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Abstract

The ubiquitin-proteasome system serves as the major proteolytic degradation pathway in 

eukaryotic cells. Many inhibitors that covalently bind to the proteasome’s active sites have been 

developed for hematological cancers, but resistance can arise in patients. To overcome limitations 

of active-site proteasome inhibitors, we and others have focused on developing ligands that 

target subunits on the 19S regulatory particle (19S RP). One such 19S RP subunit, Rpn-13, 

is a ubiquitin receptor required for hematological cancers to rapidly degrade proteins to avoid 

apoptosis. Reported Rpn-13 inhibitors covalently bind to the Rpn-13’s Pru domain and have 

been effective anti-hematological cancer agents. Here, we describe the discovery of TCL-1, a 

non-covalent binder to the Pru domain. Optimization of TCL-1’s carboxylate group to an ester 

increases its cytotoxicity in hematological cancer cell lines. Altogether, our data provides a new 

scaffold for future medicinal chemistry optimization to target Rpn-13 therapeutically.
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The proteasome plays a key role in the degradation of ~80% of proteins in eukaryotic 

cells and is involved in the regulation and maintenance of many cellular functions.1 The 

proteasome exists in many isoforms with varying functions. The 20S core particle (20S 

CP) comprises of four heptameric rings (two rings of ß proteins and two rings of α 
proteins2,3) that can degrade intrinsically disordered and misfolded proteins through a 

ubiquitin-independent process.4,5 When capped with the 19S regulatory particle (RP), the 

proteasome is capable of degrading proteins that have been tagged with polyubiquitin.6,7

Targeting the 20S proteasome with small molecule inhibitors has become an invaluable tool 

for the treatment of diseases with high proteasomal dependence, such as multiple myeloma 

(MM).8 Bortezomib (Velcade®) has been the best-in-class treatment for MM for many years, 

and more recent inhibitors have improved upon off-target toxicities and pharmacokinetic 

parameters.9,10 Unfortunately, Bortezomib and other 20S CP inhibitors, inevitably develop 

resistance and molecules with new mechanisms of inhibition are required. Targeting the 

recognition or processing of a ubiquitinated protein by the 19S RP rather than the proteolytic 

function of the 20S CP11,12 has been identified as an alternative target that can minimize 

the off-target toxicity and resistance seen with current treatment. (Figure 1).13–15 Rpn-13, 

a ubiquitin receptor on the 19S RP, is a potential proteasome target as it is overexpressed 

in several cancers, including MM, pancreatic, ovarian, and colorectal.16,17 This may be due 

to a stress induced response to an abundance of misfolded proteins that the proteasome 

must degrade to prevent apoptosis of the cancer cell. Rpn-13 inhibitors have been developed 

such as RA190 and XL5, both of which bind covalently at cysteine 88 of RPN-13 via 

Michael addition18,20. KDT-11, a reversible peptoid binder has also been discovered to bind 

to Rpn-13 and is selectively toxic to multiple myeloma cells. (Figure 2).19 In this study, we 

report a non-covalent inhibitor of the Pru (Pleckstrin-like receptor for ubiquitin) domain of 

Rpn-13 (TCL-1). TCL-1 is shown to bind to the same surface as Rpn-2, which is a Rpn-13 

binding partner within the 19S RP, with modest affinity (KD = 26 μM). TCL-1’s structure 
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is much more drug-like than KDT-11 and it is highly likely that scaffold modifications can 

increase its binding affinity.19

Screening for binders of the Pru domain

To begin a study to discover a non-covalent binder at the Rpn-2/Rpn-13 binding interface, 

we applied for the Atomwise AIMS award program (AIMS: A19–381). The virtual screen 

was carried out using the AtomNet ®neural network for structure-based drug design.22,23 

A single global AtomNet model was deployed to predict the binding affinity of small 

molecules to a target protein. The model was trained with experimental Ki, Kd, and the 

half maximal inhibitory concentration (IC50) values of several million small molecules 

and protein structures spanning several thousand different proteins, curated from public 

databases and proprietary sources. Because the AtomNet technology was a global model, it 

could be applied to novel binding sites with no known ligands, a prerequisite to most target-

specific machine-learning models (see Supporting Information for detailed procedure). 

Compounds proposed by the virtual docking to bind at the Rpn-2-Rpn-13 interface of 

the Pru domain were next validated experimentally for their ability to bind. We screened 

the potential binders by differential scanning fluorescence in a thermal shift assay that 

monitors the ability of the molecules to shift the melting temperature of the Pru domain 

of Rpn-13.24,25 Briefly, the Pru domain of Rpn-13 was combined with a small molecule 

and a hydrophobic dye. As the mixture is heated over a range of temperatures (25 – 

90 °C) in a stepwise manner, the protein will begin to unfold. As the protein denatures, 

the hydrophobic dye can bind to the protein’s unfolded hydrophobic core, generating 

a fluorescent signal. From these measurements, “stabilizers” (positive shift in melting 

temperature) or “destabilizers” (negative shift in melting temperature) are discovered.26 

We validated this screening method using two peptides described by the Hill group that 

mimic the binding interaction of Rpn-13 with the surface of Rpn-2.27,28 Both the wild-type 

peptide and a mutant version (P945A) were tested at two concentrations to determine if we 

could see a shift in melting temperature (Figure S2). The shift in melting temperature using 

the wild-type peptide was the largest, which reflects its better Ki value as reported by the 

Hill group (WT Ki ~17 nM; P945A Ki ~1.4 μM).27 This control experiment highlighted 

we would be able to detect both nanomolar and micromolar binders to Rpn-13 using this 

method.

Potential binding molecules were dissolved in DMSO and tested at 25 and 50 μM to 

monitor changes to melting temperature (Figure S4). We initially screened 96 molecules 

in singlet and then validated the top ten stabilizers/destabilizers in triplicate (Figure S5). 

The compound that had the greatest change on Pru’s melting temperature in triplicate was 

selected as our compound of interest (TCL-1, Figure 3A). TCL-1 (50 μM) decreased the 

Tm of the Pru domain by ~3 °C (Figure 3B). Encouraged by these results, a second set 

of molecules from Atomwise was chosen based on similarity to the TCL-1 scaffold. The 

second screening campaign was performed using the methods described above. However, no 

molecule was able to successfully validate in triplicate other than TCL-1 (Figure S6).

We next tested TCL-1’s ability to affect the Tm of the Pru domain of Rpn-13 in a dose-

dependent manner. To accomplish this, a range of concentrations of TCL-1 (0–100 μM) 
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were added to 20 μM Pru domain and any change in Tm was determined (Figure 3C). 

These results show that starting at 25 μM of TCL-1, Pru’s Tm begins to decrease. As a 

negative control, we included molecule G7, whose structure was similar to TCL-1 in that the 

heterocycle core was the same and contained a carboxylic acid (Figure S7), and no change in 

Tm was observed, as desired.

2D Protein HSQC to Determine Binding Interaction

We utilized 2D NMR to characterize the binding interaction of TCL-1 with the Pru 

domain by chemical shift perturbations (CSPs). The known structure of the Pru domain 

and chemical shift assignments for a Pru-ligand complex facilitated NMR studies of the 

Pru domain in the presence of TCl-1. 29,30 15N-labeled Pru domain was expressed/purified 

and concentrated to 200 μM for TROSY 15N-HSQC analysis. TCL-1 was added to the 

sample in a ligand/protein (L/P) molar ratio of 0, 0.2, 0.4, 0.6, 0.8, and 1, ensuring the 

protein or ligand did not precipitate. Overlay of spectra measured at each titration point 

shows observable shifts in the resonant frequencies (Figure 4A). The CSPs were quantified 

for each residue (Figure 4B). The protein was not fully saturated at 200 μM of TCL-1 as 

higher concentrations of ligand resulted in loss of Pru domain signal from TCL-1’s protein 

destabilization effects. However, peaks with relatively larger CSPs were still identified for 

several residues (Figure 4A and 4B). Line shape analysis performed on two selected peaks 

(G91 and M31) using the web-based tool NmrLineGuru estimate resulted in a Kd value of 

~26 μM. (Figure S17).31 These results confirm that TCL-1 binds to the Pru domain at the 
Rpn-2 docking site, which was the target region from the Atomwise docking process.

Activity of TCL-1 against Cancer Cell Lines

Encouraged by the NMR studies, we were interested to see if TCL-1 would be selectively 

toxic to hematological cancer cells, due to their high proteasomal activity for survival. 

Concerned with the permeability of TCL-1’s carboxylic acid group, we synthesized a 

derivative of TCL-1 that incorporated an ester group to aid in cellular permeability, 

named TCL-Ester (Scheme S1). Before testing the TCL-Ester in cells, we wanted to 

ensure modifying the carboxylic acid would not affect the binding to the Pru domain. In 

order to assess this we synthesized a fluorescent derivative (FL-TCL-1) that incorporated 

a fluorescein tag that we could perform fluorescence polarization with (Scheme S2). 

Modifying the carboxylic acid of TCL-1 to the FL-TCL-1 derivative did not impact binding 

to the Pru domain (Figure S18). The ester was also subjected to a thermal shift assay with 

purified Pru domain, and the binding was retained (Figure S16). This gave us confidence 

that incorporating the ester would aid in permeability, without compromising our binding to 

Rpn-13.

The toxicity of TCL-Ester was assessed in a variety of cell types, some with high reliance 

on proteasomal activity for survival (Ramos, Raji, MM.1R), and others with less reliance 

for survival (HEK and MRC-5) to demonstrate selectivity for hematological cancers, Figures 

5A and B.32,33 Since hematological cancers are sensitive to proteasome inhibition, toxicity 

in these cell lines could indicated that TCL-1 affects proteasome-mediated proteolysis 

through an interaction with Rpn-13. We dosed these five different cell types with increasing 
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concentrations of TCL-Ester. Excitingly, our results show that in the hematological cancer 

cell lines, the TCL-Ester derivative is toxic after 24 hrs with almost 100% cell death at 

25–50 μM. In contrast, in the cell lines that rely less on proteasomal activity for survival 

we had hoped to see no significant cell death up to 50 μM. In both HEK-293T and MRC-5, 

TCL-Ester remains non-toxic even up to 50 μM with only ~50% death in HEK-293T cells at 

the highest concentration. These results are promising to show TCL-1 as a selective inhibitor 

of Rpn-13, as its toxicity profile is similar to that of the other known non-covalent Rpn-13 

inhibitor KDT-11.19

From these studies, we have identified a non-covalent binder to Rpn-13, one of the ubiquitin 

receptors of the proteasome’s 19S RP and quantified the binding affinity by NMR as KD ~26 

μM. Non-covalent binders to Rpn-13 are of significant interest for their potential application 

to be used as an inhibitor or even as a bifunctional degrader to either degrade Rpn-13 or 

potentially recruit proteins closer to the 26S proteasome for degradation.34,35 This method 

of directing a protein to the 26S proteasome via a ubiquitin-independent mechanism for 

degradation has recently been validated.36

NMR chemical shift analysis supports binding of TCL-1 at a region of Rpn-13 near the 

Rpn2 association. Although these studies do not provide a mechanism for the toxicity 

observed with the hematological cancer cell lines, after preparing more potent analogs 

of TCL-1, we will more thoroughly study how they are eliciting their cytotoxic effect. 

The generation of the TCL-Ester analog highlights that the scaffold can be modified and 

still retain binding to Rpn-13’s Pru domain, and we hope future medicinal chemistry 

optimization can produce a more potent and selective binder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of the Pru domain (colored tan) of Rpn-13. Targeting the Pru domain has been 

shown to be a promising target in treatment of multiple myeloma. The interaction of Rpn-13 

with its binding partner in the 19S RP complex, Rpn-2 (amino acids 940–953 shown in 

cyan), is essential for Rpn-13’s ability to bind ubiquitinated proteins. Structure adapted from 

PDB File: 6CO4
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Figure 2. 
Structures of covalent Rpn-13 inhibitors RA-190, XL-5 and the reversible peptoid binder 

KDT-11. Currently KDT-11 is the only reversible binder to the Pru doman. We are seeking 

to discover a reversible binder that is more drug like than KDT-11.
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Figure 3. 
A. Structure of validated compound TCL-1. B. Thermal shift results of TCL-1 at 25 μM and 

50 μM with the Pru domain compared to DMSO (ΔTm = 0). C. Dose-dependent melting 

curve of TCL-1 and a negative control, G7.
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Figure 4. 
A. HSQC spectral overlay of the 15N-labeled Pru domain (200 μM) titrated with TCL-1 

at L/P 0, 0.2, 0.4, 0.6, 0.8 and 1. Selected amino acid shifts W108 (green), T37 (gold), 

and M31 (blue) show chemical shift perturbations CSP = 0.154*Δ15 N 2 + Δ1H 2
 in the 

presence of TCL-1 mapped onto the structure with spheres. B. Chemical shift perturbations 

(CSPs) for each amino acid residue on the Pru domain after TCL-1 addition. Orange line = 

CSP > 1 standard deviation, Red line = CSP > 2 standard deviation.
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Figure 5. 
Cell viability of TCL-Ester in (A) hematological cancer cell lines and (B) cell lines that rely 

less on high proteasomal activity for survival. Cells plated at 20,000 cells/well in a 96 well 

plate, then subjected to dosing with compound from 0 – 50 μM for 24 hr. MRC-5 (orange) 

and HEK-293T (red) show little toxicity after 24 hrs, while Raji (purple), Ramos (blue), and 

MM.1R (green) show more significant cell death using TCL-Ester.
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