and
performance profiles. However, no large-scale genomic calling effort had yet deployed a
robust set of these methods in a uniform fashion.

To drive analysis outside of these silos, TCGA organized the Multi-Center Mutation Calling
in Multiple Cancers (MC3) project, which has developed pipelines to uniformly apply many
mature tools across the TCGA sequencing project. The combination of both cloud
computing power, policy changes, and improved variant calling software made this effort
possible. The result is an open science collaboration across multiple institutions, designed to
translate brittle custom-coded methods deployed at individual sequencing centers into
portable, robust methods that enable reproducibility, transparency, and shareability with the
broader research community. The software methods for this endeavor have been made
publicly available, along with the datasets that it created.

In this paper, we describe the various challenges and considerations of building standardized
genomic analysis pipelines that can be deployed in mass to tens of thousands of samples, we
also highlight some lessons learned, and considerations of performance when looking across
widely varied cohorts. The resulting dataset, compiled in Mutation Annotation Format
(MAF, https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)
+Specification), represents several million core-hours of computational time on over 400 TB
of short read data using the current state-of-the-art variant calling and filtering methods. The
MAF file represents over 20 million variants produced across approximately 10,000 tumor-
normal pairs from 33 cancer types using 7 variant callers. This form of collaborative science,
driven by a consortium of researchers across multiple institutions, is needed as the amount
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of genomic data continues to increase. The data generated by this work has formed the basis
of the somatic exome variant analysis presented in the other papers from the TCGA
PanCanAtlas project. More detailed analysis of the characteristics of the data and their
biological implications will be discussed in other papers, such as 'Comprehensive Discovery
and Characterization of Driver Genes and Mutations in Human Cancers', 'The Immune
Landscape of Cancer’, and the ‘DNA Damage Repair' (TCGA network et al., update
citations after reviews)

Cloud Deployment and Reproducibility

The MC3 project in support of the TCGA PanCanAitlas is the result of a number of
institutions collaborating to provide resources and methods. In many cases, the project was
able to utilize newly developed systems to deploy compute in ways that were not previously
possible. These systems included custom written management scripts, institutional work
management platforms and cloud-based systems. Alignment, GATK processing and variant
calling for MuTect(Cibulskis et al., 2013) and Indelocator(Chapman et al., 2011) were run
on the Broad's Firehose system. Additional GATK Indel realignment and base quality score
recalibration (BQSR) was done on over 1000 tumor normal pairs on the University of
California Santa Cruz cluster. Processed files were stored at the CGHub system. Over a four
week period, using almost 1.8 million core-hours, 400TB of data was processed for variant
calling using the Pindel(Ye et al., 2009, 2015), MuSE(Fan et al., 2016), Radia(Radenbaugh
et al., 2014), Varscan(Koboldt et al., 2012) and SomaticSniper(Larson et al., 2012) pipelines
on the DNANexus systems. OxoG scores for samples were calculated on the Institute for
Systems Biology (1SB) Cancer Genomics Cloud (CGC) and validation data were processed
using the Broad Firecloud platform.

The majority of the pipelines built for this project were designed to be deployed in multiple
computing environments. To ensure reproducibility, the methods described in this paper have
been implemented using modern workflow technologies, which are showing rapid adoption.
In this model, the workflow is described using: i) a software container- a packaging system
that simplifies deployment of the runtime environment, includes exact software
dependencies and all features to run the program; ii) the tool wrappers - for each tool
utilized, the command line argument to be invoked is described as a set of defined inputs,
outputs, and parameters that can be used by a workflow engine to be scheduled and
managed; iii) a pipeline description - a document that describes how all the tools fit together,
the different parameters that should be modified, and required inputs. For distribution, the
MC3 pipeline is described in the Common Workflow Language (CWL) format with the
required software packages deployed using Docker software containerization technology.
Docker provides methods to package a program and all of its dependencies. These container
images can be shipped to any Linux machine, whether cloud-based or bare metal. Then the
packaged tools can be easily run in new environments with minimal configuration. This
workflow implementation is written using open standards which are easy to distribute and
allow other researchers to replicate, modify and extend this analysis to their own data.
Results are publically available from the NCI Genomic Data Commons (GDC) and include
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protected Variant Call Format (VCF) file releases as well as a filtered, open-access TCGA
MC3 MAF release that contains only highest-confidence somatic mutations. These data will
enable further PanCanAtlas efforts and, more generally, cancer research on TCGA data.

MC3 Variant Calling Strategy and Comparison to AWG MAFs

The MC3 effort used seven variant calling methods with proven performance (Figure 1)
including Indelocator, MuSE, MuTect, Pindel, RADIA, SomaticSniper and VarScan
(VarScan calls both indels and SNPs). Additionally, a collection of filtering methods were
applied. These methods were applied to 10,510 tumor/normal pairs from 33 cancer types in
the TCGA collection of whole exome sequencing data. This produced nearly 20 million
variants. Definitions of controlled and open-access release of genomic variants for the
TCGA data allows somatic variants that occur in exonic regions in open-access files (https://
tcga-data.nci.nih.gov/docs/publications/tcga/datatype.html). Variants called in non-exonic
regions, such as introns, 5' or 3' untranslated regions are restricted to controlled-access
release. Additionally, somatic variants at sites that lacked sufficient normal depth coverage,
or variants found in the panel of normals, were filtered from open-access since they were
considered to be possible germline variants. Using these criteria, the full set of variants was
narrowed down to an open-access file of around 4 million variants. A majority of
downstream PanCanAtlas analyses was based on this subset of variants.

To gauge complementarity with previous efforts of calling mutations across many of these
same tumor types, we compared the new set of calls to the MAF published as part of the first
TCGA PanCan12 project for twelve tumor cancer types in 2013 (http://www.nature.com/
tcga/). The PanCanl12 MAF was created by collecting the variants from each separate TCGA
AWG without any attempt at unification and includes data from a number of TCGA projects
beyond the original PanCan12 set, including Pancreatic adenocarcinoma (PAAD) and Skin
Cutaneous Melanoma (SKCM). We found that the new MC3 MAF had 1,079,216 variants in
the PanCan12 MAF set of samples, while the PanCan12 MAF has 804,571. Among these
calls, 717,326 variants are shared between the two sets (Figure S1). Thus, the MC3 project
captured 89.5% of the original calls while increasing the size of the call set by 25%. The
largest deviation was the PAAD project, which only saw 33% of the original variants and is
likely due to poor tumor purity (see the PAAD marker paper for more details about somatic
mutation calling efforts for this cancer type(Raphael et al., 2017)). Conversely, HNSC,
SKCM, BRCA, BLCA, COAD/READ, and UCEC had greater than 90% of the original
variants rediscovered by the MC3 effort (Figure S2).

For some cancer types, tumor cells profuse into the normal, causing issues in the
identification of somatic variants. The best example of this is acute myeloid leukemia
(LAML), which affects blood and bone marrow. Normal tissue samples (skin biopsies) from
LAML patients often contain blood enriched with tumor cells. This can cause variant calling
programs to mislabel somatic mutations as germline. The MC3 pipeline is conservative,
attempting to remove all false positive germline calls. Much of the original MAF created by
the TCGA LAML AWG was derived by manual interventions, including Sanger sequencing
data not included as part of the TCGA data catalog, to recover variants that would have
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otherwise been uncalled. As a result, the open-access MC3 call set only recovered 44% of
the variants called in the original MAF (Figure S1).

Effects of Somatic Filtering for Open-Access Release

To conform to release guidelines for open-access data in TCGA, the MC3 efforts took
significant steps to remove potential germline calls as well as non-exonic variants. To
accomplish this, filters were used against the flags that marked low normal depth coverage,
non-exonic sites, sites outside of capture kit, sites marked by the Broad Panel of Normals,
samples marked as being contaminated by ContEst, and variants that were only called by a
single caller. The controlled-access MAF file contains 22,485,627 variants from 10,510
tumor samples and is comprised of 13,044,511 SNV events and 9,441,116 indels. The open-
access MAF file contains 3,600,963 variants from 10,295 tumors with 3,427,680 SNV
events and 173,283 indels. We observed that skin and lung cancers (SKCM, LUSC, and
LUAD) had the largest median number of SNV per sample, consistent with previous
publications(Akbani et al., 2015; Collisson et al., 2014; Hammerman et al., 2012) (Figure 2).

We plotted the proportion at which each of the different filters were found on variants in the
three different datasets (the full call set, the open-access data set, and the set of variants used
for validation) to show the reasons for differences in variant counts in the different sets
(Figure 3). The most notable shift is the number of variants (over 60%) found in the full call
set that were marked by the 'NonExonic' and 'bitgt' filters, which remove variants by
genomic regions rather than technical reasons. These sites don't qualify for open-access
release and may not be equally covered by all of the variant calling methods. Additionally,
the Broad Panel of normals flagged almost 30% of the calls in the full set, which were also
removed in accordance with TCGA data release policies.

To further illustrate the importance of filtering on biological findings, we performed
significantly mutated gene (SMG) analysis using both MutSig2CV(Lawrence et al., 2013)
and MuSiC2(Dees et al., 2012) for all KIRC variants present in the controlled-access MAF
compared to those present in the open-access MAF and marked as 'PASS' in the annotation.
Typically this method of SMG analysis, using raw mutation calls, is performed in order to
quickly identify sequencing and technical artifacts. Using the stringent p-value cutoff for
both tools, MutSig2CV (P-Value < 3.5e-5) and MuSiC2 (P-value < 1e-7) each identified 10
SMGs using ‘PASS’ variants from the open-access MAF. Seven of these gen overlapped
between MutSig2CV and MuSiC2 7P53, PTEN, VHL, SETDZ, PBRM1, BAP1, MTOR.
MutSig2CV uniquely identified 7CEBI, PIK3CA, and ATM, and MuSiC2 uniquely
identified ERBB4, SLITRK®6, and KDM5C after long gene filtering. The complete set of
variants from the controlled MAF yielded many more SMG hits (MutSig2CV = 1203, and
MuSiC2 = 321). The noise introduced by the unfiltered variant calls made the identification
of real SMG signals very difficult.

Performance Evaluation of MC3 Variant Calling by Experimental Validation

In order to evaluate calling performance, the TCGA project performed targeted deep
sequencing on select variants for the purpose of validation for individual cancer papers.
Selection of these variants were made by the original tumor-specific AWGs, and was not

Cell Syst. Author manuscript; available in PMC 2019 March 28.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ellrott et al.

Page 7

performed specifically to validate MC3 efforts This targeted sequencing included 3,128
samples with validation of a wide range of selected genes and was used for MC3 validation.
This set of sequences included 33 samples with more than 500 targets genes and a median of
4 genes per sample. Variants from uterine corpus endometrial carcinoma (UCEC) comprised
almost 28% of the sites and esophageal carcinoma (ESCA) 23% of the sites in this targeted
validation dataset (Figure S3). Additionally, whole genome sequencing (WGS) was also run
providing additional orthogonal data to use for validation. WGS data was available for a
subset of 1059 samples, and provided a median of 126 validation sites per sample. Some
methods, such as MuTect deployed by the Broad Firehose, only called variants within a
region defined by the sequence capture kit definitions, even if additional sequencing was
available. Because of this, sites marked by the “bitgt’ filter, which marked non-common-
capture regions, were removed from the validation data set to provide consistent statistics
when comparing across methods.

Because sites for targeted validation were selected from the most likely SMG candidates in
the TCGA AWGs, rather than a random sampling of data, the validation data does not
represent a robust benchmarking dataset. Every site involved in the targeted validation was
called at least once by one of the variant calling methods. Because there is no background
sampling, such as random sites not called by any of the methods, the false negative rate
neglects sites not called by any method. Sites related to false positive germline signal would
have been filtered before validation selection, and also not been part of validation efforts.
Additionally, validation sites would be biased toward less complex and smaller events,
which would impact performance evaluation of sites that are more difficult to characterize
using targeted sequencing. We were able to partially manage this effect by including
additional validation sites from samples where orthogonal WGS had also been performed.
We should also note that the majority of validation data was generated using a similar
sequence technology, therefore systematic errors such as those that several of the filters
attempt to address will appear as erroneous filtering events. This particularly affects PoN
filters. When comparing the subset of sites validated by targeted sequencing against WGS
based validation the rate of these types of events doesn't seem to be very large. Given the
profiles of filters among the datasets we see in Figure 4, the validation data does not mirror
the characteristics of the full call sets. Despite these limitations, the validation data set does
provide extensive data about the relative performance of callers and filters (Table S2).

As seen in Figure 4, meta calling methods, such as 'two caller intersection’, are able to
quickly eliminate false positives. This has been noted previously in other studies(Goode et
al., 2013). The 'two-caller' rule for the set of five SNP callers finds more valid sites than any
specific combination of two callers(Table S3). This draws on the wisdom of crowd
principle(Costello and Stolovitzky, 2013). The two caller intersection is much less effective
for indel calling methods, as it causes an increase in false negatives due to its conservative
nature. We see general trends, such as MuTect and MuSE detecting the largest number of
true positive sites among the validation variants surveyed. Somatic Sniper had the lowest
number of detected sites, omitting the largest number of validated sites, but at the same time,
it had the smallest number of false positive validated sites.

Cell Syst. Author manuscript; available in PMC 2019 March 28.
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We observed many tool specific patterns pertaining to mutation identification (Figure 5).
Most calls that passed all the filters were supported by all 5 callers. For SNP calls, MuSE
and MuTect have the highest pair-wise agreement. They each also have the largest number
of unique calls. For indel callers, Pindel makes the most calls, but over 130K of the variants
were found in two samples, suggesting there may be characteristics of these samples that
skew the numbers. Only a small fraction of indel calls made by all three callers.

Discussion

The previous paradigm of genomic research was that groups downloaded data, ran methods
on their own, and then provided results to the community, representing a 'results-oriented'
approach. Under this model, it became extremely difficult for external groups to reproduce
calculations or apply new methods to new datasets. However, with the advent of cloud
technologies such as computational virtualization and containerization systems, there is now
the ability to capture computational methods in a way that can be run on external compute
systems. This change allows for a 'methods-oriented' strategy in which the collaborating
institutions provide shareable algorithms to be run on the data, rather than processing it
themselves. The MC3 is a showcase for a methods-oriented project, collecting reproducible
code for methods from collaborators and deploying them uniformly to data on the cloud.

Through collaboration, open science, and improved resources the MC3 effort overcame
lingering artifacts from previous cancer-type specific analyses and reflects a true PanCancer
set of somatic mutations. Many lessons were learned, or re-confirmed, while leveraging
multi-institutional expertise: 1) While many methods have a public facing software on
GitHub or clouds resources, default parameters were often insufficient. Achieving the best
performance required additional input from the original authors. 2) Some tumor types, such
as liquid tumors, require different strategies of variant calling and filtering to obtain an
optimal set of mutations. 3) Providing annotation generated by various filtering methods, as
opposed to generating files with fixed removal of possible artifacts allows for flexible usage
of the mutation call set. 4) Using reproducible code and methods based approaches are
essential as datasets increase in size and complexity. 5) Meta-calling methods, that utilize
the results of multiple methods, can provide more robust results than single methods. 6)
Multiple precautions and filters were needed to protect potential germline leakage of patient
data into public facing, open-access data. These lessons learned allowed for customizable
strategies based on algorithmic objectives or biological inquiries.

This organization of coherent variant calling for 10,000 genomes was a multi-year process.
However, there were a number of technical advances that occurred during this time-frame,
and these technologies will make utilization of cloud resources much more accessible for
researchers going forward. While this effort was informed by the DREAM challenge(Ewing
et al., 2015), many of the methods selected were based on best practices of the original
TCGA AWGs. ldeally, future variant calling and filtering efforts should use a robust
benchmarking effort to scan the various combinations of callers, filters, and parameters and
evaluate which callers and filters are optimal for different tumor types and contexts. The
lessons learned from this project should inform the design of a new somatic mutation calling
pipeline having an end-to-end FASTQ-to-filtered-MAF file workflow with complete
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containerization in a single cloud. Resources such as the TCGA catalog form the backbone
of reference data sets that can be used as a point of comparison in new research projects. But
those comparisons are only useful if the analysis is applied consistently. Thus, when
pipelines are applied to large datasets, the methods should be made available alongside the
resultant data so that other groups can apply them to their own experimental data.

The PanCanAtlas project encompasses many research goals. For this reason, a one-size-fits-
all approach would not cover the different types of analyses. An example of this would be
the problems of driver gene discovery vs heterogeneity analysis. A high-confidence caller
with lower false positive profiles is better geared for driver gene discovery, because the
removal of false positive noise helps to better identify significant recurring patterns. Once
the significant driver genes have been identified, a second pass over the mutation set can find
lower confidence calls that could provide additional examples of the gene of interest. In
contrast, heterogeneity analysis, which looks for variants that occur in fractions of the
population, works much better with very sensitive algorithms because these variants, with
potentially low variant allele fractions, may be filtered out by more stringent methods.
Therefore, it was appropriate to include called variants and provide mechanisms for doing
additional filtering that was appropriate to the analysis. These steps, in accordance to the
TCGA open-access release guidelines, resulted in the collection of 3 mutation annotation
format (MAF) files: a controlled-access MAF, an open-access MAF, and a validation MAF.
Each of these MAF files have distinct properties which are compared and contrasted here.

The multi-center mutation calling in multiple cancer (MC3) effort reflects three objectives of
large-scale data generation in an age of open science: collaboration, consensus, and
consistency. First, multi-center collaboration combined efforts and expertise from multiple
academic institutions. Second, mutation calling was performed using an array of 7 mutation-
callers developed by the adopted by different TGCA analysis centers. We show consensus
calling outperforms single algorithms in both sensitivity and validation status. Finally, the
use of consistent methods for calling across multiple-cancers enhances the utility of this
resource in future efforts to contrast the molecular makeup across tumors. The results of this
effort provide integral components necessary for future efforts in somatic variant calling.

STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING

All data associated with this project will be made available via the NCI's GDC data portal,
source code will be made available on GitHub and docker containers on the Docker and
Quay docker repos. Questions can be directed to the contact author at ellrott@ohsu.edu

METHOD DETAILS

Sample List Creation—The MC3 sample list was extensively verified to make sure that
poor quality samples were removed, and that for every donor the best tumor and normal
samples were paired. To this end, a number of rules were applied to remove samples and
identify appropriate sequence data which BAM files fit pipeline specifications as well as
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identify samples with available sequencing information that required preprocessing prior
running analysis.

The list of rules applied included:

1. Exclude redacted samples - A number samples in the TCGA had been removed
or flagged over the course of the TCGA project for various reasons.

2. Exclude non-HG19 aligned files - Earlier samples from the TCGA project were
aligned with older genome builds, including HG17 and HG18. Rather than
attempt to back-port variant calling platforms to older genomes and lift-over the
variants to new genome builds, these samples were eliminated from the resource
pool when building the sample list. In many cases the data from these files had
been realigned by the Broad Firehose platform as part of their efforts in various
tumor specific working groups.

3. Preferentially select Broad genome build - In cases where a samples sequencing
data had been run through multiple alignment pipelines, the Broad pipeline was
preferentially selected to eliminate variance. In most cases when there was a
multiple pipeline runs, the Broad pipeline was run to update the alignments to an
HG19 genome build.

4, Reassign samples without GATK co-cleaning - Co-cleaning refers to the process
of applying the GATK IndelRealignment to both the tumor and normal samples
of an individual. This process is also accompanied by running Base Quality
Score Recalibration (BQSR). While complete realignment of sequences was not
required for inclusion in the MC3 analysis, it was required that the GATK co-
cleaning process has been applied. Because this step was part of the Broad
pipeline, any sample selected fit this requirement, thus the previous rule. In cases
where a sample was not co-cleaned and had not already been realigned as part of
the Broad pipeline, a the co-cleaning was done and the new sequences stored in a
special project at CGHub.

5. Exclude non-Illumina sequenced samples -A small number of samples in the
TCGA cohort had been sequenced with other technologies including ABI SOLID
and 454 for validation sequencing. To reduce artifacts and maintain consistency,
these sample were eliminated from the list.

6. Exclude FFPE samples - Most of the TCGA samples were derived from fresh
frozen samples, but a subset of samples were derived from Formalin-Fixed
Paraffin-Embedded samples. These samples may have experienced more DNA
damage and had different error profiles in mutation calling. This rule results in
the removal of 97 samples.

7. Matched genome build string - While HG19 alignment was required for sample
inclusion, there was in fact a number of different genome versions, including
'HomoSapien19' "WustIBuild1' and others. These genome build were all based on
HG19, but contained various patches. Genome patches add additional sequencing
information to the assembly, without disrupting the chromosome coordinates.
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But while these multiple patches were allowed, for a tumor and normal sample to
be matched the genome build title had to match, to eliminate the possibility of
sequence patches being misidentified as somatic mutations.

Prefer Native DNA pairs over WGA pairs over Native+WGA - There is a
number of earlier TCGA samples which were sequences with Whole Genome
Amplification. Because of the technical artifacts associated with this technique,
in cases where there was sequencing done without WGA, those samples were
preferentially selected.

Prefer samples with matching RNA-Seq - \We selected samples that had quality
measures based on RNA-Seq.

Usually prefer latest plate - Operating on the principle that any later sequencing
effort would have been triggered by issues in the earlier runs, the latest run from
a sample was chosen.

Prefer pairs sequenced at the same center - Sometime tumor normal pairs were
sequenced at multiple centers. We selected for samples tested at the same center.
This step was not adjusted based on Contest or Oxog scores.

Tumor contamination estimates using Contest - Samples were removed if the
Contest score estimated more than 4% contamination from another participant.

Spurious sequence artifacts. BadSeq - 6 samples were removed if they appeared
to be affected by systematic sequencing artifacts. Systematic insertions or
deletions were identified at the same base pair location in each of the reads in the
both the forward and reverse strands. These artifacts have been previously
reported(Ye et al., 2015).

Given these rules, the sample selection algorithm is as follows:

1.

Pick best bam within aliquot + original sequencing center. This involves apply all
hard filters and picking samples with a preference toward BAMs processed via
the Broad pipeline or the MC3 secondary co-cleaning pipeline.

Pick best set of BAMs within an individual. First selecting the most “popular”
build, using Broad-aligned or number-of-native as tiebreakers, and avoid
selecting WGA samples. Some overrides were applied in these step, ie selecting
Baylor-aligned native samples vs Broad-aligned WGA samples.

Pare back the aliquots within the individual. First drop non-paired samples and
select one aliquot per sample.

The final white list consisted of 11,069 tumor-normal pairs for 10,486 participants. In cases
where more than one pair was selected for a participant, all of the pairs were analyzed for
mutations, but all but one were tagged as 'nonpreferredpair’, based on criteria like preferring
a primary to a metastatic tumor sample, and for solid tumor types preferring a blood to a
tissue normal sample.
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Variant Calling and Filtering Strategies—For the variant calling step, seven methods
were applied, five covering Single Nucleotide Variant (SNV) calling and three covering
short Insertion Deletion (INDEL) events, with Varscan 2 providing both types of analysis.
Parameters used for these tools are found in Table S1.

1. MuTect (SNV) - This method at the Broad Institute(Cibulskis et al., 2013) uses a
Bayesian classifier that allows it to identify low-read/low-allele fraction somatic
mutations, while maintaining a high specificity. It was one of the top performing
methods in the SMC-DNA DREAM challenge(Ewing et al., 2015).

2. Varscan 2 (SNV/INDEL) - Developed by Daniel Koboldt, Washington
University, the algorithm uses heuristic and statistical approaches in its algorithm
to detect germline, somatic and loss of hertezinocity. It can calculate SNV, Indel
and CNA events(Koboldt et al., 2012).

3. Indelocator (INDEL) - Developed by the Broad team(Chapman et al., 2011) uses
read count and alignment quality information to detect indel events found in
tumor alignments.

4, Pindel (INDEL) - Developed by Kai Ye et al. at Washington University is used to
identify medium size insertion and large deletion events. Pindel also generates
complex variant calls that accurately reflect the genomic alterations even around
substitution sites(Ye et al., 2009, 2015).

5. SomaticSniper (SNV) - Developed by David Larson et al. at Washington
University, this method compares the tumor and normal bams to find differences
using the samtools MAQ genotype likelihood model to make alteration
calls(Larson et al., 2012).

6. RADIA (SNV) - Developed by Radenbaugh et al at University of California in
Santa Cruz, RADIA stands for RNA and DNA Integrated Analysis. It augments
it mutation calls using RNA-Seq samples from the same tumor making it
possible to make mutation calls when there is lower DNA allelic frequencies.
RADIA was applied using matched RNA when available(Radenbaugh