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BROADCASTING PROTOCOLS FOR VIDEO-ON-DEMAND 
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Houston, TX  77204-3475

Darrell D. E. Long 
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Abstract 
Broadcasting protocols for video-on-demand usually con-
sume over fifty percent of their bandwidth to distribute the 
first ten to fifteen minutes of the videos they distribute.  
Since all these protocols require the user set-top box to 
include a disk drive, we propose to use this drive to store 
the first five to twenty minutes of the ten to twenty most 
popular videos.  This will provide low-cost instant access to 
these videos. 

1. INTRODUCTION 
An important factor in the high cost of video-on-demand 
services is the very high bandwidth these services require.  
Assuming that the videos are in MPEG-2 format, each user 
request will require the delivery of around 5 Megabits of 
data per second.  Hence a video server allocating a separate 
data channel of data to each request would need an aggre-
gate bandwidth of 5 Gigabit/second to accommodate 1,000 
concurrent users.   
This situation has resulted in many proposals aimed at 
reducing the bandwidth requirements of video-on-demand 
services.  Despite all their differences, all these proposals 
are based on the same idea, namely, sharing as many data 
as possible among overlapping requests for the same video.  
Hence, most of these proposals assume that customers 
receive their videos through a set-top box (STB) capable of 
(a) simultaneously receiving data from several video chan-
nels and (b) storing in a local buffer the video data it 
receives out of sequence. 
Unfortunately this approach does not work well for the first 
few minutes of each video because the customer STB has 
very little or no time to collect the required data.  As a 
result, distributing the fist few minutes of a video takes a 
very large fraction of the total bandwidth required to dis-
tribute the video.  Consider, for instance, the case of a video 
distributed through Juhn and Tseng's fast broadcasting 
protocol [4].  The fast broadcasting protocol requires a 
bandwidth equal to seven times the video consumption rate 
to guarantee a maximum waiting time of 57 seconds for a 
two-hour video.  Fifty-seven percent of this bandwidth is 
used to distribute the first 15 minutes of the video, that is 
one eighth of the duration of the video.  A similar 
observation would apply to a pagoda broadcasting protocol 
[5] operating under the same conditions. 

A common characteristic of these two broadcasting 
protocols is that they require enough buffer space in the 
customer STB to store up to 60 percent of each video being 
watched.  In the current state of the technology, this implies 
a disk drive in each STB.  Most disk drives sold today can 
store at least 30 Gigabytes of data, that is, more than 13 
hours of video data in MPEG-2 format.  Thanks to this huge 
capacity, it become possible to preload in the customer STB 
the first ten to twenty minutes of the most popular videos.  
We could, for instance, the first 10 minutes of the top 80 
videos or the first 20 minutes of the top 40 videos.  While 
the system would require a higher level of coordination 
between the customer STB and the video server, it would 
provide instant access to all the preloaded videos while 
reducing by more than 50 percent the bandwidth 
requirements of the protocol. 

2. PREVIOUS WORK 
Broadcasting protocols anticipate customer demand and 
distribute the various segments of each video according to a 
deterministic schedule.  The pyramid broadcasting [8] 
protocol was the first broadcasting protocol that required 
the customer STB to include enough buffer space to store 
up to one half of each video being broadcast.  This allowed 
the STB to receive the video data out of order and allowed 
the video server to transmit less frequently the later portions 
of each video.  Among the other broadcasting protocols 
following the same approach, we should mention 
skyscraper broadcasting [2], harmonic broadcasting [3], 
fast broadcasting [4], and pagoda broadcasting [5]. 
One of the most intuitive broadcasting protocols is Juhn and 
Tseng's fast broadcasting (FB) protocol [4].  FB allocates 
to each video k channels whose bandwidths are all equal to 
the video consumption rate b.  It then partitions each video 
into 2k – 1 segments S1 to S2

k
–1 of equal duration d.  As 

Figure 1 indicates, the first channel continuously rebroad-
casts segment S1, the second channel transmits segments S2 
and S3, and the third channel transmits segments S4 to S7.  
More generally, channel j with 1 ≤ j ≤ k transmits segments 
S2

j-1 to S2
j
-1. 

Pagoda broadcasting (PB) [5] improves upon the FB 
protocol by allocating segments to pairs of consecutive 
channels, which allows packing more segments into the 
same number of channels.  As shown on Figure 2, a PB 
protocol using three channels would pack nine segments 
 



First Channel S1 S1 S1 S1 

Second Channel S2 S3 S2 S3 

Third Channel S4 S5 S6 S7 

Figure 1. Fast broadcasting with three channels. 

First Channel S1 S1 S1 S1 S1 S1 

Second Channel S2 S4 S2 S5 S2 S4 

Third Channel S3 S6 S8 S3 S7 S9 

Figure 2. Pagoda broadcasting with three channels. 

into these three channels, that is two segments more than 
FB.  Hence the maximum waiting time for a video of dura-
tion D is D/9 instead of D/7.  More generally, the maximum 
waiting time for a video of duration D broadcast over n 
channels is given by d = D / [2×5((n-1)/2) – 1] for n odd, and  
d = D / [4 ×5 ((n-2) / 2) – 1] for n even.   
Partial preloading [6] loads in the customer STB the first 
few minutes of the top 10 to 20 videos in order to provide 
zero-delay access to these videos and reduce somewhat the 
server bandwidth of the broadcasting protocol distributing 
the remainder of the video. 

3. AGGRESSIVE PARTIAL PRELOADING 
Over the last few years, disk drive capacities have been 
doubling every twelve months.  One can now find 30 
Gigabyte hard drives at retail prices below one hundred 
dollars.  We can store on one of these hard drives more than 
13 hours of video data in MPEG-2 format.  Given the 
current evolution of disk technology, we can expect to find 
one year from now drives of twice that capacity at the same 
price. 
We propose to use this storage capacity to preload in the 
customer STB a significant fraction of each video being 
broadcast.  As a result, we will provide instant access to 
these videos while only having to allocate one, two or three 
broadcast channels per video. 

Theoretical limitations of the approach 
Let us compute first which minimum fraction x of a given 
video we must preload in order to ensure that the remainder 
of the video could be distributed using a given number of 
channels. 
Consider a video of duration D whose xD first minutes are 
preloaded in the client STB.  Let Δt represent a small time 
interval at a location t within the video and let us assume 
that t > xD.  To avoid client underflow, the contents of this 
time interval must be broadcast at a minimum bandwidth 

tb /  where b is the video consumption rate. 
Summing over all intervals as Δt approaches 0, we see that 
the minimum bandwidth required to transmit the non-
preloaded part of the video is be given by  

xbxDDbdt
t
bD

xD
ln)ln(ln −=−=∫  

Assume now that we want this bandwidth to be equal to a 
fixed number k of channels of equal bandwidth b.  The 
minimum fraction x will then be the solution of the equation 

kbxb =− ln  and we will have 

 ke
x 1
=  (1) 

In particular we need to prefetch at least 1/e of a given 
video to ensure that the remaining ee /)1( −  fraction can be 
broadcast using only one channel. 
The sole problem with this approach is that it would require 
partitioning the last (1 – x)D minutes of the video into a very 
large number of very small segments and broadcast each 
segment at exactly the required bandwidth.  We present 
here two more practical solutions, one based on Juhn and 
Tseng's fast broadcasting protocol and the second on our 
pagoda broadcasting protocol. 

A fast broadcasting protocol with partial preloading 
Consider a video of duration D whose xD first minutes are 
preloaded in the client STB.  To avoid client underflow, the 
next segment of the video must be fully received before the 
customer has finished watching the preloaded portion of the 
video.  Hence this segment must be repeated at least once 
every xD minutes.  If this segment is broadcast over a 
channel whose bandwidth is equal to the video consumption 
rate b, the maximum duration of the segment will also be 
equal to xD.  This means that we need to preload the first 
half of a video in the STB in order to be able to broadcast 
the remainder of the video on a single video channel. 
Adding a second video channel would allow us to broadcast 
on that channel two segments of duration xD for a total of 
three segments. The video could then be partitioned into 
four equal size segments of duration xD = D/4.  Hence, we 
would need to preload one fourth of the video in the STB in 
order to be able to broadcast the remainder of the video on 
two video channels.  More generally, we would need to 
preload the first D/2k minutes of a video to be able to 
broadcast the remainder of the video on k channels.  This is 
(e/2)k times the theoretical minimum given by equation (1). 

A pagoda broadcasting protocol with partial preloading 
A major limitation of the previous protocol is that all seg-
ments that are broadcast on the same channel are repeated 
at the same frequency.  Consider a video of duration D par-
titioned into n equal-size segments of duration d = D/n.  
Assume then that the first m segments of that video are 
preloaded in the customer STB.  Client underflow will be 
avoided as long as each segment Si with i > m is fully 
received before it is needed.  Hence, Si should be repeated 
at least once every di )1( −  minutes. 



Subchannel 0 1 2 … 10 11 

First Segment S145 S157 S170 … S317 S343 

Last Segment S156 S169 S183 … S342 S370 

Figure 3. The first channel of a PB protocol with 144 
preloaded segments. 

Subchannel 0 1 2 … 17 18 

First Segment S371 S390 S410 … S873 S918 

Last Segment S389 S409 S429 … S917 S965 

Figure 4. The second channel of a PB protocol with 144 
preloaded segments. 

The pagoda broadcasting (PB) protocol with partial 
preloading partitions all its broadcasting channels into 
fixed-size slots whose duration will be equal to the duration 
d of one video segment.   
Consider a PB using a large number of small segments.  Let 
us assume that the protocol preloads the first 144 segments 
in the customer STB.  This means that the first segment to 
be broadcast is segment S145 and this segment must be 
repeated at least once every 144d minutes.  Since 144 is the 
square of 12, we organize the slots in the first channel into 
12 subchannels in such a way that slot j belongs to the sub-
channel j (mod 12).  Each subchannel has thus 1/12 of the 
slots and 1/12 of the bandwidth of the channel.  As Figure 3 
shows, subchannel 0 continuously retransmits the 12 seg-
ments S145 to S156 ensuring that each segment is repeated 
exactly once every 144 slots.  Subchannel 1 continuously 
retransmits the 13 segments S157 to S169 ensuring that each 
segment is repeated exactly once every 156 slots with suc-
cessive subchannels transmitting increasing numbers of 
segments.  Finally, subchannel 11 continuously retransmits 
the 28 segments S343 to S370.  As a result, the video is parti-
tioned into 370 segments of equal duration D/370.  Hence 
we need to preload 144/370 of the video to be able to 
broadcast the remaining 226 segments on a single channel. 
The second, third and fourth channels are allocated using 
the same method.  Since 371 is not a square and the closest 
square 361 is the square of 19, the slots of the second 
channel are organized into 19 subchannels in such a way 
that slot j belongs to the subchannel j (mod 19).  As Figure 
4 shows, the slots in subchannel 0 will continuously retrans-
mit segments S371to S389 ensuring that each segment is 
repeated exactly once every 361 slots. Successive sub-
channels will retransmit increasing numbers of segments 
and subchannel 18 will continuously retransmit segments 
S918 to S965.  Hence, we only need to preload 144/965 of the 
video to be able to broadcast the remaining 821 segments 
on two video channels. 
With a third broadcasting channel, we could partition each 
video into 2562 segments and would have to preload 
144/2562 of the video.  Adding a fourth channel would 
allow partitioning the video into 6855 segments.  At this 
stage, each segment would contain 1.05 seconds of video 
data for a two-hour video.  Assuming an average bandwidth 
of 5 Mb/s, each segment would still occupy around 656 
kilobytes. 
Table 1 summarizes our findings and compares the per-
formance of our two protocols with the theoretical minima 
 

Table 1.  Comparing the two protocols 

Duration of preloaded fraction of video 
for a two-hour video Number of 

Broadcasting 
Channels Theoretical 

Minimum 
Fast 

Broadcasting 
Pagoda 

Broadcasting 

1 44 min 8 s 60 min 46 min 42 s 
2 16 min 14 s 30 min 17 min 54 s 
3 5 min 58 s 15 min 6 min 44 s 
4 2 min 12 s 7 min 30 s 2 min 31 s 

 

we derived earlier.  As one can see, the performance of the 
pagoda broadcasting protocol with partial preloading is not 
far of the theoretical minimum.  Preloading the first 6 
minutes and 44 seconds of a two-hour video allows us to 
broadcast the remainder of the video on three channels 
while providing instant access to the video.  This is exactly 
one half of the bandwidth required by the original pagoda 
broadcasting protocol to achieve a maximum waiting time 
of 73 seconds.  Even preloading as little as the first 2 
minutes and 31 second of each video would still allow us to 
broadcast the remainder of the video on only four channels.  
This is still much less than any existing broadcasting 
protocol. 
There is an obvious trade-off between the number of videos 
we want to offer and how many minutes of each video we 
can preload in the customer STB.  Assuming a disk drive 
capable of storing 800 minutes of video data, we could elect 
to store the first 6 minutes and 44 seconds of 118 videos, 
more data from fewer videos, or less data from more 
videos. 

Distributing the preloaded segments 
We have not discussed so far how the preloaded segments 
of each video are to be distributed to the customer STB’s.   
This task will be assigned to one or two dedicated channels 
that will continuously broadcast the initial segments of the 
videos that are currently offered for viewing.  Any change 
in this set will require each STB to download the initial 
segments of the new videos being offered and to store them 
on its hard drive.  The mechanism allowing the VOD server 
to notify the STB’s that they have new data to download 
could be as simple as agreeing upon some predefined time.   



4. A DYNAMIC PROTOCOL WITH 
PARTIAL PRELOADING 

The two protocols we have presented use static broadcast-
ing schedules that are not affected by request arrivals.  
Hence, their bandwidth requirements are not affected by the 
request arrival rate.  Dynamic broadcasting protocols [1, 7] 
improve upon other broadcasting protocols by adapting 
their broadcasting schedule to actual request arrivals.  
Hence they require much less bandwidth at times when 
there are fewer requests for the video. 
To show that our approach also applies to dynamic broad-
casting protocols, we present here a dynamic broadcasting 
protocol with partial preloading based on the fast broad-
casting protocol.  We will assume that our protocol uses k 
channels per video and partitions each video into 2k 
segments of equal duration d = D/2k.  Since the first segment 
of each video will be preloaded in the customer STB, 
segment S2 will be broadcast on demand on the first 
channel, that is, only when there is a request requiring that 
segment.  Similarly segments S3 and S4 will be broadcast on 
demand on the second channel, and. more generally, seg-
ments S2

j–1
+1 to S2

j will be broadcast on demand on the jth 
channel for 1 ≤ j ≤ k. 
To simplify our analysis, let assume that each channel uses 
an all-or-nothing scheduling policy: either it schedules all 
its segments or it schedules none of them.  Then channel 1 
will schedule a broadcast of segment S2 if there has been at 
least one request for the video during the last d minutes. 
Channel 2 will schedule a broadcast of the two segments S3 
and S4 if there has been at least one request for the video 
during the last 2d minutes.  More generally, channel i will 
schedule a broadcast of the 2j–1 segments S2

j–1
+1 to S2

j if 
there has been at least one request for the video during the 
last 2j-1 d minutes. 

Assuming that requests to the video are exponentially 
distributed with average rate λ, the total bandwidth that will 
be required to broadcast the video will be given by: 

)1(
1

2 1

∑
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λ− −

−=
k
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eB  

Replacing d by D/2k, we obtain: 
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Figure 5 represents the bandwidth requirements of our 
dynamic fast broadcasting protocol with partial preloading 
with two, three and four channels dedicated to the broadcast 
of a two-hour video.  Request arrival rates are expressed in 
arrivals per hour and bandwidths are expressed in multiples 
of the video consumption rate.  As one can see, the dynamic 
protocol requires significantly less bandwidth that its static 
counterpart when the request arrival rate remains below 
seven to eight requests per hour.  It is thus best suited to the 
distribution of videos whose popularity is either un-
predictable or highly variable [7]. 
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Figure 5. Bandwidth requirements of a dynamic fast 

broadcasting protocol with partial preloading. 

5. CONCLUSIONS 
We have presented two broadcasting protocols that preload 
the first five to twenty minutes of the videos they distribute.  
Both protocols provide instant access to these videos while 
requiring considerably less bandwidth than any other 
broadcasting protocol.  We found that the pagoda 
broadcasting protocol with partial preloading required much 
less preloaded data per video than the fast broadcasting 
protocol with partial preloading to achieve the same 
bandwidth savings. 
We have also shown how the same approach could apply to 
dynamic broadcasting protocols.  
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