
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
The Case for Aggressive Partial Preloading in Broadcasting Protocols for Video-on-
Demand

Permalink
https://escholarship.org/uc/item/02b7q4x8

Authors
Jehan-François, Paris
Long, Darrell DE

Publication Date
2001

DOI
10.1109/icme.2001.1237668

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02b7q4x8
https://escholarship.org
http://www.cdlib.org/

THE CASE FOR AGGRESSIVE PARTIAL PRELOADING IN
BROADCASTING PROTOCOLS FOR VIDEO-ON-DEMAND

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX 77204-3475

Darrell D. E. Long
Department of Computer Science

University of California
Santa Cruz, CA 95064

Abstract
Broadcasting protocols for video-on-demand usually con-
sume over fifty percent of their bandwidth to distribute the
first ten to fifteen minutes of the videos they distribute.
Since all these protocols require the user set-top box to
include a disk drive, we propose to use this drive to store
the first five to twenty minutes of the ten to twenty most
popular videos. This will provide low-cost instant access to
these videos.

1. INTRODUCTION
An important factor in the high cost of video-on-demand
services is the very high bandwidth these services require.
Assuming that the videos are in MPEG-2 format, each user
request will require the delivery of around 5 Megabits of
data per second. Hence a video server allocating a separate
data channel of data to each request would need an aggre-
gate bandwidth of 5 Gigabit/second to accommodate 1,000
concurrent users.
This situation has resulted in many proposals aimed at
reducing the bandwidth requirements of video-on-demand
services. Despite all their differences, all these proposals
are based on the same idea, namely, sharing as many data
as possible among overlapping requests for the same video.
Hence, most of these proposals assume that customers
receive their videos through a set-top box (STB) capable of
(a) simultaneously receiving data from several video chan-
nels and (b) storing in a local buffer the video data it
receives out of sequence.
Unfortunately this approach does not work well for the first
few minutes of each video because the customer STB has
very little or no time to collect the required data. As a
result, distributing the fist few minutes of a video takes a
very large fraction of the total bandwidth required to dis-
tribute the video. Consider, for instance, the case of a video
distributed through Juhn and Tseng's fast broadcasting
protocol [4]. The fast broadcasting protocol requires a
bandwidth equal to seven times the video consumption rate
to guarantee a maximum waiting time of 57 seconds for a
two-hour video. Fifty-seven percent of this bandwidth is
used to distribute the first 15 minutes of the video, that is
one eighth of the duration of the video. A similar
observation would apply to a pagoda broadcasting protocol
[5] operating under the same conditions.

A common characteristic of these two broadcasting
protocols is that they require enough buffer space in the
customer STB to store up to 60 percent of each video being
watched. In the current state of the technology, this implies
a disk drive in each STB. Most disk drives sold today can
store at least 30 Gigabytes of data, that is, more than 13
hours of video data in MPEG-2 format. Thanks to this huge
capacity, it become possible to preload in the customer STB
the first ten to twenty minutes of the most popular videos.
We could, for instance, the first 10 minutes of the top 80
videos or the first 20 minutes of the top 40 videos. While
the system would require a higher level of coordination
between the customer STB and the video server, it would
provide instant access to all the preloaded videos while
reducing by more than 50 percent the bandwidth
requirements of the protocol.

2. PREVIOUS WORK
Broadcasting protocols anticipate customer demand and
distribute the various segments of each video according to a
deterministic schedule. The pyramid broadcasting [8]
protocol was the first broadcasting protocol that required
the customer STB to include enough buffer space to store
up to one half of each video being broadcast. This allowed
the STB to receive the video data out of order and allowed
the video server to transmit less frequently the later portions
of each video. Among the other broadcasting protocols
following the same approach, we should mention
skyscraper broadcasting [2], harmonic broadcasting [3],
fast broadcasting [4], and pagoda broadcasting [5].
One of the most intuitive broadcasting protocols is Juhn and
Tseng's fast broadcasting (FB) protocol [4]. FB allocates
to each video k channels whose bandwidths are all equal to
the video consumption rate b. It then partitions each video
into 2k – 1 segments S1 to S2

k
–1 of equal duration d. As

Figure 1 indicates, the first channel continuously rebroad-
casts segment S1, the second channel transmits segments S2
and S3, and the third channel transmits segments S4 to S7.
More generally, channel j with 1 ≤ j ≤ k transmits segments
S2

j-1 to S2
j
-1.

Pagoda broadcasting (PB) [5] improves upon the FB
protocol by allocating segments to pairs of consecutive
channels, which allows packing more segments into the
same number of channels. As shown on Figure 2, a PB
protocol using three channels would pack nine segments

First Channel S1 S1 S1 S1

Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. Fast broadcasting with three channels.

First Channel S1 S1 S1 S1 S1 S1

Second Channel S2 S4 S2 S5 S2 S4

Third Channel S3 S6 S8 S3 S7 S9

Figure 2. Pagoda broadcasting with three channels.

into these three channels, that is two segments more than
FB. Hence the maximum waiting time for a video of dura-
tion D is D/9 instead of D/7. More generally, the maximum
waiting time for a video of duration D broadcast over n
channels is given by d = D / [2×5((n-1)/2) – 1] for n odd, and
d = D / [4 ×5 ((n-2) / 2) – 1] for n even.
Partial preloading [6] loads in the customer STB the first
few minutes of the top 10 to 20 videos in order to provide
zero-delay access to these videos and reduce somewhat the
server bandwidth of the broadcasting protocol distributing
the remainder of the video.

3. AGGRESSIVE PARTIAL PRELOADING
Over the last few years, disk drive capacities have been
doubling every twelve months. One can now find 30
Gigabyte hard drives at retail prices below one hundred
dollars. We can store on one of these hard drives more than
13 hours of video data in MPEG-2 format. Given the
current evolution of disk technology, we can expect to find
one year from now drives of twice that capacity at the same
price.
We propose to use this storage capacity to preload in the
customer STB a significant fraction of each video being
broadcast. As a result, we will provide instant access to
these videos while only having to allocate one, two or three
broadcast channels per video.

Theoretical limitations of the approach
Let us compute first which minimum fraction x of a given
video we must preload in order to ensure that the remainder
of the video could be distributed using a given number of
channels.
Consider a video of duration D whose xD first minutes are
preloaded in the client STB. Let Δt represent a small time
interval at a location t within the video and let us assume
that t > xD. To avoid client underflow, the contents of this
time interval must be broadcast at a minimum bandwidth

tb / where b is the video consumption rate.
Summing over all intervals as Δt approaches 0, we see that
the minimum bandwidth required to transmit the non-
preloaded part of the video is be given by

xbxDDbdt
t
bD

xD
ln)ln(ln −=−=∫

Assume now that we want this bandwidth to be equal to a
fixed number k of channels of equal bandwidth b. The
minimum fraction x will then be the solution of the equation

kbxb =− ln and we will have

 ke
x 1
= (1)

In particular we need to prefetch at least 1/e of a given
video to ensure that the remaining ee /)1(− fraction can be
broadcast using only one channel.
The sole problem with this approach is that it would require
partitioning the last (1 – x)D minutes of the video into a very
large number of very small segments and broadcast each
segment at exactly the required bandwidth. We present
here two more practical solutions, one based on Juhn and
Tseng's fast broadcasting protocol and the second on our
pagoda broadcasting protocol.

A fast broadcasting protocol with partial preloading
Consider a video of duration D whose xD first minutes are
preloaded in the client STB. To avoid client underflow, the
next segment of the video must be fully received before the
customer has finished watching the preloaded portion of the
video. Hence this segment must be repeated at least once
every xD minutes. If this segment is broadcast over a
channel whose bandwidth is equal to the video consumption
rate b, the maximum duration of the segment will also be
equal to xD. This means that we need to preload the first
half of a video in the STB in order to be able to broadcast
the remainder of the video on a single video channel.
Adding a second video channel would allow us to broadcast
on that channel two segments of duration xD for a total of
three segments. The video could then be partitioned into
four equal size segments of duration xD = D/4. Hence, we
would need to preload one fourth of the video in the STB in
order to be able to broadcast the remainder of the video on
two video channels. More generally, we would need to
preload the first D/2k minutes of a video to be able to
broadcast the remainder of the video on k channels. This is
(e/2)k times the theoretical minimum given by equation (1).

A pagoda broadcasting protocol with partial preloading
A major limitation of the previous protocol is that all seg-
ments that are broadcast on the same channel are repeated
at the same frequency. Consider a video of duration D par-
titioned into n equal-size segments of duration d = D/n.
Assume then that the first m segments of that video are
preloaded in the customer STB. Client underflow will be
avoided as long as each segment Si with i > m is fully
received before it is needed. Hence, Si should be repeated
at least once every di)1(− minutes.

Subchannel 0 1 2 … 10 11

First Segment S145 S157 S170 … S317 S343

Last Segment S156 S169 S183 … S342 S370

Figure 3. The first channel of a PB protocol with 144
preloaded segments.

Subchannel 0 1 2 … 17 18

First Segment S371 S390 S410 … S873 S918

Last Segment S389 S409 S429 … S917 S965

Figure 4. The second channel of a PB protocol with 144
preloaded segments.

The pagoda broadcasting (PB) protocol with partial
preloading partitions all its broadcasting channels into
fixed-size slots whose duration will be equal to the duration
d of one video segment.
Consider a PB using a large number of small segments. Let
us assume that the protocol preloads the first 144 segments
in the customer STB. This means that the first segment to
be broadcast is segment S145 and this segment must be
repeated at least once every 144d minutes. Since 144 is the
square of 12, we organize the slots in the first channel into
12 subchannels in such a way that slot j belongs to the sub-
channel j (mod 12). Each subchannel has thus 1/12 of the
slots and 1/12 of the bandwidth of the channel. As Figure 3
shows, subchannel 0 continuously retransmits the 12 seg-
ments S145 to S156 ensuring that each segment is repeated
exactly once every 144 slots. Subchannel 1 continuously
retransmits the 13 segments S157 to S169 ensuring that each
segment is repeated exactly once every 156 slots with suc-
cessive subchannels transmitting increasing numbers of
segments. Finally, subchannel 11 continuously retransmits
the 28 segments S343 to S370. As a result, the video is parti-
tioned into 370 segments of equal duration D/370. Hence
we need to preload 144/370 of the video to be able to
broadcast the remaining 226 segments on a single channel.
The second, third and fourth channels are allocated using
the same method. Since 371 is not a square and the closest
square 361 is the square of 19, the slots of the second
channel are organized into 19 subchannels in such a way
that slot j belongs to the subchannel j (mod 19). As Figure
4 shows, the slots in subchannel 0 will continuously retrans-
mit segments S371to S389 ensuring that each segment is
repeated exactly once every 361 slots. Successive sub-
channels will retransmit increasing numbers of segments
and subchannel 18 will continuously retransmit segments
S918 to S965. Hence, we only need to preload 144/965 of the
video to be able to broadcast the remaining 821 segments
on two video channels.
With a third broadcasting channel, we could partition each
video into 2562 segments and would have to preload
144/2562 of the video. Adding a fourth channel would
allow partitioning the video into 6855 segments. At this
stage, each segment would contain 1.05 seconds of video
data for a two-hour video. Assuming an average bandwidth
of 5 Mb/s, each segment would still occupy around 656
kilobytes.
Table 1 summarizes our findings and compares the per-
formance of our two protocols with the theoretical minima

Table 1. Comparing the two protocols

Duration of preloaded fraction of video
for a two-hour video Number of

Broadcasting
Channels Theoretical

Minimum
Fast

Broadcasting
Pagoda

Broadcasting

1 44 min 8 s 60 min 46 min 42 s
2 16 min 14 s 30 min 17 min 54 s
3 5 min 58 s 15 min 6 min 44 s
4 2 min 12 s 7 min 30 s 2 min 31 s

we derived earlier. As one can see, the performance of the
pagoda broadcasting protocol with partial preloading is not
far of the theoretical minimum. Preloading the first 6
minutes and 44 seconds of a two-hour video allows us to
broadcast the remainder of the video on three channels
while providing instant access to the video. This is exactly
one half of the bandwidth required by the original pagoda
broadcasting protocol to achieve a maximum waiting time
of 73 seconds. Even preloading as little as the first 2
minutes and 31 second of each video would still allow us to
broadcast the remainder of the video on only four channels.
This is still much less than any existing broadcasting
protocol.
There is an obvious trade-off between the number of videos
we want to offer and how many minutes of each video we
can preload in the customer STB. Assuming a disk drive
capable of storing 800 minutes of video data, we could elect
to store the first 6 minutes and 44 seconds of 118 videos,
more data from fewer videos, or less data from more
videos.

Distributing the preloaded segments
We have not discussed so far how the preloaded segments
of each video are to be distributed to the customer STB’s.
This task will be assigned to one or two dedicated channels
that will continuously broadcast the initial segments of the
videos that are currently offered for viewing. Any change
in this set will require each STB to download the initial
segments of the new videos being offered and to store them
on its hard drive. The mechanism allowing the VOD server
to notify the STB’s that they have new data to download
could be as simple as agreeing upon some predefined time.

4. A DYNAMIC PROTOCOL WITH
PARTIAL PRELOADING

The two protocols we have presented use static broadcast-
ing schedules that are not affected by request arrivals.
Hence, their bandwidth requirements are not affected by the
request arrival rate. Dynamic broadcasting protocols [1, 7]
improve upon other broadcasting protocols by adapting
their broadcasting schedule to actual request arrivals.
Hence they require much less bandwidth at times when
there are fewer requests for the video.
To show that our approach also applies to dynamic broad-
casting protocols, we present here a dynamic broadcasting
protocol with partial preloading based on the fast broad-
casting protocol. We will assume that our protocol uses k
channels per video and partitions each video into 2k
segments of equal duration d = D/2k. Since the first segment
of each video will be preloaded in the customer STB,
segment S2 will be broadcast on demand on the first
channel, that is, only when there is a request requiring that
segment. Similarly segments S3 and S4 will be broadcast on
demand on the second channel, and. more generally, seg-
ments S2

j–1
+1 to S2

j will be broadcast on demand on the jth
channel for 1 ≤ j ≤ k.
To simplify our analysis, let assume that each channel uses
an all-or-nothing scheduling policy: either it schedules all
its segments or it schedules none of them. Then channel 1
will schedule a broadcast of segment S2 if there has been at
least one request for the video during the last d minutes.
Channel 2 will schedule a broadcast of the two segments S3
and S4 if there has been at least one request for the video
during the last 2d minutes. More generally, channel i will
schedule a broadcast of the 2j–1 segments S2

j–1
+1 to S2

j if
there has been at least one request for the video during the
last 2j-1 d minutes.

Assuming that requests to the video are exponentially
distributed with average rate λ, the total bandwidth that will
be required to broadcast the video will be given by:

)1(
1

2 1

∑
=

λ− −

−=
k

i

di
eB

Replacing d by D/2k, we obtain:

 ∑
=

λ− −−

−=
k

i

Dki
eB

1

2)1(
1

 (2)

Figure 5 represents the bandwidth requirements of our
dynamic fast broadcasting protocol with partial preloading
with two, three and four channels dedicated to the broadcast
of a two-hour video. Request arrival rates are expressed in
arrivals per hour and bandwidths are expressed in multiples
of the video consumption rate. As one can see, the dynamic
protocol requires significantly less bandwidth that its static
counterpart when the request arrival rate remains below
seven to eight requests per hour. It is thus best suited to the
distribution of videos whose popularity is either un-
predictable or highly variable [7].

0

1

2

3

4

5

1 10 100 1000

Requests/hour

Ba
nd
w
id
th

4 Channels
3 Channels
2 Channels

Figure 5. Bandwidth requirements of a dynamic fast

broadcasting protocol with partial preloading.

5. CONCLUSIONS
We have presented two broadcasting protocols that preload
the first five to twenty minutes of the videos they distribute.
Both protocols provide instant access to these videos while
requiring considerably less bandwidth than any other
broadcasting protocol. We found that the pagoda
broadcasting protocol with partial preloading required much
less preloaded data per video than the fast broadcasting
protocol with partial preloading to achieve the same
bandwidth savings.
We have also shown how the same approach could apply to
dynamic broadcasting protocols.

ACKNOWLEDGEMENTS
J.-F. Pâris was partially supported by the Texas Advanced
Research Program under grant 003652-0124-1999 and the
National Science Foundation under grant CCR-9988390.
D. D. E. Long acknowledges the support of the National
Science Foundation under grant CCR-9988363.

REFERENCES
[1] Eager, D. L. and M. K. Vernon. Dynamic skyscraper broadcast for

video-on-demand. Proc. 4th Int. Workshop on Advances in Multi-
media Information Systems, pages 18–32, Sep. 1998.

[2] Hua, K. A. and S. Sheu. Skyscraper broadcasting: a new broad-
casting scheme for metropolitan video-on-demand systems. Proc.
ACM SIGCOMM '97 Conf., pages 89–100, Sept. 1997.

[3] Juhn, L. and L. Tseng. Harmonic broadcasting for video-on-demand
service. IEEE Trans. on Broadcasting, 43(3):268–271, Sep. 1997.

[4] Juhn, L. and L. Tseng. Fast data broadcasting and receiving scheme
for popular video service. IEEE Trans. on Broadcasting, 44(1):100–
105, Mar. 1998.

[5] Pâris, J.-F. A simple low-bandwidth broadcasting protocol for video
on demand, Proc. 7th Int. Conf. on Computer Communications and
Networks, pages 690–697, Oct. 1999.

[6] Pâris, J.-F., D. D. E. Long and P. E. Mantey. A zero-delay broad-
casting protocol for video on demand. Proc. 1999 ACM Multimedia
Conf., pages 189–197, Nov. 1999.

[7] Pâris, J.-F., S. W. Carter and D. D. E. Long. A universal distribution
protocol for video-on-demand. Proc. Int. Conf. on Multimedia and
Expo 2000, Vol. 1, pages 49–52, July 2000.

[7] Viswanathan, S. and T. Imielinski. Metropolitan area video-on-
demand service using pyramid broadcasting. ACM Multimedia
Systems Journal, 4(4):197–208, 1996.

View publication statsView publication stats

https://www.researchgate.net/publication/221264513

