
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
XL : a communication-efficient routing algorithm

Permalink
https://escholarship.org/uc/item/02b5v13x

Author
Levchenko, Kirill

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02b5v13x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

XL: A Communication-Efficient Routing Algorithm

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Kirill Levchenko

Committee in charge:

Professor Ramamohan Paturi, Co-Chair
Professor Stefan Savage, Co-Chair
Professor Fan Chung Graham
Professor Russell Impagliazzo
Professor Alon Orlitsky

2008

Copyright

Kirill Levchenko, 2008

All rights reserved.

The dissertation of Kirill Levchenko is approved,

and it is acceptable in quality and form for publi-

cation on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita and Publications . ix

Abstract of the Dissertation . x

Chapter 1 Introduction to Network Routing 1
1.1 Before the Internet . 1

1.1.1 The Postal Network 1
1.1.2 The Telegraph Network 3
1.1.3 The Telephone Network 6

1.2 The Internet . 10
1.2.1 Routing . 12
1.2.2 Scalability . 15

Chapter 2 XL: A Communication-efficient Routing Algorithm 18
2.1 Formal Definitions . 19

2.1.1 Network . 19
2.1.2 Forwarding . 20
2.1.3 Soundness and Completeness 21
2.1.4 Routing and Computation Model 22

2.2 The Routing Algorithm . 24
2.2.1 Initial View . 25
2.2.2 Update Algorithm 25
2.2.3 Phase I: Internal and Preliminary External Views . 25
2.2.4 Phase II: Shortest-Path Tree and Forwarding Table 27
2.2.5 Phase III: External Views 27

2.3 Analysis . 30
2.4 Minimum Distance Proxy Function 33
2.5 Cut Vertex Partitioning . 34

2.5.1 Cut Vertex Discovery 35

iv

Chapter 3 Forwarding Network Simulator 37
3.1 The Generator Program 39
3.2 The Simulator Program . 40
3.3 The Surveyor Program . 41
3.4 The Oracle Program . 42
3.5 The Analyzer Program . 42

Chapter 4 Routing Algorithm Simulation 43
4.1 Experimental Setup . 44

4.1.1 Networks . 44
4.1.2 Link Events . 45
4.1.3 Algorithm Parameters 46

4.2 Performance . 46
4.2.1 Total Communication 47
4.2.2 Per-Node Communication 48
4.2.3 Stretch . 49
4.2.4 Convergence . 51
4.2.5 Scalability . 53

Chapter 5 Conclusion . 58
5.1 Contributions . 58
5.2 Directions for Future Work 60

Index . 61

Bibliography . 63

v

LIST OF FIGURES

Figure 1.1: Mail routing in the United States Postal Service 2
Figure 1.2: Fragment of the North American telegraph network 5
Figure 1.3: Modern Telephone Network Hierarchy 8
Figure 1.4: Worst case link failure scenario requiring flooding 16

Figure 2.1: Routing process state of a pair of adjacent nodes 23
Figure 2.2: Update algorithm input and output 23

Figure 3.1: Workflow of a typical FNS experiment 38
Figure 3.2: Link failure model . 39

Figure 4.1: Examples of synthetic networks used in the experiments 45
Figure 4.2: Messages as a function of network size for the Honey networks . 54
Figure 4.3: Messages as a function of network size for the Orb networks . . 55
Figure 4.4: Link flapping in a Quad network 56

vi

LIST OF TABLES

Table 2.1: Summary of notation . 26

Table 4.1: Networks used in the simulation experiments 44
Table 4.2: Link event generation parameters 46
Table 4.3: Average number of messages sent in simulation experiments 47
Table 4.4: Maximum number of messages sent in simulation experiments . . 49
Table 4.5: Observed top centile stretch with ε = 0.5 in simulation experiments 50
Table 4.6: Forwarding loop duration in simulation experiments 51
Table 4.7: Duration of infinite forwarding-to-optimal distance ratio 52

vii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Ramamohan Paturi and Professor Ste-

fan Savage both of whom advised and supported me over the past seven years. I

have received invaluable guidance from Professor George Varghese and Professor Ge-

offrey M. Voelker. I am also grateful to my fellow graduate students without whom

graduate school would not have been totally awesome. Finally, I owe much to my

family, Heather and Dasha.

This dissertation describes my work on the XL routing algorithm (joint work

with Ramamohan Paturi, Geoffrey M. Voelker, and Stefan Savage) which has been

presented at the 2008 ACM SIGCOMM Conference in Seattle, Washington and ap-

pears in the proceedings of the conference, published in Computer Communication

Review, 38(4). The first chapter contains additional historical background on routing

in communication networks; it has not been previously published.

viii

VITA

2001 B. S. in Mathematics and Computer Science, University of Illinois, Urbana-
Champaign.

2008 Ph. D. in Computer Science, University of California, San Diego.

PUBLICATIONS

C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and
S. Savage, “Spamalytics: An Empirical Analysis of Spam Marketing
Conversion,” CCS 2008.

K. Levchenko, G. M. Voelker, R. Paturi, and S. Savage, “XL: An Efficient Network
Routing Algorithm,” SIGCOMM 2008.

C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson, and
S. Savage, “On The Spam Campaign Trail,” LEET 2008 Workshop.

C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, and S. Savage, “The
Heisenbot Uncertainty Problem: Challenges in Separating Bots from Chaff,”
LEET 2008 Workshop.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Unexpected
Means of Protocol Inference,” IMC 2006.

A. R. Calderbank, A. Gilbert, K. Levchenko, S. Muthukrishnan, and M. Strauss,
“Improved Range-Summable Random Variable Construction Algorithms,”
SODA 2005.

K. Levchenko, R. Paturi, and G. Varghese, “On the Difficulty of Scalably Detecting
Network Attacks,” CCS 2004.

A. Gilbert and K. Levchenko, “Compressing Network Graphs,” LinkKDD 2004
Workshop.

ix

ABSTRACT OF THE DISSERTATION

XL: A Communication-Efficient Routing Algorithm

by

Kirill Levchenko

Doctor of Philosophy in Computer Science

University of California San Diego, 2008

Professor Ramamohan Paturi, Co-Chair

Professor Stefan Savage, Co-Chair

We describe and analyze a new communication-efficient routing algorithm

for packet forwarding networks such as the Internet. The explicit design objective

of our routing algorithm, called XL, is to reduce the communication overhead of

routing, allowing the routing algorithm to support larger networks without resorting

to artificial network partitioning techniques such as OSPF areas. We achieve this

by allowing suboptimal forwarding paths up to a user-specified stretch factor. (By

setting stretch to 1 it is also possible to force optimal routing.)

The XL routing algorithm is a link state algorithm, meaning that network

nodes disseminate information about the state of links in the network. The essential

difference between XL and the classical link state algorithm used by OSPF and IS-

IS is in the semantics of link state updates: in the classical algorithm, a link state

update specifies the exact link cost, while in XL it specifies an upper bound on the

actual cost. This allows XL to suppress updates when the route cost do not decrease

significantly.

In addition to the formal specification and correctness proof, we also compare

XL to four existing routing algorithms in simulation. Two of these algorithms are the

classical distance vector algorithm and the link state algorithm which are the basis

of the RIP and OSPF routing protocols, respectively. The other two are state-of-the

art experimental protocols: distance vector with parent pointer, and the link vector

algorithm, both based on the idea of restricting updates to those about links in a

x

node’s shortest-path tree. Experimental results show that our algorithm consistently

generates fewer updates in response to network changes, in some cases by nearly an

order of magnitude.

xi

Chapter 1

Introduction to Network Routing

The end of the twentieth century has come to be defined by technologies

like the telephone and the Internet which have given us an unprecedented ability

to communicate and access information. Making this possible are communication

networks : the mass of wires, antennas, switches, and routers alive with design and

purpose. The animating principle of any communication network is routing: the

mechanism that defines how information gets from point A to point B in the network.

The subject of this work is routing in a packet-switched network such as the

Internet, characterized by semi-reliable links and a simple forwarding mechanism

based on destination addresses. Before delving into our problem, however, we survey

the history of communication networks and routing.

1.1 Before the Internet

In this section we describe a number of communication networks that predated

the Internet. We begin with postal networks.

1.1.1 The Postal Network

Perhaps the oldest example of a modern communication network is the postal

service. Its roots go back as far the as the messenger services of ancient empires as

described by Herodotus [22, Book 8, Chapter 98]. Early postal networks were tied

to the road networks and were, in some sense, an extension of them. In some cases,

1

2

Page 10 GAO-05-261 U.S. Postal Service

Figure 1: Mail Flow through National Infrastructure

Note: Originating mail refers to where the mail enters the system, while destinating mail refers to
where the mail leaves the system. This figure depicts mail that originates and destinates in different
locations.

Carrier
collection

Mail is picked up
from homes,
businesses,

and mailboxes

Mail is
delivered

Bulk Standard
Mail and

Package Services
Standard mail
in piece and

bulk form

Mail is
weighed

BMEU or DMU

PMPC PMPC

P&DCP&DC Post Office/
DDU

AMC AMC

HASP HASP

BMC BMC

Carrier

Originating Mail Destinating Mail

Collected at Post
Office or branch

Window mail

Post Office

First-Class Mail

Priority Mail

More than one mail type

Bulk Standard Mail and
Package Services

Source: GAO.

AMC - Air Mail Center

BMEU - Business Mail
 Entry Unit

BMC - Bulk Mail Center

DDU - Destination Delivery
 Unit

DMU - Detached Mail Unit

P&DC - Processing and
 Distribution Center

HASP - Hub and Spoke Program

PMPC - Priority Mail Processing
 Center

Figure 1.1: Mail routing in the United States Postal Service. The postal network
is a three-level hierarchy: post offices, where mail enters and leaves the network, at
the bottom, Regional Processing and Distribution Centers above them, and the Hub
and Spoke Program nodes and Air Mail Centers at the top. Image source: United
States Government Accountability Office [60].

roads were built and maintained because of the mail service: the US Constitution, in

fact, expressly gives Congress the power “to establish post-offices and post-roads.”

The cost of mail was dominated by transportation—the price of a letter depended

directly the distance to the destination [61]—and there was often only single cost-

effective way of routing mail. Routing was straightforward: mail would be sorted at

the originating post office and packaged for shipment to the destination post office.

However in the modern postal system it is processing (sorting, cancelling,

etc.) and not transportation that dominates the cost of mail: in 2004, for example,

3

processing costs of the United States Postal Service (USPS) were $20 billion, com-

pared to only $5 billion for transportation [60]. This fact shapes in the design of the

USPS postal network and the way it routes mail (Figure 1.1). The USPS network is

highly hierarchical, a theme we will see again in other networks. At the lowest level

of the hierarchy are local post offices which both collect incoming mail and do final

local delivery. Local post offices send their first-class mail for processing to a regional

Processing and Distribution Center (P&DC). Local post offices do no processing of

incoming mail; all processing takes place at the P&DC. At the highest level are the

Air Mail Centers and Hub and Spoke Program centers, although, as shown, mail may

also be taken to another P&DC directly [60]. The switch to centralized processing—

in the past, mail was cancelled and sorted locally—was motivated by advances in

automatic mail processing which significantly lowered costs [44]. Taking advantage

of automation required large central facilities rather than local processing, which

necessitated the transition to the highly centralized postal network we find today.

1.1.2 The Telegraph Network

The ancient precursors to the “modern” electrical telegraph were signal fires

whose origins fade into myth. These were improved upon (much later) by the

semaphore telegraph, which used movable displays that could be seen from sev-

eral miles away with the aid of a telescope. One of the best known such systems, the

Chappé telegraph, dates back to 1793. It consisted of two mechanical arms mounted

on a movable beam which would be arranged in various positions. Messages were

sent using a code which would translate words or phrases into positions [55]. Chappé

system telegraph lines were made up of two kinds of stations. The first kind were

simple repeaters in which the operator, who usually did not even know the code, sim-

ply mimicked the signals he saw. Such stations are the direct analogs repeaters found

in digital networks today. The second kind of stations were called divisional points;

they correspond to routers in modern networks: messages were decoded, copied to a

record book, and re-encoded for transmission along the correct line.

At its peak circa 1846, the Chappé visual telegraph connected Paris to major

cities in France. Moreover, the network had branches and multiple routes to a

4

destination, so that a message from Paris to Marseille could be sent via the Dijon or

Bordeaux branch, which allowed problems on a line to be bypassed [63]—a precursor

of the network routing mechanism we have today.

The electrical telegraph began to emerge at around the same time, with the

best known example of which was Morse’s telegraph. Whereas most of the mechanical

telegraphs were run by governments and were not accessible to the public, access

to electrical telegraphs was much broader, ushering in a new era of commercial

telegraphy. By 1853, about a hundred telegraph lines were in operation in the the

United States; Figure 1.2 shows a fragment of a telegraph map of North America.

A telegraph line in the Morse system was literally an electrical line carrying

current. In its normal state the line was energized; a mark was made by interrupting

the current. Several stations could be placed on a line, each being able to receive

signals by observing break in current using an electromagnet and send signals by

interrupting the current [55]. Thus, a telegraph line constituted a kind of broadcast

medium akin to the original shared-medium Ethernet.

Message Switching

Messages could also be sent between lines not connected together electrically.

This required that messages be transfered between lines manually. The message

would be received by the station on the originating line and delivered on paper for

transmission on the next line. If the next line was operated by another company,

the message would be delivered together with payment for transmission along the

remainder of the route. In an early treatise on the telegraph, the author described

this arrangement:

Lines occupying the same building have facilities in matters of accounts
and the transfer of messages from line to line. In former years, when
rivalry was at its highest, the companies would deliver the message and
the money to the next in course, in the same manner as the public. No
accommodation, no favor of any kind, nor any association between the
agents of the companies, was entertained. [55, p. 761]

What’s more, the sender of a message had explicit control over the routing of a

message. By law, “no company can refuse to transmit a message offered, and in

5

Figure 1.2: Fragment of the North America telegraph network showing the state of
Ohio circa 1853 [5].

such manner as directed by the sender.” [55, p. 765] The only exception was when

a company had a patent monopoly between two cities, giving the exclusive right

to transmit messages between the two cities, in which case such messages must

be transmitted on the company’s line. If the sender does not specify a route, a

company may route the message in a manner of its choosing. Note the similarity of

this mechanism to source routing in IP (Internet Protocol) networks.

6

Circuit Switching

It is also possible to route messages between different lines by physically

connecting the lines, putting them on the same circuit. This is the idea behind the

telegraph exchange, where it was use to connect private lines, such as those of banks,

rather than long-distance telegraph lines of a company. The idea seems to have been

invented as early as 1850, although exchanges did not come into use until the late

1860’s [31]. It is experience with telegraph exchanges jump-started the development

of telephone exchanges, which were perhaps the most important development in the

history of the telephone.

1.1.3 The Telephone Network

The invention of the telephone is widely credited to Alexander Graham Bell,

whose patent on the telephone was granted on March 7, 1876. It was not, however,

until the introduction of the telephone exchange two years later that the telephone’s

potential was realized. In fact, it was Bell’s competitor, the Western Union telegraph

company, that opened the first major exchange:

When the Western Union exchange opened in San Francisco, Bell’s activ-
ities were confined solely to selling and installing private line service. The
Bell company appears to have had its hands full providing just this type
of service, and dealing with rapid growth. There were no active plans to
offer exchange service in larger cities. [57]

The first telephone exchanges were based on a manually-operated switchboard. In a

1879 patent for an automatic switching system, the inventors M. D. Connolly, T. A.

Connolly, and T. J. McTighe described the state of the art thus:

Under the present system in use in the principal cities having telephonic
facilities the lines from the several stations converge to a central office
and terminate in a switch-board. When an individual member of the
exchange desires to communicate with any other member he signals the
central office, states his desires, and an attendant thereupon makes the
desired connection. The operation of making these connections is now
altogether a manual work, and requires not only constant attention but
much dexterity in order that there shall be as little delay as possible;
but in exchanges comprising many members the work of of the central

7

office is very great, requiring many employés to meet the wants of the
community. Even then, there are incessant delays, much confusion, and
consequently many mistakes and annoyances which it is highly important
should be obviated. [16]

The modern telephone network is a fully automated system. What it inherits

from the early switchboard is its circuit-switched nature. When the caller dials num-

ber, he is connected to the called party through a number of switches which provide

a circuit between the callers that lasts the duration of the phone call as if connected

electrically by a switchboard. In today’s telephone network, there is no actual electri-

cal continuity between the end points: the electrical signal is multiplexed with other

signals using a number of techniques (time or frequency division multiplexing and

more recently digital packetization) for more efficient switching and transmission.

Network Design and Routing

Until recently, the telephone network was highly hierarchical in nature. In-

dividual customer phone lines terminate at a local office, where they are aggregated

into trunks—links which can carry many phone calls simultaneously. In the AT&T

network [51], each local office is connected to a toll center. The next level of the hier-

archy consists of primary centers, then sectional centers, and finally regional centers,

which are fully interconnected (Figure 1.3 on the following page; note the resembalce

to the postal network shown in Figure 1.1 on page 2). Trunks connecting levels in

the hiearchy are called final trunks. In the absence of other links, a call would be

routed up the hierarchy from the caller’s central office to it’s toll center and then to

it’s primary center, and so on, up to the lowest center from which it can be routed

down to the called party’s central office. Local offices and switching centers may also

be connected by high-usage trunks which allow a call to be routed more directly.

High-usage trunks are installed when call volume between two endpoints justifies

the connection. Shown with dashed lines in the figure, they connect local offices or

switching centers at the same level or one level above and below in the hierarchy.

The associated routing mechanism is called fixed hierarchical routing [51,

Chapter 4]. Although we omit some details, fixed hierarchical routing works as

follows. Calls are routed through the network one hop—local office or switching

8

☏ ☏

Local Office

Toll Center

Primary Center

Sectional Center

Regional Center

Caller Called Party

Figure 1.3: Modern telephone network hierarchy. Final trunks shown as solid lines,
high-usage trunks as dashed lines. Only those high-usage trunks justified by demand
would be present in an actual network.

9

center—at a time. At each hop, the call is first offered to a high-usage trunk that

would short-cut the hierarchical route; if no high-usage trunks are available, the call

is offered to the final trunk to the next higher center in the hierarchy. If the final

trunk is busy, the call is rejected (or blocked, in telephone network terminology).

The main benefit of fixed hierarchical routing is its simplicity. Because it is

based on local decisions, the switch at each hop only needs to know which of its

trunks are busy in order to determine what to do with a call. Once an available

trunk is found, the switch control does not need to attend to the call. The drawback

of fixed hierarchical routing is that a call can be blocked by the network when, in

fact, the necessary capacity exists in the network.

In the mid-eighties AT&T began transitioning to a new routing mechanism

called Dynamic Nonhierarchical Routing (DNHR) [3]. The DNHR network replaces

the top levels of the existing hierarchical network with a “flat” one. When a call

enters the DNHR network, the originating DNHR switch (where it entered) identifies

the terminating switch (where it will leave). The originating switch then tries to find

a direct or indirect two-hop route to the terminating switch, trying these routes in

a fixed sequence until it succeeds or blocks the call. DNHR significantly reduced

blocking rates, although because of the two-hop limit it is still possible for DNHR

to block a call for which there is capacity in the network. (Allowing longer paths

improves efficiency slightly but has some technical disadvantages [21, Chapter 2])

Voice over IP

Voice over IP (VoIP) is an umbrella term describing mechanisms for carrying

telephone calls over the global Internet or private packet-switched IP networks in

contrast to the circuit-switched telephone network (see Goode [23] for an overview

of VoIP). For technical and regulatory reasons carrying telephone traffic over the

Internet is much cheaper than over the telephone network. Because the Internet

does not provide any guarantees on bandwidth or delay, a number of mechanisms for

providing improved service in the Internet have been proposed, ranging from resource

reservation [65] to simply providing preferential service at routers [9]. None of these

are widely deployed in the Internet, however; mass-market VoIP services are used

on the Internet today without resource reservation of differentiated services. In fact,

10

recent studies show that VoIP services in well-provisioned ISPs provide adequate

performance [8, 38], with routing instability being the main main cause of quality

degradation [10].

1.2 The Internet

The Internet began as the ARPANET, an experimental packet-switched net-

work sponsored by the United States Department of Defense Advanced Research

Projects Agency (ARPA). In their 1978 project completion report, the authors write:

This ARPA program has created no less than a revolution in computer
technology and has been one of the most successful projects ever un-
dertaken by ARPA. . . . Just as the telephone, the telegraph, and the
printing press had far-reaching effects on human intercommunication, the
widespread utilization of computer networks which has been catalyzed by
the ARPANET project represents a similarly far-reaching change in the
use of computers by mankind. The full impact of the technical changes
set in motion by this project may not be understood for many years. [24]

Although the ARPANET was not the first packet-switched network, it was arguably

the most influential, acting as the test bed for both of the two dominant routing

algorithms in use today. We start with an overview of packet switching and routing

in such networks.

Packet Switching vs. Circuit Switching

The ARPANET is what is called a packet-switched network, meaning that the

network provides the ability to send and receive discrete units of data—called pack-

ets—which are routed independently by the network. At the time it was developed,

the dominant communication network paradigm was circuit switching , exemplified

by the telephone and Telex [6] networks. Packet switching differed from circuit

switching in the following important ways:

Interface to the user. In a circuit-switched network, a user must first establish a

connection in order to communicate with another user. In a packet-switched

network, a user can send discrete units of data, called packets , to any other

11

user without first establishing a connection. It is possible, of course, to sim-

ulate a packet interface on a circuit-switched network by establishing a con-

nection for each packet, and, conversely, to provide a circuit-like interface to

a packet-switched network using a connection-oriented protocol like TCP, but

this inevitably incurs some overhead.

Switching mechanism. In a packet-switched network each packet is processed in-

dependently by each node along its path through the network, while in a circuit-

switched network, each node maintains some state information so that once a

circuit is established, no additional control processing is required by the node.

The downside is that a failure along the path breaks the connection, where

in a packet-switched network packets would be routed along a different path

transparently.

Service guarantees. The most significant difference between packet and switching

is in the implicit guarantees the network makes to the user. Establishing a cir-

cuit causes the network to reserve resources and implicitly guarantee a certain

level of service. A modern telephone circuit, for example, guarantees a certain

bandwidth suitable for voice signals (200Hz to 3.5kHz for commercially accept-

able quality [51]). A packet-switched network such as the ARPANET provides

only best-effort service, meaning that packets may be dropped or re-ordered in

the event of network failure or congestion.

At the time, packet and circuit switching where viewed a opposing paradigms,

with circuit-switching being the “proven and accepted technique” among communi-

cation engineers, so that “it remained for outsiders to the communicaton industry,

computer professionals, to develop packet switching in response to a problem for

which they needed a better answer: communicating data to and from comput-

ers” [52]. Today’s packet switched networks incorporate elements of the circuit

switching paradigm via efforts to support resource reservation [65]. Nevertheless,

the Internet still essentially adheres to the “best effort” service paradigm as reflected

by its routing mechanism.

12

1.2.1 Routing

An Internet network node–called a router–determines the next hop along

a packet’s route using a forwarding table, which specifies to which of the node’s

neighbors to forward the packet. This next hop is based only on the destination

address of the packet. The simplicity of this mechanism has made it possible to

do very fast switching; using special address prefix lookup algorithms (e.g. [62]) has

allowed routers to forward packets at gigabit speeds.

For forwarding to work, forwarding tables must be configured so that taken

together they form correct forwarding paths. In small, reliable networks forwarding

tables can easily be configured and updated manually. However one of the central

premises of packet-switched networks is that networks can be built using unreliable

hardware [4]. Such networks must continue to provide service by adapting to failures

automatically. The Internet today is in a constant state of change: links and routers

occasionally fail, some are decommissioned, while others are added; the current rate

of change is well beyond our ability to manage forwarding tables manually.

One possibility, used in the SITA network [14], a packet-switched network

pre-dating the ARPANET, is to pre-compute alternate routes to each destination,

so that when a link or node fails, forwarding tables can be switched automatically.

Routing computation in the SITA was done centrally based on established link usage

priorities. This was quite reasonable for the SITA network which at the time had

only eight nodes. Unfortunately, as the network grows it becomes infeasible to pre-

compute all routes.

An explicit ARPANET design decision was to make routing completely dis-

tributed without a central routing processor or pre-computed routes. Each router—

called an Interface Message Processor (IMP) in the ARPANET—was responsible

for computing its own forwarding table using information available to it directly

about its links as well as information learned from its neighbors. In addition to

maintaining forwarding-level connectivity, the routing mechanism also attempted to

minimize connectivity. This was done by assigning each link a weight or cost based

partly on the current packet queue length at the link; packets were then routed along

minimum-cost path, taking the total cost of a path to be the sum of the costs of its

edges [39]. This neatly reduced the routing problem to the well-studied problem of

13

finding a shortest path in a graph.

Unfortunately the above mechanism, specifically the use of queue lengths as

the link metric, was vulnerable to developing a feedback loop under high load. While

subsequent changes to the original protocol attempted to mitigate this behavior by

changing how link costs are calculated [30, 40], load-based link metrics were ulti-

mately abandoned. What survived of that approach was the formulation of routing

as a shortest path problem. Today Internet routing is based on fixed link costs where

a link either has a finite, statically-assigned cost if the link is up, or a cost of “infin-

ity” if it’s down [42, 50]. Moreover, it was even shown recently that traditional traffic

engineering (centralized routing and management based on known traffic patterns)

can be done by carefully setting link weights to drive the path-selection process [17].

Throughout the rest of this work, we assume that the problem of routing is

that of finding shortest (equivalently, minimum-cost) paths. Because routing is dis-

tributed, each node is only aware of the costs of its own links and must communicate

with its neighbors to learn about the rest of the network. In the context of this work,

a routing algorithm is a distributed algorithm for computing the forwarding tables of

nodes such that packets are sent along shortest paths; we define this more formally

the next chapter.

Distance Vector Algorithms

In the first routing algorithm developed for the ARPANET [39], each node

computed distances to each destination using a distributed Bellman-Ford algorithm.

It became the basis of a number of routing protocols, including RIP [37], Cisco’s

proprietary IGRP [53], DUAL [19], and more recently AODV [48]. In the main iter-

ative step of the algorithm, a node sends to its neighbors an estimate of its distance

to each node, the so-called distance vector. Using the distance estimates received

from neighbors, it then updates its own estimate by choosing for each destination

the neighbor that minimizes the path cost. The path cost via a given neighbor is the

sum of the edge cost to the neighbor (a quantity known to the node directly) and

the distance to the destination reported by that neighbor. The neighbor giving the

shortest path to destination is then set as the next hop to that destination.

The distance vector algorithm as described above has a major flaw, and that

14

is that when a node becomes disconnected, stale information remains in the network

potentially causing a permanent routing loop while distance estimates computed

by the algorithm continually increase, a phenomenon called “counting-to-infinity.”

(More generally, Jaffe and Moss [28] showed that long-term routing loops can form

when a cost increase occurs, but never after a decrease.)

The simplest “fix,” implemented in the ARPANET algorithm and RIP, is to

bound the maximum distance, so that when a distance estimate exceeds this value,

the destination is correctly declared unreachable. As a network becomes larger,

however, this so-called “infinity metric” must increase, thereby increasing the time

it takes for the loop to resolve. Partly for this reason routing protocols based on this

variant of the distance vector algorithm are rarely use in practice.

Another approach is to have neighbors share their shortest-path trees rather

than distance estimates only [13, 25, 49, 7]. This is usually done by including an

additional piece of information with each distance estimate, a “parent pointer” giving

the parent of the destination node in the shortest-path tree of the advertising node.

Knowing the shortest-path tree of its neighbor allows a node to explicitly exclude

paths that would result in a loop when computing its own distance to the destination.

These SPT-based algorithms are generally more conservative in accepting a new path,

thus being slower to accept a new path but minimizing the duration of transient loops,

a phenomenon we will observe experimentally in Chapter 4.

Link State Algorithms

The second ARPANET algorithm [40] was designed to address the short-

comings of the first algorithm, namely its long convergence time. This family of

algorithms came to be known as link state algorithms because nodes update each

other on the state of links. OSPF [43] and IS-IS [45], the dominant routing protocols

in use today, are based on the link state algorithm. In the link state algorithm, each

node maintains a table giving the current cost of all links in the network, which al-

lows it to compute its own shortest-path tree explicitly. The next hop is then chosen

using the computed shortest-path tree as the next node on the path (in the tree) to

the destination in question. The link state algorithm is simple and adapts quickly to

network changes. Unfortunately, it requires that every change be broadcast to every

15

node, a quality that makes the algorithm fundamentally unscalable, as we argue next.

1.2.2 Scalability

The routing algorithms described above share a common characteristic, namely

that network changes cause an update to be flooded throughout the rest of the net-

work, either as a distributed Bellman-Ford computation or as an explicit link state

update. In networking, scalability refers to the ability of a system to accommodate

growth. However as a network grows, the requirement to universally communicate

and act on each topology change can become problematic. This is because a larger

network also generates routing updates more often (assuming the likelihood of an

individual link failure is independent of overall network size), necessitating more fre-

quent routing updates and route re-computation. Worse yet, these costs are incurred

by every router in the network, meaning that the most resource-constrained router

effectively determines the maximum network size that can be served by a routing

algorithm. Thus, these routing protocols are frequently said to “not scale well.”

To address this problem, both OSPF and IS-IS allow the network to be divided

into areas . Each area acts as a separate network which connects to other areas via a

set of border routers. These border routers limit the propagation of link state updates

outside the area. Instead, area routers report cost summaries (essentially distance

vectors) to destinations inside the area.

The hierarchy imposed by areas is completely artificial: areas do not delineate

policy regions but rather serve as a routing algorithm optimization; Cisco’s OSPF

Design Guide [15], for example, states, “Areas are introduced to put a boundary on

the explosion of link-state updates.”

Furthermore the process of properly configuring and maintaining areas is a

complex art form; one with ad-hoc rules of thumb (“no more than 50 routers per

area”) and complex design trade-offs. Indeed, the structure imposed by areas inher-

ently limits the kinds of topologies that can be mapped onto routes and, if not care-

fully managed, can produce arbitrarily sub-optimal routes and unnecessary points

of failure [59]. This dissertation is focused on minimizing or removing the need for

such artificial hierarchy by improving the communication efficiency of the underlying

16

(a) Initial configuration

(b) Right link failure (c) Left link failure

Figure 1.4: A worst-case link failure scenario that requires ever node to be updated.
The initial state of the network is shown in (a). The failure of a single link forces the
forwarding network to forward packets clockwise to the shaded node (b). When the
link is restored and the node’s other link fails, the forwarding network must forward
counter-clockwise (c). Each alternating failure of the node’s links requires a complete
network update.

17

routing protocols.

Asymptotic Behavior

A natural question is whether it is inherently necessary to flood updates to

the whole network or whether it is possible to notify only some nodes in the network.

Unfortunately, in pathological cases, the answer is “No.” Figure 1.4 shows one such

network, a ring (cycle), which requires a complete update when a node’s link fail in

alternation. Referring to figure, when the shaded node’s right link fails, forwarding

to the shaded node must be clockwise. When the right link is restored and the left

link fails, the entire network must be re-configured to forward counter-clockwise.

Each alternating failure thus requires all nodes to update their forwarding tables.

Fortunately, in real-world networks it is often possible to avoid complete flooding.

However establishing meaningful upper and lower bounds requires both a network

and a link change model. Developing models that are of practical interest and yet

analytically tractable is a challenging open problem. We have instead opted to

evaluate our algorithm empirically by comparing our algorithm to existing algorithms

in simulation (Chapter 4).

Our problem should not be confused with compact routing , the problem of de-

signing addressing and forwarding schemes that minimize the memory requirements

of each node [11, 12, 18, 20, 47]. Compact routing differs from our problem in that

for us, the addressing and forwarding mechanism (via forwarding table lookup) are

fixed. Instead, we seek to minimize the communication cost of adapting to changes

in the network, rather than the spacial or computational complexity of forwarding.

Acknowledgements

This chapter contains work previously presented at the 2008 ACM SIGCOMM

Conference and appearing in its proceedings, which is joint work with Ramamohan

Paturi, Geoffrey M. Voelker, and Stefan Savage [32].

Chapter 2

XL: A Communication-efficient

Routing Algorithm

In this chapter we describe our routing algorithm, called XL (Approximate

Link state), which explicitly aims to reduce the number of updates generated as a

result of a change in the network. We give a complete formal description and prove

the correctness of the algorithm.

XL is fundamentally a link-state routing algorithm. It differs from the stan-

dard link-state algorithm in propagating only some link state updates. The core of

the algorithm consists three rules describing when an update should be propagated;

our main technical contribution is showing that these are sufficient for correctness.

These conditions are:

S1 When the update is a cost increase (bad news),

S2 When the link is used in the node’s shortest-path tree (propagated only to

the next hop to the link), and

C1 When it improves the cost to any destination by more than a 1+ε cost factor,

where ε is a design parameter of the algorithm.

Any updates not covered by the three rules above may be suppressed. The intuition

behind these rules is that S1 and S2 ensure that each node’s estimate of the distance

to a destination decreases along the forwarding path, which ensures that no loops are

formed. Rule C1 ensures that all nodes know about some good (not but necessarily

18

19

optimal) paths. Before formally describing the XL algorithm, we need to define our

network model.

2.1 Formal Definitions

The subject of this dissertation is the design of a communication-efficient

routing protocol for a dynamic, destination-based forwarding network such as the

Internet. A routing protocol is a mechanism by which network nodes can coordinate

packet forwarding to ensure any two nodes in the network can communicate while

optimizing some objective function such as cost. In a destination-based forwarding

network, forwarding is based only on the packet destination address. A node’s for-

warding decision is made using a forwarding table which gives the next hop to each

destination or indicates that the destination is unreachable. The objective of a rout-

ing protocol is a network configuration in which all nodes are mutually reachable

(provided the network is connected) and forwarding paths near-optimal according to

the objective function. In this work, the objective is to minimize the cost of each

path, where the cost is defined as the sum of the costs of links in the path.

A routing protocol operates on views—representations of the network state—

from which the forwarding tables are computed. In this section, we define these terms

formally which lays the groundwork for the design and analysis of routing protocols.

2.1.1 Network

We model a communication network as a graph G = (V,E, e) with vertex set

V , edge set E, and edge weight function e. The vertices represent network nodes,

edges represent links, and edge weight represent link costs. Throughout the paper,

we will use pairs of terms node and vertex, link and edge, interchangeably.

To simplify exposition the set of nodes and edges is fixed and globally known,

and only the edge weight function may vary with time. Extending a protocol in our

model to allow for vertex or edge insertions and deletions is straightforward.

The range of the weight function is the set of non-negative real numbers

together with the special value ∞ having the expected semantics. We use N(u) to

denote the set of neighbors of a node u ∈ V . The set of edges E is undirected,

20

meaning that (u, v) ∈ E ⇒ (v, u) ∈ E, although the weight function e is not

directed, meaning that e(u, v) is not necessarily equal to e(v, u). Let δ(u,w) denote

the weight of a minimum-weight path from u to w, or ∞ if no such path exists;

δ(u,w) is the lowest possible cost of forwarding a packet from u to w.

We use a superscript to denote the time at which the value of a function or

variable is considered. For example, δt(u,w) denotes the weight of a minimum-weight

path in G at time t. The domain of t is the set of non-negative reals.

A path is a sequence of nodes of which any consecutive pair is adjacent in

the graph. The length of a path α, denoted |α|, is the number of edges in the path.

The weight of a path α in G, denoted ‖α‖ is sum of the weights (given by the weight

function e) of its edges. As with other time-dependent values, ‖α‖t denotes the

weight of α at time t.

2.1.2 Forwarding

To each node u in the graph we associate a forwarding table fu which maps a

destination node w to a neighbor of u, with the semantics that a packet arriving at

u destined for w will be sent to the neighbor of u given by the forwarding table. In

addition to forwarding to one of its neighbors, a node may also forward to no one, if

for example, it has reached its destination. In other words,

fu(w) ∈ N(u) ∪ {none}, (2.1)

where N(u) are the neighbors of u.

The configuration of the forwarding network at some instant in time is the

set of forwarding tables of its nodes. A natural objective in a forwarding network is

a configuration in which all nodes are reachable via packet forwarding. To capture

the iterative nature of packet forwarding, we consider the path taken by a packet in

the network. The (instanteneous) forwarding path from u to w, denoted φ(u,w), is

the successive application of f to w, starting at u, up until none. Formally, φ(u,w)

21

is maximum-length sequence satisfying

φ0(u,w) = u (2.2)

φi+1(u,w) = fφi(u,w)(w) (2.3)

φi+1(u,w) 6= none. (2.4)

Note that φ(u,w) may be an infinite sequence, if, for example, fu(w) = v and

fv(w) = u, resulting in a forwarding loop. If φ(u,w) is a finite path from u to w, we

say that w is reachable by forwarding from u.

2.1.3 Soundness and Completeness

To each node we associate a routing process responsible for computing the

forwarding table of the node. The routing process knows (or measures directly)

the costs of incident links and communicates with its neighbors via these links. A

routing algorithm is the mechanism that defines what information is exchanged with

neighbors and how the forwarding tables are computed. The central purpose of

a routing algorithm is to maintain a forwarding configuration in which nodes are

mutually reachable by forwarding. It is often also desirable for the paths taken by

forwarded packets to be optimal or near-optimal. We formalize these objectives using

the notions of soundness, completeness and stretch.

Definition. A configuration is sound if for all nodes u and w, fu(w) 6= none implies

φ(u,w) is a path from u to w. A routing algorithm is sound if it produces a sound

configuration after the network becomes quiet.

In a nutshell, soundness says that a node should only attempt to forward to

destinations it can reach by forwarding. We will show that the XL routing algorithm

we describe in this paper has this property. There is also a weaker property that is

sufficient for many applications, and it is simply that there be no forwarding loops:

Definition. A configuration is loop-free if for all u and w, φ(u,w) is finite. A

routing algorithm is loop-free if it produces a loop-free configuration after the network

becomes quiet.

22

The difference between a sound and a loop-free configuration is that in the

latter, a node only needs to know that forwarding to its next hop will not cause a

loop (but the packet could be dropped somewhere down the path), while in a sound

configuration, forwarding to the next hop must actually reach the destination.

The easiest way to achieve soundness is for every node to “pretend” everyone

is unreachable by setting fu(w) = none for all destinations w. Clearly this is a

degenerate configuration, so what we also want is for fu(w) to be none only if w

really is unreachable from u in the network. We call this property completeness.

Definition. A configuration is complete if for all distinct u and w, δ(u,w) 6= ∞
implies fu(w) 6= none. A routing algorithm is complete if it produces a complete

configuration after the network becomes quiet.

Together the soundness and completeness properties say that all nodes are

reachable by forwarding, but they say nothing about the optimality of the forwarding

paths. This is the subject of our next definition.

Definition. The stretch of a configuration is the maximum taken over all distinct

nodes u and w of the ratio ‖φ(u,w)‖/δ(u,w), with the convention that 1/∞ is 0,

and ∞/∞ is undefined and not included in the maximum. A routing algorithm has

stretch 1+ε if it produces a configuration with stretch at most 1+ε after the network

becomes quiet.

2.1.4 Routing and Computation Model

To each node we associate a routing process responsible for computing the

forwarding table of the node. Because the process resides on the node, it can only

directly determine the costs of links incident on the node; however by communicating

with its neighbors it can learn about the rest of the network. A routing algorithm

is a distributed algorithm for the routing processes to coordinate their forwarding

table updates to achieve a desired global configuration (e.g., all nodes reachable by

forwarding).

In a real network adjacent nodes communicate by sending messages defined

by a routing protocol. The routing protocol typically defined not only the format and

23

Tuv TvuTu Tvfvfu

u v

Figure 2.1: The routing process of each node maintains the forwarding table (fu and
fv), internal view (Tu and Tv), and, for each neighbor, an external view (Tuv and
Tvu). The forwarding table and internal view and private, while the external view
Tuv can be atomically updated by u and atomically read by v, and similarly, the
external view Tvu can be atomically updated by v and atomically read by u.

e(u, v1), . . . , e(u, vk) fuUpdate
AlgorithmTv1u, . . . , Tvku Tu, Tuv1 , . . . , Tuvk

current time τ

Figure 2.2: The update algorithm computes the new forwarding table, internal view,
and external views. The input to the algorithm are current incident edge weights,
neighbors’ external views, its previous internal view and external views. The algo-
rithm also has access to the current time.

semantics of these messages but also the routing algorithm itself. For this reason, the

terms routing protocol and routing algorithm have come to be used interchangeably.

Rather than deal with message handling in out model, we instead define that a

node communicates with its neighbor by updating a data structure called an external

view . The external view is a kind of transactional one-way shared memory which

can be atomically updated by a node and atomically read by the node’s neighbor.

We denote by Tuv the external view of node u that it maintains for a neighbor v. In

addition to its external views, a node u also has a private internal view denoted Tu

which is not visible to its neighbors. Figure 2.1 illustrates this arrangement. In the

classical link state algorithm the external and internal views of a node are identical;

in the XL routing protocol, however, these views are distinct. For a pair of nodes u

and v, their external views Tuv and Tvu will normally be the same, as the algorithm

attempts to maintain “consensus” of external views. Together the forwarding table,

internal view, and external views thus constitute the main state of the routing process

(Figure 2.1).

24

To simplify analysis and exposition, we describe routing processes in the form

of an iterated function. The process first starts by initializing its internal view and

external views to the initial view. It then continually updates its forwarding table,

internal view, and external views using an update algorithm (see Fig. 2.2). Updating

an external view incurs a communication cost, since the update must to be sent

to corresponding neighbor. Our goal is to minimize the frequency of external view

updates. To simplify analysis, we assume that external views can be updated even

when the corresponding link has infinite cost. In practice, such updates would be

queued until the link comes back up.

2.2 The Routing Algorithm

Formally, a view in XL is a function mapping each edge to an edge datum,

which is simply a pair of values p and t, written p@ t, meaning that the edge had

weight p at time t. Furthermore, views must only have correct information, meaning

that the edge in question should have really had cost p at time t. We call this the

view invariant. To avoid writing each definition twice, once for the internal views

and once for external views, we will use the placeholder subscript ♦ to mean both u

and uv. With this convention, the view invariant is:

T♦(x, y) = p@ t ⇒ et(x, y) = p. (V1)

For convenience, let e♦(x, y) = p denote the weight of (x, y) according to T♦, that

is, if T♦(x, y) = p@ t. But note that e♦ is distinct from the true weight function e

written with no subscript.

We say an edge datum p@ t is more recent than datum p′@ t′ if t > t′. We will

also use the terms less recent and as recent having the obvious meanings. Finally,

we define a “most recent” operator “rec.” Applied to a set of edge data S, recS

is the most recent datum in S. Formally, if there exists an edge datum p@ t ∈ S

that is more recent than all other p′@ t′ ∈ S, then recS = p@ t; otherwise, recS is

undefined.

Let π♦(z, w) be a minimum-cost path1 from z to w in T♦. Since the underlying

1Ties may be broken arbitrarily, as long as the following consistency property is preserved: if
aγb is a subsequence of π♦(z, w), then π♦(a, b) = aγb.

25

graph is connected, such a path always exists, although the cost may not always have

finite cost. Define d♦(w) = ‖π♦(u,w)‖♦; as before, ♦ stands for both u and uv.

As described earlier, a routing algorithm is structured as an iterated state

update algorithm. The process starts in the initial state defined by the initial views

and then repeatedly executes the update algorithm, which updates the views and

forwarding table. We start by defining the initial view.

2.2.1 Initial View

The initial view defines the initial state of the routing process, before it has

determined the incident link costs or communicated with its neighbors. In other

words, it serves as the “base case” for the algorithm. The initial view, both internal

and external, is defined as

T♦(x, y) =∞@ 0. (2.5)

To satisfy the view invariant (Equation V1), we also define e0(x, y) to be ∞ for all

(x, y) ∈ E.

2.2.2 Update Algorithm

For the remainder of this section, fix a node u executing the update algorithm.

The XL update algorithm has three phases. In the first phase, the algorithm com-

putes a new internal view of u and the preliminary external views for its neighbors;

in the second phase, it updates the forwarding table using the new internal view;

and in the last phase, it computes new external views for each neighbor. We now

describe these phases. Table 2.1 summarizes the notation used in the description

and analysis of the routing algorithm.

2.2.3 Phase I: Internal and Preliminary External Views

The first phase is concerned with view bookkeeping. Conceptually, we would

like to have a single shared view for each pair of neighbors. However since the

neighbors operate asynchronously, this would require a synchronization to ensure

that the common view is updated correctly. Instead, we allow each neighbor to have

26

Table 2.1: Notation used in the description and analysis of the update algorithm.
The symbol ♦ represents the possible subscripts u or uv in the definitions.

τ Time at the start of the iteration (input).

εu(w) Maximum allowed relative error for destination w with respect to u
(algorithm parameter).

T ′u, T
′
uv The internal view and external view for v ∈ N(u), respectively,

computed in the last iteration of the update algorithm, or, during
the first iteration, the initial internal and external views (input).

Tvu The external view of v ∈ N(u) (input).

Tu, Tuv The internal view and external view for v ∈ N(u), respectively,
currently being computed (output).

T ∗vu The preliminary external view of v ∈ N(u) (Section 2.2.3).

fu The forwarding table of u, currently being computed (output).

e(x, y) Weight of edge (x, y) in G.

e♦(x, y) Weight of edge (x, y) in T♦.

‖α‖, ‖α‖♦ Cost of path α in G and T♦, respectively.

π♦(z, w) Shortest path from z to w in T♦, with ties broken arbitrarily but
consistently (Sections 2.2.4 and 2.2.5).

d♦(w) Cost of the shortest path from u to w in T♦; by definition, d♦(w) =
‖π♦(u,w)‖♦ (Section 2.2.5).

Du(w) Minimum distance proxy from u to w (Section 2.4).

its own version of this shared view. Neighbors keep their respective external views in

agreement by only updating them with more recent information and by maintaining

the invariant that a node’s external view is no older than its neighbors. This ensures

that the pair of views converge to the same single view. Thus first step in Phase I

is to make sure the local external view is up to date with respect to the neighbor’s

external view for u. We call this updated view the preliminary external view. For

each edge (x, y), the preliminary external view takes the more recent datum of the

previous external view T ′uv and the neighbor’s external view Tvu:

T ∗uv(x, y) = rec
{
T ′uv(x, y), Tvu(x, y)

}
(2.6)

The preliminary external view is what the node and it’s neighbor already agree on,

or will agree on after the neighbor performs an update. It is the starting point for

any updates the algorithm decided to communicate to its neighbor.

Next, we make the internal view the most recent information about each edge

27

available to u. For edges incident on u, the most recent information is available

locally and is only updated if the edge weight changes. Formally, for v ∈ N(u),

Tu(u, v) =

eτ (u, v) @ τ if eτ (u, v) 6= e′u(u, v),

T ′u(u, v) otherwise,
(2.7)

where “rec” is the “most recent” operator.

For all other edges, the source of the most recent information are the external

views. We collect the most recent datum for each edge. For all x and y where x 6= u,

Tu(x, y) = rec
v
T ∗uv(x, y). (2.8)

The following lemma follows by construction.

Lemma 1. The internal view and preliminary external view are well-defined and

satisfy the view invariant.

2.2.4 Phase II: Shortest-Path Tree and Forwarding Table

Having computed the internal view, which is the most recent information

available to u about the state of the network, the update algorithm now computes a

shortest-path tree using the internal view Tu and sets the forwarding table accord-

ingly. This step is identical to the standard link-state algorithm.

Recall that πu(u,w) is a minimum-cost path from u to w in Tu, such that the

set of all such paths from u forms a shortest-path tree. The distance from u to w in

this tree is du(w), which may be infinite if no finite-cost path exists. The forwarding

table is now set according to the computed shortest-path tree: If du(w) < ∞ then

set fu(w) = v where v is the next node in the path to w in the shortest-path tree;

that is, where πu(u,w) = uv · · ·w. Otherwise, if du(w) =∞, set fu(w) = none.

2.2.5 Phase III: External Views

In last phase, the algorithm decides whether to propagate the latest datum

to each of the neighbors. That is, for each neighbor v and each edge (x, y) ∈ E,

the algorithm chooses whether to set Tuv(x, y) = Tu(x, y), thereby propagating the

28

new datum to v, or to set Tuv(x, y) to T ∗uv(x, y) suppressing the update. Recall that

our goal is to bring the forwarding network into a sound and complete configuration

with low stretch, as described in Section 2.1.3. We achieve these global objectives by

enforcing the following three local constraints on external views.

The first two constraints, as we will soon show, guarantee soundness:

∀(x, y) ∈ E euv(x, y) ≥ eu(x, y) (S1)

∀w
(
fu(w) = v

)
⇒ ∀(x, y) ∈ πu(u,w) euv(x, y) = eu(x, y) (S2)

Constraint S1 states that we must never under-report an edge weight. This constraint

ensures that in steady state all views reflect edge costs that are greater than or equal

to the actual costs. Constraint S2 states that a node must advertise the latest edge

cost to the neighbor v used to reach that edge. Intuitively, this constraint ensures

that if v is our next hop to some destination w, then its own estimate of the distance

to w will be no worse than ours, and, therefore, v will not attempt to reach w through

us.

The third constraint guarantees completeness as well as bounded stretch.

Before stating it, we need one more definition. Let Du(w) be a lower bound on the

minimum distance from u to w in G. We show how Du(w) may be computed in

Section 2.4. With these definitions in mind, the third constraint is:

∀w duv(w) ≤
(
1 + εu(w)

)
Du(w) or duv(u,w) = du(w). (C1)

It states that distances in the external view should not be much worse than actual.

The lower bound Du(w) is used as a proxy for the actual distance δ(u,w).

It is possible to satisfy all three constraints by setting Tuv = Tu, that is, by

propagating all edge datum updates. The resulting algorithm would behave exactly

like the standard link-state algorithm. However by updating only the edges in the

external view Tuv necessary to satisfy the constraints above, we can can reduce

routing communication. The following algorithm does this.

Satisfying Constraints S1 and S2 is straightforward: an edge must be updated

if it causes S1 or S2 to fail. Constraint C1 is more complicated.2 Call an edge hot,

2In fact, minimizing the number of edges that need to be updated to satisfy Constraint C1 is a
hard problem (reduction from Set Cover).

29

denoted Hot(x, y), if it lies on a path to a destination that causes Constraint C1 to

fail.

Hot(x, y) = ∃w
(
(x, y) ∈ πu(u,w)

)
∧
(
duv(w) > (1 + εu(w))Du(w)

)
.

Our approach is to greedily update hot edges until Constraint C1 is satisfied. The

complete update procedure in given in Algorithm 1.

Algorithm 1 Phase III.

1. for all (x, y) ∈ E do

2. Tuv(x, y)← T ∗uv(x, y)

3. if euv(x, y) < eu(x, y) then

4. Tuv(x, y)← Tu(x, y)

5. end if

6. if
(
(x, y) ∈ πu(u, y)

)
∧
(
fu(y) = v

)
then

7. Tuv(x, y)← Tu(x, y)

8. end if

9. end for

10. for all (x, y) ∈ E do

11. if Hot(x, y) then

12. Tuv(x, y)← Tu(x, y)

13. end if

14. end for

It remains to show that Algorithm 1 produces an external view satisfying the

Soundness and Completeness constraints above.

Lemma 2. After executing Algorithm 1 (above) the external view Tuv satisfies the

View Invariant V1 and Constraints S1, S2, and C1.

Proof. By inspection, for every edge (x, y), Tuv(x, y) is assigned either Tuv(x, y) or

T ∗uv(x, y). Therefore, the view invariant holds by Lemma 1.

Now consider the loop in lines 1 through 9; we claim that after it is executed,

Tuv satisfies Constraints S1 and S2. It is easy to verify that lines 3–5 ensure S1

holds. Also, if fu(w) = v for some w and (x, y) is an edge in πu(u,w), then fu(y) = v

30

also. This implies the assignment on line 7 was executed and euv(x, y) = eu(x, y) as

required.

In lines 10 through 14 the algorithm updates edges to satisfy Constraint C1.

We claim that the resulting external view indeed satisfies Constraint C1. First, note

that after lines 1 through 9, the distance duv(w) cannot increase, because euv(x, y) ≥
eu(x, y) per Constraint S1. Now consider, toward a contradiction, a node w such

that duv(w) > (1 + εu(w))Du(w) and duv(w) 6= du(w). The latter implies that there

must be an edge (x, y) in πu(u,w) where eu(x, y) < euv(x, y). But then line 12 would

have been executed for edge (x, y), and euv(x, y) = eu(x, y), a contradiction.

2.3 Analysis

We now show that Constraints S1 and S2 produce a sound forwarding network

configuration and Constraint C1 produces a complete configuration with bounded

stretch. For the analysis, we assume that each execution of the update algorithm

takes a bounded amount of time; let ∆ be this duration. We will also need the

following definition.

An edge (or set of edges) is coherent at a point in time if its associated external

views are the same at that point in time. That is, an edge (u, v) is coherent at time

t if T tuv = T tvu. Also, recall that a set of edges is quiet during a time interval if their

weights do not change during the time interval.

Together the following two lemmas bound the cost of the forwarding path

from u to w by 1 + ε times the cost of the optimal path.

Lemma 3. Fix a time t > ∆. If φt(u,w) is a non-empty path that is both quiet

during time interval [t − ∆, t] and coherent at time t, then φt(u,w) is a finite path

from u to w and ‖φt(u,w)‖t ≤ dtu(w).

Proof. Consider the state of the network at the fixed time t. For notational simplicity,

we will omit the temporal superscript t. To prove the lemma, we first show that

φ(u,w) is finite, and then show that its last element is w. We then use this fact to

prove the bound. We start with two observations.

31

Observation 1. At time t the path φ(u,w) has been quiet for duration at least

∆, so the update algorithm has been executed at least once by each node along the

path φ(u,w) during the quiet interval [t−∆, t]. By Equation 2.7, ex(x, y) = e(x, y)

for each edge (x, y) in φ(u,w).

Observation 2. The distance estimate du(w) must be finite; otherwise fu(w) =

none, implying φ(u,w) is the empty path.

To show that φ(u,w) is finite, it is sufficient to show that the estimated

distance dz(w) decreases by an edge cost at each node along the path φ(u,w). With-

out loss of generality, consider the first edge (u, fu(w)). Let v = fu(w) and let

πu(u,w) = uvα, where α is some sub-path. Then:

du(w) = eu(u, v) + ‖vα‖u

= e(u, v) + ‖vα‖u by Obs. 1

= e(u, v) + ‖vα‖uv by Constr. S2

= e(u, v) + ‖vα‖vu by Coherence

≥ e(u, v) + ‖vα‖v by Constr. S1

≥ e(u, v) + ‖πv(v, w)‖v by opt. of πv(v, w)

= e(u, v) + dv(w). (?)

Thus φ(u,w) is finite. Now let w′ be the last node in φ(u,w). We claim that

dw′(w) = 0 and therefore w′ = w. By Observation 2, dw′(w) ≤ du(w) < ∞. But if

dw′(w) 6= 0 then by definition fw′(w) 6= none, contradicting w′ being the last node.

It remains to show that ‖φ(u,w)‖ ≤ du(w). The proof is by induction on the

length of φ(u,w). The base case is length 1 which implies

‖φ(u,w)‖ = e(u,w) = eu(u,w) = du(w),

as desired. Now consider φ(u,w) and assume ‖φ(v, w)‖ ≤ dv(w) where v = fu(w).

Continuing from (?),

du(w) ≥ e(u, v) + dv(w)

≥ e(u, v) + ‖φ(v, w)‖

= ‖φ(u,w)‖.

32

Lemma 4. Fix a time t > ∆. Let β be a path from u to w. If β is (i) quiet during

[t−∆, t], and (ii) coherent at time t, then

dtu(w) ≤ (1 + ε)‖β‖t,

where ε = maxx∈β εx(w).

Proof. As in the proof of Lemma 3, consider the state of the network at the fixed

time t. For notational simplicity, we will omit the temporal superscript t. Also as in

that proof, we claim ex(x, y) = e(x, y) for each edge (x, y) in β.

The proof of this lemma is by induction on the length of β. If β is the empty

path, then u = w and we’re done. Now let β = uvα for some path α, and assume

dv(w) ≤ (1 + ε)‖vα‖. Then, using Coherence in step (?):

du(w) ≤ eu(u, v) + ‖πu(v, w)‖u

= e(u, v) + ‖πu(v, w)‖u

≤ e(u, v) + ‖πu(v, w)‖uv

≤ e(u, v) + ‖πuv(v, w)‖uv

= e(u, v) + ‖πvu(v, w)‖vu (?)

= e(u, v) + dvu(w)

≤ e(u, v) + max
{

(1 + εv(w))Dv(w), dv(w)
}

≤ e(u, v) + max
{

(1 + ε)Dv(w), dv(w)
}

≤ e(u, v) + max
{

(1 + ε)‖vα‖, dv(w)
}

≤ e(u, v) + max
{

(1 + ε)‖vα‖, (1 + ε)‖vα‖
}

≤ e(u, v) + (1 + ε)‖vα‖

≤ (1 + ε)‖β‖.

Both lemmas above are still conditioned on coherence. Here we show that

a quiet network eventually becomes coherent, which will imply that our routing

algorithm converges in finite time.

Lemma 5. If a network is becomes quiet at some time t, then after a finite period

of time it also becomes coherent.

33

Proof. Divide the time line after t into epochs of duration ∆. We claim that if none

of the views change during an epoch, then they will not change in subsequent epochs

and the network is coherent. This is because the Update algorithm is a deterministic

function of the views and edge weights, with the property that if the internal view and

edge weights do not change, then the current time input is ignored (by Equation 2.7).

Furthermore, from by Equations 2.6, 2.7, and 2.8 it follows that if the external views

don’t change, then they must be coherent.

Since an edge datum is only injected into the network in Phase I when an

edge cost changes, no new edge data are injected after time t. Each view update

consists of some number of edge datum values being updated to more recent values

from another view. Since there is a fixed number of internal and external views in

the network, each view can only be updated finitely many times. It follows that the

network can only change a finite number of times after time t. But since the network

must change each epoch as shown above, it will stop changing and become coherent

in a finite period of time.

We can now state our main theorem.

Theorem 1. If a network is quiet at and after some time t, then after a finite

period of time the forwarding configuration becomes sound, complete, and has bounded

distortion ε, where

ε = max
u,w

eu(w).

Proof. By combining Lemmas 3, 4, and 5.

2.4 Minimum Distance Proxy Function

Recall that the minimum distance proxy function Du was used instead of the

actual minimum distance function δ to define the Completeness constraint (C1) in

Section 2.2.5 and was also used in Algorithm 1 to compute an external view. The

correctness of the XL routing algorithm requires only that 0 ≤ Du(w) ≤ δ(u,w) for

all u and w. However to give the algorithm leeway in suppressing updates, Du(w)

should be as close to δ(u,w) as possible. Computing the exact distance δ(u,w) is

exactly what we’re trying to avoid by using approximation, so we choose Du(w) to

34

be the distance computed by taking the weight of each edge to be the lowest cost

of the edge ever observed. Because this value only changes when an edge cost drops

below its all-time minimum cost, or an edge is added to the network, updates are in-

frequent and therefore introduce very little overhead to the algorithm. Furthermore,

because all-time minimum link costs can only decrease, it can be computed using

a distance vector-style algorithm without fear of loop formation, as shown by Jaffe

and Moss [28].

A simpler alternative which does not guarantee globally bounded stretch is

to set Du = du. In other words, instead of computing and maintaining the cost lower

bound as described above, we simply use out best estimate of the current cost from

the internal view. In some cases, this will cause the stretch to exceed 1 + ε, although

in practice the excess is likely to be quite small.

2.5 Cut Vertex Partitioning

Recall that in a sound configuration a node must only forward to a destination

if the destination is reachable. This is hardly the case in the Internet today where

ASes advertises prefixes, not individual destinations, even if part of the prefix is

unreachable. For this reason, we introduced a weaker notion, that of a loop-free

configuration, in which every forwarding path φ(u,w) must only be finite (loop-free)

and not necessarily a path to the destination w. It means, essentially, that a node

does not need to “know” that a destination is reachable before forwarding, only that

forwarding to the next hop will not cause a loop. Practically, this means that sending

a packet to an unreachable destination will generate an ICMP Unreachable message

from a router further in the network rather than the local router.

As we have shown above, the basic XL algorithm is sound. If we relax the

requirement of soundness, however, and settle for a loop-free algorithm, we can realize

significant savings in routing communication using an extension to the XL routing

algorithm we call Cut Vertex Partitioning (CVP).

The idea behind CVP is based on the observation that a cut vertex (also

called an articulation point), which is a vertex whose removal disconnects the graph,

partitions the network graph into two or more separate subnetworks that can only

35

communicate with each other through the cut vertex. This means that to communi-

cate with a destination “across” a cut vertex, a node can simply forward to the cut

vertex and it does not need to know about the network beyond the cut vertex. Thus

with respect to routing, each subnetwork can be considered separately.

In general, real networks do not have cut vertices that partition the network

into large subnetworks where CVP could be used as a “divide and conquer” technique.

However, what many real networks do have is a large number of leaves. Since the

neighbor of a leaf is necessarily a cut vertex, CVP eliminates leaves from the routing

computation, effectively reducing the size of the network. In fact, our implementation

of CVP only considers such leaf cuts. Our experiments (Chapter 4) show that this

“reduction by a thousand cuts” significantly decreases the communication load or

routing.

CVP partitions the network into subnetworks akin to OSPF stub areas [42,

Chapter 6]. A stub area is an OSPF area which does not have external connections.

However stub areas may have several routers connecting them to area 0, whereas with

CVP, there can only be a single such router—the “cut vertex.” On the other hand,

CVP can applied at any cut vertex without regard for the special conditions imposed

on OSPF stub areas. The most important distinction is that CVP is automatic,

requiring no manual configuration or special network design considerations.

The CVP extension to the XL routing algorithm consists of the cut vertex

forwarding policy described above, a mechanism for nodes to discover that they are

cut vertices, and a cut vertex advertisement for nodes to learn which cut vertex to

use to reach each destination. In our fixed, globally known network model where

only the edge weight function changes with time, all the necessary computation can

be carried out by each node separately. In practice, however, where the topology is

unknown and can change, cut vertex discovery and advertisement is slightly more

involved; we describe it next.

2.5.1 Cut Vertex Discovery

In the simplest case, a cut vertex is a neighbor of a degree-1 node, separating

the degree-1 node from the rest of the network. This is by far the most common case

36

in the real-world networks we use in simulation (Chapter 4). This case is particularly

easy to handle as it requires only direct negotiation between neighbors: a degree-1

node notifies its parent that it is a leaf and the parent takes appropriate action,

namely suppressing network updates across their link.

Non-trivial cut vertex discovery is more involved. The approach we propose

is to simply disseminate information on the presence of links so that each node may

determine whether it is a cut vertex. Since the underlying topology changes much

less frequently than link weights, flooding is an acceptable mechanism. Of course,

this can also be done in a centralized manner by having a designated node compute

the cut vertices periodically notify them of their status. Furthermore, cut vertex

discovery can be combined with minimum distance proxy computation described in

the previous section.

Acknowledgements

This chapter contains work previously presented at the 2008 ACM SIGCOMM

Conference and appearing in its proceedings, which is joint work with Ramamohan

Paturi, Geoffrey M. Voelker, and Stefan Savage [32].

Chapter 3

Forwarding Network Simulator

In this chapter we describe FNS, a discrete-event forwarding network simula-

tion system we used to empirically evaluate the performance of our routing protocol.

The simulation includes the forwarding tables and all routing protocol communica-

tion; it does not, however, simulate other network traffic or network characteristics

such as packet loss, latency, and bandwidth.

The FNS network model closely resembles the network model defined in Chap-

ter 2, the main difference is that nodes communicate by explicitly sending messages

instead updating views in the two-party publish/subscribe model. While the two are

trivially equivalent, message-passing is simpler to implement in a simulator.

FNS consists of several standalone programs of which the actual simulator is

only one. A simulation experiment consists of several steps performed by a different

FNS program. A typical workflow in shown in Figure 3.1.

The underlying network is described a pair of files: a topology file, defining

the nodes and links of the network, and a weight file, giving the nominal link costs.

The Generator program then generates the event script for the simulation, which

is a sequence of edge weight changes. The Simulator program then simulates a

routing protocol on the network using the event script. The output of the Simulator

program is a sequence of forwarding table updates. These updates are processed by

the Surveyor program, which generates a sequence of actual distance matrix updates

as defined by the forwarding tables, making it possible to reconstruct the distance

matrix at any point in time. The event script used by the Simulator program is also

37

38

generator

update

opt

event

act

topo &
weight

oracle

simulator

surveyor

analyzer

Figure 3.1: Workflow of a typical FNS experiment as described in the accompanying
text.

39

p0

p1
DF

λ0

λ1

(µ0, σ2
0)

(µ1, σ2
1)

DS

US UF

Figure 3.2: Link failure model used to generate link failure events by the Generator
program. The up/stable, down/stable, up/flapping, and down/flapping states are
denoted US, DS, UF, and DF, respectively.

processed by the Oracle program that generates the sequence of optimal distance

table updates, giving the minimum distance between every pair of nodes at any

point in time. Lastly, both actual and optimal distance table updates are processed

by the Analyzer program, which computes convergence times, stretch, and other

statistics.

3.1 The Generator Program

The Generator program generates a sequence of link cost changes according

to a stochastic model of link failures. In the generated event sequence, a link is either

up, in which case its cost is the nominal cost given defined by the weights file, or

down, in which case its cost is ∞. The two directions are coordinated, that is, links

(u, v) and (v, u) are either both up or both down.

Link failure and recovery is controlled by a stochastic process (Fig. 3.2) in

which each link is independent. At a given instant in time, a link is in exactly one of

four states: up/stable, down/stable, up/flapping, or down/flapping. In the up/stable

and up/flapping states, the link is considered up and has a finite weight as defined

in the weight file. In the down/stable and down/flapping states the link has weight

∞.

In addition to being up or down, a link is also either stable or flapping . In the

stable state, the link time-to-failure is distributed exponentially with mean λ0. Once

40

down, a link may remain in the down/stable state, in which case the time-to-recovery

is distributed exponentially with mean λ1, or, with probability p1 a link may become

unstable and transition to the flapping/down state. Thus, parameter p1 controls the

propensity of links to flap. In the flapping state, the time-to-recovery has a normal

distribution truncated to [0,∞) with parameters µ1 and σ2
1, and time-to-failure has a

similarly truncated normal distribution with parameters µ0 and σ2
0. After recovering

from failure in the flapping state a link leaves the flapping state with probability p0.

Parameter p0 thus controls how long a link remains flapping.

Our link event model is a generalization the two-state model of Park and

Corson [46]; we added the flapping failure mode, which we expected the XL al-

gorithm to handle particularly well. When p1 = 0, link failures are independent

with exponentially-distributed failure and recovery times. On the other hand, when

p1 = 1, all links have an exponentially distributed time-to-first-failure followed by

repeated up-down cycles controlled by the p0 parameter.

3.2 The Simulator Program

The Simulator program is a discrete event simulator that executes a single

routing protocol under a given topology and link event sequence. In other words, it

simulates n instances of the routing protocol running in parallel, one on each node.

The update algorithm is repeatedly executed in the context of each node. The input

to the algorithm is the simulated time and message queue of messages posted by

its neighbors between the last time the algorithm is executed and current simulated

time. The simulator repeatedly executes the update algorithm of each node, provid-

ing as input the (simulation) time at the start and end of the current iteration of the

algorithm, the costs of incident links, and its message queue, consisting of messages

sent by its neighbors since the last invocation of the update algorithm on this node.

The (simulated) duration of each invocation of the update algorithm is chosen ran-

domly according a normal distribution truncated to [0,∞) with parameters µ∆ and

σ2
∆.

The update algorithm also has access to the node’s forwarding table, incident

link weights, and any additional per-node state used by the algorithm. The update

41

algorithm can modify the forwarding table of the node and post messages from the

node to its neighbors. The messages are considered sent at the end of iteration (a

random variable as defined above) and will be available to any neighbor executing

at or after this time.

Finally, the routing algorithm also has access to the complete network topol-

ogy; it is only the link weights which are unknown during the simulation. An alter-

native would have been to have the routing algorithms discover the network topology

and adapt to change in the topology itself, rather than only the link weights. How-

ever this would have significantly complicated the implementation of the algorithm.

Current implementations of routing algorithms use simple static memory structures

for link or node lists without the trouble of addressing and dynamic structure man-

agement.

The Simulator program contains implementations of the following five routing

algorithms.

ls Link state algorithm (Section 1.2.1).

dv Distance vector algorithm (Section 1.2.1). The maximum distance

bound (“infinity metric”) is a global parameter of the protocol.

dv+p Distance vector with parent pointer algorithm [13, 25, 49].

lv Link vector algorithm [7].

xl The XL protocol introduced in this work (Chapter 2), parameterized

by maximum allowed error ε.

The Simulator program produces the update file, a chronological sequence

of global forwarding table updates, for subsequent processing. In addition, it also

generates a history of the communication at one-second granularity as well as a sum-

mary of the total number of messages sent. These statistics are our primary measure

of “communication overhead” of each protocol used in the evaluation (Chapter 4).

3.3 The Surveyor Program

The Surveyor program turns the sequence of forwarding table updates pro-

duced by the Simulator program into a sequence of actual (i.e., forwarding) distance

42

matrix updates. It other words, it computes the forwarding distance at every instant

in time during the simulation. At time instant t, the (u,w) entry of the actual dis-

tance matrix is the value ‖φt(u,w)‖t. If ‖φt(u,w)‖t =∞, then the Surveyor program

also records whether φt(u,w), the path itself, is finite, or whether the path includes

an infinite-weight edge.

3.4 The Oracle Program

The Oracle program produces a sequence of optimal distance matrix updates

from the link event sequence used by the simulator. It computes the optimal distance

between every pair of nodes at every instant in time: at time instant t, the (u,w)

entry of the optimal distance matrix is the value δt(u,w).

3.5 The Analyzer Program

The Analyzer program reconstructs the actual and optimal distance matrices

from the respective updates sequences produces by the Surveyor and Oracle pro-

grams. At each point in time t, it is possible to determine whether w was reachable

from u, and if so, the resulting stretch, that is, ‖φt(u,w)‖t/δt(u,w). For each such

pair, the Analyzer program computes the duration of time u could not reach w even

though there was a path from u to w as well as the median and highest centile (over

time) stretch between u and w. It does this by stepping through each update to

the actual and optimal distance matrices and computing the above information. Th

maximum, average, and median values of the above statistics taken over all pairs are

reported.

Acknowledgements

This chapter contains work previously presented at the 2008 ACM SIGCOMM

Conference and appearing in its proceedings, which is joint work with Ramamohan

Paturi, Geoffrey M. Voelker, and Stefan Savage [32].

Chapter 4

Routing Algorithm Simulation

In this chapter we describe the results of simulating our algorithm, as well as

four existing routing algorithms, on a variety of synthetic and real-world networks.

Our main result is a significant reduction in the number of update messages compared

to existing algorithms. We also analyze the convergence times and other statistics

obtained from simulation.

Our objective is to evaluate the claims that the XL routing algorithm:

v Sends fewer routing updates,

v Does not significantly sacrifice correctness, convergence time, or

stretch, and

v Continues to perform well as the network grows.

Our evaluation is based on simulations of the four algorithms implemented

by the simulator program (ls, dv, dv+p, lv, and xl) on a number of networks

and under two different link event models. The main result of simulation is that

the XL routing algorithm does indeed reduce the number of updates: compared

to the link-state algorithm, XL generates between 2 and 20 times fewer updates

(Table 4.3). This experiment is discussed in Section 4.2; first, however, we describe

our experimental setup.

43

44

Table 4.1: Network topologies used in the experiments. Column legend: n – number
of nodes; m – number of links; D1, D2, and D3 fraction of nodes of degree 1, 2, and
3, respectively. All but the Fuel networks have unit link costs.

Name n m D1 D2 D3 Description

Crown X 3X 4X 0 1/3 2/3 Two cycles of size X and 2X
with nodes in the smaller con-
nected to alternate nodes in the
larger.

Honey — — 0 ∼ 0 ∼ 1 A hexagonal grid.
Quad — — 0 ∼ 0 ∼ 0 A rectangular grid.

Abilene 11 14 0 45% 55% Abilene with routing metrics [1].
Arpanet 59 72 7% 48% 41% ARPANET (March 1977) [24].
Fuel1221 104 151 49% 19% 6% AS 1221 from RocketFuel [36].
Fuel1239 315 972 10% 19% 16% AS 1239 from RocketFuel [36].
Fuel1221c 50 97 0 50% 6% The 2-core of Fuel1221.
Fuel1239c 284 941 0 22% 18% The 2-core of Fuel1239.

Orb145 145 227 29% 28% 17% Fuel1239 rescaled (-n 200).
Orb257 257 433 31% 20% 21% Fuel1239 rescaled (-n 300).
Orb342 342 606 33% 24% 14% Fuel1239 rescaled (-n 400).
Orb406 406 791 27% 28% 14% Fuel1239 rescaled (-n 500).
Orb497 497 961 29% 26% 17% Fuel1239 rescaled (-n 600).
Orb575 575 1081 31% 25% 16% Fuel1239 rescaled (-n 700).
Orb664 664 1300 26% 27% 17% Fuel1239 rescaled (-n 800).
Orb729 729 1427 32% 24% 16% Fuel1239 rescaled (-n 900).
Orb813 813 1584 29% 25% 16% Fuel1239 rescaled (-n 1000).
Orb892 892 1694 34% 26% 15% Fuel1239 rescaled (-n 1100).

4.1 Experimental Setup

Each experiment consists of a number of simulation runs. Each run simulates

a single routing algorithm for 86,400 seconds (one day) at a rate of 10 iterations of

the update algorithm per second.

4.1.1 Networks

We used the following networks in our simulations: three synthetic networks,

the Abilene backbone [1], the ARPANET topology from March 1977 [24], two Rock-

etfuel networks with inferred link costs [36], and a series of networks created by

45

Crown 8 Honey 5× 5 Quad 5× 5

Figure 4.1: Small examples of the synthetic networks used in the experiments.

“re-scaling” the Sprint backbone (AS 1239) from the Rocketfuel dataset using Or-

bis [34]. Orbis is a topology generator that generates a random graph having a

specified joint degree distribution. Orbis can also “re-scale” a joint degree distri-

bution to a larger or smaller network. By extracting the degree distribution of a

known network, Orbis can generate “re-scaled” version of the same network. The

command-line arguments to the dkRescale program were “-k 1 -n nnom”, where

the nominal size nnom ranged from 200 to 1100. Table 4.1 describes the networks

used in the experiments and Figure 4.1 shows small instances of synthetic networks.

The synthetic networks allowed us to test the routing algorithms on topologies based

design decisions different from the AS router-level topologies. In particular, the

large-diameter Honey and Grid networks shed some light on how the algorithms

might perform in wireless ad-hoc networks.

We also created the 2-cores of the two Rocketfuel networks. The 2-core of a

graph is the graph resulting from repeatedly removing all degree-1 nodes [54]. With

no degree-1 nodes, CVP (which was implemented only for leaf nodes) would have no

effect, allowing us to also evaluate the value of this optimization.

4.1.2 Link Events

All link events for the simulation were generated using the generator program

(Section 3.1). Recall that in the generator link event model, a link is either up

(nominal weight) or down (infinite weight); the time between failures and failure

duration are controlled by the four-state stochastic model shown in Figure 3.2. In

our simulation, we used two different sets of model parameters: a Standard set in

46

which a link fails about once a day, and comes back up in about an hour, and the

Flapping set in which links are less likely to fail, but more likely to fail repeatedly

(flap); Table 4.2 gives the precise model parameters.

Both the Standard model and Flapping model are more aggressive that what

might be expected of a real network [26, 56]. We wanted to stress the routing

algorithms under the kinds of conditions where routing algorithm efficiency matters

greatly, namely where many links are unstable (Standard model) or only some are

unstable but tend to oscillate (Flapping model).

4.1.3 Algorithm Parameters

The distance vector algorithm (dv) requires a maximum distance bound (the

so-called “infinity metric”) to detect routing loops. For the simulations, this value

was computed by using a linear program to approximate the cost of the longest path.

The XL routing algorithm (xl) has an error parameter ε that determines the stretch.

In the experiments, we simulated xl with ε = 0.0 and ε = 0.5, corresponding to no

stretch and a maximum stretch of 1.5. Increasing ε beyond 0.5 did not appear to

significantly reduce the number of updates generated by the algorithm beyond the

ε = 0.5 level.

4.2 Performance

In this section we evaluate our first two claims: that compared to existing

routing algorithms, the XL algorithm uses fewer updates to achieve comparable

performance. We simulated each routing algorithm on the synthetic and measured

Table 4.2: Parameters used to generate link events according to the generator link
event model described in Section 3.1. Mean time-to-failure is controlled by the λ−1

0

parameter and the probability of a repeat failure by the p1 parameter. Units: d –
days, h – hours, m – minutes, s – seconds.

p0 p1 λ−1
0 λ−1

1 µ0 σ0 µ1 σ1

Standard 0.25 0.10 1 d 1 h 1 m 10 s 1 m 10 s
Flapping 0.25 1.00 2 d 10 s 10 s 1 s 10 s 1 s

47

Table 4.3: Average number of messages after initialization, relative to ls (average of
10 simulation runs). The xl columns shows values for algorithm parameters ε = 0.0
(first value) and ε = 0.5 (second value).

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

Crown 64 3.13 1.11 1.10 0.64 0.41 0.85 0.82 0.82 0.45 0.11
Honey 16× 16 0.95 0.69 0.65 0.31 0.18 0.28 0.65 0.60 0.20 0.06
Quad 16× 16 0.12 0.40 0.39 0.14 0.10 0.06 0.38 0.37 0.07 0.04
Abilene 0.82 0.71 0.71 0.50 0.43 0.88 0.79 0.79 0.47 0.33
Arpanet 2.33 1.02 1.02 0.47 0.40 1.80 1.00 0.99 0.36 0.24
Fuel1221 7.90 0.63 0.62 0.14 0.10 7.05 0.61 0.60 0.12 0.05
Fuel1239 5.01 0.25 0.26 0.17 0.09 1.21 0.25 0.25 0.14 0.04
Fuel1221c 0.79 0.45 0.46 0.34 0.22 0.39 0.42 0.42 0.27 0.11
Fuel1239c 0.99 0.25 0.25 0.19 0.09 0.21 0.24 0.24 0.14 0.04

topologies. Each combination of algorithm, network and link event model (Standard

or Flapping) was simulated 10 times and averaged in reporting results. For each

combination, the 10 simulations differed only in the link events.

4.2.1 Total Communication

Table 4.3 shows the average number of messages sent during the simulation

relative to ls, the link state algorithm—a convenient baseline for comparison.

Referring to the table, the most erratic performer was dv, which was highly

sensitive to topology: It did extremely well on networks such as Quad 16 × 16

with many equal-cost paths and poorly on less well-connected networks with long

cycles that trigger its “counting-to-infinity” behavior. Equal-cost paths benefitted

dv because the failure of any single link would often not change a node’s distance

estimate, so that no distance update would be generated.

Both dv+p and lv performed similarly (as expected): they routinely did bet-

ter than ls because only updates to links in a node’s shortest path tree would be

propagated. On the other hand, they could not take advantage of the multiple

equal-cost paths as dv could. This is because these algorithms communicate their

shortest-path trees; when a path cost changes, an update must be sent to that effect,

48

even if another path having equal cost is also available.

The XL algorithm performed consistently well on all networks. Like dv, it was

able to take some advantage of path redundancy in the Quad synthetic network be-

cause updates when a link returned to service could be suppressed (see Section 4.2.5).

Like dv+p and lv, it also only propagated updates that affected its shortest-path tree.

Finally, it on “leafy” networks like Fuel1221, Cut Vertex Partitioning (Section 2.5)

allowed many updates to and from leaf nodes to be suppressed.

We note that XL algorithm performed particularly well in the flapping model.

Why is this? The reason is that the XL algorithm tends to move away from flapping

links: The first time a link fails, an update is propagated to all nodes in whose

shortest-path tree the link appears, in other words, to nodes that used the link to

reach some destination. When the same link comes back up, many of the nodes which

used it keep their current path because it is only slightly worse than the previous

path which used the link. As a result, fewer nodes now have the link in the shortest-

path tree, so that when it fails again, they are not affected. Thus, after the first

failure, the effects of the link are generally limited to a small neighborhood around

the link where the link is a significant fraction of path costs (Section 4.2.5).

4.2.2 Per-Node Communication

In the introduction we motivated our problem of reducing the number of

routing updates by the fact that the slowest router in the network limits the total

size of the network by the update rate it can sustain. It is worth asking, therefore,

whether the reduction in the number of messages shown above is spread uniformly

across the network, or whether there were bottleneck routers whose performance

would ultimately dictate the sustainable update rate. Table 4.4 shows the maximum

number of messages generated by any single node during the simulation, relative to

ls. In contrast to the total communication, this number shows the maximum load

placed on an individual node rather than the network as a whole. Although it is

does not show short-term load on a node, it does show whether a routing algorithm

spreads the communication costs evenly across the network.

These results do not differ markedly from the total communication results

49

Table 4.4: Average (over 10 simulations) of the maximum number of messages gen-
erated by any one node, relative to ls. The xl columns shows values for algorithm
parameters ε = 0.0 (first value) and ε = 0.5 (second value).

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

Crown 64 3.41 1.07 1.06 0.68 0.46 1.09 0.79 0.78 0.49 0.17
Honey 16× 16 1.09 0.73 0.68 0.35 0.23 0.42 0.71 0.64 0.24 0.09
Quad 16× 16 0.16 0.45 0.43 0.18 0.14 0.12 0.44 0.42 0.10 0.07
Abilene 0.97 0.77 0.77 0.64 0.55 0.98 0.83 0.83 0.55 0.46
Arpanet 2.28 0.91 0.89 0.51 0.45 1.86 0.89 0.87 0.39 0.28
Fuel1221 7.32 0.46 0.46 0.12 0.09 6.56 0.44 0.43 0.10 0.05
Fuel1239 4.85 0.23 0.23 0.20 0.11 1.16 0.21 0.21 0.16 0.05
Fuel1221c 0.74 0.38 0.38 0.37 0.26 0.34 0.35 0.36 0.30 0.16
Fuel1239c 0.95 0.22 0.22 0.22 0.11 0.20 0.22 0.21 0.17 0.05

shown in Table 4.3, indicating that none of the algorithms impacted any one node

more heavily than the link-state algorithm, in which the number of messages sent by

a node is proportional to its degree. We conclude, therefore, that the benefits of the

XL algorithm are spread evenly across the network.

4.2.3 Stretch

In addition to counting the number of messages, we performed additional

analysis as described in Section 3. The first quantity we consider is stretch; recall

that stretch is the ratio of the forwarding cost to optimal cost between a pair of

nodes. Because stretch is an instantaneous measure for each pair, it is not an easy

value to summarize for an entire simulation. We use the top stretch centile for each

pair. By the top centile, we mean the lowest upper bound for 99% of the simulation

duration. In other words, a pair’s stretch is at most the top centile value 99% of the

time. In Table 4.5 we report the median, average and maximum top centile stretch

over all pairs for xl with parameter ε = 0.5, corresponding to maximum allowed

stretch of 1.5. For all other algorithms, including xl with ε = 0.0, the maximum top

centile stretch was zero as expected, and is not shown.

Clearly, while the observed stretch approaches the 1.5 (the maximum allowed

50

Table 4.5: Top centile stretch for xl with parameter ε = 0.5. The median, average,
and maximum of the top centile were taken over all source-destination pairs; a pair’s
instantaneous stretch is at most its top centile value 99% of the time.

Standard model Flapping model

Med Avg Max Med Avg Max

Crown 64 1.00 1.02 1.43 1.00 1.01 1.39
Honey 16× 16 1.00 1.05 1.45 1.00 1.02 1.44
Quad 16× 16 1.00 1.02 1.43 1.00 1.01 1.40
Abilene 1.00 1.01 1.22 1.00 1.01 1.18
Arpanet 1.00 1.02 1.45 1.00 1.01 1.41
Fuel1221 1.00 1.01 1.34 1.00 1.01 1.33
Fuel1239 1.00 1.04 1.41 1.00 1.02 1.41
Fuel1221c 1.00 1.02 1.35 1.00 1.01 1.33
Fuel1239c 1.00 1.04 1.42 1.00 1.02 1.41

per the stretch parameter) for some source-destination pairs, the average observed

stretch is quite good, in all cases at most 5% of 1.0. In fact, the median was 1.00,

indicating that for the majority of nodes the forwarding path is optimal. There

are three reasons why this occurs. The first is that in a network with sufficient

redundancy, a single link will affects only a few of the total shortest paths; in this

sense, the above stretch measurement is sensitive to the number of link changes and

their downtime duration in the simulation. The second reason pairwise stretch is

generally low is that the effect of a sub-optimal detour is diminished with distance,

so that while a suboptimal path may have stretch near the maximum, the stretch of

longer paths including the sub-optimal path as a sub-path will decrease in proportion

to the overall path length. Finally, another phenomenon is taking place: stretch

allows the XL algorithm to suppress updates to distant nodes for which the next hop

is not affected by a slight increase in the cost. In other words, the optimal path is

chosen even though the node in question “thinks” it is using a longer path. Thus, by

just allowing the XL algorithm to choose sub-optimal paths we were able to get the

reduction in communication complexity while paying only a fraction of the allowed

50% penalty.

51

Table 4.6: Forwarding loop duration maximum over all source-destination pairs,
relative to ls. The forwarding loop duration for a pair of nodes u and w is the
duration of time φ(u,w) was infinite.

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

Crown 64 4.08 0.00 0.00 1.04 0.88 9.28 0.00 0.00 1.17 0.66
Honey 16× 16 17.2 0.00 0.00 0.99 0.88 1.49 0.00 0.00 0.90 0.80
Quad 16× 16 5.96 0.00 0.00 1.00 0.98 1.24 0.00 0.00 1.16 1.03
Abilene 2.27 0.00 0.00 0.79 0.87 1.83 0.00 0.00 0.93 0.98
Arpanet 3.12 0.00 0.00 0.91 0.82 2.86 0.00 0.00 0.94 0.82
Fuel1221 74.2 0.00 0.00 0.79 0.79 46.0 0.00 0.00 0.79 0.81
Fuel1239 85.6 0.00 0.00 0.92 0.87 24.9 0.00 0.00 0.95 0.85
Fuel1221c 10.8 0.00 0.00 0.87 0.85 2.60 0.00 0.00 0.96 0.95
Fuel1239c 25.1 0.00 0.00 0.95 0.86 2.24 0.00 0.00 0.99 0.85

4.2.4 Convergence

Finally, we consider the convergence time of the XL routing algorithm. In

Chapter 2 we proved that a finite time after the network becomes quiet the views

stop changing, meaning that that the algorithm eventually converges. In this section,

we would like to determine experimentally how long is “eventually.” Experimentally,

“convergence time” means the time it takes a routing algorithm to establish a desir-

able (i.e., sound and complete) forwarding configuration. In essence, it combines the

time it takes a routing algorithm to re-establish a sound (or loop-free) configuration

after a link failure and the time it takes the algorithm to start using a lower-cost

path when it becomes available.

The analyzer program does not measure convergence time directly; instead,

it measures the duration of forwarding loops and the time to establish a new forward-

ing path when a node becomes reachable. The former is reported in Table 4.6 as the

maximum, over all source-destination pairs, of the combined duration of forwarding

loops. The time to establish a new forwarding path is reported in Table 4.7 as the

maximum, over all source-destination pairs, of the total time the forwarding distance

was infinite while the optimal distance was not. In both tables, results are shown

relative to ls.

52

Table 4.7: Maximum duration of infinite forwarding-to-optimal distance ratio rel-
ative to ls. The maximum is taken over all source-destination pairs. The infinite
forwarding to optimal distance ratio duration for a pair of nodes u and w is the
duration of time when ‖φ(u,w)‖ was infinite but δ(u,w) was not.

Standard model Flapping model

dv dv+p lv xl dv dv+p lv xl

Crown 64 2.58 2.74 2.73 1.54 1.74 5.29 5.44 5.37 1.45 1.41
Honey 16× 16 1.19 3.08 2.46 1.10 1.09 1.30 4.85 3.12 1.02 0.93
Quad 16× 16 1.10 2.54 2.00 1.03 1.03 1.02 2.92 2.12 0.99 0.99
Abilene 1.25 1.41 1.41 1.05 1.14 1.36 1.55 1.56 1.01 1.02
Arpanet 1.29 1.41 1.34 0.95 0.94 1.20 1.48 1.46 0.96 0.89
Fuel1221 1.04 1.15 1.09 0.60 0.63 1.06 1.16 1.14 0.52 0.52
Fuel1239 1.15 1.44 1.36 0.75 0.76 1.04 1.24 1.22 0.74 0.70
Fuel1221c 1.16 1.38 1.36 1.03 1.09 1.33 1.62 1.41 1.00 0.98
Fuel1239c 1.54 1.76 1.57 1.05 1.03 1.50 1.70 1.63 1.01 0.93

It comes as no surprise that the generic distance vector algorithm has a prob-

lem with long-lasting loops. In contrast, loops in dv+p and lv are extremely rare

and short-lived because, although they are not loop-free at all times, their policy for

accepting a next hop are fairly conservative. Conversely, this “reluctance” to accept

a new path is also responsible for the longer time to establish a new forwarding path.

With the exception of the Crown network, xl had slightly better conver-

gence times than ls. At first glance, it may seem paradoxical that any algorithm

should do better than ls, since ls floods all updates without delay. The reason xl

sometimes outperforms ls is because under xl, when a new path becomes available,

a node’s forwarding path changes only if the new path is much better, thus avoiding

transitory loops while the path stabilizes. On the other hand, the time to accept

a new forwarding path is generally longer than ls because xl has less information

about the network, so that when a link fails, it may be necessary for the link failure

update to propagate before a bypass route is advertised. Cut Vertex Partitioning

partially remedies this, because when a cut edge comes up, only the corresponding

cut vertices need to be updated to restore the path.

It is also worth noting that the absolute durations behind Tables 4.6 and 4.7

for ls are actually quite small: relative values within 50% of 1.00 are unlikely to be

53

operationally significant.

4.2.5 Scalability

To evaluate the scalability of the XL routing algorithm relative to existing

algorithms, we simulated each algorithm on families of networks of increasing size:

the Honey synthetic network family and the Orb re-scaled network family described

earlier. Each combination of algorithm, network, and link event model (Standard

and Flapping) was simulated 5 times and averaged in reporting results. Figures 4.2

and 4.3 shows the number of messages as a function of network size for the Orb and

Honey families of networks, respectively.

As the network size increases, the XL algorithm maintains its good relative

performance. As with other algorithms, however, the routing communication load

still grows linearly with the size of the network. This is because a link failure still

triggers partial flooding to nodes whose shortest-path tree included the failed link,

and roughly half of all simulation events are link failures. In a connected network,

a node’s shortest-path tree contains n− 1 nodes, so that when link events are inde-

pendent, the probability of a node being affected by a network change is (n− 1)/m.

Thus the expected number of nodes affected by a random, independent link failure

is about n2/m; in a network such as the Internet where m/n is a small constant, a

random link failure will be propagated to a constant fraction of the nodes.

When link failures are not independent, the XL algorithm can extract an

advantage. This is because when a link comes up after failure, only nodes for which

the link significantly improves the distance to a destination learn of the change, per

Condition C1. If the link fails again, it is only these same nodes that need to be

updated. Figure 4.4 shows an example of this phenomenon in the Quad 13 × 6

network.

In general, the nodes for which an edge (u, v) changing weight from ∞ to

a finite value a improves some distance in the network by a factor of (1 + ε) are

precisely the nodes of distance at most

r =
b− (1 + ε)a

ε
, (4.1)

from u, where b is the distance from u to v when e(u, v) =∞, that is, b is the detour

54

300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e p

er
fo

rm
an

ce

Standard model

300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e p

er
fo

rm
an

ce

Flapping model

ls dv+p xl 0.0 xl 0.5dv

Figure 4.2: Number of messages as a function of network size for the Honey 16×Y
family of networks; values are normalized by the number of edges in the graph. The
family consists of 19 networks for Y = 7 . . . 25.

55

200 300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e p

er
fo

rm
an

ce

Standard model

200 300 400 500 600 700 800
network size

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

tiv
e p

er
fo

rm
an

ce

Flapping model

ls dv+p xl 0.0 xl 0.5

Figure 4.3: Number of messages as a function of network size for the Orb family
of networks; values normalized by number of edges in the graph. Both dv+p and lv

performed similarly (within 5%); only dv+p is shown. The distance vector algorithm
was omitted because its communication exceeded the other algorithms by a factor of
5 in the Standard model and nearly an order of magnitude on the Flapping model.

56

(a) Initial configuration

(b) Detour when link fails

(c) Updated nodes when link restored

Figure 4.4: A flapping link in the Quad 13 × 6 network under the XL algorithm
with ε = 0.5. Starting with the initial network in subfigure (a), a link failure is
flooded to every node on the network, as well as any previously-suppressed updates
about the possible detour shown dotted in subfigure (b). When the link comes back
up, Constraint C1 only requires a subset of nodes (shaded) to be notified, shown in
subfigure (c). If the link continues to fail, only the shaded subset is notified.

57

cost of (u, v). In the absence of other link events, the effect of a single flapping link

will be limited to a neighborhood around the link, the size of which is proportional

to the detour cost of the link.

Acknowledgements

This chapter contains work previously presented at the 2008 ACM SIGCOMM

Conference and appearing in its proceedings, which is joint work with Ramamohan

Paturi, Geoffrey M. Voelker, and Stefan Savage [32].

Chapter 5

Conclusion

The primary objective of this dissertation was to determine whether routing

can be made more scalable without imposing artificial hierarchies on a communica-

tion network. Our main contribution is a new link state routing algorithm, called

XL, which automatically limits the scope of routing updates, thus significantly re-

ducing the communication overhead of routing. This chapter summarizes this and

other contributions, and then describes a number of directions for future work.

5.1 Contributions

At the outset, we were motivated by whether complete flooding of network

state information, as done by OSPF and other link state protocols, is inherently

necessary. Although in certain cases this is indeed so (see the example in Section 1.2.2

on page 15), it seemed to us that in many real networks complete flooding was not

necessary because information from one part of the network often did not affect

the routing decisions made in another. Often, but not always, and therein lay the

difficulty. Contrary to proposals that simply limited the distance an update was

propagated [27], some far-away updates are necessary for correct routing and cannot

be suppressed or delayed (again, see the example in Section 1.2.2).

Our main technical contribution is a set of sufficient conditions for correct

routing specifying which link state updates must be propagated and which can be

suppressed. In Chapter 2 we formalized “correct routing” in terms of soundness and

58

59

completeness—formal properties of a forwarding network configuration. We then

proved that the XL routing algorithm achieves these properties.

A major advantage of XL over other proposed routing algorithms is that XL

is fundamentally compatible with other link state algorithms, as use in OSPF, for ex-

ample. This is because naive flooding automatically satisfies the XL conditions, and

can thus be regarded as an instance of XL satisfying Conditions S1, S2, and C1. In

particular, existing routing protocols like OSPF can be augmented with the XL up-

date suppression mechanism and remain compatible with existing implementations,

providing an attractive path for incremental deployment.

We evaluated XL in simulation. Of course, a purely analytical evaluation

would have been desirable as well; unfortunately meaningfully establishing the ad-

vantage of one routing algorithm over another requires developing believable real-

istic network and a link event models. The former is still an active area of re-

search [2, 29, 33, 35, 41, 58, 64], while work on the latter is in its infancy. Without

a network model, the analysis simple runs into the trivial flooding lower bound ex-

hibited in Section 1.2.2.

On Chapter 4 we demonstrated experimentally that XL significantly reduces

the number of updates generated during a network change. At the same time, XL

does not sacrifice other desirable qualities such as convergence time. Moreover, the

actual stretch induced by XL is much less than specified by the maximum stretch

parameter; in practice, over half of all forwarding paths experienced no stretch at all!

Thus by allowing some stretch and using Cut Vertex Partitioning, we have allowed

the algorithm to suppress 70-90% of the updates without sacrificing any performance

in most of the network.

Our experiments used a forwarding network simulation system (Chapter 3)

written expressly for the purpose of routing algorithm comparison. Unlike tradi-

tional network simulators, our simulation system only simulates link cost changes,

forwarding tables, and the routing algorithms. By restricting the simulation to the

relevant aspects of routing algorithms, we were able simulate larger networks and

measure precisely the qualities of interest to us. Our simulation system proved a

useful tool for studying routing algorithm behavior.

60

5.2 Directions for Future Work

The obvious next step in this work is a working OSPF-compatible implemen-

tation of the XL algorithm. Such an undertaking poses the significant challenge of

not only implementing the nitty-gritty details of a routing protocol (e.g., keep-alives,

message re-tramission, queuing) but also ensuring compatibility with existing OSPF

implementations. Of course, complete or even partial deployment of the XL algo-

rithm in the real world would enable further study of the algorithm. Perhaps one of

the most interesting questions we could answer is to what extent partial deployment

of XL on new hardware reduced the overhead of routing updates on older hardware

running the basic link state algorithm and which, for one reason or another, could

not be upgraded to use XL.

Of more theoretical interest is the improvement of XL to reduce updates

further. One obvious direction for improving XL made apparent by the example

in Section 4.2.5 is to reduce the scope of S1-triggered updates which are normally

flooded to the entire network (more precisely, to the nodes that include the failed

link in their shortest-path tree). This would allow updates to be wholly limited to a

local neighborhood, provided certain requirements are met locally.

As we suggested in the introduction, routing and network design go hand-in-

hand. By combining sophisticated routing algorithms with reasonable network design

criteria, such as the existence of short detours, we believe it is possible to achieve

fully scalable routing while still retaining the flexibility afforded by a completely

distributed network architecture.

Index

rec (operator), 24

Abilene backbone, 44

Analyzer program, 42

area (OSPF), 15

ARPANET, 10, 44

articulation point, 34

Bell, Alexander Graham, 6

circuit

switching, 6, 10

telephone, 7

compact routing, 17

completeness, 22, 51

configuration (forwarding network), 20

convergence, 32, 51

cut vertex, 34

Cut Vertex Partitioning, 34

detour, 57

distance vector algorithm, 13

Dynamic Nonhierarchical Routing, 9

edge datum, 24

Ethernet, 4

fixed hierarchical routing, 7

flapping, 39, 46, 57

flooding, 15

forwarding, 20

forwarding table, 12

Generator program, 39

infinity metric, 14, 41, 46

link state algorithm, 14

link vector, 41

loop (forwarding), 21, 51

loop-free, 21

message switching, 4

network

postal, 1

telegraph, 3

telephone, 6

Oracle program, 42

Orbis, 45

OSPF, 14, 59

packet, 10

packet switching, 10

postal network, 1

Processing and Distribution Center, 3

Rocketfuel, 44

router, 12

routing algorithm, 13, 22

61

62

routing process, 22

scalability, 15, 53

shortest-path tree, 14

Simulator program, 40

soundness, 21, 51

source routing, 5

Sprint backbone, 45

stretch, 22, 42, 46, 49

stub area (OSPF), 35

Surveyor program, 41

switchboard, 6

switching

circuit, 6, 10

message, 4

packet, 10

telegraph

Chappé, 3

Morse, 4

telegraph exchange, 6

telegraph network, 3

telephone exchange, 6

telephone network, 6

United States Postal Service, 3

view

external, 23

internal, 23

initial, 25

Voice over IP, 9

XL (routing algorithm), 18

Bibliography

[1] Abilene interior-routing metrics. http://noc.net.internet2.edu, March
2006.

[2] D. Alderson, J. C. Doyle, R. Govindan, and W. Willinger. Toward an
optimization-driven framework for designing and generating realistic Internet
topologies. ACM SIGCOMM Computer Communication Review, 33(1):41–46,
January 2003.

[3] G. R. Ash. Design and control of networks with dynamic nonhierarchial routing.
IEEE Communications Magazine, pages 34–40, October 1990.

[4] P. Baran. On distributed communications networks. IEEE Transactions on
Communications Systems, 12(1):1–9, March 1964.

[5] C. B. Barr. Telegraph stations in the United States, the Canadas & Nova Scotia
(map), 1853.

[6] R. W. Barton. Telex: A Detailed Exposition of the Telex System of the British
Post Office. Sir Isaac Pitman & Sons, 1968.

[7] J. Behrens and J. J. Garcia-Lunes-Aceves. Distributed, scalable routing based
on link-state vectors. In Proceedings of the ACM SIGCOMM Conference, pages
136–147, 1994.

[8] R. Birke, M. Mellia, M. Petracca, and D. Rossi. Understanding VoIP from back-
bone measurements. In Proceedings of the 26th IEEE International Conference
on Computer Communications (INFOCOM), pages 2027–2035, 2007.

[9] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC
2475: An architecture for differentiated services, December 1998.

[10] C. Boutremans, G. Iannaccone, and C. Diot. Impact of link failures on VoIP
performance. In Proceedings of the 12th international Workshop on Network
and Operating Systems Support for Digital Audio and Video, pages 63–71, 2002.

[11] H. Buhrman, J.-H. Hoepman, and P. Vitányi. Optimal routing tables. In Pro-
ceedings of the 15th Symposium on Principles of Distributed Computing, pages
134–142, 1996.

63

64

[12] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in
doubling metrics. In Proceedings of the 16th Symposium on Discrete Algorithms,
pages 762–771, 2005.

[13] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Lunes-Aceves. A loop-
free extended Bellman-Ford routing protocol without bouncing effect. ACM
SIGCOMM Computer Communication Review, 19(4):224–236, September 1989.

[14] G. J. Chretien, W. M. Konig, and J. H. Rech. The SITA network. In Proceedings
of the NATO Advanced Study Institute on Computer Communication Networks,
pages 373–396, 1973.

[15] Cisco Systems. OSPF Design Guide. Document ID 7039.

[16] M. D. Connolly, T. A. Connolly, and T. J. McTighe. Automatic telephone
exchange. US Patent 222,458, December 1879.

[17] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP
routing protocols. IEEE Communications Magazine, 40(10):118–124, October
2002.

[18] P. Fraigniaud and C. Gavoille. Memory requirement for universal routing
schemes. In Proceedings of the 14th Symposium on the Principles of Distributed
Computing (PODC), pages 223–230, 1995.

[19] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
Transactions on Networking, 1(1):130–141, Feb 1993.

[20] C. Gavoille and S. Pérennès. Memory requirement for routing in distributed
networks. In Proceedings of the 15th ACM Symposium on the Principles of
Distributed Computing, pages 125–133, 1996.

[21] A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison-
Wesley, 1990.

[22] A. D. Godley. Herodotus: The Histories. Harvard University Press, 1920.

[23] B. Goode. Voice over Internet Protocol (VoIP). Proceedings of the IEEE,
90(2):1495–1517, September 2002.

[24] F. E. Heart, A. McKenzie, J. M. McQuillan, and D. C. Walden. ARPANET
completion report. Technical Report 4799, Bolt, Baranek and Newman, 1978.

[25] P. A. Humblet. Another adaptive distributed shortest path algorithm. IEEE
Transactions on Communications, 39(6):995–1003, June 1991.

[26] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Anal-
ysis of link failures in an IP backbone. In Proceedings of the Second Internet
Measurement Workshop, pages 237–242, 2002.

65

[27] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W. Chen. Scalable routing
strategies for ad hoc wireless networks. IEEE Journal on Selected Areas in
Communication, 17(8):1369–1379, August 1999.

[28] J. M. Jaffe and F. H. Moss. A responsive distributed routing algorithm for
computer networks. IEEE Transactions on Communications, COM-30(7):1758–
1762, July 1982.

[29] R. Kannan, P. Tetali, and S. Vempala. Simple Markov-chain algorithms for gen-
erating bipartite graphs and tournaments. Random Structures and Algorithms,
14(4):298–308, July 1999.

[30] A. Khanna and J. Zinky. The revised ARPANET routing metric. ACM SIG-
COMM Computer Communication Review, 19(4):45–56, September 1989.

[31] J. E. Kingsbury. The Telephone and Telephone Exchanges. Arno Press, 1972.

[32] K. Levchenko, G. M. Voelker, R. Paturi, and S. Savage. XL: An efficient network
routing algorithm. In Proc. of the 2008 ACM SIGCOMM Conference, pages 15–
26, 2008.

[33] L. Li, D. Alderson, W. Willinger, and J. C. Doyle. A first-principles approach
to understanding the internet’s router-level topology. In Proc. of the 2004 ACM
SIGCOMM Conference, pages 3–14, 2004.

[34] P. Mahadevan, C. Hubble, D. Krioukov, B. Huffaker, and A. Vahdat. Orbis:
Rescaling degree correlations to generate annotated Internet topologies. In Proc.
of the 2007 ACM SIGCOMM Conference, pages 325–336, 2007.

[35] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology
analysis and generation using degree correlations. In Proc. of the 2006 ACM
SIGCOMM Conference, pages 135–146, 2006.

[36] R. Mahajan, N. Spring, D. Wetherall, and T. Anderston. Inferring link weights
using end-to-end measurements. In Proceedings of 2nd Internet Measurement
Workshop, pages 231–236, 2002.

[37] G. Malkin. RFC 2453: RIP version 2, 1998.

[38] A. Markopoulou, F. A. Tobagi, and M. J. Karam. Assessment of VoIP quality
over Internet backbones. In Proceedings of the 21st IEEE International Confer-
ence on Computer Communications (INFOCOM), pages 150–159, 2002.

[39] J. M. McQuillan, G. Falk, and I. Richer. A review of the development and
performance of the ARPANET routing algorithm. IEEE Transactions on Com-
munications, COM-26(12):1802–1811, Dec 1978.

66

[40] J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing algorithm for
the ARPANET. IEEE Transactions on Communications, 28(5):711–719, May
1980.

[41] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An approach to univer-
sal topology generation. In Proceedings of the Ninth Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, pages
346–353, 2001.

[42] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley,
1998.

[43] J. T. Moy. OSPF Complete Implementation. Addison-Wesley, 2000.

[44] H. Mustafa. Postal Technology & Management. Lomond Systems, Inc., 1971.

[45] D. R. Oran. RFC 1142: OSI IS-IS intra-domain routing protocol, February
1990.

[46] V. D. Park and M. S. Corson. A performance comparison of the temporally-
ordered routing algorithm and ideal link-state routing. In Proceedings of the 3rd
IEEE Symposium on Computers and Communications, pages 592–598, 1998.

[47] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, July 1989.

[48] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In
Second IEEE Workshop on Mobile Computer Systems and Applications, page 90,
1999.

[49] B. Rajagopalan and M. Faiman. A new responsive distributed shortest-path
routing algorithm. In Proceedings of the ACM SIGCOMM Conference, pages
237–246, 1989.

[50] J. Rexford. Handbook of Optimization in Telecommunications, chapter Route
Optimization in IP Networks. Springer, 2006.

[51] R. F. Rey, editor. Engineeering and Operations in the Bell System. AT&T Bell
Laboratories, 1983.

[52] L. G. Roberts. The evolution of packet switching. Proceedings of the IEEE,
66(11):1307–1313, 1978.

[53] C. L. H. Rutgers. Introduction to IGRP. Cisco Systems, August 1991. Document
ID 26825.

[54] S. B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269–287, September 1983.

67

[55] T. P. Shaffner. The Telegraph Manual: A Complete History and Description of
the Semaphoric, Electric and Magnetic Telegraphs of Europe, Asia, Africa, and
America, Ancient and Modern. Pudney and Russell, 1859.

[56] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb. A case study
of OSPF behavior in a large enterprise network. In Proceedings of the 2nd
Workshop on Internet Measurement, pages 217–230, 2002.

[57] S. Swihart. The genesis and early development of telephone exchange service.
Telecom History, 1:2–89, 1994.

[58] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger.
Network topology generators: Degree-based vs. structural. In Proc. of the 2002
ACM SIGCOMM Conference, pages 147–159, 2002.

[59] M. Thorup. OSPF areas considered harmful. Unpublished manuscript, April
2003.

[60] United States Government Accountability Office. U.S. Postal Service: The Ser-
vice’s strategy for realigning its mail processing infrastructure lacks clarity, cri-
teria, and accountability. GAO-05-261, April 2005.

[61] United States Postal Service. The United States Postal Service: An American
history 1775–2006. Publication 100, May 2007.

[62] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high speed IP
routing lookups. In Proceedings of the 1997 ACM SIGCOMM Conference, page
182, 1997.

[63] G. Wilson. The Old Telegraphs. Phillimore & Co., 1976.

[64] S.-H. Yook, H. Jeong, and A. L. Barabási. Modeling the Internet’s large-scale
toplogy. In Proceedings of the National Academy of Sciences of the United States
of America, volume 99, pages 13382–13386, 2002.

[65] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new
resource reservation protocol. IEEE Network, 7(5):8–18, September 1993.

