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Abstract

Probing the Extremes of Galaxy Evolution with New Stellar Population

Synthesis Models

by

Alexa A. Villaume

Understanding how galaxies form and evolve is a fundamental goal of modern

astrophysics. It touches on critical problems at both small scales, e.g., star-formation,

and large scales, e.g., the hierarchical growth of structure as expected from the cosmo-

logical paradigm. Ironically, the very nature which makes galaxy evolution so important

to understand is the same property that makes it so difficult to understand. The vast

range in physical scales that need to be understood and non-linear evolutionary behav-

ior make ab initio models describing galaxy evolution impossible. In this thesis, I adopt

the “archaeological” approach to unraveling the evolutionary histories of galaxies that

exist at the extreme ends of the observed galaxy population.

I first describe the empirical stellar spectral library that forms the foundation

of the stellar population synthesis models that underpin this work. The expansion in

stellar parameter and wavelength coverage of this library enables the broad applicability

of the models to objects that collectively populate various ends of the range of galaxy

parameter space.

The first such application demonstrates that the primary correlate of initial

mass function variability is not metallicity, like suggested by previous work. Then I

xviii



show that the internal properties of the ancient star clusters that are used as primary

fossil record to infer the histories of the most massive galaxies in the Universe are not

as well-understood as previously considered. I discuss how this result both alters the

interpretations of galaxy evolution based on these fossils and the implications this has on

the understanding of star cluster formation and, thus, star formation. I then, with the

new models for the individual clusters and a novel statistical framework for the systems

of these clusters, provide new constraints on the assembly processes in a massive galaxy.

Finally, I apply the new models to the spatially-resolved galaxy light of a contentious

new galaxy type to show that it is indeed a galaxy with hitherto unprecedented stellar

population properties.
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Chapter 1

Introduction

Stars. Or rather, the drains of heaven–waiting. Little holes. Little centuries opening

just long enough for us to slip through.

Ocean Vuong, Immigrant Haibun

Almost 100 years since Hubble (1936) – and innumerable observational surveys

that have gone deeper, farther, broader – the general classification scheme established

then between early-type galaxies (ETGs), late-type galaxies (LTGs), and irregulars is

still used. That is not to say significant progress has not been made, but the ques-

tion of how galaxies initially form and then evolve to what is observed today is still a

fundamental question of modern astrophysics.

Galaxy evolution is related to both questions in star-formation and cosmology.

In the modern ΛCDM1 cosmological paradigm (Blumenthal et al. 1984), galaxies form

within dark matter halos in the nodes of the filaments of the “cosmic web”. Galaxies

then provide the environments in which star-formation takes place, but are then im-

1“Cold dark matter” indicates that “dark matter” is expected to be a weakly interacting particle
with low thermal velocity. “Λ” refers to the expansion of the Universe.
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pacted by that process in the form of “stellar feedback”. Furthermore, galaxies within

relatively massive dark matter halos experience bombardments of galaxies in lower mass

dark matter halos that bring in some combination of stars and other detritus which fur-

ther assemble the massive galaxy (Naab et al. 2009).

In this sense, our understanding of galaxy evolution is the keystone to the most

fundamental aspects of astrophysics. It is this very nature, however, that makes galaxy

evolution so difficult to understand. The processes that affect the evolution of galaxies

occur over a huge range of physical scales which makes it currently impossible to have

an ab inito formulation of galaxy evolution (Somerville & Davé 2015; Naab & Ostriker

2017).

1.1 The archaeological approach to galaxies

The present-day stellar population properties are used to provide one of the

only windows into the evolutionary histories of galaxies – particularly at early epochs

that are not directly observable. The stellar populations of our own Milky Way galaxy

and in nearby, Local Group, galaxies are relatively easily studied and understood be-

cause we can resolve and directly observe the individual stars.

However, in more distant galaxies the stars are unresolved and stellar popula-

tion synthesis (SPS) models are relied on to interpret the integrated light observations.

SPS models work by creating a synthetic spectrum from the summed spectra of all the

stars expected to be found in a galaxy, weighted according to the expected numbers of

each type of star. This synthetic spectrum is compared to the observations with the
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weights and stellar types adjusted for a best-fit model. This is a standard, powerful tool

for understanding galaxies with unresolved stellar populations.

SPS models are limited in their applicability by the ingredients that go into

making them2. Most fundamentally are the stellar libraries that are used to convert

stages of stellar evolution – parameterized by surface gravity (logg), effective temper-

ature (Teff), and metallicity ([Fe/H]) – into spectral energy distributions (SEDs) that

can be compared to observations.

One of the most intriguing results to come out of SPS models recently is

the measurement of variable initial mass functions (IMFs) in the centers of massive

ETGs. This remains a controversial result as it does not correspond to the extreme

star-formation environments found in the Milky and because there is no theoretical

underpinning to explain it (Krumholz 2014).

Part of the problem is obtaining a clearer observational picture of this phe-

nomenon is that the types of objects that could be assessed in this way has been very

limited. This is because this kind of measurement require gravity-sensitive spectral fea-

tures that are mainly available in the near infrared (IR) and near-IR spectral stellar

libraries available at the time only existed for solar metallicities.

Chapter 2 details my efforts to create an empirical, optical to near infrared

(IR) stellar spectra library with expanded stellar parameter coverage. Then, Chapter 3,

presents the results from my modeling of optical to near-IR spectroscopy of low-velocity,

compact stellar systems to expand the parameter space of IMF studies.

2This problem has existed since the conception of computers. As reflected by Charles Babbage, “On
two occasions I have been asked, ‘Pray, Mr. Babbage, if you put into the machine wrong figures, will the
right answers come out?’...I am not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.”
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1.2 Globular clusters as fossil records

The access we have to resolved stellar populations in the Galaxy is extremely

powerful. The key step to understanding the initial formation, and subsequent assem-

bly, of the galaxy is to differentiate the in– and ex-situ populations. In recent years, a

renaissance of sorts has transformed our understanding of the origins of the Milky Way

through a combination of heroic data collection efforts (e.g. the Gaia and APOGEE

surveys Gaia Collaboration et al. 2018; Majewski et al. 2017a) and increasingly sophis-

ticated simulations of stellar halos in a cosmological context (e.g., Latte/FIRE2, Auriga

Wetzel et al. 2016; Grand et al. 2017).

Even with an increasing ability to obtain spatially-resolved spectroscopy of

extragalactic systems, integrated light will still never be as good as resolved stellar

populations. But, instead of focusing on the stellar populations within a galaxy, discrete

tracers can be used to probe the content of a galaxy. Globular clusters (GCs) are one

of the most widely used of the possible tracers as they are nearly ubiquitous around

galaxies and are relatively luminous compared to galaxy starlight.

But their strength lies in their uniformly old (> 10 Gyr) ages. This makes

them an ideal “fossil record” for the archaeological approach as they presumably reflect

the conditions of the early-universe under which they were formed. In the Milky Way,

it was the GC system that provided the pre-ΛCDM evidence that the stellar halo of the

Milky Way was built through the accretion of satellite galaxies (Searle & Zinn 1978).

Moreover, difference in accretion history between the Milky Way and M31 is clearly

seen in the different metallicity distributions of their own GC systems (Caldwell &
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Romanowsky 2016). GC systems also extend far beyond the reaches of galaxy starlight,

and so provide a window to the fully ex-situ outer halos of galaxies.

However, massive star cluster formation is still an unsolved problem. GCs are

additionally subject to a range of dynamical effects that destroy an unknown fraction of

the initial population (Ma et al. 2020). And, while they are generally considered to be

good approximations of simple stellar populations things like the inexplicable star-by-

star abundances variations seen in Milky Way and Local Group GCs (Bastian & Lardo

2017) and unexpected dynamical mass-to-light ratios (Md/L, Strader et al. 2011a) seem

to challenge that view.

This is of particular concern in extragalactic systems, where the inherent data

limitations have rooted the field in assumptions. Imaging has been the dominant means

to study GC systems outside the Local Group because it is an efficient way to obtain

large data sets and, because of their old ages, it is assumed that the broadband colors

of individual GCs can easily be converted into metallicity through “color–metallicity

relations” (CMRs). In Chapter 4, I show that this is not case because the internal prop-

erties of GCs are not as well-understood as previously thought but that spectroscopy

and SPS models provides a means to understand and mitigate these difficulties.

1.3 Stellar population gradients, as opposed to integrated

values

SPS models provide the means to infer ages (though that is an ill-posed pa-

rameter) and chemical abundances of galaxies beyond the Local Group. The different
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chemical elements can be broadly categorized as Fe-peak elements (Fe), α elements (Mg,

Ti, Ca, Si), and light elements (C, N). Since the production sites of these elements differ,

so too do the timescales which they are produced. The Fe-peak elements are produced

in Type Ia (and Type II) supernova, while the α elements are produced in Type II

supernova which originate from low mass and high mass stars, respectively. Therefore,

[α/Fe]3 is used as a clock of star-formation timescales.

Thomas et al. (2005) leveraged this fact over a large sample of ETGs and

determined that the centers of massive ETGs are very metal-rich and α-enhanced, im-

plying that galaxies produced a very short, intense period of star-formation before being

quenched. On the surface, this is difficult to reconcile with the large sizes and extended

stellar halos seen in these galaxies and was called “antiheiarchcial” or “downsizing”

when the result first came out. In principle, though, this can be explained with late

assembly of these galaxies through primarily “dry” mergers 4 which preserve the old

appearance of the original galaxy (Di Matteo et al. 2009).

In light of this, there has been a push to move beyond integrated stellar popu-

lation values, into the spatially-resolved regime to obtain galactocentric radial gradients

of stellar population parameters. This field is only recently reaching maturity in the

form of the MASSIVE (Ma et al. 2014) and MaNGa (Bundy et al. 2015) surveys. The

primary difficulty has been data acquisition as the surface brightness of massive ETGs

drops precipitously with increasing galactocentric radius. Both those surveys rely on

integral field unit (IFU) spectrographs.

3Almost always in the extragalactic context α is really just Mg but that does not mean that they all
have the same origins. To quote Stan Woosely, “Ti is a bastard.”

4Mergers that do not bring in gas and so do not form stars as a result.
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The most massive galaxies in the present-day Universe are brightest cluster

galaxies (BCGs), an extreme end of the ETG class (Mhalo ∼ 1014M�). They should

therefore be the best environments to test the predictions of hierarchical assembly.

An outstanding puzzle in this regard, is that despite the violence that underpins the

evolution of these galaxies from the high-redshift Universe, they have been shown to

follow tight relations among their global properties. For example, it is not clear how the

very little scatter in the Fundamental Plane, which places strong constraints on the age

and metallicity distributions in ETGs, is reconcilable for the merging scenario (Renzini

2006).

In Chapter 5 I model the stellar population gradients of the integrated starlight

in BCG M87 and its GC system. For the GC system, I model with the metallicity

gradient within a hierarchical Bayesian statistical framework. This allows me to account

for the covariance between the subpopulation memberships of the individual GCs and

the subpopulation properties that I am measuring as well as statistically de-project the

galactocentric distances. I also use the subpopulation memberships to my physically-

motivated spectral stacks of the GC system to compare to the field star population.

More recently, a new class of objects was discovered, so-called ultra-diffuse

galaxies (UDGs). Their large sizes but low stellar masses pose a significant challenge

for galaxy formation and evolution theories. In Chapter 6, I detail the first spatially-

resolved stellar population gradients of an UDG, DF44. Finally, in Chapter 7, I sum-

marize this thesis and discuss the future work that needs to be done.
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Chapter 2

The Extended IRTF Spectral

Library: Expanded coverage in

metallicity, temperature, and

surface gravity

2.1 Introduction

Stellar libraries, whether empirical or theoretical, are foundational to several

different fields of astrophysics. In stellar population synthesis (SPS) models stellar

libraries are needed to convert the stellar evolution predictions of stellar parameters:

effective temperature (Teff), surface gravity (logg), and metallicity ([Fe/H]), into spectral

energy distributions (SEDs) (Conroy 2013). Stellar spectra can be used to compute the
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line-of-site velocity distributions in galaxies (Cappellari & Emsellem 2004; Emsellem

et al. 2004). Well-characterized stellar spectra are also a key ingredient in exoplanet

studies (e.g, Newton et al. 2014; Mann et al. 2015).

The goal for any stellar library is extensive coverage in stellar parameter space

and large wavelength coverage at comparable or better resolution than typical obser-

vations to which they are compared. Large wavelength coverage is important because

different wavelength regimes probe different stellar populations in the integrated light

of galaxies. The optical is the most well-studied wavelength regime but there is impor-

tant information that is only available in other regimes. For example, the ultra-violet

(UV) probes the populations of hot, massive stars (e.g., Vazdekis et al. 2016, and the

references therein) and the near infrared (IR) probes the populations of cool, evolved

stars such as those on the asymptotic giant branch (Athey et al. 2002; Martini et al.

2013; Villaume et al. 2015; Simonian & Martini 2016). Furthermore, the endeavor to

characterize biological signatures of exoplanets must consider the effect and character-

istics of the host stars, which requires UV-IR coverage (France et al. 2015). Moreover,

uniform coverage in parameter space is also necessary to ensure accurate stellar popula-

tion models. Unfortunately, there is still no single stellar library that covers the entire

range of wavelength and parameter space.

Empirical stellar libraries have been available for over 30 years (e.g., Gunn

& Stryker 1983; Pickles 1985; Diaz et al. 1989; Silva & Cornell 1992; Pickles 1998;

Worthey et al. 1994; Jones 1999; Lançon & Wood 2000; Cenarro et al. 2001; Prugniel

& Soubiran 2001; Le Borgne et al. 2003; Valdes et al. 2004; Sánchez-Blázquez et al.
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Figure 2.1: (Panels a-e) Comparison of the MILES spectral library (blue) with the
library presented in this work (red). All the stars in this work were selected from the
MILES library. Stars were chosen to sample isochrones spanning from 3 Gyr (grey line)
to 13.5 Gyr (black line) with metallicities [Fe/H] = 0.25, 0.00, -0.50, -1.00, and -1.50. (f)
Comparison of the metallicity density functions (MDFs) of the MILES spectral library
(solid grey), the Rayner et al. (2009) (black line), and the library presented in this work
(red line). The different libraries have different total number of stars so the MDFs
were normalized such that the integral over the range of metallicity values is 1 for each
library, indicating at any given metallicity value what the probability that a given star
has that metallicity for each library.

2006a; Mármol-Queraltó et al. 2008; Rayner et al. 2009; Ardila et al. 2010; Sharon

et al. 2010). A key limitation of existing stellar libraries is their often limited coverage

in stellar parameter space. This is in some respects a fundamental problem because

not all stars of interest are close enough to enable detailed observations (e.g., hot metal

poor stars). Standard observational constraints such as atmospheric absorption and sky

emission, which is especially prominent in the IR, flux calibration, wavelength coverage,

10



and spectral resolution further challenge the development of comprehensive empirical

stellar libraries.

Theoretical libraries offer the advantage of dense coverage in parameter space,

arbitrarily high spectral resolution, and no need to correct for atmospheric absorption or

flux calibration (e.g., Munari et al. 2005; Martins et al. 2005; Coelho et al. 2005). How-

ever, theoretical stellar libraries are only as good as the available atomic and molecular

line lists and the approximations made in computing the models, e.g., the assumption of

local thermodynamic equilibrium (LTE) and 1D plane-parallel atmospheres. The effect

of non-LTE is generally taken into account where it matters most (e.g., hot stars and

metal-poor stars Lanz & Hubeny 2003; Lind et al. 2012) and some 3D theoretical mod-

els (e.g, Magic et al. 2013) have begun to emerge but these techniques have not been

widely adopted due to the fact that they are very computationally expensive. Theo-

retical stellar spectra are most unreliable for very cool stars and very hot stars (Allard

et al. 1997; Martins & Coelho 2007; Bertone et al. 2008; Allard et al. 2013; Rajpurohit

et al. 2014, 2016). The former is a particularly acute problem for both exoplanet and

galaxy studies. All the habitable zone planes found by TESS will be around M dwarfs

(France et al. 2015) and counting cool dwarf stars in the absorption lines of integrated

spectra of galaxies has emerged as a way to constrain the initial mass function (IMF)

(Spinrad 1962; Wing & Ford 1969; Cohen 1978; Frogel et al. 1978; Kleinmann & Hall

1986; Diaz et al. 1989; Ivanov et al. 2004; Conroy & van Dokkum 2012a) in unresolved

stellar populations. The limitations of the theoretical stellar spectra in the cool star

regime makes it necessary to turn to empirical stellar libraries.
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Sánchez-Blázquez et al. (2006a) created a landmark empirical optical stellar

library, the MILES library. The MILES library, consisting of nearly 1000 stars, covers

a wide range of stellar parameter space over the wavelength range 0.35− 0.75µm. The

MILES library enabled the creation of more precise SPS models which in turn facilitated

a greater understanding of galaxies beyond the reach of resolved stellar population

studies.

However, as stated previously, the optical window does not contain a complete

picture of a stellar population. A major advance occurred with the release of the Rayner

et al. (2009) Infrared Telescope Facility (IRTF) spectral library. The creation of this

near-IR library was a great step forward for SPS models (e.g., Conroy & van Dokkum

2012a; Spiniello et al. 2012; Meneses-Goytia et al. 2015; Röck et al. 2016). A limitation

of the IRTF stellar library is its narrow stellar parameter range, all stars being around

solar-metallicity. Furthermore, there is very little overlap in the stars between the

MILES and IRTF stellar libraries. The X-Shooter Spectral Library (XSL) is observing

many stars with continuous spectral coverage from 0.35 − 2.5µm and will be another

valuable library once complete (e.g., Chen et al. 2014).

In this work we present the Extended IRTF Library. The extension is two-fold:

we expanded the metallicity coverage to −1.7 <[Fe/H] < 0.6 a large expansion from the

just solar-metallicity coverage of the original IRTF library, and we selected all of our

objects from the MILES stellar library to provide continuous coverage from the optical

through near-IR. In addition to the new stellar library we also present an interpolator

that uses a data-driven model created from the new stellar library. The interpolator

12
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Figure 2.2: Demonstration of the telluric correction for the star BD+053080. We show
the atmospheric transmission spectrum (grey), the spectrum for BD+053080 before the
telluric correction (blue), and the spectrum after telluric correction and flux calibration
(red).

generates a stellar spectrum as a function of Teff , logg, and [Fe/H]. This interpolator

provides smooth variation in stellar spectra across parameter space, and is an important

component in the creation of stellar population models.

The rest of this paper is organized in the following manner: Section 2 details

our sample selection, observational strategy, data reduction, and characteristics of the

objects and data. In Section 3 we describe our interpolator and assess its quality. In

Section 4 we explore the behavior of the library and the interpolator and compare both

to theoretical predictions. Finally, in Section 5 we summarize the main points of this

work.
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2.2 The Extended IRTF Library

2.2.1 Sample Selection

We selected our target stars from the MILES stellar library (Sánchez-Blázquez

et al. 2006a), avoiding known spectroscopic binary stars, to provide continuous coverage

from the optical to the near-IR. We selected our targets to span a stellar parameters

that would enable the creation of stellar population models for intermediate and old

population ages as determined with stellar isochrones from the MIST project (Choi

et al. 2016) .

In Figure 2.1 we compare the MILES coverage in Teff -logg space and the stars

observed with IRTF for this work. Each panel shows the stars in a given metallicity bin

where the stars from the MILES library are represented as blue circles and the stars

observed for this library are represented as red circles. Each panel also displays 13.5

Gyr (black line) and 3 Gyr (grey line) MIST isochrones. Selecting targets by eye, we

achieved relatively uniform coverage along the intermediate age isochrones for all but

the lowest metallicity bins and the old age isochrones across all the metallicity bins.

In particular, we have well sampled turn-offs for all except the intermediate-age, low-

metallicity stellar tracks. The metallicity distribution of the library is summarized in

panel f of Figure 2.1.

Throughout this work we use the stellar parameters determined by Prugniel

et al. (2011) and Sharma et al. (2016) instead of those reported by Cenarro et al.

(2007). The stellar parameters determined by Cenarro et al. (2007) were determined

heterogeneously, depending on which additional literature data was available for a given

14



Metal lines from A0 V

Figure 2.3: Comparison of a theoretical atmospheric transmission spectrum (black) to
an example of a telluric spectrum (grey) used to telluric correct the library spectra
and a theoretical spectrum of an A0 V star (purple). In regions of the A0 V spectrum
containing strong hydrogen and metallic lines (top panel), the telluric spectrum includes
unphysical features. We indicate a few of these features introduced by the metal lines
in the A0 V stars in the top panel. Note that no attempt was made to fit the model
transmission spectrum to the observations; the model is meant only to guide the eye.

star. As a result, the stellar parameters from Cenarro et al. (2007) vary in quality and

trustworthiness. Prugniel et al. (2011) sought to revise the stellar parameters of the

stars in the MILES library in a more robust and homogeneous way. They used ELODIE

spectra to perform full-spectrum χ2 minimization fits (Koleva et al. 2009) between the

MILES spectra and templates built from the ELODIE 3.2 library (Wu et al. 2011).

Sharma et al. (2016) revised the stellar parameter values of MILES library stars with

Teff < 4800 K with an improved interpolator.

It is important to note that the accuracy of SPS models is predicated upon
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Figure 2.4: Comparison of the median absolute deviation of the Poisson and empirical
uncertainty values of five library stars with repeat observations with the same stan-
dard star. We indicate 1% uncertainty with the dashed line as a guide. The Poisson
uncertainty is ∼.2% throughout the wavelength range and underpredicts the empirical
uncertainty (difference between the two observations) but nonetheless the median em-
pirical uncertainty is generally < 1%. The regions where the uncertainty exceeds 1% are
regions contaminated by telluric absorption or where there exist prominent hydrogen
absorption features in the A0 V standard stars.
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Figure 2.5: Sequence of stars on the main sequence turn-off (left) and subgiant branch
(right) plotted as a function of metallicity metallicity over the I band (0.82-0.95µm).The
spectra have been divided by the median flux value over the wavelength region shown
and offset by constants.
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Figure 2.6: Same as Figure 2.5 except over the Y band (0.95-1.10µm).
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Figure 2.7: Same as Figure 2.5 except over the J band (1.12-1.34µm). The vertical grey
bands mark regions of poor transmissivity due to telluric absorption.
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Figure 2.8: Same as Figure 2.5 except over the H band (1.48-1.78µm).
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Figure 2.9: Same as Figure 2.5 except over the K band (1.92-2.50µm). The vertical
grey band marks a region of poor transmissivity due to telluric absorption.
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the accuracy of the stellar parameters. Percival & Salaris (2009) found that a change of

100 K in the effective temperature of stars in a stellar library can propagate into a 20%

error in absolute ages estimated from stellar population models. Furthermore, derived

exoplanet properties are a direct function of the stellar parameters of the host star (e.g.,

Mann et al. 2015). These examples underly the need for accurate stellar parameters in

empirical stellar libraries.

We do not make use of the Rayner et al. (2009) library (except for comparison

with re-observed stars) for two reasons. First, as we will discuss later, the detectors on

SpeX have been upgraded since the IRTF library of Rayner et al. (2009). A significant

component of the upgrade included a blueward extension to 0.70µm. The original IRTF

library had a blue cutoff of 0.8µm, which meant that there was no overlap with the red

cutoff of the MILES library. Second, there were few stars that were in both the MILES

stellar library and the Rayner et al. (2009) library. Our requirement for continuous

coverage from the optical to the near-IR for a common set of stars led us to not make

use of the original IRTF library.

2.2.2 Observations

We carried out 24 nights of observations from August 2014 to June 2016 using

the upgraded SpeX instrument on IRTF. For details on SpeX we refer the reader to

Rayner et al. (2003). In short, SpeX is a medium-resolution, cross-dispersed spectro-

graph equipped with a 2048x2048 Hawaii-2RG array. All stars were observed in the

short-wavelength cross-dispersed mode (SXD) using the 0′′.3 (2 pixel) slit, providing a

nominal resolving power of R∼2000. We observed every star at the parallactic angle.
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Figure 2.10: Normalized histogram of the residuals between the observed and synthe-
sized 2MASS J−H, H−KS , and J−KS colors for a subset of the library stars without
quality issues, shape issues, or stellar parameter issues (see later discussion)divided by
the uncertainty. We have indicated the mean offset, µ, and standard deviation, σ. A
Gaussian distribution with σ = 1 is also shown.

The upgraded detectors extended the wavelength coverage further into the blue, giving

a wavelength range from 0.7 − 2.55µm. The upgraded detectors also remove the 0.06

µm gap that used to exist between the H and K bands (Rayner et al. 2009).

An A0 V star (or a star of similar spectral type) was observed either before or

after each science object to correct for absorption due to the Earth’s atmosphere and to

flux calibrate the science object spectra. For most stars the airmass difference between

the target star and the standard star was less than 0.1. Standard stars were also chosen

to be located within 10 degrees of the target object whenever possible, to minimize

the effects of any differential flexure in the instrument between the observations of the

target and standard. Due to a shortage of standard stars near some targets, in a few

cases airmass differences between the two reached 0.15.

We took a set of internal flat field and argon arc lamp exposures with each
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Figure 2.11: Computed residuals between the observed and synthesized 2MASS H−KS ,
J −KS , optical BT − VT, and VT −KS colors of 124 library stars with relatively good
(uncertainty ≤ 3%) 2MASS photometry. The plotted error bars show the 2MASS and
Tycho errors in magnitudes. The VT−KS colors are a test of how well the MILES and
IRTF stars were stitched together.

target-standard pair. This procedure helps minimize the possible effects of flexure of

the detector on the quality of the flat-fielding and the final wavelength solution.

2.2.3 Data Reduction

Data were reduced following the same procedure described in Rayner et al.

(2009) using the facility IDL-based reduction package for SpeX, Spextool v4.0.4 (Cush-

ing et al. 2004). Cushing et al. (2004) provides a comprehensive explanation of the data

reduction process and so here we summarize and highlight the main steps.

The science images were processed by correcting for nonlinearity, subtracting

the pairs of images taken at two different slit positions, and dividing the pair-subtracted

24



images by a normalized flat field. Any residual sky signal left over from the pair subtrac-

tion is removed from the image and the spectra in individual orders were then optimally

extracted. Argon lines were used to wavelength calibrate the data. For the SXD ob-

serving mode, several arc exposures are combined to increase the signal-to-noise ratio

(SNR).

We used the A0 V standard star observed with each science object to correct for

the telluric absorption and flux calibrate the science object using the method described

by Vacca et al. (2003). In brief, the method uses a theoretical spectrum of Vega to

determine the intrinsic spectrum of any A0 V star by scaling and reddening the Vega

model to match the near-IR magnitudes of the observed A0 V stars and modifying

the model to account for differences in line strengths, radial and rotational velocities,

and spectral resolution. This method also corrects for instrument throughput and flux

calibrates the spectra of the target stars.

In Figure 2.2 we show the SpeX spectrum for the library star BD+0503080

before (blue) and after (red) the telluric correction. The before and after spectra have

been vertically scaled to clarify the comparison. Also shown is atmospheric transmission

at Maunakea for an airmass of 1.5 and precipitable water vapor of 3mm (Lord 1992).

The before spectrum has areas of very low signal and features in wavelength regions that

align with the deepest parts of absorption in the atmospheric transmission spectrum.

The red line demonstrates that much of the noise in this region is decreased after the

telluric correction. We subsequently mask the regions in the IRTF spectra where the

atmospheric absorption is most prominent, 1.32 µm-1.41µm and 1.82µm-1.94µm.
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This telluric correction procedure is quite effective in removing the effects of the

atmosphere. However, A0 V stars have prominent hydrogen absorption lines and weak

metal features, which can complicate the telluric correction. In Figure 2.3 we show a

theoretical spectrum of an A0 V star (purple) comparef to an atmospheric transmission

(black, the model for the first three panels is from Lord (1992) and the model for the

fourth panel is from Clough & Brown (2005)), and an example of a telluric spectrum

used to correct the library stars (grey). Both the A0 V and transmission spectra have

been degraded to a resolution of R ≡ 2000. The top panel shows the region around

the Paschen break, which can be particularly difficult to fit with models at the percent

level. We also see that there are features in the telluric spectrum that are likely spurious

and are associated with the metal lines in A0 V stars. We have labeled several of the

metal features in Figure 2.3. Our telluric correction method also relies on modeling

and removing the A0 V spectrum by modifying the model spectrum of Vega to match

the A0 V star. This method is better than interpolating over the hydrogen lines, as

there are telluric features at those wavelengths, but there are imperfections to this

process. We address the uncertainties associated with these difficulties shortly. The

telluric correction appears to be well-behaved in regions away from hydrogen lines and

the weak metal lines.

After the telluric correction the spectra extracted from different orders were

merged into a single, continuous spectrum. In Rayner et al. (2009) an additional scale

factor was needed to match the flux levels of the different orders but the updates to the

SpeX detector made this step unnecessary. All wavelengths are in vacuum. Spextools
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provides a measure of uncertainty for each reduced spectrum and the typical formal SNR

of the library is very high with a mean value ∼ 500. However, the quoted SNR only

includes statistical (photon counting) uncertainty, not correlated noise or any source of

systemic uncertainty. Most importantly, we are interested in the uncertainty our telluric

correction method introduces (see above).

To empirically measure the uncertainty of the library stars we compare five

stars with repeat observations: HD007106, HD021197, HD138776, HD201891, and

HD204613. For all of these observations we followed the same observing and reduc-

tion strategies as described above. The repeat observations were done with the same

standard star. We computed the difference between the normalized spectra of the same

star and divided by a factor of
√

2 (black line in Figure 2.4). The Poisson uncertainty

is the inverse of the wavelength-dependent average of the SNR for each pair of target

observations (red line in Figure 2.4).

While Figure 2.4 demonstrates that the Poisson uncertainty underpredicts the

empirical uncertainty for most of the wavelength range, the empirical uncertainty is

almost always ∼ 0.2 − 0.3%. The exceptions to this are in regions heavily affected by

telluric absorption (upper-right and lower left panels) or where there are many broad

hydrogen absorption and metal lines in the A0 V standard stars (upper-left panel). Still,

even in these regions the uncertainty is 1-2%.

The empirical uncertainty presented here encompasses differences in weather

and/or observing conditions, potential human error in the reduction process, and corre-

lated noise. It does not assess the uncertainty associated with using different standard
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stars or using different techniques for telluric correction (e.g. van Dokkum & Conroy

2012; Kausch et al. 2015). It is not known what effect using a different telluric correction

technique would have on the quality of SpeX spectra. Assessing the impact of these

additional sources of uncertainty is beyond the scope of this work but will be pursued

in the future.

To demonstrate the quality of the individual features, noise in the continuum

after the full reduction, and qualitative metallicity trends we show a sequence of stars

ordered by metallicity over the IY JHK photometric bands in Figures 2.5-2.9. The

left-panel shows stars roughly on the main-sequence turn-off and the right-panel shows

stars roughly on the subgiant branch. We highlight a selection of prominent lines in each

bandpass. We qualitatively see general trends with metallicity. However, we are not

completely controlling for temperature and surface gravity effects and so it is difficult

to say anything definitively about potential trends. In Section 4 we look at equivalent

width trends as a function of temperature and surface gravity.

Correcting to Restframe Wavelength

We used the code Prospector (Johnson et al. in prep)5 to determine line-of-

sight velocities for each star, which were used to correct the final reduced spectra to the

restframe. Prospector is a code for inference of physical parameters from spectroscopic

data via MCMC sampling of the posterior probability distributions. To obtain estimates

of the posterior velocity distribution using prospector, a spectral model is constructed for

5https://github.com/bd-j/prospector
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each star by linearly interpolating the C3K theoretical spectral models6 to the Prugniel

et al. (2011) and Sharma et al. (2016) parameters, and then broadened to the resolution

of IRTF. At each MCMC step this spectrum is shifted in velocity and the likelihood

of the data given the redshifted model is calculated, after masking regions of strong

telluric lines.

2.2.4 Flux Calibration

To de-redden the flux calibrated spectra we used the E(B − V ) values given

in the MILES stellar library (P. Sánchez-Blázquez, private communication),

f cor
λ (λ) = fλ(λ)× 10(0.4×Aλ), (2.1)

where fλ(λ) is the observed spectrum and Aλ is the extinction law as a function of

wavelength. We adopted the near-IR law given by Fitzpatrick & Massa (2007) with

RV = 3.1,

Aλ = 1.056× E(B − V )λ−1.84. (2.2)

The MILES spectra were de-reddened using the same E(B − V ) values.

We absolutely flux calibrated the IRTF spectra using a correction factor based

on 2MASS JHKS photometry. We computed the correction factor for each star by

using the reported 2MASS magnitude, µ, and error, σ, to create a random normal

distribution for each bandpass, N
(
µ, σ2

)
Xobs

, where X denotes a given bandpass. We

6This is the theoretical library described in Conroy & van Dokkum (2012a) with some minor updates
to the line lists.
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created a distribution of calibration factors using the following expression,

f(CX) = 10(Xsyn−NXobs
)/2.5, (2.3)

Xsyn is the AB synthetic magnitude computed from the spectrum. The observed spec-

trum for each star is multiplied by a single correction factor,

〈C〉 =

∑
X wXPeak[f(CX)]∑

X wX
, (2.4)

where the weight, wX , is the inverse variance given by the 1σ deviations from f(CX),

and Peak[f(CX)] is the peak of the distribution of calibration factors. As in Rayner

et al. (2009), this scaling has the effect of shifting the entire spectrum up or down so that

the overall absolute flux level is correct, while simultaneously preserving the relative flux

calibration of each spectral order derived from the observations and telluric correction

procedures.

The publicly available MILES spectra are normalized to unity so in addition

to absolutely flux calibrating the IRTF spectra we needed to absolutely flux calibrate

the MILES spectra. We corrected the MILES spectra in a similar manner to the IRTF

spectra using the average of the available BV photometry. We preferentially used Tycho

(Høg et al. 2000b,a) BTVT photometry and for stars where that is not available we used

Johnson BV photometry taken from Simbad. However, uncertainties in the observed

photometry and the different epochs at which the optical and near-IR photometry were

taken means that for most stars this correction of the IRTF and MILES spectra does
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result in perfect agreement in the overlap region. Since we are eventually going to stitch

the two spectra together we need them to be at the same flux level, and any incongruity

would affect the derived bolometric luminosities and spectral shapes around 0.7µm. We

force the MILES and IRTF spectra by computing the percent difference of the flux in

the overlap region assuming that the IRTF spectra is at the correct level. Then, to

ensure that we do not have flux going into the negative, if the difference is negative we

shift the IRTF spectrum by that factor. If the difference is positive we shift the MILES

spectrum by that factor.

In the case where 2MASS photometry is not available (e.g. HD 134439) but

there is available near-IR photometry from Simbad we used the same basic method as

described above but only considered the KS-band photometry, using the raw difference

between the observed and synthetic magnitudes. For variable stars in the sample, the

absolute flux calibration is only approximate since the 2MASS photometry was obtained

at an earlier epoch than the SpeX spectroscopy. However, consistency between the

MILES spectra and IRTF spectra is a natural check of the calibration.

Quality of Flux Calibration

We assess the quality of the spectral shape of the IRTF spectra in Figure 2.10.

Here we show a histogram of the error-normalized color differences between the observed

and synthesized 2MASS (Skrutskie et al. 2006) J−H (left), H−KS (middle), and J−KS

(right) colors. We also show in each panel of Figure 2.10 a Gaussian distribution of

σ = 1. Overall the differences between observed and synthesized colors are consistent

with the errors in the observed colors. There is some tension in the J −H and H −KS
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colors but not in J −KS , suggesting that there might be some modest issue with the

H−band normalization.

We further examine the quality of the flux calibration by computing the resid-

uals between observed and synthetic photometric colors. For this exercise we choose

stars with 2MASS photometry better than 3% for the JHKS bands and with good

quality spectra and well-determined stellar parameters and later for how we determine

this); 124 stars in total. In Figure 2.11 we show these residuals as a function of effective

temperature for the colors H−KS (upper-right), J−KS (lower-left), BT−VT (we only

display stars with Tycho photometry in this plot) and VT −KS (lower-right). The ob-

served photometry have been redden corrected using the same E(B−V ) values used to

correct the spectra. Points are color-coded by J band magnitudes because at J ∼ 9 and

J ∼ 4.5 the 2MASS observing strategy changed to avoid non-linearity and saturation

for bright stars. This will affect the photometry and corresponding error bars.

For each color we find mean residuals of 0.022, −0.015, −0.026, and 0.041,

respectively. The residuals for the near-IR colors are consistent with those of Rayner

et al. (2009) and the BT − VT residuals are consistent with the result from Sánchez-

Blázquez et al. (2006a). The VT−KS residuals are a reflection of the overall uncertainty

of the absolute flux calibration and stitching of the MILES and IRTF spectra. Given

the large wavelength baseline and the complications associated with stitching together

different spectral datasets, it is not surprising that this color shows the largest offsets

between synthesized and observed data.

We explore the reliability of the IRTF spectra further in Figure 2.12, where we

32



compare our new IRTF spectra to the spectra in the Rayner et al. (2009) IRTF library

for four stars in common between the two libraries. In this figure we also compare

to BV JHKS photometry and the MILES spectra. The bottom panel for each star

shows the ratio between the old and new IRTF spectra. The agreement in the shape

is excellent for HD076151 and HD036003, except at the blue end for the former where

we see a small, unphysical bump in the flux at ∼ 0.8 µm. This is caused by difficulty

modeling the Paschen break in the A0 V standard and occurs in a small subset (4%)

of our sample. We found that the stars showing this bump were flux calibrated with

standard stars that show nebulosity (labelled A0 Vn in Simbad). This was not an

issue in the Rayner et al. (2009) library since the detectors did not extend to as blue

wavelengths. This issue is addressed further in Section 3.

We explore the reliability of the flux calibration of the blue end of the SpeX

spectra by comparing the Extended IRTF library stars with the Next Generation Spec-

tral Library (NGSL Gregg 2001) which spans 1680-10000Å. The NGSL spectra were

observed on the STIS instrument on the Hubble Space Telescope (HST) so we can use

these spectra as flux standards. There are 35 Extended IRTF Library stars that are

also in NGSL. To measure how consistent the flux calibration of the Extended IRTF

Library is with NGSL we synthesized SDSS i and z photometry (the two passbands

that span the blue end of the Extended IRTF Library spectra) for both the NGSL and

Extended IRTF Library spectra for the 35 overlap stars. In Figure 2.13 we show the

residuals between the NGSL i-z colors and the IRTF i-z colors. The mean residual is

sub-1% with a scatter on the order of a few percent, indicating consistency between the
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flux calibration of the NGSL spectra and the IRTF spectra.

The shape of the spectra is important for computing bolometric luminosities

and in creating stellar population models. Consistency at the level of absorption lines

between the old and new IRTF spectra is also important as that will change equivalent

widths and affect the accuracy of fitting stellar features using these spectra. From

Figure 2.12 we can see that the differences between the Rayner et al. (2009) stellar

features and the stellar features in the spectra from this work are 1-2%, much smaller

than the over all shape and flux level differences.

In Figure 2.14 we show a small sample of stars in the library. They are ordered

from cool (upper left corner) to hot (lower right corner). The reduced, redshift corrected,

and absolutely flux-calibrated spectra for all the stars observed as part of the Extended

IRTF library are available at the IRTF website http://irtfweb.ifa.hawaii.edu/

~spex/IRTF_Spectral_Library/.

2.2.5 Combining the Extended IRTF Library with MILES

The wavelength solution for the SpeX data is not linear and so there is no

constant ∆λ between pixels. In practice this means that the spectra for the different

stars in the library are on different wavelength grids. The first step to combining the

SpeX spectra with the MILES spectra is to put all the Extended IRTF Library stars on

the same wavelength grid. We did this by finding the wavelength range shared by all the

stars in the library, λmin = 0.713 µm and λmax = 2.559 µm with 7408 wavelength points

(with spacing between the pixels as ∆λ = 2.495Å), and interpolated every spectrum

onto that grid.
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With the Extended IRTF Library spectra all on a uniform wavelength grid

we combine them with the MILES spectra (where we have converted the MILES wave-

lengths from being in air to being in vacuum) as follows: for each star, we took the

weighted average between the MILES and the Extended IRTF spectra between 0.713µm

and 0.743µm using a linear ramp function. The Extended IRTF Library spectra be-

tween 0.713µm-0.743µm were placed on the MILES wavelength grid. At 0.728µm the

blend is half MILES and half IRTF. The final, combined spectrum is a concatenation

of the MILES spectrum at λ ≤ 0.713µm, the blended section, and the IRTF spectrum

at λ ≥ 0.743µm.

2.2.6 Bolometric Luminosity

To compute the bolometric luminosity for each star we extended the combined

MILES and IRTF spectrum to 0.03µm and 20µm using the C3K stellar grid, and inte-

grated the extended spectrum to obtain the bolometric flux. For most of the stars we

used parallax based distances to convert from bolometric flux to bolometric luminosity.

For the cluster stars we used cluster distances as a proxy for distance to the star (for

NGC 6791, Grundahl et al. 2008; Harris 1996, 2010 edition, for the rest).

14 stars or 5% have neither parallaxes nor known distances and so the bolo-

metric luminosity cannot be computed for them.

2.2.7 Resolution

The nominal resolution of the SpeX instrument is R ∼ 2000. In this section

we characterize the wavelength-dependent SpeX resolution, which is essential for using
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these spectra to model observational data. We also re-measure the MILES spectral

resolution for comparison.

The spectral resolution of the MILES/IRTF data was measured by fitting

theoretical stellar spectra to these data with the Prospector code. Briefly, for each

wavelength regime of each star we calculate a posterior probability distribution for the

line spread function (LSF) width and residual velocity, marginalized over the stellar pa-

rameters. The log-likelihood for the data given these parameters is calculated by simple

χ2 between the data and the smoothed theoretical model. This model is constructed

by tri-linear interpolation of a high resolution version of the C3K theoretical stellar

library in the stellar parameters log Teff , logg, and [Fe/H], which is then smoothed to

a fixed resolution in ∆λ(FWHM Å) using fast Fourier transforms, and interpolated to

the wavelength scale of the data after shifting in velocity. This smoothing assumes a

gaussian LSF with rms width ∆λ/2.355. To minimize template mismatch, the stel-

lar parameters logg, log Teff , and [Fe/H] are allowed to vary from the Prugniel et al.

(2011) parameters within some tolerance. The velocity and instrumental resolution ∆λ

(Å) have uniform priors within some reasonable range for each segment. The residual

velocities are consistent with zero. This posterior probability is then sampled using

MCMC techniques, specifically the ensemble sampling algorithm (Goodman & Weare

2010; Foreman-Mackey et al. 2013a). The resulting maximum a-posteriori values are

reported, corrected for the resolution of the theoretical library.

These fits are done separately for several wavelength regions of the spectrum of

each star; the optical spectra are split into 6 regions each 400Å wide, while 6 regions in
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the IRTF spectra are defined around prominent spectral features and avoiding regions

of low atmospheric transmission.

In Figure 2.15 we show the median resolution (solid line) for 135 warm (3980K <

Teff < 6300K) stars and the scatter (shaded region) over twelve wavelength segments

spanning the full Extended IRTF spectra. In the top panel we show the wavelength

segments for the part of wavelength space covered by the MILES spectra and in the

bottom panel we show the wavelength segments for the wavelength space covered by

the IRTF spectra. In the top panel we show a constant line at ∆λ = 2.54(Å), the re-

vised resolution found by Beifiori et al. (2011). The median resolution we find over the

different wavelength regions of the MILES spectra is ∆λ = 2.54(Å)± 0.19 (R ∼ 1970 at

0.5µm), consistent with the Beifiori et al. (2011) value. In the bottom panel we show a

constant line for R ≡ λ/∆λ = 2000. The median resolution we find over the different

wavelength regions for the IRTF spectra is R = 2020± 230, consistent with the quoted

value for the SpeX instrument.
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Figure 2.12: Comparison of new spectra presented in this work (red), spectra from the
Rayner et al. (2009) library (turquoise), and the MILES spectra (blue) for four stars.
Also plotted is the observed photometry (green circles) and synthetic photometry (open
circles) derived from the spectra. The shape of the spectra presented in this work
match well with the shape of the MILES spectra in the overlap region, and also with
the observed JHKS photometry. Below each spectral comparison we plot the ratio of
the IRTF spectra presented in this work and the spectra from Rayner et al. (2009).
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Figure 2.14: IRTF spectra (red) for a small subset of the library stars plotted with the
MILES spectra (blue), observed photometry (green circles), and synthetic photometry
(open circles).
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2.3 Spectral Polynomial Interpolator

Interpolators have long been used in conjunction with stellar libraries. What

began as “fitting functions” for specific indices (e.g., Gorgas et al. 1993; Worthey et al.

1994) has now evolved to full spectral interpolators (e.g., Vazdekis et al. 2003; Prugniel

et al. 2011; Ness et al. 2015; Sharma et al. 2016; Dries et al. 2016). Broadly, interpolators

are either “global”, where a polynomial is fit to the input sample points, or “local”,

which essentially averages the nearby data e.g., the linear or spline interpolation is a

weighted average of only the data closest in parameter space. Global interpolation

is appropriate when the surface is smooth and can be approximated by a (relatively)

simple function. The interpolators of Vazdekis et al. (2003) and Dries et al. (2016) are

local interpolators while the interpolators described in Prugniel et al. (2011), Ness et al.

(2015), and Sharma et al. (2016) are global.

In this same spirit, as a companion to the Extended IRTF library we created

the Spectral Polynomial Interpolator (SPI 7). With SPI we create a data-driven, global

interpolator which we can use to retrieve a spectrum for a set of arbitrary stellar pa-

rameters. In this section we will describe the input to SPI, how we construct the model,

the quality of interpolation, and example uses for SPI.

2.3.1 The Training Set

SPI works by fitting polynomial functions of Teff , logg, and [Fe/H] to the Lbol-

normalized flux of all the stars included in the training set. These fits are carried out

independently of the fluxes at each wavelength. Then, for any set of stellar parameters,

7http://github.com/bd-j/spi
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these polynomial functions can be used to predict or approximate the flux at a given

wavelength.

The primary input into SPI is the IRTF Extended Library, limiting the sample

to stars with computed bolometric luminosities (see section 2.4.1), high-quality spectra,

and accurate stellar parameters (more on the latter two later; ). The library stars

that made the final cut to be included in the training set are shown as red points in

Figure 2.16. We have augmented the SPI training set in a couple of ways, which we

describe below. In total 194 Extended IRTF Library stars were included in the final

SPI training set.

We include the wavelength dependent uncertainties for every star in the train-

ing set and weight the fluxes in the training sample by the corresponding uncertainty.

Additions to the Cool Dwarf Regime

We can see from Figure 2.1 that there is a paucity of cool dwarf stars in the

MILES library and subsequently the library presented in this work. Having few cool

dwarf stars would have hindered our ability to build an accurate polynomial model in

this regime. We therefore included 76 M dwarf stars presented in Mann et al. (2015)

to the SPI training set (purple points in Figure 2.16), excluding stars with low SNR.

We also found that 4 stars had strong chromospheric Balmer emission lines which we

removed from the training set.

The spectra from Mann et al. (2015) are a combination of SNIFS (0.3−0.95µm)

and pre-detector upgrade SpeX (0.8 − 2.4µm). The resolution of the SNIFS data is

coarser (R∼ 1000) than the resolution of the MILES data. To put the SNIFS data
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on the same spectral resolution scale as the MILES data we used a high resolution

(R∼10,000) version of C3K to deconvolve the SNIFS portion of the Mann et al. (2015)

data to the resolution of the MILES data. We did this by producing a spectrum using

the stellar parameters of a given star in the Mann et al. (2015) sample and made two

models, one each for the MILES and SNIFS resolutions. We took the ratio of these two

models, interpolated it onto the MILES wavelength grid and multiplied the Mann et al.

(2015) spectrum by this correction factor. Visual comparison of a SNIFS and MILES

star of the same stellar parameters led us to conclude that this procedure was effective.

We use the stellar parameters as presented in Mann et al. (2015) with surface

gravity given by,

logg = log10

(
6.6743× 10−8 ×M × 1.989× 1033

(R× 6.955× 1010)2

)
, (2.5)

where M and R represent the stellar mass and radius in solar units.

We note that while we use surface gravity to make the parameterization of

the M dwarf stars consistent with the other regimes, surface gravity is not a commonly

used metric in M dwarf research. M dwarfs do not age on a Hubble time and so surface

gravity can be uniquely determined by effective temperature and metallicity.

Support for extrapolation

To preserve the quality of the interpolator at the edges of the empirical param-

eter space, we supplement the training set with spectra from the theoretical C3K library

(grey points in Figure 2.16) degraded to the SpeX resolution. We only added C3K spec-
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Figure 2.17: Comparison of data (spectroscopy in red and photometry as green circles)
with the SPI model (purple) and theoretical spectra using two choices for effective
temperature (grey lines). Synthetic photometry is shown for clarity (open symbols).
For the dark grey line the temperature used was derived from the metallicity-color
relations of González Hernández & Bonifacio (2009). The temperature used for the
light grey line is the value from Cenarro et al. (2007). This shows the spread in Teff

values, and thus the spread in expected spectral shape, from different methods for each
star. For the stars shown the spectral shape expected from the Prugniel et al. (2011)
and Sharma et al. (2016) values is not consistent with the observed spectral shape.

tra for stellar parameters outside the convex hull (a hull being the set of planes that

encloses all the training points) of the MILES stars. The C3K spectra are normalized

in the same way as the observed spectra.

Our goal is for the C3K library to keep the polynomial terms “well-behaved”

at the boundaries of parameter space for the empirical spectra, but we do not want

the fits to be driven by the large numbers of C3K stars. We therefore weight the C3K

spectra in the fits by a factor of 10−2 times the median SNR of the empirical spectra.

This factor was chosen after considering a range of values and inspecting the resulting

polynomial behavior.
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2.3.2 Training the Model

The library contains a wide range of spectral types, with stellar temperature

being the primary driver of the shape of the spectra. Modeling all the stars together

is not feasible since it is difficult to specify a polynomial model that can encompass

such a diverse set of stars. We therefore partition the library into five subsets based on

temperature and surface gravity, essentially making five global interpolators that we use

in conjunction with each other to span the entirety of parameter space. For each subset

we define the polynomial terms we use to create the model (t ≡ log Teff , z ≡[Fe/H],

g ≡ log g):

• Cool Dwarfs

logFν = a0 + a1t+ a2z + a3g + a4z
2 + a5t

2 + a6g
2+

a7(t× z) + a8(t× g) + a9(z × g) + a10z
3+

a11t
3 + a12g

3 + a13(t2 × z) + a14(z2t)+

a15(g × t2) + a16t
4 + a17z

4 + a18(t2 × z2)+

a19(t3 × z) + a20t
5.

(2.6)
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• Cool Giants

logFν = a0 + a1t+ a2z + a3g + a4t
2+

a5g
2 + a6z

2 + a7(z × g) + a8(t× g)+

a8(t× z) + a9t
3 + a10g

3 + a11z
3+

a12(t× g × z) + a13(t× t× z)+

a14(t× t× g) + a15(z2 × t) + a16(z2 × g)+

a17(t× g2) + a18(z × g2) + a18t
4.

(2.7)

• Warm Dwarfs

logFν = a0 + a1t+ a2z + a3g + a4t
2 + a5g

2 + a6z
2+

a7(t× z) + a8(t× g) + a9t
3 + a10(t× g2) + a11z

3+

a12(t2 × g) + a13(t2 × z) + a13(t× z2)+

a14(t× g × z) + a15(g × z2) + a16t
4 + a17g

4+

a18(t3 × g) + a20(z × t3) + a21(z2 × t2)+

a21(z3 × t) + a22(t2 × g)2) + a23(z × t2 × g)+

a24t
5.

(2.8)
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• Warm Giants

logFν = a0 + a1t+ a2z + a3g + a4t
2 + a5g

2 + a6z
2+

a7(t× z) + a8(t× g) + a9(g × z) + a9t
3 + a10g

3+

a11z
3 + a12(t2 × z) + a13(t× z2) + a14(g × t2)+

a15(g2 × t) + a16t
4 + a17z

4 + a18(t2 × z2)+

a19(t2 × g2) + a20(z2 × g2) + a21t
5.

(2.9)

• Hot Stars

logFν = a0 + a1t+ a2z + a3g + a4t
2 + a5z

2 + a6g
2+

a7(t× g) + a8(t× z) + a9(g × z) + a10t
3 + a11g

3+

a12z
3 + a13(t× g × z) + a14(t2 × z) + a15(t2 × g)+

a16(z2 × g) + a17(t× g2) + a18(z × g2) + a19t
4.

(2.10)

The maximum likelihood coefficients for each regime are determined by weighted

linear least squares. The glut of polynomial terms is a classic problem in polynomial

regression modeling. As we are concerned with the ability to predict spectra (which we

assess later in Section 2.3.3) rather than the values of the coefficients themselves we do

not make an effort to simplify the polynomial functions using, e.g., L1 regularization.

Furthermore, the oscillatory behavior of extrapolations that can result from unregular-

ized high order polynomial regression is mitigated by our use of theoretical spectra near

the boundaries of the valid parameter space.
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Table 2.1: Valid ranges for SPI interpolation

Training Interpolating
Regime Teff logg [Fe/H] Teff logg [Fe/H]

Cool Dwarfs 1100-5500 3.5-6.5 -2.5-0.6 2500-4000 -0.5-3.5 -2.0-0.6
Cool Giants 1100-4500 -1.0-2.75 -2.5-0.6 2500-4000 >3.5 -2.0-0.6
Warm Dwarfs 3000-6500 3.0-5.75 -2.5-0.6 4000-6000 -0.5-3.5 -2.0-0.6
Warm Giants 3500-6500 -0.75-4.0 -2.5-0.6 4000-6000 >3.5 -2.0-0.6
Hot Stars 5500-12,500 2.5-5.5 -2.5-0.6 6000-12,000 <5.0 -2.0-0.6

In Table 2.1 we show the “training” ranges for Teff , logg, and [Fe/H], i.e., the

stellar parameter limits for the training set stars in each regime and the “Interpolating”

ranges for Teff , logg, and [Fe/H], i.e., the stellar parameter limits for safe interpolation.

We have the same range in metallicity for the training bounds of all the stellar regimes.

The ranges were determined by minimizing the rms difference between the observed

and interpolated spectra in the training set. The overlap in the Teff training ranges

is meant to mitigate the effect of five separate, disjoint hulls having a smaller volume

than the hull for all the library points. For most regimes the overlap in Teff is 500 K

but for the cool dwarf regime we extend the training sample to 5500 K. We do this to

compensate for the paucity of low-metallicity cool dwarfs in the empirical library. If we

did not extend the training sample to 5500 K the metallicity dependence for the cool

dwarf regime would end at [Fe/H] ∼ -0.7, which would bias the interpolation to lower

metallicities. With the extended temperature range of the training sample SPI is able

to pull information from the warmer low-metallicity stars which mitigates the effects of

the lack of observed low-metallicity cool dwarfs.
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Figure 2.18: Cumulative distribution functions of the fractional rms differences be-
tween the observed spectra and interpolated spectra in the cool dwarf (red), cool giant
(orange), hot (blue), warm dwarf (green), and warm giant (lime) regimes. To aid inter-
pretation, a fractional rms difference of 5% is marked with a vertical dashed line and
90% of the sample is marked with a horizontal dashed line.

Culling the Extended IRTF Library

Only the highest quality spectra should be included in the SPI training set.

Any star used in the training set needs to have accurate stellar parameters and a reliably

flux-calibrated observed spectrum. Based on visual inspection we removed stars with

spectra that were either of poor quality or appeared to have flux calibration issues that

severely affected the shapes. We removed 51 stars following this criteria.

Furthermore, since the interpolation relies on having like-spectra grouped by

like-stellar parameters, we need to ensure that our stellar parameters are accurate. SPI

provides an opportunity to check the accuracy of the stellar parameters associated with

each of the stars in the library. If there is significant discrepancy between the observed

spectrum of the star and the interpolated spectrum given by SPI it might be indicative

of an issue with the stellar parameters associated with that star. A similar technique

was used by Vazdekis et al. (2010) to remove 60 stars from the MILES library in creating
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Figure 2.19: Same as Figure 2.18 but now the interpolated spectra are the result of the
leave-one-out (“jack knife”) test where each star in the training sample was removed
from the model in turn before the interpolation. Including the C3K spectra reduces the
dependence of the model on the presence of any one star, especially the cool giant stars
and hot stars. The inclusion of the Mann et al. (2015) M dwarfs also helps mitigate
issues in the cool dwarf regime.

stellar population models.

In Figure 2.17 we show an example of three stars where the SPI predicted

spectra (purple) using the stellar parameters from Prugniel et al. (2011) and Sharma

et al. (2016) are not consistent with the observed data (both spectroscopy, red line,

and photometry, green circles). Consistency between the observed photometry and

observed spectra for these stars suggests that the problem is not exclusively with the

flux calibration but with the stellar parameters. To further emphasize this point we

also show two C3K spectra corresponding to different effective temperatures in each

panel. For the dark grey spectra we used the effective temperatures computed using the

González Hernández & Bonifacio (2009) J−KS-metallicity relations. For the light grey

spectra we used the effective temperatures from Cenarro et al. (2007). For HD219978

(left) and HD173819 (middle) the overall shape of the spectra using the J −KS derived

temperatures are more consistent with the observed data than SPI and the spectra
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corresponding to the Cenarro et al. (2007) spectra. For HD076813 (right) the spectrum

corresponding to the temperature from Cenarro et al. (2007) is most consistent.

This test both demonstrates the possible range in derived stellar parameter

values and that there are available stellar parameters that would better match the

observed spectra and photometry and thus the problem is with the Prugniel et al.

(2011) and Sharma et al. (2016) stellar parameters. These stars were flagged for having

an exceptionally high rms difference between the observed and SPI predicted spectra.

We flagged 9% of our observed sample as having incorrect stellar parameters and do not

include them in the SPI training set. The differences in the temperatures determined

using different methods for these stars are large compared to the bulk of the library

stars. This indicates that in general the stellar parameters from Prugniel et al. (2011)

and Sharma et al. (2016) are consistent with the observations.

This test does not mean that any issue with the data is exclusively an issue

with the stellar parameters. Several of the stars flagged as potentially having incorrect

stellar parameters also have flux calibration issues or other quality issues as indicated

by their Quality and Shape Flags (see Table A1). For example, we still see the effects

of prominent telluric absorption for HD173819 (the middle) panel which is indicated

in Table A1. However, the SPI predicted spectrum is not consistent with the shape of

the observed spectrum but the predictions based on the Cenarro et al. (2007) temper-

ature and temperature from the González Hernández & Bonifacio (2009) relations are

consistent with the observed shape.

Thus, we can use SPI as a way to flag stars that need more accurate stellar
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parameters but otherwise have good data (in the future we will use SPI to re-derive

stellar parameters in an iterative approach). We removed 27 stars following this criteria

and re-derived the SPI parameters with these stars removed.

2.3.3 Quality of Interpolation

We can assess the quality of the interpolation by examining how well SPI can

recover the spectra of the stars in the training sample (including both the data presented

in this work and the Mann et al. (2015) data). For each star we compute the fractional

rms between an observed spectrum in the empirical training set and the corresponding

interpolated spectra from SPI. In Figure 2.18 we show the cumulative distribution of

this fractional rms. In each panel we show results separately for the cool dwarf stars

(red), cool giant stars (orange), hot stars (blue), warm dwarf stars (dark green), and

warm giant stars (light green). Also plotted in each panel is a horizontal line showing

where 90% of the stars are placed on the cumulative distribution and a vertical line

marking 5% fractional rms. In the left panel we show the distributions when using

the complete training set in the model, in the middle panel we show the distributions

when we exclude the Mann et al. (2015) spectra from the training set, and in the right

panel we show the distributions that result when we exclude the C3K spectra from the

training set. Note that the rms is insensitive to overall offsets between the two spectra.

Note that SPI is not an interpolator in the strictest sense of exactly reproducing the

input spectrum at the input points, and so there is no guarantee that the rms should

be small.

The most important take away from Figure 2.18 is that for all the regimes the
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recovery of the training set spectra is very good. For cool dwarfs, warm dwarfs, warm

giants, and the hot stars the recovery is better than 10% for 90% of the stars. When

we exclude the Mann et al. (2015) M dwarfs from the training set the recovery for the

cool dwarfs is worse. The recovery of the cool giants is worse than the other regimes

and counterintuitively improves when we exclude the C3K spectra from the training

set. This could be an effect of the problems theoretical spectra have in the cool giant

regime (see Bertone et al. 2008).

Since SPI relies on stars with similar stellar parameters having similar stellar

spectra we can look at stars where SPI fails to recreate its spectrum as stars with

possible issues with the stellar parameters. Since we see in Figure 2.18 that for most of

the library (∼ 90%) the rms difference between the observed and interpolated spectra is

< 5% we can feel confident that the stellar parameters from Prugniel et al. (2011) and

Sharma et al. (2016) are internally self-consistent. We looked at Figure 2.18 separately

for the MILES and IRTF spectra and found that the recovery is about the same for the

majority of the stars.

Figure 2.19 is the same as Figure 2.18 but now the interpolated spectra are the

result of leave-one-out validation. The leave-one-out test consists of going through all

the stars in training sample, taking one out of the training sample at a time, retraining

the function such that the information from that star is no longer included in the model,

then comparing the SPI prediction for that spectrum to the actual spectrum.

The leave-one-out test is an assessment of how sensitive the model is to the

presence of any one star and demonstrates the utility of including the C3K spectra in
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Figure 2.20: Demonstration of the “self-calibration” possibilities with SPI. The observed
spectrum (red) for the star, HD004307, has an unphysical artifact at ∼ 0.8µm due to
nebulosity near the standard star. Since this issue only affected a small subset, 4%, of
the stellar library we can use SPI to obtain a spectrum for HD004307 and others like
it without the unphysical feature. This is shown in the interpolated spectrum (black)
that is largely the same as the observed spectrum but without the bump at ∼ 0.8µm.

the training set. This figure shows that by including the C3K spectra in the training

set we are mitigating the bias a single star can introduce in the model, especially for

the cool giant stars and hot stars, where the number of empirical stars is low. We see

that the Mann et al. (2015) data has a similar effect in the cool dwarf star regime. This

figure demonstrates that the inclusion of the Mann et al. (2015) and C3K spectra is

important for the interpolation of stars outside the confines of the training set.

2.3.4 Applications of SPI

As discussed previously, SPI can be used to flag stars with potentially inac-

curate stellar parameters. More generally, stars that are outliers with respect to their

SPI prediction could be used to uncover other unusual behavior such as variability or

peculiar abundance patterns.

SPI also allows for “self-calibration” of the observations. By this we mean that
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because SPI uses the information of all the stars in the library it is possible to remove

artifacts that affect a small fraction of the library stars. As we mentioned earlier, some

of the stars observed for this library have an unphysical bump from standard stars

with unusual spectra. Since most stars were not affected in this way we can remove

this artifact by using the model to interpolate for a spectrum for the stars that are

affected. In Figure 2.20 we show the observed spectrum (red) for the star HD004307

and the interpolated spectrum (black). The interpolated spectrum is consistent with

the observed spectrum except for the bump seen at 0.8 µm in the observed spectrum,

where the interpolated spectrum produces more sensible behavior. In future work we

will use the self-calibration capabilities of SPI to re-derive the stellar parameters for the

stars presented in this work.

We emphasize that any library can be used as input for SPI. The new metallic-

ity coverage of the Extended IRTF Library allows us to interpolate to a larger metallicity

range than is possible with the original IRTF library (Rayner et al. 2009). Furthermore,

the library presented in this work can be augmented with, for example, NGSL. The in-

clusion of UV data into SPI could potentially help with modeling planet atmospheric

properties.

2.4 Behavior of the Stellar Libraries

The main feature of the Extended IRTF Library is the expansion of near-IR

coverage into the sub- and super-metallicity regimes. We would like to highlight various

spectral features in the data and explore how these features depend on not just surface
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gravity and effective temperature but also on metallicity. This is also an opportunity

to examine the behavior of SPI beyond its ability to simply reproduce the training

set spectra. Also of interest is how the empirical trends compare with the theoretical

models. To explore the behavior of SPI and C3K we computed spectra for stellar

parameters along a 3 Gyr (for metallicities > −0.7) and a 13.5 Gyr (for metallicities

< −0.7) MIST isochrone.

Sharp boundaries where the five different polynomial models that make up

SPI join together is a concern. To ensure smoothness we took the weighted average of

the different predicted fluxes for the evolutionary points (EPs) that have temperatures

that are in the overlap between the cool and warm dwarf and the cool and warm giant

training bounds. This means that for EPs with logg > 4.0 and temperatures between

3500-4500 K we generated a flux using both the warm giant and dwarf giant models

and averaged the fluxes together weighted depending on the temperature. We did the

same for the EPs with logg < 4.0 and temperatures between 3000-5500 K.

In this section we analyze the metallicity-dependence of key stellar features by

using equivalent widths. The limitations of equivalent widths are well known – they are

sensitive to the definition of the psuedocontinuum and each index is a blend of features

from more than one element. Here we use equivalent widths as a way to compress the

information to explore broad trends. All the equivalent widths quoted in this work are

in units of Å and all wavelengths are in vacuum. We present a combination of a selection

of the Lick indices defined in Table 1 Worthey et al. (1994) and Table 1 of Conroy &

van Dokkum (2012a).
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Figure 2.21: Dependence of selected spectral indices on effective temperature for dwarfs
(logg > 4.0, red) and giants (logg ≤ 4.0, black). Plotted are index strengths using
the IRTF data from this work (open circles), data from Mann et al. (2015) (open
diamonds), empirical prediction from SPI (solid lines), and theoretical predictions from
C3K (dashed lines).

We computed equivalent widths using the following equation,
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Figure 2.22: Continuation of Figure 2.24.

EW = λ2 − λ1 −
∫ λ2

λ1

Fi

cb + (λi − λb)
(
cr−cb
λr−λb

)dλ, (2.11)

where λ1 and λ2 are the blue and red wavelength boundaries of the feature definition,

λb and λr are the average wavelengths of the blue and red continuum definitions for

59



0

2

4

6

8

10

12

14

-1.7<[Fe/H]<-1.3

CaI (1.98)

Mann+ 2015
C3K
SPI
This work

0.5

0.0

0.5

1.0

1.5

2.0
NaI (2.21)

Dwarfs
Giants

5

0

5

10

15

20
CO (2.30)

0

2

4

6

8

10

12

14

-1.2<[Fe/H]<-0.8
1

0

1

2

3

4

5

6

5

0

5

10

15

20

25

0

2

4

6

8

10

-0.7<[Fe/H]<-0.4
0

1

2

3

4

5

6

7

8

5

0

5

10

15

20

25

0

2

4

6

8

10

12

-0.1<[Fe/H]<0.1
0

1

2

3

4

5

6

7

5

0

5

10

15

20

25

30

3.
4

3.
5

3.
6

3.
7

3.
8

log Teff (K)

0

2

4

6

8

10

12

14

0.25<[Fe/H]<0.6

3.
4

3.
5

3.
6

3.
7

3.
8

log Teff (K)

0

1

2

3

4

5

6

7

3.
4

3.
5

3.
6

3.
7

3.
8

log Teff (K)

0

5

10

15

20

25

30

Figure 2.23: Continuation of Figure 2.21.

each feature. The blue and red continuum values cb and cr are the integral of the flux

over the wavelength range that defines the blue and red continuum.

For the observations, we made 100 realizations of each spectrum by Monte

Carlo sampling the noise. For each realization we used Equation 2.11 to compute the
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Figure 2.24: Continuation of Figure 2.21 except now using the corresponding MILES
spectra for the stars in the Extended IRTF Library..

equivalent width. The errors for the equivalent widths are given by the 1σ confidence

values from the distribution of equivalent widths.

In Figures 2.21-2.29 we show equivalent width strength versus effective tem-

perature for different spectral features (columns) and different metallicity bins (rows).
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Figure 2.25: Continuation of Figure 2.24.

In every panel dwarf stars (logg > 4.0, red) are distinguished from giant stars (logg

≤ 4.0, black). The equivalent widths for the stars in the Extended IRTF Library are

shown in the empty circles, the equivalent widths from the Mann et al. (2015) data are

shown in empty diamonds, the SPI equivalent widths are shown as the solid lines, and
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Figure 2.26: Continuation of Figure 2.24.

the C3K equivalent widths are shown in the dashed line. All data points have error bars

though in most cases the error bars are smaller than the symbols. We do not expect

a perfect match between the lines and the data points especially for the hot effective

temperatures where there can be a range of log g for fixed Teff in the data.
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Figure 2.27: Continuation of Figure 2.24.

2.4.1 Data and empirical trends

In this section we focus on the observations and the SPI predictions. The

theoretical predictions will be discussed in the following section.

Several spectral features were highlighted in Conroy & van Dokkum (2012a)
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Figure 2.28: Continuation of Figure 2.24.

as means to discriminate between dwarf and giant stars: NaI0.82µm, CaT, FeH0.99µm

KI1.17µm, CaI1.98µm, and CO2.30µm (see also, e.g., Spinrad 1962; Wing & Ford 1969;

Cohen 1978; Frogel et al. 1978; Kleinmann & Hall 1986; Diaz et al. 1989; Ivanov et al.

2004; Rayner et al. 2009). This ability was only assessed for solar metallicity stars and
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Figure 2.29: Continuation of Figure 2.21.

it is of interest to know whether this behavior holds for an extended metallicity range.

In Figures 2.21-2.23 we show the temperature dependent equivalent width

trends for several near-IR spectral features separated by dwarfs and giants. For the

three highest-metallicity bins we can see the clear separation between dwarf and giant
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stars from the data alone. In all of these features there is a metallicity dependence

on the temperature range over which the separation between dwarf and giant stars

occurs. All of the sodium lines, NaD, NaI0.82µm, NaI1.14µm, and NaI2.21µm have

equivalent widths that increase among the dwarf stars with decreasing temperature.

For the dwarf stars in the −0.7 < [Fe/H] < −0.4 this is a precipitous increase for the

coolest dwarf stars while at high metallicity there is a steadier increase over large range

in temperature.

The CO2.30µm spectral feature remains a clear discriminator between giant

and dwarf stars for the whole metallicity range and the temperature at which the sep-

aration occurs does not qualitatively change over the metallicity range. Likewise, the

overall temperature dependent trend does not appear to change significantly for the

KI1.17µm and CaT features. The strong FeH0.99µm feature remains unique to the cool

dwarf stars for the entire metallicity range.

In addition to the near-IR features we show some of the Lick indices (Worthey

et al. 1994) (Figures 2.24-2.29) that are the classic indicators of stellar population char-

acteristics (e.g, age and metallicity). For some spectral features there is a noticeable

difference in the temperature-dependent equivalent width trends from metallicity bin

to metallicity bin (e.g., Fe4383, 4531, 5015, 5335, 5270, 5406, and 5782Å, Ca4455Å,

Hβ, C4668Å). However, other spectral features (Hγ, Hδ, Ca4277Å, G4300Å, and

MgI0.88µm) the temperature dependent trends remain similar from metallicity bin to

metallicity bin.

As we would expect from the quality assessment given in Section 2.3.3, SPI
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is consistent with the behavior of the data. Even where there is sparse data, e.g., the

low-metallicity warm dwarf regime, SPI appears to make reasonable predictions of the

behavior of all the spectral features displayed in Figures 2.21 - 2.29.

As shown in Figure 2.16 there are no dwarf stars cooler than 5000 K for −1.7 <

[Fe/H] < −0.8. This makes it impossible to know how accurate the SPI predicted

spectra in this regime are. However, as described earlier the training and interpolating

ranges are optimized so that SPI is able to use all three stellar parameter dimensions

to make a prediction for this regime. That is, SPI is able to pull information from the

predictions of both the hot and warm dwarf stars with −1.7 < [Fe/H] < −0.8 and the

higher metallicity cool dwarf stars. Indeed, the cool dwarfs in the lowest metallicity

bins have temperature dependent trends that appear consistent with the trends in the

higher metallicity regimes.

2.4.2 Comparison with theoretical trends

We now turn to a comparison between the theoretical C3K models and the

empirical trends. Comparisons between models and observations have been made pre-

viously. Martins & Coelho (2007) compared the ATLAS9 (Castelli & Kurucz 2003),

MARCS (Gustafsson et al. 2003), and PHOENIX (Brott & Hauschildt 2005) theoreti-

cal stellar libraries to various empirical stellar libraries. Bertone et al. (2008) compared

the ATLAS9 library to the ELODIE catalog (Prugniel & Soubiran 2001), and Conroy

& van Dokkum (2012a) compared equivalent width trends between theoretical and em-

pirical stellar libraries. However, there are limitations to these studies that we can now

overcome. Martins & Coelho (2007) and Conroy & van Dokkum (2012a) were limited
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to solar metallicity stars and could not reach the coolest M dwarfs. The sample from

Bertone et al. (2008) spanned a wide range of metallicity but was limited to stars with

Teff > 4000K and Bertone et al. (2008) did not compare specific feature strengths.

In the present case we have extended the library and the interpolator into the

cool dwarf regime, and cover a much wider range in metallicity in the near-IR than was

previously available. This means that we can now make explicit comparisons between

the theoretical and empirical behavior in this regime.

Starting our comparison with near-IR features of the solar metallicity stars

(fourth row from the top in Figures 2.21-2.23) we see that the theoretical predictions

are consistent with the empirical trends for the NaI0.82µm, MgI0.88µm, NaI1.14µm,

KI1.17µm, and NaI2.21µm features. There is discrepancy between the theoretical pre-

dictions and empirical trends for the CaT, FeH, CaI1.98µm, and CO2.30µm features.

Although, with the exception of the warm dwarf regime in the CaI1.98µm feature, the

discrepancies are relatively small offsets in strength of the feature, with an overall sim-

ilar trend with effective temperature. Furthermore, the discrepancies tend to be in the

dwarf stars rather than the giant stars.

We find some small differences when comparing the consistency between the

empirical and theoretical trends shown in Figures 2.21-2.23 with Conroy & van Dokkum

(2012a). First, the isochrones used in this work extend to cooler temperature than those

used in Conroy & van Dokkum (2012a) which means we can now compare the equivalent

widths of the coolest dwarfs to the theoretical libraries. For NaI0.82µm the prediction for

the equivalent widths of the coolest dwarfs is inconsistent with the data. However, the
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prediction for NaI0.82µm feature strength in this work is completely consistent with the

empirical trend. Similarly, in Conroy & van Dokkum (2012a) the theoretical prediction

for the CaT was consistent with the data and here the CaT is slightly overpredicted.

This most likely do the modest changes that have occurred in the theoretical libraries

since Conroy & van Dokkum (2012a).

Moving onto solar metallicity stars in the optical, Figures 2.24-2.29, we find

that the theoretical predictions fare worse in the optical than the near-IR. We show that

in the optical the overall trends predicted by the theoretical library are consistent with

the empirical trend but are often offset in predicted strength. Martins & Coelho (2007)

compared the strengths of Lick indices of various empirical and theoretical libraries and

we will compare the discrepancies of that work with those shown here. Here we focus

on the comparison between the theoretical models from Martins et al. (2005) and the

MILES library.

The C3K models underpredict the index strength for all the Balmer lines: Hδ,

Hγ, and Hβ with the Hβ difference being less severe than the former two. This is con-

sistent with the result from Martins & Coelho (2007). Furthermore, C3K overpredicts

the G4300Å band which is again consistent with Martins & Coelho (2007). The theo-

retical predictions for the iron lines are also stronger than what is observed (with the

exception of the feature at 5782 Å). However, Martins & Coelho (2007) found that the

inconsistency between the theoretical and empirical predictions for the iron lines was

worse at cooler temperatures which is not consistent with what we find in our compar-

ison. Additionally we find good agreement between the C3K predictions for the line
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strength of MgI0.88µm and Mgb at temperatures where Martins & Coelho (2007) find

disagreement in the magnesium lines at cool temperatures. While both C3K and the

theoretical stellar spectra in Martins et al. (2005) use the ATLAS model atmospheres,

C3K uses ATLAS12 and Martins et al. (2005) uses ATLAS9 so it is not unexpected

that the comparisons in Martins & Coelho (2007) are different.

We now turn to a comparison of the metallicity-dependence of the models and

observations. For the near-IR features the consistency seen at solar-metallicity holds at

the other metallicities with the exception of some of the coolest stars, particularly dwarf

stars, and especially at low-metallicity. For instance, the theoretical predictions for the

low-metallicity cool dwarf stars is different from the empirical trend for the CaT, NaI (at

0.82µm and 1.14µm), FeH0.99µm, CaI1.98µm, and KI1.17µm features. However, there

is good consistency over this same regime for the CO2.30µm and MgI0.88µm features.

The theoretical predictions for the NaD feature are consistent with the em-

pirical trends over all the metallicity bins, albeit slightly overpredicted in the solar

metallicity bin. For some of the optical features the theoretical predictions seem to im-

prove at lower metallicities. This includes many of the iron lines, CN1, G4300Å, and the

Balmer lines with the exception of the coolest dwarf stars. The theoretical predictions

for the TiO band are in agreement with the empirical trends at solar metallicity but

that agreement worsens at lower metallicities for the cool dwarf stars.

We emphasize that SPI is not well constrained for the low-metallicity cool

dwarf regime and therefore apparent disagreement between the models and the data

should not be over-interpreted. However, the pattern of discrepancy in feature strengths
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for the low metallicity cool dwarf stars does suggest that caution should be employed

when supplementing the cool dwarf regime in empirical libraries with theoretical spectra.

We will note that the stellar population models of Conroy & van Dokkum (2012a) and

Lick index models (e.g., Trager et al. 2000; Thomas et al. 2003; Schiavon 2007) use

theoretical models only differentially, calculating relative changes with respect to a

fiducial model (the response functions) and so they are less sensitive to the absolute

limitations of the models.

2.5 Summary

In this paper we presented a new spectroscopic stellar library, the Extended

IRTF Library, which in its entirety consists of 284 stars covering a wide range of stellar

parameter space, including both low and high metallicities. The stars were observed on

the SpeX instrument and the spectra cover a wavelength range of 0.7− 2.5µm. All the

stars included in this library were selected from the MILES optical library, providing

continuous coverage from 0.35− 2.5µm.

In addition to the new library we have also created a Spectral Polynomial

Interpolator (SPI). This is a tool that generates a data-driven model from a subset

(194 out of 284) of the highest quality library stars and can be used to produce a

stellar spectrum for arbitrary values for Teff , logg, and [Fe/H]. With the Extended

IRTF Library and SPI:

• We find good agreement between observed and synthesized colors for all of the

colors explored, including 2MASS H-KS , J-KS , Tycho BT -VT , and VT -KS . This
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agreement means that we are recovering the overall spectral shapes to within 1-4%

percent, on average.

• We find that the empirical uncertainty of the spectra is ∼ 0.5% with the exception

of regions heavily contaminated by telluric absorption or regions in the A0 V

standard star heavily contaminated by hydrogen absorption lines. In these cases

the uncertainty is on the order of a 1-2% percent.

• We measured the wavelength-dependent SpeX instrument resolution and found

the median resolution of the stars in the library to be consistent with the nominal

value of R ≈ 2000. We also independently measured the MILES resolution and

found it to be consistent with the updated value from Beifiori et al. (2011).

• We find that stellar features retain their characteristic properties at non-solar

metallicities. This includes the surface gravity sensitive lines such as NaI (at

0.82µm and 1.14µm), CaT, FeH0.99µm, KI1.17µm, and CO2.30µm.

• We find the theoretical predictions for the spectral features qualitatively agree

with the observed trends. The C3K theoretical spectra in many cases reproduce

the trends quantitatively as well, especially in the near-IR. Nonetheless, there are

many features that show significant quantitative discrepancies between models

and observations, especially in the optical.
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Chapter 3

Initial Mass Function Variability

(or not) Among Low-Velocity

Dispersion, Compact Stellar

Systems

3.1 Introduction

The assumption of a universal stellar initial-mass function (IMF) has been a

cornerstone of stellar population and galaxy evolution studies for decades. Nevertheless,

there has been much observational effort to test and challenge this assumption. The

work done in nearby systems where it is possible to measure resolved star counts is

extensive (see Ch. 9 in Kroupa et al. 2013, and references therein). Since the discovery of
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surface gravity sensitive absorption features (e.g., Wing & Ford 1969) the measurement

of the IMF in systems beyond the reach of resolved star counts has been possible. In

principle, these lines can measure the ratio of giant-to-dwarf stars in integrated light,

which can be used as an IMF proxy (e.g., Cohen 1978; Faber & French 1980; Kroupa

& Gilmore 1994).

In practice, only in recent years have the stellar population synthesis (SPS)

model precision and near-infrared (near-IR) data quality reached the point where it is

to possible measure the dwarf-to-giant ratio. Cenarro et al. (2003) found that age and

metallicity effects alone could not explain the variations in CaT strength in a sample

of early-type galaxies (ETGs) and tentatively attributed it to IMF variability. More

recent work (e.g., van Dokkum & Conroy 2010; Spiniello et al. 2011; Conroy & van

Dokkum 2012a; Ferreras et al. 2013; Mart́ın-Navarro et al. 2015) has made progress on

making quantitative statements about the relative number of giant and dwarfs stars.

The results from SPS modeling broadly agree with investigations using gravitational

lensing and kinematics (e.g., Treu et al. 2010; Cappellari et al. 2013). However, there

remain inconsistencies from the different methods on an object-by-object basis (Smith

2014).

There is not yet a clear physical mechanism driving IMF variability. Metallicity

has become a possibility from recent observational work (Mart́ın-Navarro et al. 2015;

van Dokkum et al. 2016) but velocity dispersion (σ) and α-element abundances also

correlate with IMF variation (Conroy & van Dokkum 2012a; La Barbera et al. 2013).

Furthermore, there are still unexplained complications in the emerging picture of IMF
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variability. Newman et al. (2017) demonstrated that even high-velocity dispersion ETGs

can have MW IMFs, and, furthermore, it is not yet clear how IMF variability conforms

to the expectations from chemical evolution and star-formation measurements (e.g.,

Mart́ın-Navarro 2016).

Most integrated light probes of the IMF focused on ETGs and so have only

looked at IMF variations in relatively narrow regions of parameter space. To better

constrain IMF variations as a function of the physical characteristics of the stellar pop-

ulation we need to push IMF studies to the extremes of parameter space. Ultracompact

dwarfs (UCDs) are extremely dense objects that can have high dynamical mass-to-light

ratio values (M/L)dyn (e.g., Mieske et al. 2013). Globular clusters (GCs) are convention-

ally thought to have Kroupa (2001) (MW) IMF. However, Strader et al. (2011a) found

a trend of decreasing (M/L)dyn of M31 GCs as a function of metallicity, in disagreement

with the expectation from a MW IMF.

Whether UCDs and GCs actually have variable IMFs and, if so, what the

shape is, is still being debated (Jeřábková et al. 2017). Dabringhausen et al. (2012)

took an overabundance of X-ray binaries in a sample of Fornax UCDs as evidence that

those UCDs produced more massive stars than expected from a Kroupa IMF. Marks

et al. (2012) used the gas-expulsion timescale of a sample of UCDs and GCs to predict

that the IMF would create more massive stars with increasing density. However, Pandya

et al. (2016) analyzed 336 spectroscopically confirmed UCDs across 13 host systems and

found an X-ray detection fraction of only ∼ 3%. Zonoozi et al. (2016) showed that the

combination of a variable IMF and removal of stellar remnants could plausibly explain
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the (M/L)dyn trend in the M31 GCs.

Fitting the integrated light of UCDs and GCs with SPS models is needed to

obtain a more direct measurement of the IMF shape. One caveat is that GCs can

be strongly influenced by dynamical evolution, i.e., mass-segregation and evaporation

of low-mass stars. For the low-mass stars the “initial” mass function is not being

measured, but rather the “present-day” mass function (PDF). However, this should not

be a concern for high mass GCs or UCDs, the PDF is expected to closely resemble the

IMF owing to long relaxation times (see eq. 17 in Portegies Zwart et al. 2010).

In this paper we present a pilot study of stellar mass-to-light ratios, (M/L)∗, of

various compact stellar systems (CSSs): M59-UCD3 (Sandoval et al. 2015), three M31

GCs that span a large range of metallicity, and the compact elliptical (cE) M32. For

the first time we fit the spectra of the individual objects with flexible SPS models that

allow IMF variability.

3.2 Observations and Data

All of the objects presented in this paper were observed with LRIS (Oke et al.

1995), a dual-arm spectrograph, on the Keck I telescope on Maunakea, Hawaii.

The data for one metal-poor (MP) GC (M31-B058), two metal-rich (MR) GCs

(M31-B163 and M31-B193), and M59-UCD3 were obtained on December 19–20 2014,

using the instrument setup and using the same “special” long slit discussed in van

Dokkum et al. (2016) (0.7′′ × 290′′). Since the objects in this paper are bright and

compact we obtained 4 300s exposures using an ABAB pattern where we dithered up
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Figure 3.1: Recovery of (M/L)∗ from mock data as a function of S/N for [Z/H] =
0.0 (orange) and [Z/H] = −1.0 (blue) models. The circles show the median difference
between the input (M/L)∗ and the inferred (M/L)∗ derived from the fits of 10 realization
of mock data. A S/N of ' 100 is needed to recover the M/L. The grey band shows the
range of S/N values in the data.

and down the slit by 20′′.

Three exposures of 180 s were taken for M32 on January 2012. The 600 l

mm−1 grating was used on the blue arm but the same grism as the other objects was

used on the red arm. We extracted a spectrum using a square aperture of 0.8′′x0.8′′

(≈ 3 pc).

The intrinsic resolution of the the objects in this sample is higher than the

models (which are smoothed to a common resolution of σ = 100 km s−1) so we broadened

the spectra in our sample. To have roughly the same dispersion in the red for all objects

we broadened the M32 and UCD spectra by 150 km s−1 and the GCs by 200 km s−1.
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Figure 3.2: (Upper panels) Comparison of best-fit models (grey) and data in key wave-
length regions for M31-B193 (metal-rich GC, orange) and M31-B058 (metal-poor GC,
blue). (Lower panels) Comparison of the percentage difference between the best-fit
model and data regions for M31-B193 and M31-B058. The data have been smoothed
and so the pixels are highly correlated. In the grey band we show the uncertainty for
one of the GCs, M31-B058, as the uncertainties are comparable. The residuals between
metal-rich and metal-poor GC are also comparable.
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3.3 Modeling

3.3.1 Model Overview

The methodology we use for fitting the models to data and the parameters

fitted are described in detail in Conroy et al. (2018). The models described in Conroy

et al. (2018) (“C2V” models) are the updated versions of the stellar population models

from Conroy & van Dokkum (2012a) (“CvD” models). The most important update for

this paper is the increased metallicity range provided by the Extended IRTF library

(Villaume et al. 2017b) and metallicity-dependent response functions.

We explore the parameter space using a Fortran implementation of emcee

(Foreman-Mackey et al. 2013a), which uses the affine-invariant ensemble sampler al-

gorithm (Goodman & Weare 2010). We use 512 walkers, 25,000 burn-in steps, and a

production run of 1,000 steps for the final posterior distributions.

We perform full-spectrum fitting. We continuum normalize the models by

multiplying them by higher-order polynomials to match the continuum shape of the

data.

We sample the posteriors of the following parameters: redshift and velocity

dispersion, overall metallicity, a two component star formation history (two bursts with

free ages and relative mass contribution), 18 individual elements, the strengths of five

emission line groups, fraction of light at 1µm contributed by a hot star component, two

higher order terms of the line-of-sight velocity distribution, and nuisance parameters

for the data (normalization of the atmospheric transmission function, error and sky
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inflating terms).8

Additionally, we fit for the slopes of a two component power-law (break point

at 0.5 M�):

ξ(m) = dN/dm∗ =



k1m
−α1 for 0.08 < m < 0.5,

k2m
−α2 for 0.5 < m < 1.0, and

k3m
−2.3 for ≥ 1.0.

For a MW IMF α1 = 1.3 and α2 = 2.3. The IMF above 1.0M� is assumed to have

a Salpeter (1955) slope. The ki’s are normalization constants that ensure continuity

of the IMF. The upper mass limit is 100M� and the low-mass cutoff, mc, is fixed at

0.08M�. In this paper we present our IMF results in terms of (M/L)∗. The mass of

the stellar population is calculated from the best inferred slopes of the IMF and stellar

remnants are included in the final mass calculation following Conroy et al. (2009). A

stellar population is considered bottom-heavy, an overabundance of low-mass stars, if

the exponents on the first two terms are larger than the MW IMF and is considered

bottom-light, a paucity of low-mass stars, if they are less than those values.

3.3.2 Mock Data Demonstrations

To test our ability to recover (M/L)∗ from the data, we synthesize mock spectra

by assuming a Salpeter IMF, adding different amounts of noise, and then use our models

and fitting procedures to derive ∆ M/L∗. We show ∆ M/L∗ for mock spectra with

8Models fitted with only a single age and excluding the emission lines made a negligible effect on the
inferred parameters for the GCs.
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Table 3.1: List of objects and associated physical parameters.

Object S/N σ [Fe/H] Age [Mg/Fe] M/LV M/LV

Å
−1

(km s−1) (Gyr) 2 PL MW

M32 730∗ 75a 0.15+0.01
−0.01 2.98+0.05

−0.06 0.02+0.04
−0.01 2.4+0.64

−0.64 1.63+0.03
−0.03

M59-UCD3 70 70b 0.01+0.01
−0.01 7.7+0.49

−0.48 0.18+0.01
−0.01 5.1+0.87

−1.17 2.98+0.11
−0.1

M31-B163 100 21c −0.18+0.01
−0.01 11.37+0.7

−0.61 0.21+0.01
−0.01 3.61+0.59

−0.49 3.34+0.12
−0.11

M31-B193 250 19c −0.11+0.01
−0.01 9.7+0.54

−0.45 0.24+0.01
−0.01 2.69+0.43

−0.2 3.16+0.09
−0.1

M31-B058 120 23c −0.96+0.01
−0.01 6.92+0.09

−0.1 0.37+0.02
−0.02 1.38+0.07

−0.08 1.54+0.01
−0.01

Note. — Mean best inferred value for each parameter is shown with 1σ statistical uncer-
tainty. Values were determined with our models and fitting procedure, as described in Section
3.1. The second to last column are the (M/L)∗ values where the IMF was allowed to vary as
a two component power-law IMF and the last column is the (M/L)∗ values where the IMF
was fixed to a Kroupa IMF.
∗Although the S/N is high it was cloudy at the time of observation so there is additional

uncertainty in the data not represented by Poisson statistics.
aGültekin et al. (2009)
bJanz et al. (2016)
cStrader et al. (2011a)

solar, [Z/H] = 0.0 (orange), and sub-solar, [Z/H] = −1.0 (blue). For each S/N and

metallicity value we create 10 mock spectra with fixed S/N per Å over the wavelength

range 0.4 − 1.015µm, a velocity dispersion of 250 km s−1, and an age of 10 Gyr. The

abundance patterns of the mock spectra are solar scaled (e.g., Choi et al. 2016) and the

nuisance parameters are set to zero. The points shown in Figure 3.1 are the median

values of the differences between the input (M/L)∗ and the derived (M/L)∗ from the

inferred IMF parameters for each metallicity and S/N pair. The uncertainties shown

are the median statistical uncertainties of the recovered values.

For solar metallicity the models recover (M/L)∗ when the S/N ' 100Å−1. A

similar trend is also seen in the low-metallicity mock data. While not a significant

difference, it is somewhat counterintuitive that the (M/L)∗ at the low-S/N regime is

better recovered for the low-metallicity mocks. It could be that in the low-S/N regime
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weaker metal lines help distinguish IMF effects. Below S/N ∼ 100Å−1 there will be

large uncertainty and bias in the (M/L)∗ measurement. The bias exists in the low-

S/N regime because the priors become important and the truth is at the edge of the

prior. The measurements are less sensitive to S/N if the true mc is higher (see Conroy

et al. 2017, for details). As discussed in Conroy et al. (2017) the S/N requirements for

allowing mc to vary is even higher than what is shown in Figure 3.1. Most of the data

in this paper do not meet the S/N requirements for this type of parametrization.

3.4 Results

3.4.1 Basic Stellar Population Characteristics

In the upper panels of Figure 3.2 we compare the best-fit models (grey) and

data for M31-B193 (orange), a metal-rich (MR) GC, and M31-B058 (blue), a metal-poor

(MP) GC. In the lower panels we show the percentage difference between the models

and data. The uncertainty for M31-B058 is shown by the grey band (the uncertainty for

M31-B193 is comparable). The CvD models would not have been able to fit M31-B058

because of the limited metallicity range, but with the C2V models the residuals between

MP and MR GC are comparable and small.

In Table 3.1 we show the best inferred median values for [Fe/H], mass-weighted

age, [Mg/Fe], and the (M/L)∗ in Johnson V where we have and have not allowed the

IMF to vary from Kroupa. Our stellar parameters are broadly consistent with previous

work on these objects. From deep HST/ACS imaging of M32 Monachesi et al. (2012)

inferred two dominant populations, one 2–5 Gyr and metal-rich and an older population,
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∼ 7 Gyr. Our inferred age skews young as the integrated light observations are almost

certainly dominated by the young population. Monachesi et al. (2012) determined near-

solar mass- and light-weighted metallicities for M32. Our inferred metallicity is slightly

more metal-rich than that. Janz et al. (2016) used Lick indices on M59-UCD3 and found

[Z/H] = 0.15± 0.10. Converting our value for [Fe/H] to [Z/H] (Trager et al. 2000) we

get [Z/H] ≈ 0.2, consistent with the Janz et al. (2016) value. Furthermore, our inferred

values for M59-UCD3 are consistent with those presented in Sandoval et al. (2015) with

a spectrum from a different instrument and an earlier iteration of our models.

Our inferred ages for M31-B163 and B193 are consistent with the ages derved

by Colucci et al. (2014). This is particularly striking since Colucci et al. (2014) worked

with high-resolution data and a completely different analysis technique. The age for

M31-B058 is young for a GC but is consistent with previous work in modeling integrated

light of MP GCs (Graves & Schiavon 2008). In the case of M31-B058 there is a moderate

blue horizontal branch that could be boosting the strength of the Balmer lines (Rich

et al. 2005).

3.4.2 The IMF

For our main analysis we define the “IMF mismatch” parameter, αIMF. This

parameter is the ratio of (M/L)∗ where we have fitted for the IMF, to (M/L)∗ where

we have assumed a MW IMF. In Figure 3.3 we show αIMF plotted against [Fe/H] (left),

[Mg/Fe] (middle), and velocity dispersion (σ, right) for all the objects in our sample:

the M31 GCs (purple), M59-UCD3 (red), M32 (green). We supplement our data set

with the ETG data from van Dokkum et al. (2016) (grey, open circle) with the same
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Figure 3.3: The IMF mismatch parameter plotted against [Fe/H] (left), [Mg/Fe], (mid-
dle), and σ (right) for the two component power-law IMF. Values shown are for M59-
UCD3 (red squares), the M31 GCs (purple cricles), and M32 (green triangles). We show
the full sample of ETG local values from van Dokkum et al. (2016) (open grey).

instrumental and model setups.

In Figure 3.4 we compare our (M/L)∗ measurements with available (M/L)dyn

measurements. In the left panel, we show the kernel density estimate (KDE) for [Fe/H]

vs. (M/L)dyn for M31 GCs from Strader et al. (2011a) (contours, darker color indi-

cates higher concentration of objects) along with our (M/L)∗ for three GCs. Published

(M/L)dyn measurements do not currently exist for M59-UCD3. However, in the middle

panel we show the KDE of [Fe/H] vs. (M/L)dyn of the sample of UCDs from Mieske

et al. (2013) (we removed objects that belong to NGC 5128 owing to suspicions of spu-

rious σ measurements) and (M/L)∗ for M59-UCD3. In the right panel of Figure 3.4 we

compare (M/L)∗ for M32 with (M/L)dyn from van den Bosch & de Zeeuw (2010) where

the grey band represents the lower and upper limits given by the uncertainty. In each

panel we show metallicity-dependent (M/L)∗ predictions using SSPs with MW IMFs

and solar-scaled abundance patterns. The ages of the SSPs were chosen to approximate

the inferred ages from full-spectrum fitting.
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We note the slight discrepancy in Figures 3.3 and 3.4 in how much M32 appears

to deviate from a MW IMF. This is due to the fact that the MW IMF in Figure 3.3 also

accounts for non-solar abundance patterns while the SSPs used to generate the orange

lines in Figure 3.4 do not.

3.5 Discussion

McConnell et al. (2016) and Zieleniewski et al. (2017) computed line indices

for a variety of ETGs and claimed that observed line strengths can be explained by

abundance variations alone. These studies have driven debates about the extent IMF

measurements are affected by the underlying abundance patterns. The M31 GCs are an

excellent test bench for the models in this respect since they have similar metallicities

and element enhancements as massive ETGs. If the models did conflate metallicity and

abundance effects with IMF effects we would expect to find similar (M/L)∗ enhance-

ments in the M31 GCs. Recovering αIMF ∼ 1 for the M31 GCs over a wide metallicity

range is a strong validation that our models can distinguish IMF and abundance effects.

Our modeling of the M31 GCs improves upon earlier work in several important

ways. Zonoozi et al. (2016) did not fit models to data and assumed a top-heavy IMF.

Conroy & van Dokkum (2012a) used a stacked spectrum of MR GCs to test the CvD

models while making measurements for individual clusters and include a MP GC. The

lack of expected dark matter in GCs means that dynamical measurements provide tight

constraints on our expectations for (M/L)∗. This makes the continued discrepancy

between dynamical and stellar measurements on the MR end of the M31 GCs troubling.
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Figure 3.4: Comparison of (M/L)dyn (grey) to (M/L)∗ values for M31 GCs (left, purple),
M59-UCD3 (middle, red), and M32 (right, green). In each panel we show the metallicity-
dependent (M/L)∗ predicted from SSPs with Kroupa IMF and solar-scaled abundance
patterns. The ages of the SSPs (orange line) were chosen to approximate the inferred
ages from our full-spectrum fitting. Our inferred (M/L)∗ values for M59-UCD3 and M32
are consistent with available (M/L)dyn measurements. There remain inconsistencies
between the dynamical and stellar measurements at high metallicity for the M31 GCs.

For the current models mc is fixed at 0.08M� but a higher mc would lower

the inferred (M/L)∗ values. Chabrier et al. (2014) explored the different theoretical

conditions which would create a higher mc, while there is empirical evidence that the

IMF in GCs becomes flatter for < 0.5M� (Marks et al. 2012), which would mimic an

increase in mc. It is not out of the realm of possibility that mc could differ from our

fiducial value. However, it takes increasing mc to 0.5M�, an extreme value, to decrease

(M/L)∗ by 35%, i.e., closer to the locus of the MR (M/L)dyn values. It is premature

to make any definitive conclusions but these preliminary results suggest that a variable

IMF cannot explain the [Fe/H] vs (M/L)dyn trend for the M31 GCs. Zonoozi et al.

(2016) were able to achieve better agreement by making ad hoc adjustments to the

retention rates of stellar remnants in the GCs. Follow-up work with a larger sample

and more detailed physical models is required.

The mild bottom-heaviness of M59-UCD3 contrasts with the expectations of
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Dabringhausen et al. (2012) and Marks et al. (2012). That is not to say that our results

are in direct contradiction with either study. First, those studies are tracing the stars

and we are tracing the low-mass stars. Second, It is becoming increasingly clear that

UCDs as a class encompass a diverse set of objects (Janz et al. 2016). Until we have

a better understanding of a more comprehensive sample of objects it is premature to

make any firm conclusions about how UCDs as a whole behave.

For the sample presented in this work, the main feature of Figure 3.3 is that

the CSSs are distinct from the main ETG sample. Though they span large [Fe/H] and

[Mg/Fe] ranges, they vary much less in αIMF than the ETG sample. Both M59-UCD3

and M32 have elevated αIMF values but are not on the main [Fe/H]–αIMF trend for

massive ETGs. M59-UCD3 is in a cluster of ETG points that also deviate from the

main trend. Those points originate from the central regions of just two of the galaxies

in the ETG sample: NGC 1600 and NGC 2695.

The main conclusion of this work is that metallicity is not the sole driver

of IMF variability (see Mart́ın-Navarro et al. 2015; van Dokkum et al. 2016). The

right panel of Figure 3.3 suggests that velocity dispersion is also associated with IMF

variation. This is an important result because different theoretical frameworks will be

controlled by different fundamental variables depending on the kind of physics they

evoke to fragment gas clouds (see Krumholz 2014). By expanding IMF probes into the

parameter space that CSSs occupy we can elucidate what these variables are.

Moreover, it is unclear how theoretical frameworks of star-formation should

treat monolithically formed populations (GCs, some UCDs) as compared with popu-
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lations that build up over time (some CSSs and ETGs) (see Ch. 13 in Kroupa et al.

2013). By measuring the IMFs of CSSs with the same modeling framework that we

do for ETGs, we can obtain a self-consistent observational picture of how the IMF

manifests in the different types of population. Currently, with our small sample, it is

unclear whether the GCs have IMFs that are distinct from the UCDs and cEs (the left

and middle panels of Figure 3.3) or are a part of the same continuum (right panel of

Figure 3.3).
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Chapter 4

New Constraints on Early-Type

Galaxy Assembly from

Spectroscopic Metallicities of

Globular Clusters in M87

4.1 Introduction

Although ΛCDM cosmology gives us the broad framework that galaxies form

hierarchically, the details of how giant early-type galaxies (ETGs) form is still a matter

of debate. Areas of ongoing uncertainty include the assembly of ETGs such as the epoch

of the last merger and what kind of progenitor galaxies now constitute the stellar halos

of ETGs. In particular, while cosmological simulations point to massive progenitor
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satellites as building the stellar halos of present day giant ETGs (see, for example,

Figure 13 of Pillepich et al. 2018), observational constraints suggest dwarf galaxies as

the progenitors (Figure 2 of Forbes et al. 2015).

Globular clusters (GCs) are nearly ubiquitous around galaxies and have been

determined to be old (∼ 10 Gyr) in a variety of systems (see references in Brodie &

Strader 2006). Those properties as well as their luminosity (−5 < MV < −10) make

them potentially useful tracers of galaxy formation and assembly. However, the promise

of GCs in this capacity has yet to be fully realized, in part, because of our limited means

to understand the present-day physical properties of GC systems.

van den Bergh (1975) first used the likely connection between a galaxy’s star-

formation episodes and its GC population to suggest a link between galaxy luminosity

and the metallicities of its GCs. This relation was confirmed by Brodie & Huchra

(1991), and subsequently the paradigm of bimodality has overtaken the extragalactic

GC field. Bimodality was first established through optical color distributions from Hub-

ble Space Telescope photometry (Gebhardt & Kissler-Patig 1999; Kundu & Whitmore

2001a; Larsen et al. 2001). Since then GC systems around ETGs are treated as com-

posed from two subpopulations and separately track the subpopulation characteristics

with host galaxy characteristics to place constraints on galaxy formation scenarios (e.g.,

Côté et al. 2002; Strader et al. 2005; Rhode et al. 2005; Li & Gnedin 2014). Recently

though, Harris et al. (2017) presented observational evidence that the most massive

ETGs, brightest cluster galaxies, can have broad unimodal distributions in addition to

bimodal distributions.
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GCs are thought to contain coeval stars with old ages and mostly homogenous

metallicities and so broadband colors of GCs are generally considered to reflect their

underlying mean metallicity. The simplicity of this logic belies the fact that there is

no consensus on how broadband colors should be transformed into metallicities (pa-

rameterized as the “color–metallicity relation”). The core of almost all astronomical

problems is translating observed characteristics into physically meaningful properties

and understanding GC systems is no exception. We have very limited means to obtain

spectroscopy – our best observational tool for deriving physical stellar population char-

acteristics – of individual GCs around the largest elliptical galaxies. This is a result of

a two-fold problem: at the distances of elliptical galaxies, GCs are faint, and the largest

elliptical galaxies can host systems of tens of thousands of GCs. This means that in

extragalactic work we often only have access to coarse observational characteristics of

individual GCs, such as broadband photometry.

The problems associated with obtaining the metallicity distribution are illus-

trated through the difference between the Harris et al. (2006) and Peng et al. (2006)

color–metallicity relations. Peng et al. (2006) used HST/ACS photometry of GCs

around Virgo Cluster galaxies from Jordán et al. (2004) and metallicities gathered from

the few spectroscopic studies of extragalactic GCs available at the time (Cohen et al.

1998, 2003a). Peng et al. (2006) found a color–metallicity relation with a significant

break when transitioning to the blue GCs, but, crucially their relation was based al-

most entirely on Milky Way GCs at the metal-poor end. Harris et al. (2006) derived a

linear relation between B − I colors and metallicities for Milky Way GCs to interpret
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the broadband colors they obtained for Virgo Cluster GC systems. Peng et al. (2006)

and Harris et al. (2006) reported essentially the same color distributions for the Virgo

GC systems but different metallicity distributions.

Despite their differences, both Peng et al. (2006) and Harris et al. (2006)

maintained evidence for metallicity bimodality but that paradigm was challenged by

Yoon et al. (2006). Yoon et al. (2006) introduced the idea of generating synthetic

color–metallicity relations to transform the overall color distributions of GC systems to

metallicity distributions. They found that highly non-linear color–metallicity relations,

like those that result from inclusion of helium-rich hot horizontal branch stars, can

transform unimodal metallicity distributions into bimodal color distributions.

Contrary to Yoon et al. (2006) and their follow-up work (Lee et al. 2019),

studies that directly model the spectroscopic observations of GCs consistently find bi-

modal metallicity distributions (Alves-Brito et al. 2011; Usher et al. 2012; Brodie et al.

2012). Despite the near-consensus regarding bimodality, the differences in various color–

metallicity relations (see also Usher et al. 2012) highlight that there may be physical

properties beyond metallicity that affect the broadband colors of GCs.

Full-spectrum stellar population synthesis (SPS) modeling provides a way to

move past these problems. Modern full-spectrum models allow for variations in abun-

dance patterns (Conroy et al. 2014) over a variety of ages (Choi et al. 2014) and metal-

licities (Conroy et al. 2018). In addition to fully accounting for possible variations in

many stellar population parameters, we have shown that full-spectrum fitting allows us

to extract information from data in a lower signal-to-noise (S/N) regime than traditional
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index fitting (Conroy et al. 2018).

It is exactly this last property of full-spectrum SPS models that enables us to

make use of the Strader et al. (2011b) database of spectroscopy of individual GCs around

M87. In this paper we present the most comprehensive and accurate compendium of

metallicities for individual GCs around M87 (which we describe in Section 4.2). We use

these metallicities to derive a new color–metallicity relation in Section 4.3. We discuss

the implications of the new color–metallicity relation in Section 4.4.
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4.2 Stellar Population Synthesis Modeling

We make use of the Keck/LRIS spectroscopic subsample of the dataset de-

scribed in Strader et al. (2011b) (∼ 3300 − 5600Å). In the top panel of Figure 4.1

we show a deep image of M87 from the Burrell Schmidt Deep Virgo Survey (Mihos

et al. 2017) with the NGVS photometric catalog (yellow, Oldham & Auger 2016a), the

ACSVCS photometric catalog (green, Jordán et al. 2009), and the LRIS spectroscopic

sample (blue, Strader et al. 2011b).

There are several features of the Strader et al. (2011b) sample that are salient

to the work presented in this paper. First, the clusters in this sample were chosen to

be fainter in magnitude than the obvious “blue tilt” clusters, which will help when we

assess bimodality. Second, in the bottom-left panel of Figure 4.1 we compare the NGVS

photometry sample with the LRIS sample in color–magnitude space. The LRIS sample

spans nearly the whole color range of the M87 GC system (middle panel Figure 4.1).

This work makes use of the updated full-spectrum SPS models (alf) described

in Conroy et al. (2018). The most relevant update of the Conroy et al. (2018) models

with regards to this work is the expansion of stellar parameter coverage of the models

with the Spectral Polynomial Interpolator (SPI, Villaume et al. 2017b)9. With SPI we

used the optical MILES stellar library (Sánchez-Blázquez et al. 2006b), the Extended

IRTF stellar library (E-IRTF, Villaume et al. 2017b), and a large sample of M Dwarf

spectra (Mann et al. 2015) to create a data-driven model which we can use to generate

stellar spectra as a function of effective temperature, surface gravity, and metallicity.

9https://github.com/AlexaVillaume/SPI_Utils
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Figure 4.3: Top: Comparison of metal-rich ([Fe/H] > +0.1) LRIS spectra (black) and
best-fit models for a high-S/N (H51142, (g − z)NGVS = +1.38, brown) observation and
a low-S/N (H51943, (g − z)NGVS = +1.33, green). Middle: Comparison of residuals
between best-fit model and data for H51075 and uncertainty of flux from the input
spectrum (grey). Bottom: Same as middle panel but for H51943.
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Figure 4.4: Same as for Figure 4.3 but for the metal-poor GCs (< −1.5) H38032 ((g −
z)NGVS = +0.70, brown) and H42981 ((g − z)NGVS = +0.69, green).
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The empirical parameter space is set by the E-IRTF and Mann et al. (2015)

samples which together span −2.0 . [Fe/H] . +0.5 and 3.9 . log Teff . 3.5. To

preserve the quality of interpolation at the edges of empirical parameter space we aug-

ment the training set with a theoretical stellar library (C3K). The alf models allow

for variable abundance patterns by differentially including theoretical element response

functions. In Conroy et al. (2018) we fitted the Schiavon et al. (2005) spectroscopic

sample of Milky Way GCs and compared the alf-inferred [Fe/H] values with a compi-

lation of [Fe/H] values from the literature (see Roediger et al. 2014, for details). Over

a range of −2.5 . [Fe/H] . +0.0 we had nearly one-to-one consistency between the

literature values and our measured [Fe/H] values from integrated light (specifically,

[Fe/H]lit ∝ 1.06[Fe/H]alf).

The LRIS sample is in the low signal-to-noise (S/N) regime with ∼ 5 − 30

encompassing the range of the median S/N over each spectrum (bottom-right panel

in Figure 4.1). In this modest S/N regime it is difficult to obtain accurate stellar

population parameters (Sánchez-Blázquez et al. 2011). To obtain an accurate color–

metallicity relation we need the metallicities of individual GCs and therefore stacking

spectra is not a good option for this particular problem.

We fit objects using both full-spectrum (left) and traditional line-index meth-

ods (right). For our line-index fits we use the canonical set of Lick indices (Faber

et al. 1985; Burstein et al. 1986; Worthey et al. 1994): HδF , CN2, Ca4227, G4300,

HγF , Fe4383, Fe4531, C24668, Hβ, Fe5015, Mgb, Fe5270, Fe345, and Fe5406. For the

full-spectrum fits we fit in simple-mode over the wavelength regions: 3900 − 4400Å,
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4400−4900Å, 4900−5200Å. We smoothed the LRIS spectra to be a constant 200 km/s

over the whole wavelength range.

In Figure 4.2 we demonstrate the utility of full-spectrum fitting over line-

index methods. In this figure we compare [Fe/H] posteriors for metal-rich GCs (left

column) and metal-poor GCs (right column) where the spectrum were fitted using the

full spectrum (top row) and Lick indices (bottom row). In each panel we compare the

results of high-S/N and low-S/N spectra. We demonstrate that in both the metal-rich

and metal-poor cases the posteriors are better constrained when full-spectrum fitting is

used. In the metal-rich case, the posterior distributions for high and low-S/N using Lick

indices have larger tails than the posterior distributions from full-spectrum fitting. The

real utility of the new models is shown in the low-metallicity case where the posterior

distributions are more centered on a single value from full-spectrum fitting than from

indices.

In Figures 4.3 and 4.4 we examine the quality of our fits for metal-rich and

metal-poor GCs, respectively. In each Figure we compare the LRIS spectrum (black)

with the best-fit model spectrum for a high-S/N (brown) spectrum and a low-S/N

(green) spectrum in the top panel. The middle and bottom panels in each figure compare

the residuals between the high-S/N spectra and low-S/N, respectively, with the flux

uncertainty of each LRIS spectrum (grey band). These comparisons demonstrate that

the fitting was successful as the residuals are consistent with the flux uncertainty. Even

with the low-S/N spectra several spectral features are still prominent, including CaII,

Hδ, Hβ, and Mgb, which are well-characterized by the best-fit model.
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After we fit every spectrum we visually inspected the residuals between the

observed spectrum and the best-fit model. From this inspection we identified cases

where the best-fit model is clearly a poor fit to the data. We removed these clusters

from our subsequent analysis, bringing our final sample to 177 GCs. Of the 23 GCs

we culled from our final metallicity sample, 20 have NGVS photometry, and 15 of

those are considered to be blue (g − z < 1.0). This suggests that it is more difficult

to obtain adequate spectra of the blue and, presumably, metal-poor GCs. However,

with our remaining blue GCs we are still adequately covering the metal-poor parameter

space. The posteriors for the [Fe/H] values for the final sample of GCs are available at

https://github.com/AlexaVillaume/m87-gc-feh-posteriors.

4.3 Results

4.3.1 Comparison to Previous Work

Cohen et al. (1998) previously did stellar population analysis on a spectroscopic

sample of M87 GCs (Cohen & Ryzhov 1997) using indices to determine metallicity

values. To aid our analysis we matched the Cohen et al. (1998) sample to the Oldham

& Auger (2016a) NGVS-based photometry catalog. We matched the Cohen et al. (1998)

sample to the data presented in Hanes et al. (2001), which provided right ascension and

declination values for all the GCs in the Strom et al. (1981) catalog that Cohen &

Ryzhov (1997) selected their targets from.

Then we used the position values to match with the Oldham & Auger (2016a)

catalog with a max separation of 1′′. We dereddened the Oldham & Auger (2016a)
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photometry using the Fitzpatrick (1999) extinction law and extinction values taken

from the Schlegel et al. (1998) dust map using the NASA/IPAC Infrared Science Archive

(Ag = 0.087, Ai = 0.048, Az = 0.034, Rg = 3.793, Ri = 2.086, Rz = 1.479).

We do not include the objects in Table 1 of Cohen & Ryzhov (1997) and not

every GC in the Cohen et al. (1998) sample has NGVS photometry so we go from the

full Cohen et al. (1998) sample of 150 GCs with [Fe/H] values to 101 GCs. In the left

panel of Figure 4.5 we compare the normalized cumulative metallicity distributions of

both the full (blue) and matched (orange) Cohen et al. (1998) sample. This comparison

demonstrates that we are not biasing the Cohen et al. (1998) sample by doing the

matching.

In Figure 4.6 we compare our final sample of 177 GCs to the photometry-

matched Cohen et al. (1998) sample. In the left panel we compare the cumulative

brightness distributions of each sample. In the middle panel we compare the NGVS

(g−z) colors of the two sample. In the right panel we compare the cumulative metallicity

distributions of both samples. We see that ∼ 40% of the objects in our sample are fainter

than the faintest GC included in the Cohen et al. (1998) sample. The range of colors

spanned by each sample are similar but the Cohen et al. (1998) sample has a different

overall distribution than our sample. More importantly, we see that from the way the

curves change from color to metallicity that the Cohen et al. (1998) color–metallicity

relation will be different than ours. Furthermore, the Cohen et al. (1998) metallicities

are, on the whole, lower than our metallicities. We discuss the nature of this last

difference in more detail in Section 4.1.
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(1998) (140 GCs, blue) with the sample when matched to the Oldham & Auger (2016a)
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Figure 4.6: Left: Comparing the cumulative magnitude functions for the matched Cohen
et al. (1998) sample and the sample from this work. Middle: Same as left but for
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the distribution of [Fe/H] values for Milky Way GCs from our full-spectrum fits to the
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Figure 4.7: Relation between synthetic NGVS and ACSVCS photometry for the spec-
troscopic sample. Since the two surveys are on slightly different filter systems we present
a way to transform colors between each: (g − z)ACSVCS = 1.123(g − z)NGVS − 0.015.

4.3.2 Updated color–metallicity Relationships

We use two photometric datasets of the M87 GC system: the Oldham & Auger

(2016a) catalog of ground based photometry using the NGVS survey data (Ferrarese

et al. 2012) and photometry from the ACS Virgo Cluster Survey (ACSVCS) from Jordán

et al. (2009). We use the g- and z-band filters from each survey but it is important to

note that the filters are not identical between the two instruments (see Figure 4.7) and

so the color–metallicity relationships for the two instruments will be slightly different.

Our sample of 177 spectroscopically-derived [Fe/H] values overlaps with 172

objects from the NGVS catalog but only 37 of the GCs with spectroscopically-derived

metallicities overlap with the ACSVCS catalog. To mitigate any problems that might

arise from such a sparse sample we leverage the fact that the underlying alf models

extend over a wider wavelength range than the LRIS data and are flux calibrated (see

Villaume et al. 2017b; Conroy et al. 2018, for discussion).
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Figure 4.8: (Top-left): Color–metallicity relation using observed NGVS g − z colorsfor
the 172 GCs that are in both the spectroscopic sample and NGVS. (Bottom-left): Same
as top-left with synthetic colors for all 177 GCs in the spectroscopic sample. (Top-right):
Color–metallicity relation using observed ACSVCS colors for the 37 GCs that are in both
that and the spectroscopic sample. (Bottom-right): Synthetic color–metallicity relation
in the ACSVCS bands for all 177 GCs in the spectroscopic sample. In each panel we
show the best-fit line and 100 samples drawn from the posterior distribution by fitting
the corresponding data points with a linear model (see text for details). In the right
panels we show the Peng et al. (2006) relation (dashed green). The regression algorithm
detects outliers in the data which are shown in each plot by the red circles.
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Figure 4.9: Normalized histograms of the residuals between the observed [Fe/H] val-
ues and the values predicted by the best-fit color–metallicity relations divided by the
observed [Fe/H] uncertainties. We have indicated the mean offset, µ, and standard de-
viation, σ for the distribution of residuals. A Gaussian distribution with σ = 1 is also
shown.

We used the flux-calibrated models that correspond to the inferred stellar pa-

rameters for each individual GC to compute synthetic photometry for both the ACSVCS

and NGVS bandpasses. In Figure 4.7 we show the relation between the synthetic pho-

tometry using the different filter systems. We also show our best-fit line to the data

(excluding the outliers marked with the open circles) so that the colors of GCs can be

transformed from one system to the other. GCs identified as outliers by the regression

model are marked with open circles. The outliers from this relation are just the result of

numerical problems for these particular clusters in generating models over the available

wavelength range. As can be seen in Figure 4.7, the overwhelming majority of the GCs

follow a tight relation between the ACSVCS filter system and the NGVS system.

In Figure 4.8 we show the color–metallicity relations using the NGVS (left) and

ACSVCS (right) photometry for both the observed (top) and the synthetic (bottom)

g − z colors. We fit all four color–metallicity relations using linear regression in a

Bayesian framework with outlier pruning and uncertainty weighting (see Hogg et al.

2010, for details) and show the best-fit lines for each relation and 100 samples drawn
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Table 4.1: Median values of posterior distributions of best-fit line parameters with
standard deviations for each fit. We also show the standard deviation of the residual
[Fe/H] distributions, σresiduals.

Slope σslope Intercept σintercept σresiduals

ACSVCS (obs) 1.79 0.25 −2.77 0.31 2.14
ACSVCS (syn) 1.96 0.08 −2.88 0.10 2.70
NGVS (obs) 2.12 0.12 −2.92 0.13 2.62
NGVS (syn) 2.20 0.10 −2.90 0.11 2.69

from the posteriors in each panel (orange lines).

We demonstrate that there is good agreement between the relations using

observed and synthetic NGVS photometry. This is important because this assures us

of the quality of the synthetic color–metallicity relation for the ACS photometry. The

relation using the observed ACSVCS photometry has large uncertainties because of the

sparsity of the sample.

Any outliers detected by the fitting algorithm are highlighted by red open

circles in each panel. The regression fits do not include those points. Linearity is a good

representation of the data in all four cases. We fit the data with a quadratic relation

which was not statistically preferred over the linear relation in any case. In Table 4.1

we list the median and standard deviation of slope and intercept values of each relation.

In Figure 4.9 we show the normalized histograms of the residuals between the

observed [Fe/H] values and the values predicted by the best-fit color–metallicity relations

divided by the observed [Fe/H] uncertainties. In each panel we show a standard normal

distribution and indicate in the legend the measured mean and variance of the residual

distribution. The residuals have a larger variance than what is expected from a standard

normal distribution. This is likely because the color–metallicity relations have genuine
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spread since GC systems are an amalgamation of different stellar populations.

In the right panels of Figure 4.8 we also show the Peng et al. (2006) relation.

Our relation is consistent with Peng et al. (2006) for the red (g − z > 1.0) GCs but

differs significantly for the blue GCs. We already noted in the previous section that the

Cohen et al. (1998) metallicities used by Peng et al. (2006) are more metal-poor as a

whole than the metallicities that we have derived for the M87 GCs. Peng et al. (2006)

also supplemented their sample with Milky Way GCs.

To understand how the presence of Milky Way GCs might have affected the

color–metallicity relation we look at how the Milky Way GCs compare to the M87 GCs

in Figure 4.10. We generated synthetic photometry for the Milky Way GCs to obtain

ACS g − z colors for the clusters. We show the color–metallicity relation using both

the [Fe/H] values we derived from our fits to the Schiavon et al. (2005) spectroscopy

(brown circles) and [Fe/H] values compiled from various literature sources (Roediger

et al. 2014, open green circles). We also show the M87 GCs (black points). We show

the best-fit lines for the Milky Way GC color–metallicity relation (colored lines) and

the Peng et al. (2006) relation (dashed black line). In the left panel we show the blue

GCs and in the right panel we show the red GCs.

We see in Figure 4.10 that the blue Milky Way GCs have a different color–

metallicity relation than the M87 GCs. The color–metallicity relations for the Milky

Way GCs are closer to the Peng et al. (2006) relation, which makes sense because it is

the Milky Way GCs that drive the blue end of Peng et al. (2006) relation. Moreover,

Peng et al. (2006) used the Harris (1996) compilation of Milky Way GC [Fe/H] values
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Figure 4.10: We show synthetic ACS g− z color versus metallicity for the M87 clusters
(black) and the Milky Way GCs. The inclusion of the MW GCs in the Peng et al. (2006)
analysis explains much of the discrepancy between our color–metallicity relations.

and we show that the color–metallicity relation using [Fe/H] values from literature is

even closer to the Peng et al. (2006) relation than the relation using the spectroscopically

derived [Fe/H] values.

4.3.3 Metallicity Distributions

In Figure 4.11 we demonstrate the effect of our new color–metallicity relations

on the derived metallicity distributions. In the left panel we compare the NGVS (yellow)

and ACSVCS (green) color distributions. For NGVS we only show clusters within Rgal <
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Figure 4.11: (Left): Distributions of the (g − z)0 colors from NGVS (yellow) and
ACSVCS (green). The ACSVCS sample is redder and more metal-rich than the NGVS
sample on average because it is drawn from a more central region of the galaxy. We lim-
ited the NGVS sample to objects within Rgal < 30.5 kpc to match the footprint of the
spectroscopic sample. (Middle): Comparing distributions of metallicity measured from
spectroscopy (grey) and from our color–metallicity relationships including both NGVS
and ACSVCS photometry where we truncate the sample to Rgal < 30.5 kpc (green)
and Rgal < 10.5 kpc (black–dashed). Objects in both samples were removed from the
NGVS sample. (Right): Comparing the derived metallicity distributions from NGVS
and ACSVCS with the metallicity distribution derived from the Peng et al. (2006) re-
lation applied to the ACSVCS colors. The peak of the metal-poor subpopulations are
dramatically different, which will affect comparisons to models.
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30.5 kpc to match the spatial extent of the spectroscopic dataset. This comparison

emphasizes the effect that the spatial extent of the data has on the analysis. In GC

systems around massive galaxies, it has been established that the blue GCs begin to

dominate further away from the center (e.g., Harris et al. 2017). The ACSVCS sample

only extends to Rgal ∼ 13 kpc and we see bimodality clearly in the color distribution

for that sample. Meanwhile, the NGVS sample extends more than twice as far out and

bimodality gets completely washed out in its color distribution.

In the middle panel we compare the spectroscopically-derived metallicity dis-

tribution (grey) with the metallicity distributions derived from the ACSVCS and NGVS

samples using their respective color–metallicity relations for two galactocentric radius

cut-offs: Rgal < 30.5 kpc (green) and Rgal < 10.5 kpc (black–dashed). We removed

those GCs that are in both samples from the NGVS sample. The photometrically-

derived MDF appears to be consistent to the spectroscopically-derived MDF but gives

less noisy view of the MDF. The MDF where we truncate at Rgal = 10.5 kpc more

obviously displays bimodality than the MDF where the sample extends further out.

In the right panel we compare the metallicity distributions derived from the

ACSVCS and NGVS colors to the metallicity distribution derived from applying the

Peng et al. (2006) color–metallicity relation to the ACSVCS data only (grey). We see

that the different color–metallicity relations lead to drastically different MDFs. The

peak of the metal-poor subpopulation is more metal-rich in MDF established in this

work and the dispersions of both subpopulations are very different between the different

MDFs.
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Figure 4.12: (Left) Mean values of the blue and red GC colors as a function of host
galaxy luminosity in seven bins of host galaxy magnitude (see Peng et al. 2006, for
details). (Right) Mean metallicities of the blue and red GC populations using the
color–metallicity relation determined in this work (solid lines) and the best-fit lines
from Peng et al. (2006) (dashed lines). The different color–color metallicity established
in this work propagates to a dramatically different metal-poor relation.

In Figure 4.12 we see the importance of the new color–metallicity relations

derived in this work. In the left panel we show the mean values of the blue and red

GC populations as a function of host galaxy luminosity in seven bins of host galaxy

magnitude for the Virgo Cluster galaxies included in the Peng et al. (2006) analysis. In

the right panel we have used the color–metallicity relation determined in this paper to

transform the mean colors established in Peng et al. (2006) into mean metallicities. We

derived uncertainties for the metallicity values by doing Monte Carlo sampling of the

color–metallicity relation using the color uncertainties.

We show the linear fit to the new relations in the solid lines. We show the

relations Peng et al. (2006) determined as dashed lines. As we would expect from the

previous results, the new relation between host galaxy luminosity and mean metallicity
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for the metal-rich GCs is similar to the Peng et al. (2006) result but the relation for the

metal-poor GCs is shallower and more metal rich than the Peng et al. (2006) result.

4.4 Discussion

4.4.1 Which Metallicity is it Anyway?

The difference between our and the Peng et al. (2006) color–metallicity rela-

tionship is substantial for the blue GCs. We can understand this difference by examining

the origin of the [Fe/H] values Peng et al. (2006) used in their analysis. First, the Milky

Way GCs make up the majority of the blue GCs used in the Peng et al. (2006) sample.

We demonstrated in Figure 4.6 that the Milky Way GCs are more metal-poor than

the M87 GCs. In Figure 4.10 we show that, using both literature [Fe/H] values and

[Fe/H] values derived from full-spectrum fitting, the Milky Way GCs have a different

color–metallicity relation than the M87 GCs. The closeness of the Peng et al. (2006)

relation in the blue to the Milky Way GC relation is highly suggestive that the presence

of the Milky Way GCs is driving and biasing the relation in the blue for Peng et al.

(2006).

Second, we show in Figure 4.6 that even though the GCs in our sample and

the Cohen et al. (1998) sample span a similar color range, the Cohen et al. (1998)

metallicity values are systemically lower than the metallicities we derive. There are no

GCs that are shared between the Cohen et al. (1998) sample and our sample but we can

understand the differences between the two by bearing in mind two related facts: the

fitting functions that underlie the Worthey et al. (1994) models are not well-calibrated
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at high metallicities and the Cohen et al. (1998) metallicities are placed on the Zinn

(1985) metallicity scale which is set by Milky Way GCs.

The former was discussed in Cohen et al. (2003a) as a serious concern. Cohen

et al. (2003a) redid the [Fe/H] determinations of the M87 GCs from Cohen et al. (1998)

by extrapolating the models to higher metallicity by assuming that the indices are on

the damping part of the curve of growth. This affected five M87 GCs in their sample.

We are, to be clear, using the Cohen et al. (1998) metallicities in this work as Peng

et al. (2006) did.

For the latter, Cohen et al. (1998) noted that from their qualitative analysis of

the line indices of both the Milky Way and M87 GCs, the M87 GCs have a metal-rich

tail that extends to significantly higher metallicities than the Milky Way GCs, which

we confirm. The relation they use to scale the Worthey et al. (1994) models to the

Milky Way GCs is [Fe/H]Z = 0.760 × [Fe/H]W − 0.265 which would lower the overall

metallicity of their sample. Overall, we see that the Peng et al. (2006) relation is yoked

to the Milky Way GCs in both explicit and implicit ways. The [Fe/H] values that we

present in this work come from the underlying isochrones (Choi et al. 2016) and the

underlying stellar library (Villaume et al. 2017b). While the stellar library consists of

stars from the Milky Way, there is not a Milky Way specific trend in [Fe/H] that we

need to correct like we would for α elements (Tripicco & Bell 1995).

We also find that the color–metallicity relation differs between the Milky Way

and M87, especially near the blue end (g− z . 1.0). We defer an in-depth examination

of the physical cause of this difference to later work but we speculate that it might be
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age differences between the two GC populations. If the M87 GCs were younger than

the Milky Way GCs, they would appear bluer at the same metallicities. We used simple

stellar population (SSP) synthesis models to examine how age affects color at fixed

metallicity (in this case, [Fe/H]= −1.5) and found that the metal-poor M87 GCs would

have to be about 4 Gyr younger than the Milky Way GCs to explain the color difference.

We also cannot rule out the possible effects that α elements or the morphology of the

blue horizontal branch have on the color.

4.4.2 Bimodality

Bimodality of GC systems has been the dominant paradigm in which extra-

galactic GC studies have been conducted over the past 30 years. In this paper we defer

quantitative analysis of the subpopulations of the GC system around M87 to a forth-

coming paper on the subject. This is to more appropriately address the complexities

around the topic that have been raised recently. Even with just the M87 system, con-

sensus has yet to be reached on the number of subpopulations that make up the system

(e.g., Strader et al. 2011b; Agnello et al. 2014; Oldham & Auger 2016a). With that

being said, there are still some things worth pointing out.

First, Cohen et al. (1998) detected bimodality in M87 only after excluding

the metal-rich tail from their analysis. Usher et al. (2012) speculated that the lack of

convincing proof for bimodality from Cohen et al. (1998) was a result of their typically

bright targets. Since Cohen et al. (1998) we have become aware of the blue-tilt phe-

nomenon as well as liminal objects like ultra-compact dwarfs that could contaminate

populations of bright canonical GCs (e.g., Usher et al. 2012; Villaume et al. 2017a).
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Second, we take advantage of obtaining color–metallicity relations using both

the NGVS and ACSVCS datasets by converting both into metallicity and combining

the data sets. The ACSVCS data probe the very inner region of the M87 GC system

while the NGVS data extends further out. We see that the color-converted MDF is

consistent with the spectroscopically determined MDF. Furthermore, bimodality can

be seen visually from the MDFs, especially when only GCs within Rgal < 10.5 kpc are

included.

The M87 system consists of a huge number of GCs that represent the culmi-

nation of a complex history. Previous analyses (e.g., Strader et al. 2011b; Romanowsky

et al. 2012) indicated that the GCs in the outer halo behave differently and are domi-

nated by blue/metal-poor GCs. As mentioned previously, a paper specifically addressing

the subpopulations and their characteristics will follow this paper.

Third, the Yonsei Evolutionary Population Synthesis (YEPS) models have

been used to argue that most bimodal color distributions reflect a truly unimodal un-

derlying metallicity distribution because of the inclusion of hot horizontal branch stars

(Yoon et al. 2006). The approach of this group is different from the one typically taken,

where spectroscopic observations of individual GCs are modeled with SPS models. In-

stead, the YEPS group transforms the color distributions of GC systems to metallicity

distributions using synthetic color–metallicity relations generated from the YEPS mod-

els.

The results from the synthetic color–metallicity relation method (Yoon et al.

2006; Lee et al. 2019) and the direct spectroscopic modeling (e.g., Alves-Brito et al. 2011;
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Usher et al. 2012; Brodie et al. 2012) method continue to be at odds. The results we find

in this work are consistent with other studies that have directly modeled spectroscopy

of individual GCs. Beyond the final results there are few points of comparison between

the two methods. However, we note that from our work with Milky Way GCs we know

that the presence of hot horizontal branch stars affects our ability to measure accurate

ages from integrated light but not metallicity (see Figure 15 in Conroy et al. 2018, for

reference). We therefore do not have a reason to doubt our metallicity measurements

for the M87 GCs, even with the possible presence of GCs with prominent hot horizontal

branches.

Fourth, it is important to note that our MDFs, both from the purely spec-

troscopic sample and the sample converting NGVS and ACSVCS photometry, differ

significantly from the MDF computed from the Peng et al. (2006) relation. The peaks

and widths of the distributions are different. These quantities are crucial for making

quantitative comparisons to theoretical models of GC system formation, and thus, of

galaxy formation. In recent years modern theoretical galaxy formation models have

emerged with the E-MOSAICS simulations (Pfeffer et al. 2018) for Milky Way-type

galaxies, and alternatively with Choksi et al. (2018) specifically trying to recreate the

observed properties of the Virgo Cluster galaxies. These models take divergent ap-

proaches: E-MOSAICS adds models describing the formation and evolution of star

clusters into the EAGLE galaxy formation simulations, while Choksi et al. (2018) uses

semi-analytic models of merger histories. They also take different approaches to the

role GC destruction plays in our understanding of z ∼ 0 GC systems. Accuracy and
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credible uncertainties in the physical characteristics derived from observables are crucial

for moving forward with constraining galaxy formation theories based on GCs.

4.4.3 Implications for GC and Galaxy Formation

We have derived a new galaxy luminosity–GC metallicity relation separately for

the blue and red GCs in the Virgo galaxies included in Peng et al. (2006) (Figure 4.12).

The difference in our new color–metallicity relation is two-fold: the metal-poor GCs

now correlate with galaxy luminosity less strongly than previously measured, and the

metal-poor GCs are more metal-rich than what Peng et al. (2006) determined.

Larsen et al. (2001) were the first to assess the relationship between GC sub-

population metallicity and galaxy luminosity with a homogeneously acquired sample.

Then Strader et al. (2004) combined elliptical galaxy data from a variety of sources

(Larsen et al. 2001; Kundu & Whitmore 2001a,b) with data from spiral galaxies (Harris

1996; Barmby et al. 2000) to look at just the metal-poor GCs. Most recently Peng et al.

(2006) determined this relationship for the Virgo Cluster galaxies. Like Larsen et al.

(2001), Peng et al. (2006) found shallower slopes for the metal-poor GCs relative to the

metal-rich GCs. There is remarkable similarity between the slopes that Larsen et al.

(2001), Strader et al. (2004), and Peng et al. (2006) found for the metal-poor GCs.

We already know that the difference between our relation and the relation from

Peng et al. (2006) is due to the color–metallicity relation. What about the difference

with Strader et al. (2004)? Strader et al. (2004) used the Barmby et al. (2000) color–

metallicity relation based on a sample of M31 GCs. Barmby et al. (2000) noted that

the M31 color–metallicity relation is similar to the Milky Way relation. This raises the
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likelihood that it is not an appropriate way to convert colors to metallicities for the

early-type galaxies included in the Strader et al. (2004) sample. The similarity in slopes

between Strader et al. (2004) and Peng et al. (2006) might be an artifact of the similar

source of their respective color–metallicity relations.

To explain the correlation between galaxy luminosity and blue GC metallicity

Strader et al. (2005) and Brodie & Strader (2006) invoked the concept of “biasing”,

also introduced in the context of Milky Way stellar halo assembly by Robertson et al.

(2005). In short, the progenitor satellites that now constitute the stellar halos of massive

galaxies were more metal-rich, at fixed mass, than present day satellites. In the light

of the new, much weaker correlation, this needs to be reassessed. The new correlation

could indicate that biasing is not as strong as an effect as once thought. Put another

way, the new correlation suggests that metal-poor GCs formed irrespective of their host

galaxies.

The change in metallicity intercept for the metal-poor GCs on this relation has

implications for their formation epoch. Forbes et al. (2015) evolved the galaxy mass–

GC metallicity relation through redshift to determine bulk ages of the GCs belonging

to the galaxies in the SLUGGS survey (e.g., Usher et al. 2012). In their model, higher

metallicities indicate younger ages and/or more massive hosts. The slopes of their

metal-poor and metal-rich relations are not totally consistent with what we present in

this work, but the intercepts are roughly similar. Following the logic of Forbes et al.

(2015), the nearly constant slope we find for the metal-poor GCs as a function of galaxy

luminosity indicates that the metal-poor GCs in the Virgo Cluster formed at nearly
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the same time. The correlation between the metal-rich GC [Fe/H] values and host

galaxy luminosity indicates that the metal-rich GCs around the giant galaxies formed

more recently than the metal-rich GCs around the dwarf galaxies. The increase in

metallicity for the metal-poor GCs may also help ease the tension between simulated

and observational results as discussed in the Introduction, if it indicates that the GCs

formed in more massive satellites.

It is important to note the crucial underlying caveat of Figure 4.12 – that the

color–metallicity relation we developed for M87 is applicable to the other Virgo Cluster

galaxies in the Peng et al. (2006) analysis. This is probably not a good assumption,

particularly in light of the Powalka et al. (2016) results which showed that color–color

relations in the NGVS sample depend on environment, with colors on the whole be-

coming bluer with increased radial distance from M87 and that GCs > 200 kpc from

M87 have color–color distributions similar to those of the Milky Way. Unfortunately,

Powalka et al. (2016) also showed that mass is not the driving factor in these differences

so we cannot make a simple correction to Figure 4.12. More detailed spectroscopy of

lower-mass systems in the Virgo Cluster is ultimately needed.

4.5 Summary

• We have fitted a spectroscopic sample of GCs around M87 with full-spectrum SPS

models and obtained [Fe/H] for 177 GCs. We demonstrate that the metallicity

values we derive are systematically higher-metallicity than previous spectroscopic

studies. We attribute this difference to the limitations of the previously-used
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Worthey et al. (1994) SPS models and because the previously determined metal-

licity values were scaled to match the Milky Way GCs, which are, as a whole,

lower in metallicity than the M87 GCs.

• Using synthetic photometry from flux-calibrated stellar population models we de-

termine a transformation between the NGVS and ACSVCS photometric systems:

(g − z)ACSVCS = 1.123(g − z)NGVS − 0.015.

• We derived new color–metallicity relations using both NGVS and ACSVCS g − z

colors. Our ACSVCS color–metallicity relation differs significantly for the blue

GCs from the previously published color–metallicity relation using the ACS fil-

ters. This is because we find the relation for the Milky Way GCs to be significantly

different than the relation for the M87 GCs. We discuss the necessary age differ-

ence needed to explain this result, but previous work in colors of Virgo Cluster

GCs suggested that there is some environmental effect on chemical abundance

patterns.

• While we advocate that color–metallicity relations be confirmed with spectro-

scopic follow-up for individual galaxies, we assume that in this respect the Virgo

cluster galaxies are similar to one another and as a result we find a shallower

galaxy luminosity-GC metallicity relation for the blue GCs than previous studies.

This could either indicate that progenitor satellites were less massive than previ-

ously thought, or the properties of metal-poor GCs are not as dependent on their

present-day host galaxy as metal-rich GCs.
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Chapter 5

Mapping the Assembly History of

M87 Through Radial Variations

in Chemical Abundances

5.1 Introduction

Any complete theory of galaxy evolution must explain massive early-type

galaxies (ETGs). In the Local Group, theories of how the Milky Way and Andromeda

(M31) galaxy formed have been benchmarked by our understanding of their chemody-

namical properties. With the advent of modern surveys (e.g., Gaia, APOGEE; Prusti

et al. 2016; Majewski et al. 2017b) our picture of the structure of the Milky Way has

become more detailed and from this we have made progress in quantifying the formation

and accretion histories of both galaxies (e.g., Helmi et al. 2018; Gilbert et al. 2019).
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In contrast, our understanding of the structure of massive ETGs has remained

relatively simple and traditionally defined by their uniform “red and dead” appearance.

Without access to the resolved stellar populations in these galaxies – none exist in the

Local Group – our understanding of the formation and evolution of these galaxies has

necessarily relied on coarser information such as scaling relations between global prop-

erties of large samples of such galaxies (e.g., the Fundamental Plane) over cosmic time

and trends of integrated stellar population parameters in present-day ETGs (Renzini

2006). However, the power of spatially-resolved stellar population parameters to falsify

formation scenarios has long been recognized (e.g., the early debate of dissipationless

versus dissipative collapse reviewed in Faber 1977).

An early picture of ETG formation was that they were simply major-merger

products of Milky Way-type galaxies (Toomre 1977). More recently, high-redshift obser-

vations of ETG progenitor compactness have motivated the “two-phase scenario” (e.g.,

Bundy et al. 2009; Oser et al. 2010). In this scenario the first phase is characterized by

rapid star formation, creating the core of a given galaxy that hosts “in-situ” stars. The

second phase is characterized by size growth over an extended period of time via galaxy

mergers that bring in an “ex-situ” population of stars into a galaxy. This framework is

widely used but there is still no consensus on the details of these phases and, thus, what

the present-day stellar populations of these galaxies should be like (e.g., Somerville &

Davé 2015; Naab & Ostriker 2017).

The most massive ETGs, including brightest cluster galaxies (BCGs) are ex-

pected to be the most extreme examples of the second phase – highly merger dominated.
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Deep imaging surveys (e.g, Burrell-Schmidt Survey, Hyper Suprime-Cam; Mihos et al.

2017; Aihara et al. 2018) have revealed complex structure in these galaxies. There has

been limited ability to accurately test with observations the picture laid out by simu-

lations. To achieve the same depth of understanding for massive ETGs as we have for

the Local Group galaxies we need a way to probe their chemodynamical properties.

Because are bright, compact, ubiquitous above a certain galaxy mass, and

generally thought to be uniformly old globular clusters (GCs) have an extensive history

of constraining galaxy formation scenarios. Generally this has been done through scaling

relations between GC system properties (e.g., mean metallicity, number) and global

properties of their host galaxy. For example, it was detailed understanding of GC

populations across galaxy types that provided early observational evidence contradicting

the spiral-spiral merger scenario (van den Bergh 1982).

GCs have also been used as “discrete tracers”, primarily to study kinematics.

Another important property of GC, though, is that they are near-simple stellar popula-

tions. This means they can also be used as discrete tracers of the stellar populations of a

galaxy. This has mainly been exploited through the study of the metallicity distribution

functions (MDFs) of GC systems. One of the early breakthroughs in extragalactic GC

studies was the discovery of pervasive bimodality in the colors of GC populations (Zepf

& Ashman 1993; Larsen et al. 2001). The “red” GCs are thought to be metal-rich and

formed within massive galaxies at the peak of star formation (z ∼ 2–3), while the “blue”

GCs are metal-poor objects that formed in low mass galaxies at even earlier times and

were then accreted into galaxy halos (Forbes et al. 2015).
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The vast majority of the work done to understand extragalactic GC systems

has been done via broadband photometry (e.g., Larsen et al. 2001; Côté et al. 2004).

The most extensive spectroscopic work to date has been through the SLUGGS Survey

(Brodie et al. 2014, SAGES Legacy Unifying Globulars and GalaxieS) which obtained

spectra of ∼ 4000 GCs around 27 nearby ETGs out to ∼ 10Re (Forbes et al. 2017)10.

The main focus, however, has been on kinematics of the GC systems, and the important

chemical abundance information has yet to be fully leveraged.

The BCG of the Virgo Cluster, M87 (NGC 4486), has one of the most ex-

tensively studied GC systems (e.g., Baum 1955; Cohen et al. 1998; Forte et al. 2012;

Oldham & Auger 2016b), both photometrically (Strader et al. 2011b) and kinemati-

cally (Romanowsky et al. 2012). In Villaume et al. (2019) we obtained spectroscopic

iron metallicity values for a large, representative sample of M87 GCs using full-spectrum

stellar population synthesis (SPS). In this work, we expand our chemical analysis of the

GC system with a new statistical framework in which to simultaneously separate indi-

vidual GCs in the M87 system into subpopulations and measure the metallicity gradient

of the subpopulations more accurately than previous studies. We also make physically

motivated spectral stacks from the individual GC spectra as a way to measure detailed

abundance patterns of the GC system. We make a comprehensive analysis of the metal-

licity gradients, the detailed abundance patterns, and the kinematics of the M87 GC

system to qualitatively discuss the possible origins of the GC subpopulations, and thus,

the assembly of M87.

We take the distance to M87 to be DL = 16.5 Mpc, with effective radius

10http://sluggs.swin.edu.au/Start.html
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Re = 16.0 kpc (Kormendy et al. 2009), and log(M∗/M�) = 11.61 ± 0.10 (Oldham

& Auger 2016c). In Section 2 we describe the spectroscopic samples and the stellar

population synthesis models we use to extract abundance information from both M87

and its GC system in a consistent way. In Section 3 we outline the statistical framework

we use for the subpopulation membership identification for the individual GCs and the

measurement of the [Fe/H] gradients. In Section 4 we present the results from the SPS

modeling and gradients, and in Section 5 we discuss the results in the context of the

formation history of M87.

5.2 Spectroscopic Data and Abundance Analysis

5.2.1 Obtaining the stellar population parameters

We model the spectra with an updated version of the absorption line fitter

(alf, Conroy & van Dokkum 2012b; Choi et al. 2014; Conroy et al. 2014, 2018)11

that uses the Extended IRTF Library (E-IRTF; Villaume et al. 2017b) and the MIST

isochrones (Choi et al. 2016). With alf we can model the full continuum-normalized

spectrum of integrated light for stellar ages > 1Gyr and for metallicities ∼ −2.0 to

+0.25. The full model has 36 free parameters (see Table 2 in Conroy et al. 2018).

The parameter space is explored using a Markov Chain Monte Carlo algorithm (emcee;

Foreman-Mackey et al. 2013b). In this work we use the priors as described in Conroy

et al. (2018) and fix the IMF to the Kroupa (2001) form.

Theoretical elemental response functions that tabulate the effect on the spec-

11https://github.com/cconroy20/alf
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trum of enhancing each individual element modeled in alf were computed with the

ATLAS and SYNTHE programs (Kurucz 1970, 1993). For the α elements relative to

Fe considered in our analysis (Mg, Si, and Ca) we correct for the underlying abun-

dance pattern in the empirical stellar library using the [Mg/Fe] values from Milone

et al. (2011) and [Ca/Fe] values from Bensby et al. (2014). We assume Si has the same

library abundance pattern as Ca.

We analyze several different data sets in this work (see below). To make the

different samples as homogeneous as possible we fitted over the same spectral range for

every spectrum analyzed in this work: 4000 < λÅ < 4400 and 4400 < λÅ < 5225.

While we obtain estimates of the light-weighted age as part of the alf models,

we do not include age in our analysis. This is because of the uncertain effect of the blue

horizontal branch, particularly in the GCs, which can make the inferred ages artificially

young. Our analysis of the Milky Way GC system indicates that iron metallicity can

still be reliably recovered in the presence of a blue horizontal branch (see Conroy et al.

2018).

5.2.2 The globular clusters

Strader et al. (2011b) carried out a wide-field kinematic analysis of the M87

GC system using two key data sets: the Keck/LRIS sample and the MMT/Hectospec

sample. In Figure 5.1 we compare the two samples in color–magnitude space. The

Keck/LRIS sample (green) was selected to sample the low luminosity population over

the full color range of the GC system, in contrast to previous work that targeted high-

luminosity clusters that likely have different properties from the bulk of the GCs (Cohen
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Figure 5.1: Comparing the coverage of the Keck/LRIS (green) and MMT/Hectospec
(yellow) samples in color-magnitude space. Also shown is the NGVS sample (Oldham
& Auger 2016b, grey). The MMT/Hectospec sample is overall more luminous than the
Keck/LRIS sample and has more blue GCs than red, while the Keck/LRIS sample is
evenly distributed over color space.

et al. 1998). The MMT/Hectospec sample (yellow) was selected from the higher lumi-

nosity population. The MMT/Hectospec objects were also primarily selected at large

radii to aid the sky subtraction since Hectospec is a fiber instrument.

In Villaume et al. (2019) we applied full-spectrum stellar population synthesis

(SPS) models to the Keck/LRIS dataset of M87 GCs (Strader et al. 2011b) to obtain

estimates of iron metallicity ([Fe/H]) relative to solar. We refer the readers to the

original paper for details on the modeling and validation of the [Fe/H] values for the

Keck/LRIS sample. Here, we do the same analysis for the MMT/Hectospec sample. We

used the square root of the summed sky spectrum and flux generated by the reduction

pipeline as the uncertainty on the individual GCs. The S/N of this data set ranges from

S/N ∼ 1− 30Å−1 with a resolution of 5Å. The resolution of the data is higher than the

native resolution of the models so we smoothed the data to 200 km/s to be consistent
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Figure 5.2: Comparison of MMT/Hectospec GC spectra (black) and best-fit models
for a comparatively high-S/N spectrum (S/N∼ 30, brown) and a low-S/N spectrum
(S/N∼ 10, green). Grey band is the uncertainty of the flux from the input spectrum.
Within the uncertainties, the fits are successful.

with our previous analysis with the Keck/LRIS data.

Before we smoothed, we identified particularly bad sky lines in the spectra

at 4040 < λÅ < 4050, 4355 < λÅ < 4365, and 5458 < λÅ < 5470 and interpolated

over the flux in each spectrum in those wavelength regions. We fitted 156 spectra

and rejected 12 spectra from our analysis based on visual inspection of the residuals

between the observed spectra and best-fit models. We show successful fits in Figure 5.2

for a comparatively high-S/N spectrum (S/N∼ 30, brown) and a low-S/N spectrum

(S/N∼ 10, green) with spectral features of particular interest highlighted. The black

line and grey band represent the data flux and uncertainty, respectively.

For the individual GCs, we focus our analysis on [Fe/H] and summarize our

measurements in Table 5.1. The majority of the GC spectra do not have sufficient S/N

to reliably extract more detailed abundance information. In Section 4.3 we describe

how we stacked the individual GC spectra and fit the stacks with alf.
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ID RA DEC [Fe/H] σ[Fe/H] Instrument

H47487 187.73553 12.32802 −1.16 0.30 LRIS
H49585 187.67674 12.32961 −0.51 0.41 LRIS
H49328 187.71423 12.32992 −0.78 0.24 LRIS

...
H47487 187.59446 12.02249 −0.80 0.37 Hectospec
H49585 187.52539 12.03362 −0.40 0.23 Hectospec
H49328 187.91104 12.04288 −1.17 0.39 Hectospec

Table 5.1: Table of summary statistics of the [Fe/H] measurements for the GCs included
in this work. (This table is available in its entirety in a machine-readable form in the
online journal. A portion is shown here for guidance regarding its form and content.)
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Figure 5.3: Same as Figure 5.2 but for Mitchell spectra close to the center of the galaxy
(Rgal = 1.32 kpc, brown) and from the outer region (Rgal = 19.5 kpc, green).

5.2.3 The galaxy light

The stellar populations of the galaxy light of M87 itself have remarkably never

been studied with spectroscopy beyond the central few kpc. Here we use data from

the Mitchell (formerly VIRUS-P) integral field unit (IFU) spectrograph at McDonald

Observatory (Murphy et al. 2011; spectroscopy obtained via private communication

with K. Gebhardt). The signal-to-noise (S/N) of the individual spectra ranges from

∼ 20− 50Å
−1

. We stacked the individual spectra in 10 bins of galactocentric radius by

bootstrapping for the median of the individual spectra in a given bin. We used the 50th
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Figure 5.4: (Top) Residuals from dividing the best-fit models from the corresponding
Mitchell integrated galaxy light (black) and the median residual for all spectra (green).
The residuals are nearly identical for all spectra and the large wavelength-scale features
are likely systematic to the models and not dependent on stellar parameters. (Bottom)
Residuals after subtracting the median residual.

percentile from the resulting distribution of flux at a given wavelength as the stacked

spectrum and used the average of the 16th and 84th percentiles as the uncertainties

on the stacks with the S/N of the stacks ranging from ∼ 40− 200, with the outermost

spectrum having the lowest S/N.

In Figure 5.3 we examine the quality of our fits for spectra in the inner

(Rgal ∼ 1.32 kpc, S/N∼ 200) part of the galaxy and the outer part (Rgal ∼ 19.4

kpc, S/N∼ 40). We compare the Mitchell spectra (black) with the best-fit model spec-

trum for the inner region (brown) and the outer region spectrum (green) with selected

spectral features highlighted. The grey bands are the flux uncertainty from the data.

In Figure 5.4 we examine the residuals between the best-fit model and input data for

all the Mitchell spectra used in this analysis. The residuals are typically small (< 5%).

132



5.3 Characterizing Globular Cluster Systems Via Statis-

tical Modeling

Our goal is to develop a method to measure the properties of GC systems as

a way to understand the formation history of M87 and other galaxies. In this work,

we are focused on measuring the metallicity gradients and abundance patterns of the

M87 GC system. Obtaining a metallicity gradient might seem as simple as fitting a

line to data, but a recent meta-analysis of many of the studies that have measured

metallicity gradients of GC systems revealed a troubling result – different studies often

get significantly different answers for the same GC systems (see Figure 1 in Forbes

& Remus 2018). Several underlying issues could be causing an accuracy problem in

these studies, which motivates us to characterize GC systems in a novel way using a

hierarchical Bayesian model (HBM). In the following, we detail these issues and describe

how HBMs provide a natural means to overcome them.

First, the studies included in the Forbes & Remus (2018) analysis all used

a version of linear least-squares to fit the gradients of GC studies. However, linear

least-squares only works if one of the dimensions of data has negligible uncertainties.

These studies also assumed that the galactocentric distances of the GCs are perfectly

known. This is not the case, however, since only 2D projected distances are known. The

distances can be de-projected if the 3D density distributions of the GCs are known (e.g.

McLaughlin 1999), but this is not the case for the vast majority of extragalactic GC

observations. As discussed in Liu et al. (2011), using the projected distances as a sub-

stitute for true distance introduces systematic uncertainty into the measured gradients
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because the GCs projected into the center will, in reality, be a mix of GCs at all radii.

Liu et al. (2011) estimated that this could lead to an uncertainty of ∼ 10% in the mea-

sured gradients, but in reality, this depends on the degree of the true underlying slope.

We must take that uncertainty into account when interpreting the measured gradients.

Second, characterizing GC systems is further complicated because these sys-

tems, especially around massive galaxies, are the aggregate of many different stellar

populations. The constraints on GC system assembly and galaxy formation depends on

our ability to differentiate and understand the subpopulations of a GC system. Broadly,

GCs are separable into “metal-poor” and “metal-rich” populations. In detail, however,

it is not trivial to separate the individual GCs into subpopulations.

Previous work measuring the metallicity gradients of GC systems has primarily

used constant cuts on color to separate the metal-poor and metal-rich subpopulations

(e.g., Harris 2009a,b; Liu et al. 2011; Hargis & Rhode 2014; Kartha et al. 2016). How-

ever, wide-field photometric surveys have demonstrated that the demographics of GC

populations change with increasing distance from the center of the galaxy (e.g. Strader

et al. 2011b; Harris et al. 2017), with the relative number of blue GCs typically in-

creasing. As a result, a constant cut across the GC sample could bias the gradient

measurements (see later in this section for demonstration of this effect). A few studies

have attempted to mitigate this issue by separating the GC subpopulations at different

radial steps (e.g., Blom et al. 2012; Usher et al. 2013). However, these studies did not

measure the gradient for their full samples but only considered the peaks of the metallic-

ity distribution functions (MDFs) when computing the gradients. Moreover, by cutting
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on subpopulation and then determining subpopulation characteristics, all these studies

fail to account for the covariance between subpopulation membership assignments and

whatever parameter of interest is being measured. This, again, will bias the gradient

measurements.

Finally, linear least-squares is highly sensitive to the presence of outliers in a

sample. The studies included in the Forbes & Remus (2018) analysis used photometric

samples of GCs with colors as a proxy for stellar metallicity, except for Pastorello

et al. (2015) who also had calcium triplet (CaT) determined metallicities. Without

spectroscopic follow-up to confirm GC candidates in photometric surveys, any study

based on such data will be affected by contaminant populations. Furthermore, the color–

metallicity relations that are used to convert broadband colors of GCs into iron ([Fe/H])

metallicities have been recently called into question (Usher et al. 2012; Villaume et al.

2019). In this work, we use only spectroscopically-determined [Fe/H] measurements of

the individual GCs.

HBM provides a means to address and mitigate these issues. Specifically,

HBM is a natural way to fit the galactocentric metallicity gradients of GC systems for

a number of reasons:

• The Bayesian framework allows us to model unobserved (latent) parameters. This

means we can directly model and fit any intrinsic scatter in the metallicities as an

explicit parameter and marginalize over the unknown 3D distribution of the GC

system to mitigate the bias from the projected distances.

• We do not need to make a priori cuts to obtain the subpopulations. Instead, we
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can fit the linear metallicity gradients jointly with the subpopulation member-

ships, allowing us to capture the covariance between the subpopulation slopes and

the subpopulation memberships. This helps us obtain more accurate subpopu-

lation membership assignments for the individual GCs and, thus, more accurate

metallicity gradients.

• Relatedly, instead of making a binary cut with the subpopulation assignments,

we get probabilistic memberships. We can propagate the uncertainties on the

subpopulation membership assignments throughout this work. This is especially

important because we are also interested in the detailed abundance patterns of the

GC subpopulations. Currently, the signal-to-noise (S/N) of the spectroscopy does

not allow for reliable estimates of abundances for the majority of the individual

GCs in our sample, so creating spectral stacks with reliable uncertainties is crucial.

• Moreover, with HBM, like all Bayesian methods, we produce posterior distribu-

tions for all the model parameters. In practice, this gives us trustworthy and

interpretable uncertainties on the gradient measurements.

In short, HBM provides us with results that are more accurate and interpretable and

with uncertainties better representative to reality than previous studies. In the rest of

this section, we develop a method that allows this full propagation of uncertainty from

the measurements to the inferences made about the subpopulation distributions and

demonstrate its efficacy with mock data.

In the following Section we provide a rather pedagogical explanation of our

model as a way to introduce HBM. For those already familiar with this statistical
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n = 1, , N n = 1, , N

m, bS R

Zobs, n

Ztrue, n

Z, n r , obs, n

rn

Figure 5.5: The graphical representation of our single population model that we use to
factorize the joint distribution of our model. We condition on the observations (grey) to
make inferences about the latent parameters (open circles) parameters of interest, the
slope, m, and intercept, b (red circle). The rectangle (“plate”) represents the structure
of the individual parameters and data that is repeated for all of the GCs in our sample
(n = 1, ..., N). The arrows show the direction of conditional dependence among the
parameters. See Section 3.1 for details on the parameters.

technique, our full model is collectively summarized in Table 5.2, Figure 5.10, and

Equation 7.

5.3.1 A model for a single population

We begin with a model for a single population of objects as a way to demon-

strate some of the key reasons for using a HBM framework in a simplified setting.

Bayesian inference is an application of Bayes’ theorem12,

12https://doi.org/10.1098/rstl.1763.0053
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P (A|B) =
P (B|A)P (A)

P (B)
, if P (B) 6= 0. (5.1)

which is derived from an axiom of conditional probability. Bayes’ Theorem is just a

way to compute conditional probabilities of events while folding in prior knowledge

related to that event. In practice as a tool for statistical inference, Bayes’ theorem is

often written in terms of parameters, θ, and data, x, and the denominator, also known

as the Bayesian evidence is often dropped to yield the unnormalized posterior density,

p(θ|x) ∝ p(x|θ)p(θ) (Gelman et al. 2013).

The first term on right-hand side of the proportionality is the likelihood function

and the second term is the prior distribution. The likelihood function describes the

connection between the available data and the parameters of interest.

In this work, the data we have is x = [r⊥,obs,n, Zobs,n, σZ,n] for each n GC

and our ultimate parameters of interest are the slope, m, and intercept b (highlighted

with a red node and are together in the same node to indicate their covariance) of the

metallicity gradient. However, we construct our model based on the idea that the data

we have correspond to true versions which introduces latent, i.e., unobserved, parameters

to our model. That is, the observed metallicity of a GC, Zobs,n, is a noisy realization

of that GC’s true metallicity, Ztrue,n and its observed projected distance, r⊥,obs,n, is a

realization of the true 3D distance, |~rn|.

In the left-hand side of Figure 5.5, we show part of the graphical representation

of our probabilistic model (|~rn| will be discussed in more detail later). This shows how

the relationship between the observations (filled nodes) and the parameters relevant
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to the inference we want to make (open nodes). Within the rectangle (known as the

“plate”), we show the data and parameters for the individual GCs in the sample. The

parameters outside the plate are the parameters for the whole population. We will now

distinguish these population parameters (the hyperparameters, α) from the parameters

for the individual GCs (θn). With the introduction of the α parameters, the joint

distribution we seek to constrain is p(α, θn|xn), to which we can apply Bayes’ Theorem:,

p(α, θn|xn) ∝ p(xn|θn, α)p(θn, α). (5.2)

In Figure 5.5 the arrows represent the conditional dependency among the dif-

ferent parameters and makes clear the hierarchical nature of our model. The key point

is that the data, xn, are only conditionally dependent on the parameters θn and are

therefore conditionally independent from the hyperparameters, α. That, and being able

to factor p(θn, α) to p(θn|α)p(α) gives,

p(α, θn|xn) ∝ p(xn|θn)p(θn|α)p(α). (5.3)

The key difference between standard Bayesian models and HBMs is that we constrain

the population parameters by conditioning on the observations of the many individual

GCs rather than fixing them and using them as priors.

The gradient parameters are inferred through modeling the “true” metallicity

values of the individual GCs, Ztrue,n. The Ztrue,n values are set deterministically by

the linear relation p(Ztrue,n|m, b, ~rn) = m × |~rn| + b. We condition Ztrue,n on Zobs,n
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by modeling the observations as drawn from normals centered on the true values and

with a standard deviation that encompasses our uncertainty on the metallicity gradient.

This uncertainty is the quadrature sum of the uncertainties on the individual [Fe/H]

measurements, σZ,n, and unobserved uncertainty for the intrinsic scatter in the radial

metallicity gradient, S, such that σ =
√
S2 + σ2

Z,n.

With the ~rn dependence for Ztrue,n we introduce a key advantage when using

a Bayesian framework. That is, even though we do not have the line-of-sight distances,

r‖,n, we can make inferences on the true distances for each GC while only making weak

assumptions about the population. Specifically, we model the angular distribution of

GCs as isotropic and assume that the GCs are normally distributed in radius by some

scale length, R, in all 3 coordinates xyz and marginalize over the angle, ϕn, between

xn and yn to get,

p(~rn|R) =
r⊥,n
R2

exp

[
−r2
⊥,n

2R2

]
× 1√

2πR2
exp

[
−r2
‖,n

2R2

]
, (5.4)

which we fully derive in Appendix A. As such, we model the projected distances as

drawn from a Rayleigh distribution (the first term on the right-hand side of the above

equation) and the line-of-sight distances as drawn from a normal distribution (the second

term). This structure is graphically represented in the right-hand side of Figure 5.5.

In reality, a power-law distribution better describes the projected radial distri-

bution of a typical GC system. In the left panel of Figure 5.6, we compare the expected

quantiles from a Rayleigh distribution versus the quantiles of the projected distances

for our M87 sample (open circles). This figure demonstrates the extent the mock spatial
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Figure 5.6: (Left) Expected quantiles of a Rayleigh distribution versus quantiles of the
projected distances for the mock data (open circles). (Right) Recovery of slope as a
function of true slope from weighted least-squares with projected distance as a proxy
for true distance (open circles) and from our statistical framework (see text for details).

distribution deviates from the assumption of our model. If the projected distances were

drawn from a Rayleigh distribution, the theoretical quantiles versus the data quantiles

would be a straight line. The Rayleigh distribution is not a significant deviation from

the distribution of the observed projected distances in our sample.

Figure 5.5 displays the joint probability distribution of all our parameters

and data, p(Zobs,n, r⊥,obs,n, Ztrue,n, ~rn, R, S,m, b, σn). Because the arrows indicate the

conditional dependence among the parameters and data we can use this to show how we

can factorize the joint probability distribution of all our parameters into conditionally

independent probability distributions to obtain,
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p(Zobs,n, r⊥,obs,n, Ztrue,n, ~rn, R, S,m, b, σn) ∝

N∏
n=1

p(Zobs,n|Ztrue,n, S, σn)p(r⊥,obs,n|~rn)×

N∏
n=1

p(Ztrue,n|m, b, ~rn)p( ~rn|R)p(σn)×

p(S)p(R)p(m, b), (5.5)

To test the efficacy of this model, we generated mock data from where the

coordinates are drawn from a power-law that goes as −2.5, with each data point get-

ting randomly assigned 10% to 55% uncertainty. In the right panel of Figure 5.6 we

compare how well we recover the true slope when using projected distance as a proxy

for true distance and a weighted least-squares fit to get the gradients (open circles) to

when how well we recover the slope when we marginalize over the scale length (closed

circles). Over the range of slope values, the recoverability improves with the statistical

de-projection. The difference in results between the two methods is starkest when the

gradient is significant, while there is no difference in the recoverability when the gradient

is consistent with being flat (m = 0).

5.3.2 Generalizing to multiple subpopulations

Effect of making cuts on the population

In the previous section, we demonstrated the efficacy of a Bayesian linear re-

gression approach relative to weighted least-squares to accurately recover the gradient
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Figure 5.7: (Top) Metallicity distribution function (MDF) of 5 realizations of mock data
generated from m0 = m1 = −0.05 and b0 = −0.4 and b1 = −1.0. Colored histograms
show the true subpopulation separations and the black lines are the non-parametrically
smoothed MDF of the combination of the subpopulations. (Middle) Demonstration
of recovery of true slopes (black line) for when a the single population model from
Section 5.3.1 is used on the subpopulations determined from a constant cut on [Fe/H]
(brown) Bands show the range between the 16th and 84th percentiles for all posteriors.
(Bottom) Same as middle panel but now using the full hierarchical mixture model.
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Figure 5.8: Same as Figure 5.7 but for m0 = m1 = −0.01.
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parameters of a set of data points drawn from a particular line. A fundamental as-

sumption in the method presented is the data points come from the same population.

As previously described, however, GC systems are generally composed of subpopula-

tions, and knowing how to separate the individual GCs of a system into the correct

subpopulations is one of the most difficult steps towards characterizing GC systems.

In the top panels of Figures 5.7 to 5.9 we show three versions of mock data,

all generated from power law distributions and two underlying gradients. In all versions

we use btrue,0 = −0.4 and btrue,1 = −1.0 and a variety of slope parameters: mtrue,0 =

mtrue,1 = −0.05 (Figure 5.7), mtrue,0 = mtrue,1 = −0.01 (Figure 5.8), and mtrue,0 =

−0.01 and mtrue,1 = −0.015 (Figure 5.9). For each “system” we generated 5 realizations

of mock data.

For each set of mock data, we made constant cuts based on the MDFs to

separate the populations, mimicking what one might do if they did not have a priori

information on the different subpopulations. We fit each realization of the subsequent

subpopulations with our Bayesian linear regression model presented in Section 5.3.1,

which we note is already an improvement over previously used methods, as demonstrated

in Section 3.1.

In the middle panels of Figures 5.7 to 5.9 we show how effective this method

is by comparing the true slope values (black line) to the median of the posteriors for

each realization of the mock data (brown histograms). Even with the improvements to

the linear regression outlined in Section 5.3.1 the inferred slope values are not accurate,

with the inferred slopes typically being flatter than the true slopes. We therefore need
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to generalize our single population model to account for the covariance between the

gradient parameters and the subpopulation membership assignments to more accurately

estimate both.

A mixture model

Hogg et al. (2010) discussed mixture models in the context of linear regression

for the purposes of outlier rejection. Separating individual GCs into subpopulations

is an equivalent problem. We model the system such that a given GC has C number

of subpopulations it could be assigned to through an identifier parameter qn. Like

Hogg et al. (2010), we directly marginalize over the class membership of each GC by

introducing a new parameter, the prior on qn, Pc ∈ [0, 1] such that
∑C

c=1 Pc = 1. The Pc

parameters are the mixture weights for each subpopulation and allow us to marginalize

out the subpopulation identifiers.

In principle, we can fit for any number of subpopulations. In practice, however,

throughout this work we specialize to the C = 2 case, that is, we model the mock and

observed data as a bimodal distribution. We set a lower limit on Pc, Pmin = 0.3. Then,

Pc =


P0 ∼ Uniform(Pmin, 1− Pmin)

P1 ∼ 1− P0

(5.6)

The structure otherwise remains the same as our single population model. We

are able to transition our population parameters from the single population model to

be a part of the mixture model because the parameters will exist for each mixture
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component (i.e., GC subpopulation). So we make a small adjustment to our notation:

mc, bc, logRc, and logSc where the subscript refers to a given subpopulation. The joint

probability distribution is then given by,

p(αC , θn|xn) ∝

(
C∏
c=1

p(Rc,mcbc, Sc)

)
×

N∏
n=1

(
C∑
c=1

Pc × p(Zobs,n, r⊥,obs,n, Ztrue,n, ~rn, Rc, Sc,mc, bc, σn)

)
(5.7)

The third term in this equation is what we factorized in Section 3.1 for the

single population model. We show the graphical representation of the final hierarchical

mixture model in Figure 5.10.

We specify our model with the probabilistic programming package PyMC3 (Sal-

vatier J. 2016). PyMC3 uses the Hamiltonian Monte Carlo (HMC) family of samplers.

For this work in particular, we use the No-U-Turn Sampler (NUTS, Hoffman & Gelman

2011). HMC samplers are more efficient than the commonly used ensemble samplers

because they do not rely on the current state to propose the next state (for an intro-

duction to HMC see Betancourt 2017) and so they are the more appropriate choice for

high-dimensional problems.

The sampling efficiency of the HMC algorithm is highly sensitive to several

tuning parameters. For this work, the most important tuning parameter is the mass

matrix because our model parameters are highly covariant. If the mass matrix is not

well-matched to the covariance of the posterior, both the step size will need to be
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Figure 5.9: Same as Figure 5.7 but for m0 = −0.01 and m1 = −0.015.
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decreased, and the number of steps increased, making it difficult to achieve convergence.

PyMC3 does not have a built-in way to optimize the mass matrix. We use the

exoplanet13 extensions to PyMC3 to fit for a dense mass matrix during burn-in. We

find values to to initialize the sampler via several steps: first, we fit a 1D mixture of

Guassians on the metallicities while taking into account the uncertainties to get an

initial guess of the class membership for each observation, and then, second, we fit a

linear model to the project metallicity gradients for each subpopulation to find initial

guesses for the intercepts and slopes. With this approach, we obtain a converged model

based on the Gelman-Rubin statistic for each parameter, R̂, (where R̂ > 1 indicates the

chains have not converged).

In the bottom panels of Figures 5.7 to 5.9 we show the inferred slope posteriors

(black histograms) to demonstrate the efficacy of this method. In all cases the recovery

is better when using the full model, with the biggest improvement made in the case

where the two subpopulations are most well-mixed in the MDF (Figure 5.7).

The full model accurately recovers the different slopes in Figure 5.9 within 1σ

uncertainty but cannot distinguish the gradients as different at a statistically significant

level. This is still an improvement over existing methods, but, in the context of GC

subpopulations, the ability to discern any gradient differences is essential for under-

standing how potentially similar the assembly histories of the different subpopulations

(see Section 5 for more discussion on this). Improving the precision of the subpopulation

parameters will be the subject of future work.

13https://exoplanet.dfm.io
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Figure 5.10: Similar to Figure 5.5 but now for our final hierarchical mixture model
(see text for details). Now there is a second plate around are population parameters
which indicates these parameters are determined for all subpopulations in our sample
(c = 1, ..., C) and we have subpopulation identifiers, qn set by the prior Pc.
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5.4 Results

5.4.1 Radial metallicity gradients

In this work, we have two spectroscopic data sets for the GC system: the

Keck/LRIS sample and the MMT/Hectospec sample. The former covers a radial range

of ∼ 7 − 27 kpc while the latter spans ∼ 14 − 142 kpc. Previous kinematical analyses

of GCs and planetary nebula show signs of a transition at ∼ 40 to 50 kpc, which may

be related to a recent accretion event (Romanowsky et al. 2012; Longobardi et al. 2015;

Zhang et al. 2015). Photometric surveys have also shown in M87, and other massive

ETGs, that blue GCs begin to dominate at large radii. To measure the metallicity

gradients, we split our sample at 40 kpc. The inner halo sample consists mostly of the

Keck/LRIS data with a small fraction coming from the MMT/Hectospec data. The

outer halo sample consists completely of MMT/Hectospec data.

Before discussing the results from fitting the model to the individual [Fe/H]

measurements, we first empirically examine what our expectations ought to be for the

gradients in Figure 5.11. In the top panel we show two metallicity distribution functions

(MDF) for the Keck/LRIS sample, one for the inner part of the dataset (light green line,

r⊥ ≤ 25 kpc) and one for the outer part (dark green dashed-line, r⊥ > 25 kpc). There

are two distinct peaks in the inner MDF, while the outer MDF has a less significant

second, metal-rich peak. In the outer bin, the metal-poor peak shifts noticeably from

the inner metal-poor peak.

In the bottom panel we do the same demonstration for the outer halo. Bi-

modality is not as clearly seen in the outer halo sample as it is in the inner halo but

152



2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
[Fe/H]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
ne

r H
al

o

r 25 kpc
r > 25 kpc

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
[Fe/H]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ou
te

r H
al

o

r 80 kpc
r > 80 kpc

Figure 5.11: Empirical demonstration of gradients for inner (top) and outer (bottom)
halos. In each panel we show the metallicity distribution function of the data set
broken into two radial bins. Both the inner and outer halos show evidence of multiple
subpopulations from their MDFs and a slight gradient.

there is a distinct negative shift from the main peak from the inner bin to the outer bin.

The lack of clear bimodality could be a result of the MMT/Hectospec sample having

far fewer red GCs than blue GCs and is consistent with the findings for other BCGs

(see, for example, Harris et al. 2017).

For the modeling, we initialized the MCMC chains in the same manner as the

mock data and modeled the data as composed of two subpopulations for both the inner

and outer halos. In Figure 5.12 we show the posteriors of slope values for the metal-
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Figure 5.12: Comparing the posteriors on the slopes for the metal-poor (blue) and
metal-rich (red) subpopulations for the inner (top) and outer data (bottom) halos. The
1σ uncertainty in each posterior is shown in the colored bands and a flat gradient is
marked (black dashed line).

poor (blue) and metal-rich populations for the inner halo (top panel) and the outer halo

(bottom panel). The 16th and 84th percentiles are marked by the colored bands. In

each panel a flat gradient is marked with the black dashed line.

The uncertainty on the slope measurements is significantly larger for the inner

halo than the outer halo measurements even though the [Fe/H] uncertainty is ∼ 20%

higher for the MMT/Hectospec data. The large uncertainty in the inner halo could be

a result of the comparatively non-uniform coverage in r⊥ for the inner halo sample, we

get less information from each individual measurement in the inner halo than the outer
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Figure 5.13: Radial metallicity gradients of the subpopulations with respect to the de-
projected distances. The circles show the [Fe/H] measurements. They are colored by
subpopulation assignment and the opacity of the individual points is scaled by certainty
of that subpopulation assignment, with white indicating the assignment is highly un-
certain. We show posterior median (solid lines) and the range encompassed by the 16th
and 84th percentiles (bands) of the gradient distributions.

halo. For the inner halo, both the metal-rich and metal-poor slopes are consistent with

a flat gradient and are statistically consistent with one another. In the outer halo, the

metal-poor slope is consistent with a flat gradient while the metal-rich slope is slightly

negative.

In Figure 5.13 we show the radial metallicity gradients of the subpopulations

with respect to the de-projected distances. The circles show the [Fe/H] measurements

which are colored by subpopulation assignment. The opacity of the individual points

is scaled by certainty of that subpopulation assignment, with white indicating the as-

signment is highly uncertain. We show posterior median (solid lines) and the range

encompassed by the 16th and 84th percentiles (bands) of the gradient distributions.

Even though the gradient parameters are more uncertain in the inner halo, the sub-
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m σ b σ MDF 16th MDF 50th MDF 84th

Inner Halo
Metal-Poor −0.004 0.010 −0.957 0.224 −1.43 −1.15 −0.91
Metal-Rich −0.001 0.014 −0.384 0.216 −0.64 −0.34 +0.05

Outer Halo
Metal-Poor +0.001 0.003 −1.196 0.287 −1.42 −1.24 −0.96
Metal-Rich −0.005 0.003 −0.522 0.268 −0.83 −0.64 −0.45

Table 5.3: Summary of gradient parameters and MDF characteristics for the subpopu-
lations of the M87 GC system.
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Figure 5.14: (Left) MDF for the metal-rich (red) and the metal-poor GCs (blue) in the
inner halo.The solid blue and red lines show the posterior median of the subpopulation
assignments of the individual GCs. The filled-in blue and red histograms represent how
the uncertainty in the subpopulation assignments (see text for details) propagates to
uncertainty in the MDF. (Right) Same as left but for the outer halo GCs.

population membership assignments are more certain than in the outer halo population

because there are fewer metal-rich GCs and the metallicity separation between the sub-

populations is smaller.

5.4.2 Characteristics of the subpopulations

In Figure 5.14 we compare the metallicity distribution functions (MDFs) for

the metal-poor GCs (blue) and metal-rich GCs (red) for the inner halo GCs (left) and
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outer halo GCs (right). The solid lines show the result of using the posterior median of

the subpopulation assignments of the individual GCs. We represent how the uncertainty

in the subpopulation assignment affects the MDF by plotting the result of selecting class

labels using a random number generated by the probability of the cluster-subpopulation

pair for 10 random samples from the posterior (solid histograms).

To check the results of our model we compare Figure 5.11 with Figure 5.14.

Figure 5.11 indicates that the two subpopulations should be of about equal size for

the inner halo sample and that the metal-poor GCs would be a larger population in

the outer halo sample. Even though the subpopulation membership assignments are

much less certain for the outer halo sample, we see that the model assigns significantly

fewer metal-rich GCs in the outer halo. This picture is overall consistent with our

broad understanding that with increasing galactocentric distance there will be more

metal-poor GCs relative to metal-rich.

In Table 5.3 summarize the gradient parameters and the characteristics of the

MDFs for the subpopulations.

In the Milky Way GC system, the metallicity subpopulations are associated

with different spatial and kinematical components of the Galaxy itself (Zinn 1985). We

assess how well this pattern holds for M87 in Figure 5.15 by examining the chemody-

namics of the subpopulations in [Fe/H]–radial velocity space for the inner halo (top) and

outer halo (bottom). For the inner halo, our modeled metallicity subpopulations corre-

spond to differences in the radial velocity distributions. The metal-rich subpopulation

has significantly less radial velocity dispersion than the metal-poor subpopulation.
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Figure 5.15: [Fe/H] vs. radial velocity for the inner halo sample (top) and the outer
halo sample (bottom). In the inner halo, it is clear that our inferred subpopulation
assignments correspond to genuinely distinct kinematic distributions.
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Unlike the inner halo, there does not seem to be a correspondence between

metallicity subpopulation and differences in the kinematic properties of the subpopu-

lations for the outer halo. The subpopulations in the outer halo have a radial velocity

dispersion similar to the inner halo metal-rich subpopulation.

5.4.3 Abundance patterns

In Figure 5.16 we show the stellar population radial profiles for M87 from our

fits to the Murphy et al. (2011) sample (black circles) for [Fe/H] (upper-left) and a

variety of α-elements. The M87 starlight shows a declining [Fe/H] profile and slightly

positive profiles for [Mg/Fe] (upper-right), [Si/Fe] (lower-left), and [Ca/Fe] (lower-right).

The [Fe/H] gradients are consistent with previous work that have studied stellar popu-

lation gradients in massive ETGs (e.g. Greene et al. 2015; van Dokkum et al. 2017a; Gu

et al. 2018b). These previous studies typically found a flatter [Mg/Fe] than what we

present here but it is not a substantial difference. We also demonstrate the limitations

inherent with integrated light with the [Fe/H] estimates from deep broadband photom-

etry of a population of resolved stars in M87 (contours, Bird et al. 2010). This shows a

metal-poor population that is not probed by the stellar population models.

To obtain abundance information for the GCs we have to stack the individ-

ual spectra since the majority of the Keck/LRIS and MMT/Hectospec spectra have

too low-S/N to reliably extract abundance information. Stacking the GC spectra is

made difficult by the need to separate the sample by subpopulation as it is expected

the different subpopulations will have different origins and, thus, different abundance

patterns. We demonstrated in Section 3 the importance of using a HBM framework for
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making accurate determinations of subpopulation membership of the individual GCs,

which help make more physically-appropriate stacks. Additionally, we can take advan-

tage of having made probabilistic determinations of subpopulation membership for the

individual GCs. In Figure 5.14 we demonstrated how uncertainty in the subpopulation

memberships propagated to the MDF of the GC system. In the same manner, we can

propagate that uncertainty to our stacks and abundance information.

In the same manner we used for the Mitchell data, we made four inner halo

stacks, binning by metal-rich and metal-poor and then further separating the GCs at

a radius at 16 kpc, and two stacks for the outer halo only binning by metal-rich and

metal-poor. We made ten iterations for each subpopulation, determined by different

draws from the posterior for different subpopulation assignments for each GC (same

draws that are shown in Figure 5.14). The stacked GC spectra have a typical S/N of

∼ 100− 150/Å.

Each version of each subpopulation stack was fitted using alf in the same

manner as the Mitchell data. For each parameter of interest, we computed the 16th,

50th, and 84th percentiles of the posteriors for each fit. In Figure 5.16 we show the

results for the metal-rich stacks (red circles) and metal-poor stacks (blue squares). The

inner halo stacks are open symbols and the outer halo stacks are filled.

While we note that Figure 5.16 cannot be directly compared to Figure 5.13

because we have moved from de-projected to projected distances, broadly the [Fe/H]

gradient measured from the metal-rich inner halo stacks is consistent with the flat

gradient measured from the individual [Fe/H] measurements. For the inner halo metal-
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Figure 5.16: Stellar population radial profiles for [Fe/H] and a variety of α-elements
as derived from full spectrum fitting to the Murphy et al. (2011) spectroscopy of the
M87 galaxy light (black), the metal-rich GC stacks (red circles), and the metal-poor
GC stacks (blue squares). The grey band indicates Rgal ≤ 2.0 kpc, i.e., the central-most
region where massive ETGs display many exotic stellar population characteristics, and
the dashed line indicates ∼ 1Re.
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poor stacks we find a slightly negative gradient from the stack measurements that differs

from the flat gradient shown in Figure 5.13. The likely cause of this difference is the

non-uniform sampling of the inner halo GCs in galactocentric radius. For the individual

[Fe/H] measurements the MMT/Hectospec sample provides the only coverage past ∼ 27

kpc and the more metal rich measurements (∼ −1.0) seem to be enough to keep the

gradient nearly flat. However, for the stacks there are fewer of these comparatively

metal-rich GCs than metal-poor so their contribution to the stack is not as important.

The inner halo metal-rich stacks are slightly less metal rich than the M87

starlight in the same region while the metal-poor stacks are less [Fe/H]-enhanced by

∼ 1 dex. The metal-rich inner halo stacks are less [Mg/Fe]-enhanced than the galaxy

light while the metal-poor stacks have similar [Mg/Fe]. The metal-poor stacks are also

enhanced in [Si/Fe] and [Ca/Fe]. The metal-rich stacks have similar [Ca/Fe] enhance-

ment but are less enhanced in [Si/Fe] in this same region. Enhancement in [Mg/Fe]

drops precipitously from the inner halo stacks to the outer halo stacks. Enhancement

in [Si/Fe] drops for the metal-poor stacks from the inner to outer but remains stable

for the metal-rich stacks. Enhancement in [Ca/Fe] remains steady between inner and

outer halo for all stacks.

In the left panel of Figure 5.17 we show [Mg/Fe] vs. [Fe/H] for the GC stacks

and the galaxy data (colors and symbols same as previous figure). Also in Figure 5.17

we show the abundances for the Milky Way stars (purple cloud, from the JINAbase

Abohalima & Frebel 2018, see detailed references in Appendix A), stars in dwarf galaxies

around the Milky Way (brown cloud, JINAbase and Bonifacio et al. 2004), and Milky

162



1.5 1.0 0.5 0.0
[Fe/H]

0.2

0.0

0.2

0.4

0.6

[M
g/

Fe
]

1.5 1.0 0.5 0.0
[Fe/H]

0.2

0.0

0.2

0.4

0.6

[(S
i,C

a)
/F

e]

Virgo dEs 
(Sen+ 2018)
M87 dEs 
(Sybilska+ 18)
Virgo dEs 
(Sybilska+ 18)
MW stars
Dwarf stars
Metal-rich GC stack
Metal-poor GC stack
MW GCs

Figure 5.17: (Left) [Mg/Fe] vs. [Fe/H] for the GC stacks and M87 (symbols same as
previous figure) For M87 the two measurements we have that are within 2 kpc are filled
in. Also plotted is the kernel density estimate of the Milky Way field stars (purple) and
the field stars from the Milky Way dwarf satellite population (brown), measurements
from Virgo dwarf ellipticals (upside down triangles and squares), and integrated light
measurements of Milky Way GCs (purple circles). (Right) Same as left panel but for
the median of [Si/Fe] and [Ca/Fe].

Way GCs fitted from Schiavon et al. (2005) (see Villaume et al. 2019, for details on

these fits). Also displayed are the abundances for dwarf ellipticals in Virgo from two

different studies, Şen et al. (2018) (open squares) and Sybilska et al. (2018) (upside

down triangles). For the Sybilska et al. (2018) sample we differentiate their sample into

“M87 dwarf ellipticals” (closed) and “Virgo dwarf ellipticals” (open) with a cut at 300

kpc from M87 (distances from Peng et al. 2008). We were motivated by the results from

Liu et al. (2016) which showed a transition in [Mg/Fe] in the dwarf elliptical population

at this distance.

In the right panel of Figure 5.17 we show the median values for each object

of [Si/Fe] and [Ca/Fe], except for Şen et al. (2018) who only measured [Ca/Fe]. All

symbols are the same as the left panel. Even though Mg, Si, and Ca are all α elements

they have different formation sites. Mg is purely a product of massive stars while Si
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Figure 5.18: Same as Figure 5.16 but for [C/Fe] (left) and [N/Fe] (middle) (right).

and Ca can both be produced in Type Ia Sn as well (Woosley et al. 2002).

In Figure 5.18 we show a similar figure to Figure 5.16 but now for light ele-

ments: radial profiles for [C/Fe] (left) and [N/Fe] (right). For the M87 starlight we see

enhanced [C/Fe] and [N/Fe] values and with negative radial gradients for both abun-

dances. The GCs as a whole are less enhanced than the galaxy starlight for [C/Fe] but

more enhanced in [N/Fe].

5.5 Discussion

5.5.1 The formation of the inner halo

Piecing together how the inner halo (< 40 kpc) formed is complicated by

the fact that it is a mix of in- and ex-situ stellar populations. Decomposing the whole

population into these components from observations cannot be quantitatively done with

integrated galaxy starlight alone. With the GC system we have discrete tracers of near-

simple stellar populations that overlap with and extend our coverage of the galaxy field
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star population, providing additional insight into how this region formed.

The red/metal-rich GC populations in massive ETGs have long been thought

to have formed along with the original galaxy because they follow field star density

profiles and kinematics (see Strader et al. 2011b, for M87 in particular). Until this

work, however, a direct metallicity comparison at the same galactocentric radius has not

been done. We have established that the metal-rich GCs have an average [Fe/H]∼ −0.4

and [α/Fe]∼ +0.15 (Figures 5.16 and 5.17), similar to the galaxy field star population

([Fe/H]∼ −0.3 and [α/Fe]∼ +0.40) over the same radial extent, indicating a common

origin of the two populations.

In Figure 5.16 we show the radial gradients for [Fe/H] (upper-left panel) and

various α elements measured from the integrated light of M87 (black circles). We find

that the [Fe/H] gradient for the field star population is flat within the inner 2 kpc and

then steepens to a negative gradient. This corresponds to rising gradients in all the α

elements. This is characteristic of the populations seen in other massive galaxies (Gu

et al. 2018a; Greene et al. 2013) and can be viewed as consistent with as the second phase

of the “two-phase” formation framework (Oser et al. 2010) within an environmentally

quenched environment (Liu et al. 2016).

This scenario would suggest that the bulk of the metal-rich GCs also came

in from mergers. However, the measurements from the GC stacks indicate that the

[Mg/Fe] values decline with radius for the metal-rich GCs. The population that then

presumably brought in the metal-rich GCs would be diluting the [Mg/Fe] and depressing

the gradient, rather than contributing to its rise. On the other hand, the metal-poor
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GCs are very Mg-enhanced.

A negative gradient is expected from the kind of minor mergers that would

bring metal-poor GCs into M87 while major mergers that would bring in metal-rich GCs

can flatten gradients (e.g. Taylor & Kobayashi 2017). Our current measurements show

that the metal-poor subpopulation gradient is skewed negative but is consistent with

the metal-rich (and with a flat gradient) within the 1σ uncertainties. At first glance,

this seemingly indicates that this population was affected by the same processes that

flattened the metal-rich GC gradient and so it follows that the metal-poor population

would have had to already be in place by the time the major mergers began.

The problem is that, according to cosmological simulations, this metal-poor

population should not exist. Cosmological simulations predict that the Milky Way-

mass (mass ratio∼1:5) galaxies are the primary building blocks of the stellar halos of

massive galaxies (Oser et al. 2012; Pillepich et al. 2018). This makes the metal-poor

GCs too metal-poor to fit this framework, even though in Villaume et al. (2019) we

established that the metal-poor GCs in the inner halo of M87 are ∼ 0.4 dex more metal

rich than previously thought. From a purely theoretical prospective, the mass ratios of

the mergers suggested by this metal-poor population is not inconsistent with the what

is needed to achieve the necessary size growth from high-redshift (see equation 4 in

Naab et al. 2009). This tension may point to problems with the predicted populations

of satellite galaxies in cosmological simulations.

An alternative explanation is that the metal-poor population is not entirely ex-

situ It has been suggested that some of fraction of the metal-poor stars in the Milky Way
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halo formed in-situ and were kicked out (Zolotov et al. 2010). In this scenario, the in-situ

metal-poor population would be more metal-enriched than the ex-situ population which

could “dilute” the metallicity gradient. In the context of metal-poor GCs specifically,

Mandelker et al. (2018) proposed a scenario in which cold gas flows that can form

metal-poor GCs directly in the halos of massive galaxies at high-redshift. It is, however,

currently unclear what the metallicity gradient of such a scenario would be but it would

depend on the relation between the accretion and star formation rates.

So far, including the GC system in the analysis helps establish important

benchmarks – the existence of the α-enhanced, metal-poor halo and the flat (albeit not

necessarily the same) metallicity gradients of the GC subpopulations – that help us make

qualitative advancements in our understanding of the assembly history of M87. However,

until we can make more precise determinations of the in- and ex-situ populations we

necessarily have to be agnostic towards the specifics of the in-situ star-formation in

M87. This, however, is a particularly important process to understand because of the

unexplained, exotic properties of the stellar populations in the innermost regions of the

most massive ETGs. For example, the unexpected excess in ultraviolet (UV) flux within

(e.g., Code & Welch 1979) and the bottom-heavy initial mass functions (IMFs) up to

1Re (van Dokkum et al. 2017b). For M87, in particular, Sarzi et al. (2018) measured

a bottom-heavy IMF out to ∼ 4 kpc. Constraining the nature of this initial phase of

ETG formation will likely clarify the star formation processes that can give rise to such

characteristics.

It has been suggested that these characteristics are the result of atypical abun-
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dance patterns arising from a significant fraction of stars from dissolved GCs in the

galaxy cores (Goudfrooij 2018; Chung et al. 2018). However, in Figure 5.18 we show

that the metal-rich GCs do not agree with the field star population in light elements.

This indicates that the GCs are altered by internal processes, as is well-known for the

Milky Way GCs (Bastian & Lardo 2017). This multiple-population phenomenon has

been hinted at by the UV excess in the M87 GCs (Peacock et al. 2017) but this is

the first time these abundance patterns have been shown for the M87 GC population.

Therefore, our results show little evidence for stars from dissolved GCs being a signifi-

cant population in M87. For the time being, we have to conclude that the exotic stellar

populations are a result of the initial star-formation process that formed the initial

galaxy, whatever that process may be.

5.5.2 The formation of the outer halo

The previous work on radial gradients of stellar population parameters of mas-

sive ETGs only extended out to just a couple effective radii with the galaxy light (e.g.,

Greene et al. 2013), which, as we discussed in the previous section, is expected to consist

of a mix of in-situ and accreted stars. The GC system provides access spectroscopically

to the outer halo of M87 (& 40 kpc). Stellar population parameters in the outer halo

provide cleaner benchmarks for accretion predictions because we do not have to worry

about a large in-situ population complicating our interpretation. While observations

of GCs and planetary nebula indicate the presence of an intracluster component that

becomes significant beyond ∼ 300 kpc (Longobardi et al. 2018b,a), our work focuses on

the material that is inside this radius and bound to M87.
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Despite the difficulty in determining confident subpopulation membership as-

signments for the individual GCs, we find there do appear to be two, genuinely different

populations in the outer halo. Even taking into account the subpopulation member-

ship assignment uncertainties when creating the stacked spectra, we measure distinct

metallicities for the two outer halo GC stacks. Moreover, while the [C/Fe] and [N/Fe]

abundances are similar between the two metallicity populations, there are differences

in the α element abundance patterns. The metal-poor stack is more Mg-enhanced than

the metal-rich stack while they have similar Si- and Ca-enhancements. This is in con-

trast with the views of previous work that the treat the outer halo GC populations as

singular (e.g., Forbes & Remus 2018).

The populations in the inner and outer halo appear to originate from different

galaxy types. The subpopulations in the outer halo both have overall lower metallicities

than the corresponding inner halo subpopulations. There also appear to be differences in

the abundance patterns between the inner and outer halo (Figure 5.16), with the outer

halo GC stacks having lower [Mg/Fe] abundance than the inner halo stacks. However,

when comparing the abundance differences between the inner and outer halo GCs, we

need to consider the possibility of mass effects. The outer halo sample consists of more

luminous, and therefore more massive, GCs than the inner halo sample (Figure 5.1). The

abundance spreads in the Milky Way GCs have been shown to correlate with luminosity

(Figure 16, Carretta et al. 2010), so it would follow that the more massive outer halo

GCs might in some way be impacted by this effect. We need to address whether we

expect this effect to be significant.
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Carretta et al. (2010) demonstrated that the correlation between luminosity

and extent of abundance spreads (specifically in their case, Na–O) in GCs is driven by

the extreme of the abundnace anti-correlation, not the median values (see their Figure

11). Since integrated light probes the average parameters of the stellar populations,

this would suggest that the mass dependency would not be as strong when measuring

integrated light. To test this we found the correlation between mass for the Milky

Way GCs and [C/Fe], [N/Fe], and [Mg/Fe] as measured by alf from integrated light

(Schiavon et al. 2005). For [Mg/Fe] and [C/Fe] we found a mass dependence of ∼ 10%.

Even accounting for the outer halo GCs being more massive than the most massive

GCs, this effect is unlikely to explain the full difference between the inner and outer

halo abundances.

The entirety of this outer halo GC population appears to be ex-situ and, with

the exception of the [Mg/Fe] value for the metal-rich stack, the outer halo stacks remain

α-enhanced. This suggests that the “coordinated assembly” picture continues in some

capacity into the outer halo. The metal-rich stack displays the same unusual abundance

pattern among the α elements seen in the Virgo dwarf ellipticals, with standard looking

[(Si,Ca)/Fe] but very depressed [Mg/Fe]. The metal-poor GCs do not display this same

abundance pattern.

It is important to acknowledge the difficulty in chemical tagging in this situa-

tion. Interpreting similarities or differences between the dwarf ellipticals and the other

objects is complicated because the strong radial gradients in dwarf ellipticals (Figure 1

Sybilska et al. 2018), with their nuclei often being distinct. Şen et al. (2018) used an
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Re/8 aperture with the nucleus included while the Sybilska et al. (2018) measurements

were done by taking the luminosity-weighted average of spectra within 1Re. While the

[Fe/H] and [Mg/Fe] measurements between the two samples are similar we still need to

be careful with our analysis because neither sample measures both [Ca/Fe] and [Mg/Fe]

so we are assuming the two subsamples of galaxies are similar.

We can look at other aspects of the GC system and see that they are broadly

consistent with our interpretation of the stellar population parameters. In the outer

halo, M87 has a V-band luminosity of ∼ 2.9 × 1010L�, very similar to the Milky Way

(Kormendy et al. 2009; Bland-Hawthorn & Gerhard 2016). From Sersic fits to the

photometric sample of M87 GCs from Strader et al. (2011b) and correcting for GC

luminosity function incompleteness, we estimate there are ∼ 1200 metal-rich GCs and

∼ 4500 metal-poor GCs in this region. This means that the GC specific frequency of

the outer halo is SN ∼ 16; which besides M87, the only galaxies in Virgo with such a

high value are dwarfs with MV ∼ −17 to −16 and fainter (M∗ ∼ 108 − 109M�, Peng

et al. 2008, Figure 12). These are also generally close to M87 (∼ 200 kpc projected).

They are the plausible progenitors of the outer halo, if ∼ 100 of them were accreted.

These high SN dEs could be the building blocks of the metal-poor population.

The metal-rich GC system would have to come from a second, higher-mass population

of dEs, perhaps similar to the dEs plotted in Figure 5.17. This scenario is in tension

with the predictions from IllustrisTNG which at > 100 kpc predicts that 90% of the

ex-situ mass is coming from progenitors with stellar masses & 5 × 109M� (Figure 13b

Pillepich et al. 2018), with the typical progenitor mass being ∼ 7× 1010M�. A similar
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conclusion to our own was come to by Longobardi et al. (2018a) using the outer halo

light color M87 to infer low-mass progenitors. Hartke et al. (2018) took that result to

indicate a problem with the feedback prescription in IllustrisTNG. However, we also

need to consider that in hierarchical structure formation it is possible that the accreted

satellites were different than the surviving population. That is, that there may have

been Milky Way-mass galaxies but with GC SN more like dwarfs that no longer exist

today, or possibly similar to the ultra-diffuse galaxies that have been found to have very

high SN (Peng & Lim 2016).

5.6 Summary

Using updated full-spectrum SPS models we present the first detailed stellar

population analysis of the M87 GC system from spectroscopy. We applied the models

to 322 GCs extending from the inner to outer halo. We use these same models to fitted

IFU spectroscopy to get spatially-resolved stellar population parameters of M87 itself.

This work represents initial steps in applying a chemodynamical galactic archaeology

approach to M87, following what has been done in the Milky Way and M31.

We present a new statistical framework to measure the radial metallicity gradi-

ents of a multimodal GC system that accounts for the covariance between subpopulation

membership assignments and the physical parameters of the subpopulations while doing

a statistical de-projection of the galactocentric distances which enables much more ac-

curate measurement of the linear gradient parameters of the GC subpopulations. This

work has resulted in the following observational benchmarks to aid our understanding
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of massive ETG formation and assembly:

• We also confirm the presence of a metal-poor, α-enhanced inner halo in M87 that

is unanticipated by current cosmological galaxy simulations.

• We show the first direct spectroscopic comparison of field stars and GCs in M87,

confirming the association of field stars and red GCs.

• For both the metal-rich and metal-poor subpopulations we find flat metallicity

gradients, although within the uncertainty we cannot confirm the subpopulations

share the same slope.

• We measure, for the first time, the [C/Fe] and [N/Fe] abundances for the M87 GC

population, which show evidence that they have the same multiple-population

phenomenon seen in Local Group GCs.

• From the α abundances of the outer halo GC stacks, we find evidence for relatively

recent accretion of low-mass satellites with extended star-formation histories.

• We find potential tension between our results, which suggest a dominant contribu-

tion from dwarf galaxies to the stellar halo of M87, and simulations, which point

to Milky Way-mass galaxies as the progenitors of the stellar halos of M87-like

galaxies.
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Chapter 6

Spatially-Resolved Stellar

Populations for DF44

6.1 Introduction

Low-surface brightness (LSB) galaxies were first introduced by Sandage &

Binggeli (1984) with the discovery of, “a new type of very large diameter (10000 pc),

low central surface brightness (≥ 25 B mag/arcsec) galaxy, that comes in both early

(i.e., dE) and late (i.e., Im V) types”. The nature of these galaxies made them difficult

to discover and characterize and so for decades only a handful of LSB galaxies were

known (Impey et al. 1988; Bothun et al. 1991; Dalcanton et al. 1997). This number

precipitously jumped with the detection of 47 such objects in the Coma Cluster (van

Dokkum et al. 2015) using the Dragonfly Telephoto Array (Abraham & van Dokkum

2014) which was designed specifically for LSB imaging.
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Knowing what to look for, Koda et al. (2015) and Yagi et al. (2016) discovered

a bonanza of similar objects from archival data, increasing the number of objects, now

known as ultra-diffuse galaxies (UDGs), known in the Coma Cluster into the thousands.

The search for UDGs was expanded to galaxy clusters beyond the Coma (van der Burg

et al. 2016, e.g.,) which has lead to more substantial increases in the number of known

UDGs.

Significant resources have been put towards understanding how such objects

form and how they fit into our larger conception of galaxy formation. The central tension

that underlies this work is determining whether UDGs are anything “special” or not.

That is, are they the “failed” massive galaxies originally speculated by van Dokkum

et al. (2015) or are they simply dwarf galaxies that were puffed up either through spin

(Amorisco & Loeb 2016) or bursty star-formation histories (SFHs, Di Cintio et al. 2017).

There is observational support for the latter scenario both from local analogues

to UDGs (e.g., Müller et al. 2018; Collins et al. 2020) and for more distant UDGs in

cluster environments (e.g., Beasley & Trujillo 2016; Toloba et al. 2018; Prole et al. 2019).

However, while the original scenario of failed ∼ L∗ is no longer considered, the extreme

overabundance of globular clusters (GCs)(e.g., Peng & Lim 2016; Beasley et al. 2016;

van Dokkum et al. 2016, 2017b; Lim et al. 2018) in some UDGs still lends support to

scenario that some UDGs are in more massive dark matter halos than would be expected

from their luminosities.

Stellar population parameters like age, stellar metallicity, and abundance pat-

tern hold the promise to help clarify this situation. Forbes et al. (2020) put forth a
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toy model that relates the GC systems of UDGs to the global stellar parameters of the

galaxies – UDGs that are really just dwarfs should have fewer GCs and extended SFHs

reflected in low [α/Fe] ratios. While UDGs that are truly failed galaxies should have

just the opposite, overabundant GC systems and intense, truncated SFHs reflected in

high [α/Fe] ratios.

However, only recently have the stellar population parameters of UDGs have

been made accessible because of the difficulty in obtaining even moderate signal-to-

noise (S/N) spectroscopy. For three UDGs in the Coma Cluster, Gu et al. (2018b)

found old ages and low metallicities which disfavor formation scenarios that predict

late star formation or quenching. Ferré-Mateu et al. (2018) looked at 7 UDGs in the

Coma Cluster and found more intermediate ages and small range of metallicities and

α-enhancements.

The Coma Cluster UDG Dragonfly 44 (DF44) is one of the most well-studied

UDGs. It has an abundant GC system and large stellar velocity dispersion (van Dokkum

et al. 2016), making it a good candidate to be a bonafide failed galaxy. van Dokkum et al.

(2019) presented spatially-resolved spectroscopy for the UDG DF44 which confirmed

that the potential of the galaxy is dominated by dark matter. In this paper, we present

the first spatially-resolved stellar population gradients of a UDG using this same data.

6.2 Data and Methods

We make use of the spectroscopic sample described in van Dokkum et al. (2019)

(henceforth referred to as Paper I) and interested readers should refer to it for detailed
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descriptions of the observations and data reductions. Briefly, we obtained integral field

unit (IFU) spectroscopy of Dragonfly 44 (DF44) with the Keck Cosmic Web Imager

(KCWI) and extracted spectra in nine elliptical apertures following the isophotes of the

galaxy.

KCWI enables a huge signal-to-noise (S/N) increase over other instruments.

For example, the S/N of our spatially-resolved spectra ranges from 12 − 20Å
−1

which

is higher than the integrated spectra of other UDGs previously studied (e.g., Gu et al.

2018b; Ferré-Mateu et al. 2018). We also make an integrated spectrum of DF44 by

bootstrapping for the median of the individual spectra. We used the 50th percentile

from the resulting distribution of flux at a given wavelength as the stacked spectrum

and used the 16th and 84th percentiles as the uncertainties on the stacks to achieve S/N

∼ 60Å
−1

.

To extract stellar population parameters from the data we use the full-spectrum

SPS models (alf) described in Conroy et al. (2018). The most relevant update of the

Conroy et al. (2018) models with regards to this work is the expansion of stellar param-

eter coverage of the models with the Spectral Polynomial Interpolator (SPI, Villaume

et al. 2017b)14. With SPI we used the optical MILES stellar library (Sánchez-Blázquez

et al. 2006b), the Extended IRTF stellar library (E-IRTF, Villaume et al. 2017b), and a

large sample of M Dwarf spectra (Mann et al. 2015) to create a data-driven model from

which we can generate stellar spectra as a function of effective temperature, surface

gravity, and metallicity.

The empirical parameter space is set by the E-IRTF and Mann et al. (2015)

14https://github.com/AlexaVillaume/SPI_Utils
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samples which together span −2.0 . [Fe/H] . +0.5 and 3.9 . log Teff . 3.5. To

preserve the quality of interpolation at the edges of empirical parameter space we aug-

ment the training set with a theoretical stellar library (C3K). The alf models allow

for variable abundance patterns by differentially including theoretical element response

functions.

We used the medium slicer on KCWI, yielding a spectral resolution of R ∼ 4000

which necessitated smoothing the data to the native resolution of the alf models, 100

km/s, It has been previously demonstrated that the accuracy of the recovered stellar

parameters is not affected by smoothing (see Appendix A in Choi et al. 2014).

Before smoothing, we interpolate over bad pixels that remain in the spectra.

We test two techniques for this interpolation – a simple linear interpolation (closed blue

circles) and interpolation using a kernel (open green circles). We smooth each spectrum

to the desired velocity resolution by convolving a wavelength dependent Gaussian kernel

with σ =
√
σ2
D − σ2

I , where σD is the desired resolution and σI is the instrumental

resolution (see Figure 9 of Paper I).

We fit over wavelength regions 4800 ≤ λÅ(obs) ≤ 5150 and 5150 ≤ λÅ(obs) ≤

5300. Due to our limited S/N and wavelength region we use alf in simple mode using

the standard priors (see Conroy et al. 2018, for details), except for the prior on [Mg/H].

Based on examination of the posteriors, we changed the lower prior to be [Mg/H]= −1.0.

Due to the S/N limitations of the aperture spectra, the results we derive in this work

are all derived from using the “simple” mode in alf.
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6.3 Results and Discussion

Figure 6.1 summarizes the results from applying the SPS models to the DF44

data from left to right: stellar age, [Fe/H], and [Mg/Fe]. We show the measurement

from the integrated spectrum in each panel (open star). For age and [Fe/H] we compare

our integrated measurements with those from Gu et al. (2018b) (black square).

We also show the radial gradients for each parameter (black circles). We used

linear regression to measure the slopes of each gradient: mage ∼ +0.01+0.08
−0.07, m[Fe/H] ∼

+0.07+0.19
−0.03, and m[Mg/Fe] ∼ −0.19−0.02

−0.36, the range on each value indicates the 16th

and 84th percentile values of the posterior distribution. We show the “best-fit” line in

Figure 6.1 (black) and the range between the 16th and 84th percentiles (grey band).
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Figure 6.1: Radial profiles of stellar population parameters (black circles), measure-
ments from the integrated spectrum (star) compared to the integrated measurements
from Gu et al. (2018b), and measurements of two radial bins using both alf (red tri-
angles) and EZ AGES (blue circles). From left to right: stellar age, [Fe/H], and [Mg/Fe].

At low-redshift, it is more typical to find negative [Fe/H] gradients and flat-

to-rising [α/Fe] gradients for massive early-type galaxies (ETGs, see Chapter 5) and

dwarf spheroidals (e.g., Kirby et al. 2009). Although, the large sample in Greene et al.
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(2019) revealed at least one massive ETG with a positive [Fe/H] gradient and three

with negative [α/Fe] gradients. Furthermore, early work by Efstathiou & Gorgas (1985)

showed declining strength in the Mg2 index with radius in the massive ETG NGC 5813.

The negative-to-slightly positive age gradient seems typical of what is found in local

dwarf galaxies, younger stars are found in the centers and older stars in the outskirts

(e.g., Graus et al. 2019, and the references therein).

While not completely unprecedented, the population gradients we measure for

DF44 add to its ambiguity, especially the very steep [Mg/Fe] gradient. We preform

several tests to check the veracity of the gradient results. First, we created two spatial

bins, the first includes the inner four apertures and the second includes the outer three

apertures, achieving S/N ∼ 30 for each. These spatial stacks were fitted using alf

(red triangles). We see that the measurements from the spatial stacks correspond to

both the overall value and general direction of the gradients. Additionally, we fitted

both the spatial stacks and the integrated spectrum with EZ AGES Graves & Schiavon

(2008)15 (blue circles) to check for possible model-based systematics. For stellar age

and [Fe/H] there is good agreement between alf and EZ Ages measurements of the

integrated spectrum. There are slight discrepancies in the best-fit values for some of

the spatial stacks but the values are within the measurement uncertainties. For [Mg/Fe]

the EZ Ages measurements are overall lower than the alf measurements but EZ Ages

is not reliable for detailed abundances at [Fe/H] . −1.0. Moreover, the overall trend of

the EZ Ages measurements are consistent with the alf values.

15We measured the Hβ, Fe5015, Mgb, C4668, CN2, and Ca4227 indices after correcting the spectra
to restframe using the alf measurements of recession velocity for each. For the fitting, we used the
solar-scaled isochrones, an IMF exponent of 1.35, and [Ti/Fe] = 0.
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Figure 6.2: (Top) Comparison of spatial stacks (black) and best-fit models for the inner
stack (brown) and outer stack (green). (Middle) Comparison of residuals between best-
fit model and data for inner stack and uncertainty of flux from the input spectrum
(grey). (Bottom) Same as middle panel but for outer stack. Location of Hβ, Fe5017,
and Mgb are highlighted in middle and bottom panels (dashed lines).

Second, in the top panel of Figure 6.2, we compare the spatially stacked spectra

to the best-fit inner (brown) and outer (green) alf models. In the middle and bottom

panels, we compare the residuals between the data and best-fit spectrum for the inner

and outer stacks, respectively. We also show the uncertainty in the data in each panel

(grey band) to show that the best-fit model recovers the data within the uncertainty.

The key spectral features Hβ, Fe5017, and Mgb are highlighted in the residual panels

to show that these features are recovered by the model.

These tests confirm that neither S/N limitations nor model systematics are
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biasing the overall gradients. Additionally, in Figure 6.3 we check for any systematic

problems that may reside in the data itself. Because of the low-surface brightness of

UDGs, we have particular concern over contamination by the sky background and the

possibility that the smoothing smears bad pixels throughout the spectrum.

In the top row of Figure 6.3, we show the inferred values for [Fe/H], Age,

and [Mg/Fe] from fitting the inner most spectrum after smoothing to different resolu-

tions. The σ-dependent differences in the inferred parameters are much smaller than

the uncertainties on those parameters and there is little sensitivity to the interpolation

technique. This indicates that the results from our models are insensitive to the pro-

cessing we need to do to the spectra. In the bottom row we compare the uncertainty

on the inferred parameters for our lowest S/N spectrum (closed black circle) and mock

data generated with a similar S/N (open blue circle). If the observations had systematic

uncertainty significantly affecting the spectral features we would expect the parameter

uncertainties to be much larger than the parameter uncertainties for the mock data,

which only include statistical uncertainty.

Finally, with regards to the potential effects of data systematics, we note the

excellent agreement between the measurements presented in this work and Gu et al.

(2018b). Gu et al. (2018b) also used the alf SPS models but their data were acquired

on an entirely different telescope and instrument.

We computed a synthetic color profile from the parameters (blue) to the ob-

served color profile (grey, van Dokkum et al. 2019) in Figure 6.4. We find that there is

a small overall offset (∼ 0.1) between the synthetic and observed color profiles. This is
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Figure 6.3: (Top row) For the Aperture 0 spectrum looking at how the level of smooth-
ing impacts the stellar parameters when linearly interpolating over bad pixels (closed
blue circles) and using a kernel to interpolate over bad pixels (open green circles). (Bot-
tom row) Statistical uncertainty appears in mock data (open blue circles) appears to be
representative of the relevant uncertainty in the observed data (closed black circles).

possibly due to issues in the isochrones for the upper giant branch (Choi et al. 2016) but

synthetic colors have been generated for globular clusters in the Milky Way and M87

(see Villaume et al. 2019) without this discrepancy. Another possibility is the presence

of dust in DF44. Independent work modeling the broadband spectral energy distribu-

tion of DF44 (filter to filter) indicates this with an overall dust attenuation of AV ∼ 0.25

(S. Laine, private communication). We show that applying this dust attenuation value

to the synthetic color profile (red) resolves the discrepancy in Figure 6.4. Within the

large observational uncertainties, the overall behavior of the color profiles are consistent
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Figure 6.4: Comparison of observed color profile (grey) to synthetic color profiles with-
out dust extinction (blue) and with dust extinction (red, see Section 6.3, for details).

with each other.

In Figure 6.5 we contextualize DF44 with other objects in [Fe/H]–[Mg/Fe]

space using measurements from both the integrated spectrum (left) and the spatially-

resolved spectra (right). In the left panel, we compare DF44 (open star) to other UDGs

with measured [Mg/Fe] values. In this context, DF44 appears to be a middling UDG,

far from the extreme [Mg/Fe] value of DGSAT I (Mart́ın-Navarro et al. 2019) and not on

any particularly end of the range spanned by the Coma UDGs measured by Ferré-Mateu

et al. (2018).

However, the integrated [Mg/Fe] measurement elides the highly unusual gra-

dient seen in the spatially-resolved measurements. In the right panel of Figure 6.5 we

compare the DF44 measurements (black points) to the measurements of the integrated

M87 starlight (green circles), and the measurements from the GC stacks of the inner

halo M87 GC population (Rgal < 40 kpc, open blue squares) and outer halo GC popu-

lation (40 < Rgal kpc < 140), closed blue squares) from Chapter 5. The center of DF44
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Figure 6.5: (Left) Comparing the integrated measurements of DF44 to other UDGs with
[Mg/Fe] measurements including the very unusual DGSAT I (open square) and other
UDGs in the Coma Cluster (blue circles). (Right) Comparing the spatially-resolved
measurements of DF44 to spatially-resolved measurements from integrated starlight for
M87 (green circles), spectral stacks of M87’s inner halo GC population (Rgal < 40 kpc,
open blue squares) and outer halo GC population (40 < Rgal kpc < 140), closed blue
squares), and dwarf ellipticals in Virgo (black triangles). The DF44 measurements are
split between the inner sample (Rgal < 1.5 kpc, open black circles) and the outer sample
(closed black circles)

is consistent with the metal-poor ([Fe/H] . −1.0) M87 GCs in this space, while the

outer region of DF44 is consistent with the values of more typical dwarf galaxies (black

triangles Şen et al. 2018).

Several formation scenarios for UDGs have been predicted by simulations.

Most predict that UDGs are simply puffed up dwarf galaxies from either high-spin

(Amorisco & Loeb 2016; Tremmel et al. 2020) or a bursty star formation history that

has continued to the present day (Di Cintio et al. 2017). A scenario that has not been

predicted by simulations is that UDGs are “pure stellar halos”, that is, massive galaxies

that somehow failed to fulfill their potential for forming stars (Peng & Lim 2016). This

scenario was established to explain the abundant GC systems around many UDGs (e.g.,

van Dokkum et al. 2017b; Lim et al. 2018; van Dokkum et al. 2018) since massive star
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cluster formation requires epochs of intense star formation. It has been suggested that

“UDGs” as a class are actually composed of at least two types, with distinct origins

(Forbes et al. 2020).

The flat rotation curve seen measured for DF44 (van Dokkum et al. 2019) rules

out the first scenario scenario and the uniformly old ages rule out the feedback scenario.

The metal-poor, α-enhanced inner 1.5 kpc of DF44 aligns well with the prediction

from the pure stellar halo scenario that the initial star-formation would be intense, but

truncated. The other properties of DF44 also consistent with this scenario, with a high

stellar velocity dispersion (σ∗ ∼ 33 km/s, van Dokkum et al. 2019) and populous GC

system (NGC ∼ 74, van Dokkum et al. 2017b). Moreover, the age and [Fe/H] gradients

we find in this work are not typical of nearby dwarf galaxies.

However, the steep [Mg/Fe] gradient still needs to be explained. In principle,

we might explain the positive [Fe/H] gradient seen in DF44 by invoking the fact that,

even though it has a low stellar mass, its halo mass might be sufficient to bring in

satellite galaxies of higher metallicity than expected from the mass-metallicity relation.

In this scenario the [Mg/Fe] could be explained if this population had more extended

star-formation histories than M87. However, with this scenario there would be an

expectation of a negative age gradient since the higher metallicity, α-depressed satellites

would have had more recent star-formation.

The comparison of DF44 to M87 and its GC system hints at a resolution to

the tension between the predictions from cosmological simulations of the progenitor

populations of stellar halos in massive galaxies and the constraints provided by GCs

186



discussed in Villaume et al. (2019) and 5. With the caveat that the apples-to-apples

comparison would be between the GC systems of DF44 and M87, the result shown

here strengthens the possibility that UDGs are the progenitors of the stellar halos of

massive ETGs. This, of course, would provide additional constraints on the formation

histories of UDGs themselves as it would indicate that what we see now are only the

surviving population. We could potentially use stellar halos of massive ETGs to predict

the primordial population of UDGs.

6.4 Summary

We have presented the first spatially-resolved stellar population study for a

UDG, DF44 using optical spectra from KCWI on the Keck II telescope. We summarize

our results as follow:

• We measure the gradients of the stellar parameters: mlog age ∼ +0.01+0.08
−0.07, m[Fe/H] ∼

+0.07+0.19
−0.03, and m[Mg/Fe] ∼ −0.19−0.02

−0.36.

• The inner 1.5 kpc of DF44 has GC-like abundance patterns while the outer region

is more consistent with the abundances of dwarf ellipticals. These results are a

promising path to relieving the tension between the predictions from cosmological

simulations of the progenitors of massive ETGs stellar halos and the constraints

from GCs.

• The flat age gradient is not consistent with an accretion scenario to explain the

steep [Mg/Fe] gradient which suggests that the abundance gradients were formu-
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lated with the initial star-formation and assembly of the galaxy.

188



Chapter 7

Summary and Future Directions

What we see, we see

and seeing is changing

the light that shrivels a mountain

and leaves a man alive
Adrienne Rich, Planetarium

7.1 Summary

This thesis used full-spectrum SPS models to examine the star-formation and

assembly processes at the extremes of galaxy type. Chapter 2 details the stellar library

that was used to make the SPS models. The library greatly expanded the stellar pa-

rameter coverage of the full-spectrum models, which is what enabled their application

to such a diverse array of stellar populations. Chapter 3 examined the behavior of the

stellar M/L measurements in a sample of low-velocity, compact stellar systems where

I allowed for a variable IMF in the models. These results represent the first time IMF
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measurements from integrated light have been extracted from these kinds of objects.

They show that the IMF varies less on the whole for the compact objects than for mas-

sive ETGs from which it must be concluded that metallicity is not the sole driver of

IMF variability, as has been suggested.

Chapter 4 uses the models to extract [Fe/H] measurements from a large sample

of individual GCs around M87 that (i) confirm metallicity bimodality in the inner ∼ 10

kpc of M87 and (ii) show that at fixed, low-metallicity the M87 GCs are bluer than

the Milky Way GCs. This latter result not only has far-reaching implications on the

interpretation of the many large imaging data sets of extragalactic GCs which exist, but

also indicate that the internal properties of GCs are not as well-understood as perhaps

hoped.

In Chapter 5, I model the metallicity gradient of the individual GCs using

a hierarchical Bayesian statistical framework which allowed me to (i) account for the

covariance between the subpopulation membership assignments of the individual GCs

and the gradient parameters I was trying to measure for the subpopulations and (ii)

statistically de-project the galactocentric distances of the GCs. This allowed me to

measure the GC subpopulation gradients more accurately than previously possible. To

this end, I measured remarkably flat gradients in both the metal-poor and metal-rich

subpopulations, indicating that they were both affected by the same physical processes.

The presence of the metal-poor subpopulation is in tension with predictions from cos-

mological simulations.

Finally, in Chapter 6, I present the first radial stellar population gradients for a
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UDG, DF44. I find mostly flat age and [Fe/H] gradients but a steeply negative [Mg/Fe]

gradient which, on the whole, leaves it ambiguous whether DF44 was affected by some

accretion events or formed more or less in a monolithic collapse.

7.2 Future directions

The main thrust of this thesis is to emphasize the critical fossil record GCs

hold and the importance of modeling them accurately to extract that information,

both as individual objects and as systems of objects. Observations of GCs need to

prioritized along with their host systems. By analyzing the GCs of M87 in tandem with

its integrated galaxy starlight, I was able to establish essential benchmarks to guide

galaxy evolution theories. For DF44, understanding the stellar population properties of

its GC system could significantly clarify the meaning of the measured parameters for

DF44 itself and UDGs as a whole (more on this below).

However, this work also opens many questions that need to be addressed.

First, the internal properties of GCs, and how they may be affected by environment

must be better understood. Star cluster formation is intrinsically linked to star forma-

tion processes, which in several ways is still poorly understood. My result in Chapter

4 significantly alters the interpretations of the data from photometric surveys. The dif-

ferences I found in the colors of M87 and Milky Way GCs at fixed metallicity might be

attributable to an age difference, with the M87 blue GCs being up to 4 Gyrs younger

than the Milky Way blue GCs. Another explanation for the color difference is that

the M87 GCs could also host more significant populations of blue horizontal branch
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stars than the Milky Way. Establishing the underlying cause of the discrepancy has the

potential to change our interpretation of the origins of the GCs.

Second, there have been several proposals on how massive ETGs evolve from

high-redshift (Barro et al. 2013; van Dokkum et al. 2015). However, there is still a lack

of clarity about their initial star-formation processes and subsequent assembly. So, while

there is a lot known about massive ETGs, the overall impression is that the whole is less

than the sum of the parts. A significant source of this ambiguity is the limited means

to decompose the stellar populations of these systems into in- and ex-situ populations.

GC systems will be key to making this advancement, but improvements to both how

individual GCs are modeled and the statistical frameworks in which systems of GCs are

modeled need to be improved.

In the following, I detail the projects that I think are necessary to achieve

these goals.

7.3 High priority projects

7.3.1 Breaking the degeneracy between age and horizontal branch

Age measurements for GCs from integrated light are highly uncertain, not due

to limitations in S/N but because of the degeneracy caused by the presence of the blue

horizontal branch. The horizontal branch is a distinct population of stars outside the

main track predicted by stellar evolution physics. The physics that determine the for-

mation of horizontal branch stars is not well understood and great diversity in horizontal

branch morphology is observed in Milky Way and M31 GCs. The morphology of the
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horizontal branch is strongly influenced by metallicity of the GC but that alone does

not explain the different morphologies seen among the GCs (Rood 1973; Dotter et al.

2010).

Consequently, horizontal branch stars that contribute to the integrated light

spectra of extragalactic GCs are not directly modeled by current SPS models. This is

an issue because this population also tends to be bright and blue which means their

presence can make stellar populations look artificially young. This has been the primary

hurdle for obtaining accurate ages from integrated light for extragalactic GCs. The effect

of this can be seen in the age determinations for some of the M31 GCs in Chapter 3.

The problem is difficult but not insurmountable. First, the great strength of

Bayesian modeling is the ability to marginalize over nuisance parameters. The morphol-

ogy of the horizontal branch, that is, how blue or red it is, can be characterized by the

peak and width of the distribution of stars in Lbol vs. Teff space. If these parameters

(µHB, σHB) can be inferred, they can be used when “accounting” for the inferred ages.

So, how to infer these parameters? By creating data-driven isochrones directly

from the CMDs of Milky Way GCs. A new library of horizontal branch star spec-

troscopy (Villaume et al., work in progress) can be tied to the stars in the Milky Way

horizontal branches and summed according to the different morphologies. This will

create empirically-determined predictions of the contribution of the horizontal branch

stars to the integrated spectrum of a stellar population.

With this, horizontal branch “response functions” (directly analogous to the

response functions needed to obtain variable abundance variations) will be known as
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a function of metallicity, age, and individual chemical abundances for the Milky Way

GCs. These are the characteristics the SPS models optimize for, and so the horizontal

branch contribution can easily be incorporated as a parameter to be optimized for a

best-fit model.

The remaining question is whether there is sufficient information content in

an integrated spectrum for the model described above to be reliable. Schiavon et al.

(2004) showed that the ratio between HδF and Hβ is far more sensitive to horizontal

branch morphology, than to age. Further information about age could be extracted if

the observed spectra were flux calibrated and this was incorporated as part of the model.

Currently, alf continuum normalizes the observed spectra before the fit. However, this

is more due to uncertain effects of dust than to inherent limitations in the models. In

fact, as shown in Chapter 2, the underlying empirically stellar library is exquisitely flux

calibrated. Spectroscopy that spans the optical to near-IR would be particularly useful

in this respect as the overall continuum shape would provide significant age information.

More accurately determining the ages and the horizontal branch morphology

in extragalactic GCs will provide significant information about how formation and evo-

lution of massive clusters may change with environment.

7.3.2 Extending the HBM to determine in- and ex-situ populations in

GC systems

The study of extragalactic GC systems has been rooted in the paradigm of

bimodality – the metal-poor and metal-rich subpopulations. This has greatly influenced

the way the assembly of GC systems and their host galaxies have been framed. The
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metal-rich GCs are thought to have formed within massive galaxies at the peak of star

formation, in contrast, the metal-poor objects are thought to have formed in low mass

galaxies at even earlier times and then fell into galaxy halos.

The reality is almost certainly more complicated than this, with both the

metal-poor and metal-rich subpopulations consisting of a mix of in- and ex-situ pop-

ulations in the inner halos of massive galaxies. Being able to more precisely separate

GC systems into subpopulations will help determine which is which. This will also help

clarify the the origins of the GCs, and therefore the star-formation and assembly history

of their present-day host galaxy.

The HBM presented in Chapter 5 does not require the system be separated into

two subpopulations, that was done because of convention but also because metallicity

and galactocentric distance alone are not sufficient to make finer-grained determinations.

The Milky Way GC system has been shown to have an age–metallicity distribution

(AMD, Leaman et al. 2013). There is currently a lot of excitement in the GC community

that the AMD could be used to infer galaxy assembly histories (Muratov & Gnedin 2010;

Kruijssen et al. 2019).

Breaking the age degeneracy will provide a crucial additional constraint to

condition the HBM on. However, the cosmological simulations have limited ability to

distinguish progenitor satellites of different masses in this space (O. Gnedin, private

communication). In the Milky Way, it takes many dimensions of information (e.g.,

kinematics, chemistry, age) to reconstruct the assembly history (Helmi 2020) and so

this should also be expected in extragalactic systems.
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Figure 7.1: (Right column) A simplified graphical representation of the hierarchical
model as presented in Chapter 5 to simultaneously model the radial metallicity gra-
dients for the subpopulations and subpopulation membership. This figure shows the
relation between the observed parameters (black), the unobserved but modelled pa-
rameters (blue), and the parameters of interest for the inference (red). (Left column)
Extensions to the model needed infer α–[Fe/H] for the subpopulations and include age
as a constraint for the subpopulation membership assignments.

In particular, α-elements are crucial in this task (e.g., Pritzl et al. 2005). Ob-

taining α-element abundances for extragalactic GCs is, however, a significant challenge.

The issue is in the data itself, there are fewer and weaker spectral lines for α-element

abundances than there are for measuring metallicity. This is not something that im-

provements to the SPS modeling can fix, it would require significant investments in

telescope time to get the spectroscopy of exquisite enough quality.

A natural solution is to further extend the HBM form Chapter 5 to infer

α–metallicity trends for the subpopulations. This works because the GCs in a given

subpopulation will have the same origins and because α-element abundances, by their
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nature, will have a correlation with metallicity. In this way we can use the many, albeit

noisy, measurements of α-abundance to infer the overall trends in every subpopulation.

A simplified schematic of this model is shown in Figure 7.1.

Finally, a way to assess the “best” number of subpopulations in a GC system

is needed. The best way to do this is move from a model where the number of subpop-

ulations input to the model, to nonparameterized, unsupervised clustering in the form

of Dirichlet Processes. The essential idea is that the number of subpopulations is also

a parameter that is fit for.

More precise subpopulation separation will make all the measurements of the

subpopulations, including things like metallicity gradients, more accurate and informa-

tive. For instance, I speculated in Chapter 5 that a possible reason for the flat metallicity

gradient in the metal-poor subpopulation is that the accreted population is being “di-

luted” by an in-situ population that would have a flat gradient. Being able to separate

what is now lumped together in the “metal-poor” or “metal-rich” subpopulations will

provide actual tests of different GC formation scenarios.

7.3.3 Determining detailed stellar populations of the GC systems around

UDGs

The comparison between the spatially-resolved stellar population parameters

for DF44 and the GCs around M87 presented in Chapter 6 are highly suggestive of a

link between stellar halos of massive ETGs and UDGs. Furthermore, comparing the

stellar parameters of UDGs with their GCs could help clarify the significance of the

gradients measured for DF44 (and, presumably, other UDGs in the future). With this
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in mind, I think the following things, more or less ordered by expected difficulty, are

worthwhile to look into:

• Examine the color gradients of the GC system around DF44. Is it flat like the

metallicity gradient measured for DF44 itself?

• There are now many imaging data sets of UDGs and their GC systems. Stacking

the GC colors among all these systems and checking for bimodality would help

constrain the formation scenarios of UDGs. The stacking could be binned along

halo type: under massive, normal, over massive.

• Obtain spectroscopy of the GC system around DF44 with sufficient S/N to ex-

tract stellar population parameters from the individual GCs. This comparison

would help not only to understand DF44 but also allow for an apples-to-apples

comparison GCs in other systems.
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Ferrarese, L., Côté, P., Cuilland re, J.-C., et al. 2012, The Astrophysical Journal Sup-

plement Series, 200, 4
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Skúladóttir, Á., Tolstoy, E., Salvadori, S., et al. 2015, A&A, 574, A129

Smith, R. J. 2014, MNRAS, 443, L69

Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51
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Appendix A

Derivation of Likelihood Function

for True Distances

While the true 3D distance is given by |~r| =
√
x2 + y2 + z2, what we actually

observe is r⊥ =
√
x2 + y2. The xy coordinates can be written in terms of r⊥,

x =r⊥cosθ

y =r⊥sinθ, and then,

z =r‖ .

Our model defines the distribution in x, y, and z as Gaussian, but it is useful

to, instead, reparameterize in terms of r⊥ and r‖. In order to maintain the same density

through this change of variables, we need to take the Jacobian of the transformation
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into account. Specifically,

|p(x, y, z) dx dy dz| =
∣∣p(r⊥, θ, r‖) dr⊥ dθ dr‖

∣∣ (A.1)

p(r⊥, θ, r‖) = |J | p(x, y, z) (A.2)

where p(x, y, z) is Gaussian and |J | is the absolute value of the determinant of the

Jacobian matrix

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣

dx
dr⊥

dy
dr⊥

dz
dr⊥

dx
dθ

dy
dθ

dz
dθ

dx
dr‖

dy
dr‖

dz
dr‖

∣∣∣∣∣∣∣∣∣∣∣∣
(A.3)

=

∣∣∣∣∣∣∣∣∣∣∣∣

cos θ sin θ 0

−r⊥ sin θ r⊥ cos θ 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
(A.4)

=
∣∣r⊥ (sin2 θ + cos2 θ)

∣∣ = r⊥ . (A.5)

Therefore,

p(r⊥, θ, r‖) =
r⊥

(2π R2)3/2
exp

(
−x

2 + y2 + z2

2R2

)
(A.6)

=
r⊥

(2π R2)3/2
exp

(
−
r2
⊥ + r2

‖

2R2

)
. (A.7)

Finally, under our assumption of isotropy, we can marginalize over the position angle θ
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to find

p(r⊥, r‖) =

∫
p(r⊥, θ, r‖) dθ (A.8)

=
r⊥√

2π R3
exp

(
−
r2
⊥ + r2

‖

2R2

)
(A.9)

= Rayleigh(r⊥; R) Normal(r‖; 0, R) . (A.10)

221



Appendix B

Individual References for

JINABase data

Ref [Fe/H] [Mg/Fe] [Si/Fe] [Ca/Fe]

Allen et al. (2012) x x – –

Aoki et al. (2002b) x x – –

Aoki et al. (2002a) x x x x

Aoki et al. (2005) x x x x

Aoki et al. (2007) x x – –

Aoki et al. (2008) x x – –

Aoki et al. (2012) x x – –

Aoki et al. (2013) x x – –

Aoki et al. (2014) x x – –

Barbuy et al. (2005) x x – –
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Barklem et al. (2005) x x – –

Bensby et al. (2011) x x x x

Carretta et al. (2002) x x x x

Cayrel et al. (2004) x x x x

Cohen et al. (2003b) x x x x

Cohen et al. (2004) x x x x

Cohen et al. (2006) x x x x

Cohen et al. (2013) x x x x

Cowan et al. (2002) x x x x

Cui et al. (2013) x x x x

Fulbright (2000) x x x x

Hansen et al. (2015) x x – –

Hollek et al. (2015) x x – –

Honda et al. (2004) x x x x

Howes et al. (2015) x x x x

Howes et al. (2016) x x x x

Ishigaki et al. (2010) x x x x

Ivans et al. (2003) x x x x

Ivans et al. (2006) x x x x

Jacobson et al. (2015) x x x x

Johnson (2002) x x x x

Johnson & Bolte (2004) x x – –
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Jonsell et al. (2005) x x x x

Jonsell et al. (2006) x x – –

Koch et al. (2015) x x x x

Lai et al. (2008) x x x x

Li et al. (2015) x x x x

Masseron et al. (2012) x x – –

McWilliam et al. (1995) x x x x

Norris et al. (1997) x x x x

Placco et al. (2015) x x x x

Preston & Sneden (2000) x x – –

Preston et al. (2001) x x – –

Preston et al. (2006) x x x x

Roederer et al. (2008) x x – –

Roederer et al. (2010) x x x x

Roederer et al. (2014) x x x x

Ryan et al. (1991) x x x x

Siqueira Mello et al. (2014) x x x x

Zacs et al. (1998) x x – –

Zhang et al. (2009) x x x x

Table B.1: Individual references for JINAbase compilation of

Milky Way field stars used in this paper.
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Ref [Fe/H] [Mg/Fe] [Si/Fe] [Ca/Fe]

Cohen & Huang (2009) x x x x
Feltzing et al. (2009) x x – –
François et al. (2016) x x – –
Frebel et al. (2010) x x x x
Geisler et al. (2005) x x x x
Gilmore et al. (2013) x x x x
Ishigaki et al. (2014) x x – –
Ji et al. (2016) x x x x
Koch et al. (2008) x x x x
Shetrone et al. (2001) x x x x
Shetrone et al. (2003) x x x x
Skúladóttir et al. (2015) x x x x

Table B.2: Individual references for JINAbase compilation of dwarf galaxy field stars
used in this paper.
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