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Abstract: Large and densely sampled sensor datasets can contain a range of complex stochastic
structures that are difficult to accommodate in conventional linear models. This can confound
attempts to build a more complete picture of an animal’s behavior by aggregating information across
multiple asynchronous sensor platforms. The Livestock Informatics Toolkit (LIT) has been developed
in R to better facilitate knowledge discovery of complex behavioral patterns across Precision Livestock
Farming (PLF) data streams using novel unsupervised machine learning and information theoretic
approaches. The utility of this analytical pipeline is demonstrated using data from a 6-month feed trial
conducted on a closed herd of 185 mix-parity organic dairy cows. Insights into the tradeoffs between
behaviors in time budgets acquired from ear tag accelerometer records were improved by augmenting
conventional hierarchical clustering techniques with a novel simulation-based approach designed
to mimic the complex error structures of sensor data. These simulations were then repurposed to
compress the information in this data stream into robust empirically-determined encodings using
a novel pruning algorithm. Nonparametric and semiparametric tests using mutual and pointwise
information subsequently revealed complex nonlinear associations between encodings of overall
time budgets and the order that cows entered the parlor to be milked.

Keywords: dairy welfare; hierarchical clustering; mutual information; precision livestock farming;
time budgets; unsupervised machine learning

1. Introduction

Precision livestock farming (PLF) technologies produce prodigious amounts of data [1].
Although the behaviors encoded by such sensors are often much simpler than those that
can be quantified by a human observer, the measurement granularity and perseverance
provided by these technologies creates new opportunities to study complex behavioral
patterns across time and in a wider range of contexts. Observations collected on a single
animal over extended observation windows at high sampling frequencies can, however,
contain a range of complex temporal patterns, such as cyclicity, non-stationarity, autocor-
relation, etc. [2]. Furthermore, when sensors are applied to large heterogenous groups
of animals housed socially in spatially restricted environments, recorded behaviors may
also contain complex interdependencies between animals at the dyadic, triadic, clique,
and herd levels [3–5]. Failing to accommodate all these complex structural and stochastic
features in a conventional model-based approach to statistical inference risks returning
spurious insights into the underlying behavioral dynamics. Developing such a model with
a single PLF data stream can be challenging. Provided multiple data streams, however,
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the logistical challenges presented by model-based analytical frameworks can rapidly
compound, creating significant barriers to cross-sensor inferences, and thereby impeding
researchers from extracting more holistic behavioral inferences from increasingly data-rich
farm environments.

Unsupervised Machine Learning (UML) tools may provide a more flexible and for-
giving approach to knowledge discovery in the context of large sensor datasets [6,7]. Such
algorithms excel at identifying and characterizing complex non-random behavioral pat-
terns lying beneath the stochastic surface of a dataset, while often employing relatively
few structural assumptions about the data [8–10]. Hierarchical clustering-based techniques
offer an intuitive and highly adaptable approach to visualizing high dimensional datasets
that is particularly well-suited to exploratory data analysis [4,9]. Indeed, by reducing the
complex behavioral signals present in a sensor dataset into a series of discrete clusters, such
algorithms may be viewed as an empirical extension of classical ethological techniques.
Discrete data, however, can be challenging to work with in most frequentist and even many
Bayesian frameworks. Estimators based on information entropy, on the other hand, are
purpose-made to quantify uncertainty in discretely encoded data without knowledge of
the underlying distribution, and thus naturally complement hierarchical clustering-based
algorithms [7,11,12].

Clustering algorithms, by virtue of their incredible flexibility, have successfully been
applied to a range of PLF data streams [7,13–18]. In our own previous work, we have high-
lighted the utility of hierarchical clustering-based approaches in leveraging the behavioral
co-dependencies of cows housed socially in large groups, in a production environment, in
order to recover complex temporal patterns in behavior [7]. In these analyses, data mechan-
ics algorithms were able to recover complex nonstationarity in the order in which cows
entered the milking parlor. Some of these changes in queuing patterns could be attributed
to the shift to spring pasture access, but other transient and persistent shifts in entry order
recovered in these encodings were driven by environmental factors not experimentally
recorded [7,19,20]. Entropy-based nonparametric permutation tests were also successful in
recovering preliminary evidence of significant nonlinear associations between encodings
of entry-order patterns and activity patterns recorded using ear-tag accelerometers. In
this paper we will explore how novel ensemble simulation techniques [11] that emulate
and adjust for the complex sources of error in PLF data streams may be used to produced
more balanced encodings of multi-dimensional behavioral data. We also introduce a new
dendrogram pruning algorithm that is able to efficiently repurpose these same ensemble
simulations, to ensure that that the power of hierarchical clustering tools do not exceed the
resolution of the sensor. Finally, we demonstrate the utility of information decomposition
techniques within our existing nonparametric mutual information testing framework, to
better facilitate the visual characterization of complex behavioral patterns across sensor
data sets that might be overlooked in more conventional model-based analyses.

2. Materials and Methods
2.1. Description of Data

To demonstrate the efficacy of our analytical approach, data was repurposed from a
feed trial assessing the impact of an organic fat supplement on cow health and productivity,
through the first 150 days of lactation. All animal handling and experimental protocols
were approved by the Colorado State University Institution of Animal Care and Use
Committee (Protocol ID: 16-6704AA). The study ran from January through July in 2017,
on a USDA Certified Organic dairy in Northern Colorado, enrolling a total of 200 cows
over a 1.5-month period into a mixed-parity herd of animals, with predominantly Holstein
genetics. Cows were maintained in a closed herd in an open-sided free-stall barn, stocked
at roughly half capacity with respect to both feed bunk spaces and stalls. Cows had free
access to an adjacent outdoor dry lot while in their home pen, and beginning in April were
moved onto pasture at night, to comply with organic grazing standards. Cows were milked
three times a day, with free access to TMR between milkings, and were head locked each
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morning to facilitate data collection and daily health checks. For more details on feed trial
protocols, see Manriquez et al. (2018) and Manriquez et al. (2019) [21,22].

In addition to standard production and health assessments, behavioral data was also
obtained from several PLF data streams [19]. Milking order, or the sequence in which
cows enter the parlor to be milked, is automatically recorded as metadata in all modern
RFID-equipped milking systems. Our study cows were milked in a DelProTM rotary parlor
(DeLaval, Tumba, Sweden). At each morning milking, raw milking logs were exported
from the parlor software, and the data were processed in order to extract the single-file
order that cows entered the rotary [23]. A total of 80 milk order records—26 recorded while
cows remained overnight in a free-stall barn, and 54 following the transition to overnight
access to spring pasture—were used to create discrete encodings for parlor entry patterns
via data mechanics clustering (see McVey et al. for further analytical details) [7]. The
dendrograms summarizing the distribution of cow entry-order patterns and subsequent
heatmap visualizations will be subjected to further analysis, without modifications to the
previously reported encodings.

Animals enrolled in this feed trail were also fitted with a CowManager ear tag ac-
celerometer (Agis Automatisering BV, Harmelen, The Netherlands). This commercial
sensor platform, while designed and optimized for disease and heat detection, also pro-
vides hourly time budget estimates for total time (min) engaged in five mutually exclusive
discrete behaviors—eating, rumination, non-activity, activity, and high activity [24,25].
Time budget data was collected on all animals for a contiguous period of 65 days (1560 h).
The observation window began on 17 February, shortly after trial enrollment was com-
pleted, and ended on 23 April, when the grazing season commenced and cows were moved
overnight beyond the range of the receiver antennae. After eliminating the data of cows
that were removed prematurely from the observation herd due to acute clinical illness,
as well as several cows with persistent receiver failure, complete sensor records were
available for 179 animals. In order to focus fully on the logistical challenges of encoding
and characterizing the complex multivariate dynamics of this system, we have chosen to
compress this data over the time axis to consider only the overall time budgets of these
cows, and will leave explorations of the longitudinal and cyclical complexity of this dataset
for future work.

2.2. Improving Empirical Encodings of Overall Time Budget through Simulation

Regardless of its original distribution, data can always be coarsened into a discrete
variable [26]. For complex or poorly defined systems, where appropriate cutoffs (binning
rules) cannot be inferred a priori, an empirically-determined encoding may provide a
more flexible and comprehensive approach to discretizing the underlying behavioral
signals. One algorithm that provides a model-free approach to pattern encoding within the
larger cannon of UML tools is hierarchical clustering. This approach employs a bottom-
up agglomerative strategy to group observational units into discrete clusters of variable
sizes, progressively building a coherent picture of herd-level global structures from the
similarities in behavioral patterns observed between pairs of individuals [9,10]. This series
of progressive pairings can be expressed graphically in the form of a dendrogram, which
serves as a 2D representation of the data’s geometric distribution in its higher dimensional
measurement space, and can subsequently be used in data visualizations to highlight the
most prominent structural features of a dataset [19].

The efficacy of any hierarchical clustering scheme, however, is largely contingent on
the adequacy of the estimator used to quantitatively express the pairwise dissimilarity
between observational units [10]. The Euclidean distance (L2 norm) is the default estimator
used in most applications of this algorithm [9,10,27], including much of the previous
work in precision livestock applications [13,14,18]. The L2 norm is appropriate for many
measurement systems where variance is reasonably uniform across a continuous domain
of support. Time budget data, however, is distributed multinomially, and as such has
significant domain constraints [26]. Put more simply, we know that the minutes logged for
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each behavior must sum to an hour. So, if a cow has ruminated for 60 min, then there can
be no uncertainty in the remaining axes, because we know these values must be zero. These
domain constraints impose co-dependencies between the behavioral axes that become
stronger as observations shift towards the boundaries of the distribution’s support, which
in turn warp the intrinsic variability of each axis contingent upon their location within
the domain.

This statistical tedium also has some intuitive behavioral implications. Suppose we
have two cows, Betty and Bessy, who spend 13 and 14 h a day ruminating, respectively.
How “different” are these values? Since both cows are exceeding rumination rates needed
to sustain a healthy metabolism, we would not anticipate that this difference would have
a significant biological impact on these animals, and may ultimately be explained by
relatively trivial behavioral fluctuations. Now, suppose instead that we have two other
cows, Daisy and Delilah, who spend only 3 and 4 h a day ruminating, respectively. Given
that both these cows are now well below the normal threshold for this behavior, this one-
hour difference may have significant biological impacts. With a simple L2 norm, however,
these two pairs would be given equivalent dissimilarity estimates for this behavioral axis,
and so clearly a better estimator is needed.

Relative entropy, also referred to as the Kullback–Leibler divergence, is a classic infor-
mation theoretic metric specifically designed to contrast discrete probability distributions,
and thus a natural candidate for analysis of time budget data [12]. For any two distri-
butions that utilize the same alphabet of k = 1 . . . K categorical features (i.e.,—use the
same ethogram), relative entropy can be calculated using Equation (1), and converted to a
symmetric distance measure using Equation (2). By utilizing the proportion of time that an
animal invests in each behavior as both a nominal and relative value, this estimator is able
to adjust the relative difference between cows by the absolute position of each observation
relative to the boundary of the domain.

DKL(P||Q) = ∑
k

P(k) log
P(k)
Q(k)

(1)

P = normalized time budget vector f or Cow A

Q = normalized time budget vector f or Cow B

DKL(P, Q) = DKL(P||Q) + DKL(Q||P) (2)

Domain constraints are not, however, the only stochastic feature that need be ac-
commodated when working with time budget data. There is also the measurement error
attributable to the sensor itself. Returning to the previous example, suppose that we also
know that our rumination records are only accurate to ±1 h. Is it then still appropriate to
give more weight to the one-hour difference between Daisy and Delilah, than between Betty
and Betsy? Since both observations are within the bounds of error, attempting to enhance
the underlying biological signal may only succeed in amplifying measurement noise. A
closed-form estimator, however, may not be readily generalizable to the wide range of
measurement error models encountered with PLF sensors. We therefore propose that a
simulation-based approach may offer a more flexible means of accounting for measurement
errors in dissimilarity estimates [11].

The LIT package provides a built-in simulation utility for time budget data that
seeks to mimic the stochastic error structure of the original data while still preserving the
underlying behavioral signal [11]. Data is provided as a tensor, with cow indexed on the
first axis, time indexed on the second, and the component behaviors on the final axis. The
count data at each cow-by-time index is then used to redraw a simulated datapoint from
one of three optional distributions [26]. In the first, the user may sample directly from
a multinomial distribution centered around the normalized observed count vector. This
model assumes that measurement error should shrink as a cow dedicates larger proportions
of an observation window to specific behaviors, and intrinsically prevents estimates from
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being generated outside the domain of support. Variance can be underestimated at the
extremes of the domain, however, if the probability for a behavior is non-negligible, but the
observed count is zero due to under-sampling. This issue may be addressed in sampling
option two, where samples are redrawn from a multivariate beta distribution (MBD), also
known as a Dirichlet distribution, again parameterized using the normalized observed
count. While this sampling strategy slightly biases the simulation towards the center of
the distribution, it prevents under-sampling at the extremes of the domain. Finally, users
may combine these sampling strategies in sampling option three, wherein the probability
vector used to parameterize the multinomial is drawn first from the Dirichlet, in order to
further increase the uncertainty in the simulated data. After simulation has been completed
by redrawing samples at the finest level of temporal granularity supported by the sensor,
the data can then be conditionally or fully aggregated along temporal axis as required for
downstream analysis as a time budget.

This simulation routine was used to create an ensemble of B = 500 simulated overall
time budget matrices that mimicked the stochasticity attributable to a reasonable approxi-
mation of the measurement error of the sensor. Stored as a tensor with replication on the
last axis, the variance of the ensemble of simulations could then be easily calculated for
each combination of cow index and behavioral axis. If the underlying simulation strategy
is a reasonable representation of the noise in the sensor, then these variance terms will then
serve as a sufficient approximation of the relative uncertainty in each data point. We pro-
pose that that this information can then be incorporated into the calculation of dissimilarity
estimates by serving as penalty terms in the calculation of an ensemble-weighted distance
estimator defined in Equation (3).

DEW(P, Q) = ∑
k

(Pobs(k)−Qobs(k))
2

σ2
P∗(k) + σ2

Q∗(k)
(3)

σ2
P∗(k) = Variance o f ensemble o f simulated values f or Cow A f or behavior k

σ2
Q∗(k) = Variance o f ensemble o f simulated values f or Cow Q f or behavior k

The rescaling strategy employed in our proposed dissimilarity estimator is strongly
inspired by traditional analysis of variance (ANOVA) techniques, thereby providing several
insights into its anticipated behavior. First, because the simulations were generated using
the multinomial or one of its analogs, we can infer that these penalty terms will not be
homogenous across the domain of support, but should shrink as observations approach
the boundary. This will allow the ensemble-weighted distance estimator to emulate the
rescaling dynamic achieved with the KL distance; however, rescaling at the extremes of
the domain will ultimately be bounded by our simulated measurement error, so as not to
exceed the precision of the sensor. Second, because we have here emulated measurement
error in our simulation using sampling uncertainty, the central limit theorem will apply [9].
Thus, we can anticipate that as the number of observations per animal increases, the impact
of measurement error on our inferences will shrink, allowing progressively more subtle
differences between animals to come into resolution. Taking this property to its limit,
however, can it be said that with enough observation minutes the differences between
cows can be inferred with near certainty? That intuition, of course, is at odds with our
characterization of a dairy herd as a complex system, and highlights an additional stochastic
element that must be accommodated—the behavioral plasticity of the cows themselves in
response to changes in the production environment [4].

Given the extended observation window of this particular data set, it would be possible
to recalculate time budget conditional on the day of observation, and then use the variance
in daily time budget along each behavioral axis as a penalty term. Such estimates would
collectively reflect heterogeneity in variance attributed to domain constraints, measurement
error, and behavioral plasticity. Such an approach would not, however, be feasible for
datasets collected over shorter time intervals with fewer replications, or in applications
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with behavioral responses where there is no clear hierarchy in the temporal structure of
the same. We therefore propose that our stochastic simulation model can be extended
to also provide a generalizable means to approximate the uncertainty of the underlying
behavioral signal.

As before, the measurement error was simulated by redrawing samples at the finest
temporal granularity provided by the sensor. Prior to compression along the temporal
axis, however, a random subsample of observations days was selected across all cows, and
only these values were used to calculate the simulated overall time budget. If all cows
demonstrated comparable levels of consistency in their daily time budgets, then reducing
the effective sample size of our simulated data sets through a subsampling routine would
increase the ensemble variance estimates. This, in turn, would make our approximation
of measurement error hyper-conservative, but this increase would be uniform across all
cows. If, instead, some cows were less consistent in their time budgets across days, then
the sampling error imposed by the subsampling routine would be greater, resulting in
a larger ensemble variance estimate. Thus, we would expect a stronger penalty to be
applied to cows who demonstrated greater plasticity in their behavioral responses to both
transient and persistent changes in the production environment. For small datasets with a
limited number of replications, the number of subsamples could be set quite close to the
size of the complete sample, and would thus emulate a jackknife approach to variance
estimation [9,10,28]. For larger datasets, however, the subsample size could be set smaller,
to make the resulting ensemble variance estimates progressively more sensitive to the
uncertainty in the underlying behavioral signal.

To evaluate the empirical performance of these dissimilarity estimators, distance
matrices were calculated for the 177 cows with complete CowManager time budget records.
Euclidean distance and KL Distance were calculated using base R utilities, with speed up
options utilizing the Rfast package [23,29]. An ensemble-weighted dissimilarity matrix
was first calculated using simulated values accounting only for measurement error using
the most conservative joint Dirichlet-multinomial sampling scheme, hereafter referred to
as noise-penalized distance. A second ensemble-weighted dissimilarity matrix was then
calculated using the same sampling scheme for measurement noise but aggregated over
a 14-day subsample to account for behavioral plasticity in daily time budgets, hereafter
referred to as plasticity-penalized distance. The LIT package provides users a clustering
visualization utility, which converts dissimilarity matrices into a dendrogram using the
hclust utility in base R with default Ward D2 linkage [23], and the generates heatmap
visualizations of the resulting clustering results using the pheatmap package [30]. Heatmaps
were generated on a grid of cluster values from k = 1 . . . 10 for each of the four dissimilarity
estimators, with complete results provided in Supplementary Materials, the results for
k = 10 clusters are provided. The LIT package also provides users with a plotting utility to
visually contrast the broader patterns between behavioral encodings. Outputs from the
clustering utility are passed in to create a contingency matrix generated using ggplot2 with
cells colored by their corresponding cell count [31]. The heatmap visualizations for each
encoding are then added to the row and column margins of the contingency matrix using
the ggpubr package [32], and arranged such that each row cluster in either heatmap matches
the order of the contingency matrix reading either up-down or left-to-right, allowing for
direct and detailed visual comparison of the discretized behavioral patterns. Comparisons
between the noise-penalized and plasticity-penalized encodings are provided.

2.3. Improving Tree Pruning Decisions through Simulation

An optimal encoding strategy seeks to minimize the loss of relevant information by
retaining as much of the underlying deterministic signal as possible, while hemorrhaging
only noise [26]. In a hierarchical clustering framework, this is achieved by pruning the
dendrogram built from the dissimilarity matrix at the point where the branches cease to
represent differences in the underlying signal. Standard pruning strategies allow users
to either: (1) provide a dissimilarity cutoff, below which value all further branches are
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grouped into the same bin, or (2) extract the first K branches of the tree [9,10]. As with the
default Euclidean distance dissimilarity estimator, this approach may be appropriate for
datasets with relatively homogenous variance structures. For data drawn from intrinsically
heterogenous distributions, however, the branch lengths cannot be directly compared
across the domain of support, making globally-defined pruning rules a suboptimal strategy
for analysis of time budget data.

More fundamentally, a homogenous pruning strategy may be too simplistic for many
PLF sensor datasets, for which the underlying signal often represents a complex composite
of behavioral mechanisms that operate at multiple scales. Although some environmental
factors might be expected to have an impact on cattle behaviors that are uniform across the
herd, other factors might elicit responses that differ in magnitude for different subgroups
within the larger population, or even become isolated within smaller social cliques. For
example, we might expect the number of times cows are moved each day for milking will
place similar constraints on the time left to lie down across all animals, but overstocking
with respect to stall spaces might have a much larger magnitude of impact on the lying
patterns of subordinate heifers than the more dominant older cows [33]. In such a complex
system, we would expect the heterogeneity imposed by the underlying biological signal
to differ in scale across the dataset. Subsequently, in attempting to employ a global cutoff
decision to encode information for such a dataset, we would always be faced with the
difficult decision to either ignore the subtler behavioral patterns present in some branches of
the tree, or else allow noise to contaminate our encoding of other branches with intrinsically
coarser behavioral patterns.

Although all the components that contribute to the signal in a complex livestock
system might be difficult to anticipate a priori, we propose that a more dynamic pruning
algorithm might still be achieved, by again employing flexible simulation-based approaches
to emulate the comparably simpler sources of uncertainty. If each branch of the dendrogram
is viewed as a pairwise contrast between two groups of animals, then we need only to de-
termine whether the bifurcation under inspection represents a difference in the underlying
signal that can be reliably distinguished from noise. If it can, then the two groups should
be split in the final encoding to capture this feature of the data’s distribution. If a branch
falls below the intrinsic resolution of the data, however, then the branch may be pruned so
that all animals are placed into the same cluster, with no loss of meaningful information. By
implementing such a branch-level test recursively, we can gradually work our way down
the tree with adaptive locally-defined pruning decisions.

To evaluate the reliability of the behavioral signal encoded at each bifurcation of the
tree [34], our branch test utility utilizes two mimicries. The first set of simulations are
generated under the alternative hypothesis that assumes a branch contains an underlying
deterministic signal that is only partially obscured by stochastic noise. Thus, we can simply
repurpose the ensemble of simulated data sets used previously to calculate the ensemble
weighted dissimilarity metrics by mimicking the uncertainty in the observed data. The
second set of simulations are generated under the null hypothesis that a given branch
contains only noise. As the null implies that animals demonstrate equivalent patterns of
behavior within the resolution of the sample, this mimicry can be generated quite efficiently
using a standard bootstrapping routine [28], wherein time budgets simulated under the
alternative are unconditionally resampled from amongst all animals in a given branch.
HClustering is then performed independently on each data mimicry in either ensemble,
and the first k branches are extracted to create an ensemble of discrete encodings.

Under the alternative hypothesis, a strong signal should produce a robust tree struc-
ture such that, even after the addition of simulated noise, the resulting encoding would still
closely mirror that of the original observed data. As the stochastic component of a dataset
becomes stronger relative to the signal, these bifurcation points will become progressively
less stable, and the subsequent encodings less reliably aligned with the original data. When
the signal falls below the resolution of the data, the tree structures of the simulated data
would then seldom match that of the original data, and so would become poorly distin-
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guished from encodings generated under the null, with no signal component. We propose
that mutual information, which can be calculated without any additional distributional
assumptions, can be used to quantify the similarity between the observed data and each
mimicked dataset, and subsequently used to determine if simulations under the alternative
are distinguishable from the null [12]. In our study, a bifurcation was determined to be sig-
nificant if less than 5% of the MI values calculated for data simulated under the alternative
hypothesis fell below the 95th quantile of MI values calculated for data simulated under
the null. If a bifurcation was instead deemed insignificant, the branch was pruned and all
cows within it assigned to the same cluster in subsequent encodings.

In evaluating the significance of a bifurcation, it seems intuitive that a k = 2 binary
encoding should be utilized. For complex systems subject to the influence of multiple
competing drivers of behavioral responses, however, a false negative result can occur with
this parameterization if the addition of stochastic noise perturbs the order in which two
significant mechanisms with similar magnitudes of impact are bifurcated. Such trivial
destabilizations of the tree structures can be readily identified in visualizations of the
distributions of MI values calculated against simulations under the alternative, as the
“flip flopping” between bifurcation points produces clear evidence of multimodality (see
Figure 1). To circumvent this issue, the LIT package provides users the option to re-test
any bifurcations deemed insignificant, using a binary encoding with a more granular
discretization (k > 2). This effectively allows the algorithm to “look down the branch” to
absorb any irrelevant flip-flopping between competing signals, thereby preventing spurious
over-pruning that would hemorrhage information on significant behavioral patterns from
the final encoding.
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Figure 1. Visualization of the test–branch results for the first bifurcation of the Euclidean distance
time budget dendrogram, cut using the noise-penalized ensemble of data mimicries. In simulations
under the alternative hypothesis, the addition of noise intended to mimic measurement error has
destabilized the tree, causing it to “flip-flop” between first isolating cows with more moderate time
budgets, and animals at the two extremes of the tradeoff between eating and ruminating. Although
both branches are distinguishable from measurement errors, this ambiguity in bifurcation order has
produced bimodality in the distribution of mutual information estimates against the encoding for
the observed data. Retesting with more clusters allows the algorithm to “look down the branch” to
produce better separation between encodings under the null and the alternative, and thereby avoid
spurious over-pruning.

Full results for the application of our ensemble-cut algorithm to dendrograms gen-
erated using each of the four dissimilarity estimators discussed in the previous section,
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and using both the noise-penalized and plasticity-penalized encodings, are provided in the
Supplementary Materials. A summary of results for the application of the ensemble-cut
algorithm applied to dendrograms generated from the noise- and plasticity-penalized
ensemble-weighted distance metrics, the noise-penalized and plasticity-penalized encod-
ings, respectively, are provided.

2.4. An Information Theoretic Framework for Cross-Sensor Inferences

Equipped with an appropriate encoding to discretely represent the heterogeneity in
overall time budgets within this herd, and provided with the encoding of longitudinal
patterns in parlor entry position from previous work with this data set, a potential question
to ask would be: how does a cow’s time budget, which is largely determined by her
behaviors in the home pen, relate to her behavior in the milking queue? There are a
number of nonparametric and parametric techniques available to evaluate the overall
strength of association between two discrete variables, by evaluating the distribution of
animals in the joint encoding [26]. There is, however, perhaps greater practical utility in
characterizing low and high points within the joint encodings, which would provide more
detailed insights into the tradeoffs between specific behavioral patterns recovered from the
data streams in these distinct farm contexts. Towards this end, information theory offers a
more comprehensive approach to decomposing the stochasticity within discretely encoded
variables, and thus may provide a more holistic approach to evaluating both the global and
local features of a joint encoding, while employing few structural assumptions [12].

First, to evaluate the strength of the overall relationship between two discretized
behavioral responses, the LIT package provides users a permutation-based bivariate testing
utility that uses the mutual information estimator to quantify the amount of information
entropy that is redundant between the two encodings [7,12]. We can anticipate, however,
that the efficacy of this test in recovering significant relationships between the underlying
biological signals will be affected by the resolutions of the encodings. Suppose that a single
latent biological factor impacts the behavioral responses collected by both PLF data streams,
creating informational redundancy between the two encodings. If we cut the trees above
the intrinsic magnitude of its impact on a given behavior, its influence may be overlooked
and mutual information underestimated. On the other hand, if we prune the tree far below
the magnitude of its impact, our inferences can lose power, as bin sizes in the joint encoding
become progressively smaller, weakening the empirical estimation of the joint probability
distribution and thereby increasing estimation error in the MI estimator. The resolution
of our encodings must, therefore, be optimized to match the dynamics of the system, or a
false negative result may be returned. To further complicate matters, however, we cannot
necessarily assume that the magnitude of impact of a given latent factor will be uniform
across behaviors, nor should we expect in a complex farm environment that behaviors will
be influenced by a single latent factor.

To overcome this logistical challenge without falling back on dubious a priori assump-
tions, the LIT package implements mutual information-based permutation tests on a grid,
varying the cluster resolutions across both behavioral axes [7]. Under the null hypothesis
that no significant bivariate relationship exists between data streams, cow ID labels are
randomly permuted within each tree, preserving the marginal distribution of the data
along each axis, but destroying any latent bivariate relationships. These permuted trees are
then cut, and the mutual information of the joint encoding estimated for each combination
of cluster counts on the grid. A p-value is then generated by comparing the observed MI
value of the joint encoding at each grid point against the corresponding distribution of
MI values simulated under the null. Just as a scientist varies the focus of a microscope
to bring microbes of different size into resolution, we can expect that geometric features
of the joint probability distribution imposed by latent deterministic variables, that vary
in scale of impact, will come into and fall out resolution as these meta-parameters are
varied across the grid of cluster counts. To help the user visually identify where such
features have come into resolution, the LIT package also returns a heatmap visualization
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of the observed MI value for each grid point that is centered and scaled, relative to the
distribution of MI values under the null. For behavioral measurements subject to the
influence of multiple biological and environmental factors operating simultaneously, this
exhaustive approach to parameterization enables users not only to build a more complete
picture of a complex behavioral system, but may also provide insight into the hierarchy of
these behavioral responses.

Unfortunately, as the resolution of the encodings is increased, MI estimates not only
become less precise, but they may also become less accurate. Bias is introduced when
empirical estimates of the joint probability distribution become so granular (i.e.,a high
number of bins relative to the total sample size) that regions with low but nonzero proba-
bilities go unsampled. These zero-count bins cause the total entropy calculated from the
empirical joint probability distribution to be underestimated which, in turn, causes the
relative amount of redundant information to be overestimated. Although the magnitude of
this bias is partially dependent on the total sample size, it is also contingent on the structure
of the joint probability distribution itself, namely the number of low-probability cells. Given
that the joint probability distribution under the null, which is randomly permuted to inten-
tionally remove any nonrandom features in the sample, can be expected to have a more
uniform distribution of probability than the observed dataset, we can anticipate that the
magnitude of the bias may differ between these two distributions as the sample becomes
more granular, preventing MI estimates from being directly comparable. To overcome this
issue, the LIT package by default provides entropy estimators based on the Maximum
Likelihood frequency estimates, but allows users to select from a range of bias-corrected
frequency estimates available in the entropy package [35]. Based on the simulation work by
Hausser and Strimmer (2009), the JS “shrink” estimator was used in our study to conduct
bias-corrected mutual information permutation tests [36].

Not only can the impact of latent factors on behavioral measures differ in magnitude,
we can also anticipate that responses may differ in both strength and direction for different
subgroups within the herd. Such nonlinear dynamics are easily captured in a model-free
MI test, but further inspection of the contingency table is needed to fully characterize
such complex bivariate relationships between sensor outputs. If either marginal encoding
has roughly the same number of observations in each bin, then the cell counts in the
joint contingency table can be directly compared, as under the null we would expect
each cells to be equiprobable. For empirically defined encodings, however, bin sizes
can vary significantly to better capture the underlying geometry of the univariate data
distribution. Such differences in marginal probabilities prevent the raw cell counts from
being directly compared. To better identify which cells in an empirically defined joint
encoding are driving a significant overall relationship between two data streams, mutual
information can be decomposed into pointwise mutual information (PMI) values [37].
The LIT package provides users the option in the compareEncodings plotting utility to
color cells in the joint contingency table by PMI estimate, to better facilitate direct visual
comparisons of the encodings. To further enhance visualizations of the joint probability
distribution that significantly differs from expected cell counts under the null, users may
also specify a probability threshold above which PMI values should not be displayed,
which was determined here by simulating PMI estimates under the null by redrawing from
a multinomial distribution using the outer product of the marginal distributions.

Bivariate tree tests were applied to the time budget encodings, using both the noise-
and plasticity-penalized dissimilarity metrics, and pruned using the more conservative
plasticity-penalized mimicry, against the encoding of parlor entry order data produced
using data mechanics clustering from our previous work [7]. A 2:10 × 2:10 grid was used
to determine the optimal resolution for the bivariate relationship, with the optimal meta-
parameters used to create visualizations of the joint encoding, wherein pointwise mutual
information values were used to color cell counts that were significant at the alpha = 0.05
significance level. To further explore latent factors that might explain significant associa-
tions between entry position and time budgets, bivariate tree tests and pointwise mutual
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information tests were also applied separately to the encodings of both PLF data streams
and health records.

3. Results and Discussion
3.1. Improving Empirical Encodings of Overall Time Budget through Simulation

Figure 2 provides a visual comparison of the time budget encodings for the four can-
didate dissimilarity metrics. In each heatmap visualization, individual cows are arranged
along the row axis, and the mutually exclusive behaviors that comprise the overall time
budget are ordered along the columns. Each cell within the heatmap is subsequently
colored to reflect the proportion of time that a given cow is recorded by the accelerometer
system to engage in a specific behavior over the observation window. Few cows dedicated
more than half of their time to any one behavioral axis, which is not surprising, given that
total lying time in this system is split between the nonactive and rumination axes [33]. Time
recorded as eating and time recorded as ruminating were the highest magnitude behavioral
axes, but time spent eating demonstrated far greater range and heterogeneity. Time spent
nonactive was lower in overall magnitude, but still showed a fair amount of heterogeneity
across cows. The active and highly active axes, however, were both quite low in magnitude
and generally demonstrated less systematic heterogeneity across the herd. The order of
cows along the row axis in each heatmap is determined by the dendrogram calculated
for each dissimilarity matrix. The dendrogram can be interpreted as an approximate 2D
representation of the distribution of the cows with the 5D multinomial space of the time
budget, and thus serves to bring out in the heatmap systematic differences in time budget
across the herd. Gaps were added between rows to indicate branches that have been
pruned, such that all cows within a given branch received the same discrete value in the
final time budget encoding.

A cursory appraisal of all four encodings summarized in Figure 2 reveals that, regard-
less of the dissimilarity metric utilized, there was a considerable amount of heterogeneity
in the distribution of overall time budgets across this herd. Looking more closely at the
clustering tree produced from the unweighted Euclidean dissimilarity metric in Figure 2A,
we can see that the higher magnitude eating and rumination axis entirely dominated the
first handful of bifurcations of the dendrogram. Even for users not accustomed to reading
dendrograms, this dynamic is clearly animated by parsing through the grid of heatmap
visualizations provided by the encodePlot utility (see Supplementary Materials). Hetero-
geneity in the moderate-magnitude nonactivity appears to have been largely ignored in
the first half-dozen bifurcations, with the first 10 clusters extracted from this dendrogram
being ultimately quite variable in the nonactivity response. Nor is there clear evidence
that either activity axes influenced the first 10 bifurcations of this tree. This dynamic is
almost certainly attributable to the lack of intrinsic scaling with this estimator. While a
behavioral axis that represents a larger proportion of a cow’s time investments may warrant
additional consideration, these results clearly demonstrate that the Euclidean norm does
so to nearly the complete exclusion of lower-magnitude behavioral axes that might still
convey important ethological information. The Euclidean distance heatmap is also anno-
tated on the row axis with a number of auxiliary data fields for each cow, which included:
age (birth date); calving date; an estimate of peak lactation; nutrition supplementation
treatment, and health status during the observation window (see Supplementary Materials
for details on the encoding of these auxiliary cow attribute variables). A cursory visual
inspection reveals that most clusters appear to be fairly homogenous with respect to cow
age, tenure in the pen, and feed supplementation status. Sick cows, however, appear to
be slightly overrepresented in some groups, namely the smaller branches representing the
more extreme time budget tradeoffs.
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In each heatmap cows are arranged along the row axis, and the mutually exclusive behaviors along
the column axis, such that each cell is colored to represent the proportion of time that a given cow is
recorded engaging in a specific behavior. Row gaps have been added within each heatmap to reflect
the first 10 branches of the corresponding dendrogram, which here are numerically indexed reading
from top to bottom (A) Euclidean norm encoding with row annotations representing cow-level
attributes. (B) KL Divergence encoding with row annotations representing log-scaled variance in
observed daily time budgets. (C) Noise-penalized ensemble-weighted Euclidean distance encoding
with row annotations representing the log-scaled ensemble variances. (D) Plasticity-penalized
ensemble-weighted Euclidean distance encoding with row annotations representing the log-scaled
ensemble variances. See Supplemental Materials for full-scale versions of these images.

Looking next at the hierarchical clustering results visualized in Figure 2B, the KL
distance seems to have provided a slightly more holistic encoding of the data that better
balances the input across the five behavioral axes. Again, extremes in eating and rumination
drive the first few bifurcations of the tree structure, but tradeoffs between time spent eating
and nonactivity are considered much earlier in the bifurcation decisions within this tree.
Some systematic heterogeneity was also revealed across the herd in the high activity
axis, despite its lower magnitude. Unfortunately, the KL distance also appears to have
over-stratified cows whose time budgets lie at the extremes. In particular, the cows with
extremely low time spent eating (clusters 6–8) were divided into clusters that are likely too
small and narrowly defined to facilitate cross-sensor inferences in downstream analyses,
and thus may obscure important behavioral dynamics in this dataset. The KL distance
heatmap is also annotated on the row axis with the variance in observed daily time budgets
for each behavioral axis. Given that time budgets have been normalized here and expressed
as proportions, the resulting variance terms were quite small in magnitude (less than
zero), and so have been re-expressed on a log-scale, where an increasingly negative value
represents a smaller relative magnitude of variation. The fact that all five axes ranged
over several orders of magnitude in these variance estimates reveals that there was an
appreciable amount of variability in the time budgets across days. Visual appraisal revealed
very little systematic patterns in this heteroskedasticity across clusters, however, suggesting
that differences in relative plasticity in daily time budget observations may be attributed
more to the individual than to any specific pattern in overall time budget.

The noise-penalized ensemble-weighted distance, visualized in Figure 2C, displays
clustering dynamics that fall somewhere in between the two extremes of Figure 2A,B. Time
spent eating and ruminating still dominate bifurcations nearer the root of the tree, as with
the unweighted Euclidean distance, but the most extreme tradeoffs between these axes
were here pulled off without over-cutting the tree, as with the KL distance. In the later
branches of the tree, however, cows with more moderate time budgets are divided with
greater input from the nonactive and highly active axes. Although the ensemble-rescaled
estimator does appear to have succeeded in curbing the rescaling of dissimilarity estimates
at the extremes of the distribution, the noise-penalized ensemble distance did still bifurcate
several cows with anomalously high values in the eating, ruminating, and nonactive
axes into their own clusters of size n = 1. Although isolating these animals into their
own branches will effectively exclude them from cross-sensor inferences in downstream
analysis, this encoding may still be appropriate if these datapoints represent authentic
outliers that cannot be explained by typical variation in the sensor system. The heatmap
was also annotated on the row axis with the ensemble variance terms used to penalize
the squared distance estimates. We see that, as anticipated, the magnitude of error in
the noise-penalized ensemble variance terms is substantially smaller than the observed
variance in observed daily time budgets, confirming that, with so many samples over an
extended observation window, measurement error was not contributing substantially to
the overall uncertainty in observed time budgets. Closer appraisal of the clear systematic
differences in these ensemble variance terms observed across clusters, however, confirms
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that these penalty terms appear to be effectively mimicking the intrinsic heteroskedasticity
in this multinomial sampling space.

Ensemble variances calculated for each cow via the plasticity-penalized simulation
routine closely matched (R≥ 0.99) the variances in observed daily time budget estimates for
all five time budget axes, thereby validating the efficacy of the jackknifing routine. Figure 3
directly contrasts the first 10 clusters extracted from the dendrograms generated by the
noise- and plasticity-penalized ensemble-weighted distance measures. In this visualization,
clusters are numbered in each heatmap from top to bottom, and so directly align with
the row and column indices of the contingency table. For example, we can easily confirm
from this graphic that the first three cows constituting the first two clusters in the noise-
penalized heatmap were the same cows isolated into the third and fourth clusters in the
plasticity-penalized heatmaps—a determination that can be easily confirmed by zooming in
on this high-definition rendering to compare Cow ID values. Further comparisons revealed
that cluster designations for cows with extremely high time spent eating, extremely low
time spent ruminating, and relatively low time spent nonactive (clusters 5 and 6 in the
noise- and plasticity-penalized encodings respectively) were virtually identical. In the
plasticity-penalized dendrogram, the extremely low eating time cluster (cluster 3) shrunk
by just a few animals, compared with the noise-penalized encoding (cluster 4). Additionally,
after penalizing for behavioral consistency, the cow with the highest time spent nonactive
in the sample (cow 6580) was not isolated as an outlier. This bifurcation was instead shifted
to the cows with more moderate time budgets (clusters 7–10), serving to better distinguish
between cows with relatively high and only moderate times spent eating. The plasticity-
penalized dissimilarity estimator was also notably more generous in assigning cows to the
cluster characterized by slightly higher rates of rumination, while all other axes remained
relatively low (cluster 7), and appeared to place greater emphasis on the nonactive axis
to determine the remaining clusters. Despite these differences, both ensemble-weighted
dissimilarity metrics succeeded in producing encodings that provide a more holistic and
balanced description of this dataset, and ultimately serve to better visualize heterogeneity
in the tradeoffs between all five behavioral axes.

3.2. Improving Tree Pruning Decisions through Simulation

For all dendrograms pruned using the ensemble of simulations that accounted only for
measurement noise, an extremely fine-grained encoding was returned. A total of 39 clusters
were returned for the unweighted Euclidean distance, 31 for the KL distance, and 38 clusters
for the noise-penalized dissimilarity metric. In Figure 4A, the heatmap visualization of the
noise-penalized encodings helps to illustrate just how far down each branch the pruning
algorithm was able to penetrate before the signal was lost to simulated measurement
error. In fact, amongst the first dozen bifurcations in this dendrogram, the only branch not
validated was that which would have isolated the cow with the highest observed time spent
eating (cow 63911) into her own branch. This result is not necessarily surprising, given
the extended observational period over which sensor records were recorded. With over
1500 min of observation for each cow, even in using a relatively conservative simulation
strategy that very likely overestimated the noise intrinsic to this sensor, we should expect
by the CLT that the standard error attributable to measurement error would ultimately
be quite small after averaging over so many sampled timepoints. Subsequently, these
results reinforce that the sensors themselves should impose few limitations on downstream
inferences for this dataset, and that inconsistencies in the environment and the animals
themselves should be the true limiting factor for the resolution of this encoding.
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Figure 3. Visualization produced using the compareEncoding utility. The noise-penalized encoding
is represented on the row axis and the plasticity-penalized encoding is represented on the column
axis. Clusters in either heatmap are numbered from top to bottom, and so align directly with the
corresponding row and column margins of the contingency table reading up-down and left-right
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respectively. Cell counts show that these two encodings are quite similar at the extremes of the time
budget distribution, but differ slightly in cutoffs amongst the more moderate time budget clusters.
See Supplemental Materials for larger versions of these images.Sensors 2021, 21, x FOR PEER REVIEW 17 of 25 
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mimicry. A courser encoding is returned when uncertainty in time budget observations attributable 
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Figure 4. Encodings produced by the cutreeEnsemble algorithm. (A) Dendrogram produced by the
noise-penalized ensemble weighted dissimilarity metric cut using the noise-penalized data mimicry.
The extremely fine encoding with 38 stochastically validated clusters demonstrates that, with so
many recorded observations over this extended observation window, the accuracy of the sensor
itself should impose few constraints on our behavioral inferences. (B) Dendrogram produced by the
plasticity-penalized ensemble weighted dissimilarity metric cut using the plasticity-penalized data
mimicry. A courser encoding is returned when uncertainty in time budget observations attributable
to the behavioral plasticity of the animal itself is taken into consideration.
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As expected, the dendrograms pruned with the ensemble of simulations that accounted
for both measurement error and longitudinal consistency of the underlying behavioral
pattern produced encodings that were far more granular. A total of 13 clusters were
returned for the unweighted Euclidean metric, 17 for KL distance, and 14 for both the noise-
penalized and the plasticity-penalized dissimilarity metrics. In Figure 4B, the heatmap
visualization of these pruning results for the plasticity-penalized dissimilarity metric reveal
an encoding that is coarser but ultimately quite well balanced, with the pruning heights
modulated to produce cluster sizes that were reasonably uniform across the domain of
support. Closer inspection revealed that this final encoding largely matched the order of
bifurcations in the original tree, except that this pruning strategy left no animals isolated in
anomalous clusters. It should be noted, however, that the granularity of this encoding is
not entirely intrinsic to this system, but was dependent on the size of the subsample used
to calculate the overall time budget in each simulation. While we can expect cows that were
more inconsistent in their daily time budgets to be subjected to a stronger penalty with
this estimator due to relatively higher rates of sampling error imposed by the subsampling
routine, we can also anticipate that the overall scale of the sampling error imposed on all
cows should grow as the size of the subsample is reduced. This would in turn modulate
how quickly the underlying behavioral signals would be drowned out by simulated noise
within the tree. This suggest that, for larger samples where a greater range of subsample
sizes can be utilized, this simulation value can also be treated as a meta-parameter to tune
the granularity of the final encoding. Given that the plasticity-penalized mimicry was
created for this data set by subsampling only 14 out of 65 observation days, the resolution
achieved in the pruned encodings for all four dissimilarity metrics reinforces that this herd
was overall fairly consistent in their daily time budgets, and that this data set will support
fairly detailed inferences against a strong underlying behavioral pattern.

3.3. An Information Theoretic Framework for Cross-Sensor Inferences

Encodings of the overall time budgets produced using both the noise and plasticity-
penalized dissimilarity estimators, wherein both were pruned using the more conserva-
tive plasticity-penalized ensemble, produced similar behavioral insights when compared
against longitudinal patterns in parlor entry positions across the herd. For the bivariate
analyses run with encodings for all 177 cows with complete records, highly significant
associations with entry order were recovered for both the noise-penalized (p = 0.006) and
plasticity-penalized (p = 0.005) time budget encodings. The bivariate relationship was opti-
mized for both time budget encodings with a five-cluster encodings of entry-order patterns.
The noise-penalized encoding produced the strongest associations with entry order, with
seven time budget clusters, whereas the plasticity-penalized encoding performed better
with a finer encoding of nine clusters, the key difference being the degree of stratification
among animals with the most moderate time budgets.

Visualization of the contingency tables for the optimized encodings colored by their
PMI estimates revealed that the significant overall association between the two data streams
was driven predominantly by animals in the latter half of the milking queue. Figure 5
displays the results for the noise-penalized encoding. We see first that cows that entered
consistently at the very rear of the queue (cluster 1) were significantly overrepresented in
the time budget cluster, characterized by moderate time spent eating, low time nonactive,
and high rates of rumination (cluster 4). Cows that entered nearer the back of the queue
(cluster 2), just ahead of the cows that consistently brought up the rear, were also over-
represented in the same time budget cluster—a trend that was statistically significant for
the plasticity-penalized encoding, but only marginally significant for the noise-penalized
encodings. In fact, very few animals that entered in the front half of the queue were found
to have this time budget pattern, with cows entering just behind the leaders being signifi-
cantly underrepresented in this time budget cluster. One potential interpretation of this
pattern might be that, if these cows were prioritizing time investments in rumination, then
this strategy may include hanging back towards the later part of the queue, where they
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may be able to chew their cud while avoiding the more serious contention for parlor entry
position. Further analysis that could facilitate visualization of the cyclical patterns in this
time budget data would be needed, however, to confirm this suspicion, and will be left for
future work.
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mutual information estimates significant at the alpha = 0.05 significance level after simulations using
multinomial resampling. Data mechanics encoding of parlor entry position is presented to the row
margin of the contingency table, wherein the heatmap contains row annotations representing days on
trial and the observation period, such that the pen period corresponds with the observation window
of the overall time budget. The noise-penalized encoding of overall time budget is represented on the
column axis of the contingency table. Pointwise mutual information values reveal that the significant
MI test between these two encodings is driven predominantly by behavioral patterns amongst cows
in the latter half of the milking queue.

While this more moderate tradeoff between rumination and nonactivity demonstrated
a fairly straightforward and progressive trend across the milking queue, which might
readily have been captured by a linear model, more complex dynamics were found for
the time budget cluster characterized by extremely low time spent eating and high time
spent ruminating and nonactive (cluster 6). Cows that consistently entered at the very end
of the queue were significantly underrepresented in this extreme time budget, while the
cows that entered just ahead of them were significantly overrepresented. While an extreme
tradeoff in eating and ruminating might be explained by issues with sensor placement,
that such cows were not evenly dispersed across the herd may instead indicate a biological
driver. Health status naturally comes to mind with such an extreme time budget, and
indeed several previous studies have reported higher rates of health complications amongst
animals in the latter part of the milking queue [38–40]. However, health status alone would
not necessarily explain the inversion in association pattern between these two adjacent
queue groups.

Previous analyses of milk order records have also revealed that, although cows in
general tend to be more consistent in their parlor entry order than would be expected in a
purely random system, cows at both the front and rear of the herd tend to be particularly
persistent their queuing position [38–42]. It remains unclear in analyses of milk order
alone, however, to what degree this pattern is attributable to the cows themselves, and any
broader behavioral strategies (syndromes) that they may have adopted, and how much is
driven by the natural domain constraints intrinsic to this measurement system [7,41]. In
older observational studies of movement patterns in cattle, it has been noted that cow herds
appear to be “led” from both the front and the rear of the queue [43,44]. One interpretation
may then be that sick cows, who cannot maintain a normal time budget, may also be
pushed back by competition for entry position in the milking queue, but they cannot be
pushed behind this small group of cows that may be “leading from the rear”, effectively
serving as a “caboose” for the longer train of animals, as they move between locations to
ensure that stragglers are not left behind. Although this behavioral pattern has not been
reported in previous experimental studies, it would also not be surprising that such a
nonlinear dynamic might be overlooked in analyses relying on linear modeling methods.
Indeed, competition between these two behavioral mechanisms, as part of a more complex
behavioral system, may explain why relationships between parlor entry position, home
pen behaviors, and health status have proven particularly difficult to reliably establish in
previous work [5,40,42].

Follow-up bivariate tests with health records confirmed that cows with health compli-
cations were indeed overrepresented in the later third of the milking queue (see Supplemen-
tary Materials). Mutual information and PMI values did not, however, reveal a significant
link between health status and a finer stratification of these late-entering cows. This result,
which considers only confirmed cases of acute illness, may however be under-powered,
if this behavioral relationship is also influenced by subclinical illnesses not reflected in
these health records. More perplexingly, in bivariate analyses with either encoding of
overall time budget, cows recorded with acute illness were not found to be significantly
overrepresented among the time budget cluster, with extremely low rates of eating. In
Figure 6 we can see that sick cows were, in fact, only significantly overrepresented in the
time budget cluster characterized by relatively low time spent eating, moderate nonactivity,
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and elevated rates of high activity—an association that was significant for both the noise
and plasticity-penalized time budget encodings. Interestingly, in repeating the bivariate
analyses using an encoding of entry-order patterns fit only to animals with no recorded
health events, the same time budget cluster with elevated rates of illness was also found
to be overrepresented amongst cows entering near the end of the queue, just in front of
the “caboose cows” (see Figure 7). Conversely, in this analysis, absent animals with clinical
disease, and animals entering at the very rear of the herd were shown to be overrepresented
in the time budget cluster that was perhaps best-characterized as demonstrating the most
balanced time investments across all five behavioral axes, whereas cows entering just ahead
of the caboose cows were underrepresented in this moderate time budget cluster. These
results may add weight to the suspicion that ambiguities between clinical and subclinical
illness may be obscuring the role of latent health status as at least one key biological link
between home pen and milking queue behavior.
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mutual information estimates significant at the alpha = 0.05 significance level after simulations using
multinomial resampling. Data mechanics encoding of time budget data using only cows with no
recorded health events is represented on the row axis, and the plasticity-penalized encoding of overall
time budget is represented on the column axis. Among cows with no acute illness, cows at the very
end of the queue are now overrepresented in the time budget cluster characterized with fairly high
time spent eating (cluster 8). Cows entering just ahead of them are not only underrepresented in this
high eating time cluster, but are also overrepresented in the cluster with relatively low eating time
cluster with low-to-moderate nonactivity (cluster 3) that was independently associated with higher
rates of clinical illness.

4. Conclusions

Time budgets provide a convenient and intuitive means of quantitatively summarizing
the behavioral tradeoffs of animals, but multinomial-distributed data present a number
of analytical challenges. The results of this analytical case study have highlighted how a
novel simulation-based approach may be employed to simultaneously accommodate both
the codependency structures fundamental to multivariate-distributed data formats and the
complex multi-faceted sources of measurement uncertainty that may be encountered across
a broader range of PLF data streams. While such simulations may be more computationally
expensive than closed-form estimators, we have demonstrated that an ensemble of data
mimicries can be efficiently repurposed throughout the analytical pipeline to improve not
only the visualization of these behavioral tradeoffs, but also the compression of such infor-
mation into robust empirically-defined discrete encodings. It should be noted, however,
that the utility of these novel clustering techniques is not restricted to time budget data.
The ensemble-penalized dissimilarity estimator and ensemble-cut algorithm that we have
introduced in this case study are both fundamentally nonparametric. This means that
their implementation is in no way intrinsically restricted to any particular class of data.
Subsequently, the choices that a user makes in constructing an appropriate error simulation
model are restricted only by their own creativity, allowing this analytical framework to
be easily generalized to a much wider array of PLF data streams, and the wider array of
complex error structures that they have to offer.

Additionally, while discrete data is typically seen as an impediment to statistical
analysis in most model-based approaches, we hope that this analytical case study has
served to demonstrate the comparable ease with which insights may be extracted from
encoded data when an information theoretic approach is employed. For large, structurally
complex, and often informationally redundant PLF data streams, an efficient encoding
may be far easier to achieve than a comprehensive model that can fully accommodate the
temporal dynamics of behavioral responses in complex farm environments. This may be
especially true for data sets where all the factors driving such behavioral responses are
not measurable. By avoiding entirely any form of least-squared optimization utilized in
most model-based approaches, we have shown that an entirely model-free approach is
able to recover nonlinear dynamics between entry order and overall time budget, which
likely would have been overlooked if an assumption of linearity had been employed.
Although more formal model-based inferences may be warranted for further analysis of
the underlying causes of this relationship, the exploratory data analysis tools provided by
the LIT pipeline have undoubtably served to create a more comprehensive picture of the
complex behavioral dynamics hiding within these two under-utilized data streams.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22010001/s1: A zip file containing an RMarkdown document with full documentation
of all code development and files containing all rendered data visualizations. The most current
version of the LIT package can also be downloaded at https://github.com/cgmcvey/LIT, accessed
on 16 December 2021.
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