Lawrence Berkeley National Laboratory

Recent Work

Title

Breakthrough in precision (0.3%) of neutron activation analyses applied to provenience studies of obsidian

Permalink https://escholarship.org/uc/item/02d1n6wd

Author

Burger, Richard L.

Publication Date 2002-10-01

THIRTIETH INTERNATIONAL SYMPOSIUM ON ARCHAEOMETRY University of Illinois at Urbana, May 20-24, 1996 (poster)

Breakthrough in precision (0.3%) of neutron activation analyses applied to provenience studies of obsidian

Frank Asaro, Fred H. Stross Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and Richard L. Burger Yale University Peabody Museum

Abstract

A gamma ray spectrometer at LBNL (the Luis W. Alvarez Iridium Coincidence Spectrometer), that was specifically designed for high sensitivity measurements of iridium abundances, has been significantly modified in order to provide precisions of measurement in neutron activation analysis of obsidian significantly better than previously obtained (about 1%).

Repeated measurements on a single sample of obsidian from a deposit near Chivay, Arequipa, Peru, showed a precision (average coefficient of variation) of 0.19% for the 6 best-measured elements, the value anticipated from the known random errors of measurement. In measurement of samples made from 7 different obsidian nodules from two locations near Chivay, a group of 5 had a spread of 0.30% for the 6 elements measured with counting statistics of better than 0.3% (and 1.8% for the remaining 6 elements). The data suggest there are source inhomogeneity and/or sample preparation contamination errors totaling $0.24 \pm .05\%$ for the 6 best measured elements. A sixth obsidian sample could be distinguished from the main group because it differed by +0.8% for most elements, and the last sample could be easily distinguished because several elements differed by more than 1%.

The precision of measurements now being developed may provide a significantly more precise determination of the provenience of obsidian artifacts than has been heretofore possible. Also the techniques of measurement developed for obsidian will provide even better precisions with pottery, as many elements are more abundant in pottery than in obsidian.

Equipment and sample preparation

The Luis W. Alvarez Iridium Coincidence Spectrometer (LWAICS), shown in Fig. 1 before its right anti-Compton shield was installed and the electronics were connected, was constructed in 1986 and dedicated in 1995. It has two 5 cm diameter x 5 cm long intrinsic Ge gamma ray detectors, each capable of handling 150,000 counts per second (cps). The Ge detectors are completely surrounded by two mineral oil anti-Compton shields spiked with a scintillator. The faces of the two Ge detectors are only 20 mm apart and in between are two high voltage shields, two heat shields, two vacuum shields, a sample track and an Al encapsulated sample. The machine can count gamma ray singles or gamma ray coincidences with or without the anti-Compton shields. In the present work the anti-Compton shields were not used and the count rates were about 20,000 cps.

Powder samples of 100 mg were encapsulated in 0.2 mm thick high purity Al foil. A 100 mm stack of nearly 40 encapsulated samples was sealed in a quartz tube along with standards of Standard Pottery and DINO-1 at the top, middle and bottom of the tube. The stack along with other stacks was irradiated in the University of Missouri Research Reactor for 2 days at a flux of 2.5 x 10^{13} neutrons per second per cm². Obsidian samples were counted in the LWAICS for periods ranging from 90 minutes to 14 hours.

Previous work

The most precise measurements by the LBNL neutron activation group in its 24 year history between 1967 and 1991 were made in 1976 on a basalt standard prepared by the Atlantic Richfield at Hanford company. Up to 7 measurements each were made on duplicate samples of 3 splits of the basalt. An average coefficient of variation (see Table 1) of 0.4% was obtained. This was never repeated, probably because the U.C. Berkeley reactor (which was used for the experiments) had a variation in neutron capture

cross section of about 12% per cm, and sample capsules could not be rotated after the first few years (for reactor safety reasons). That and the spreading of the gamma ray peaks by count rates in excess of 2,500 cps led to minimum precisions of 1%. The most precise measurements of other INAA laboratories was also about 0.8-1%.

Reason for the present study

As part of a project to determine the provenience of a group of 21 Peruvian obsidian artifacts (called the Titicaca Basin chemical group), 7 samples of obsidian nodules from 2 sources west and east of Cerro Ancachita (near Chivay, Arequipa, Peru) were studied by INAA (Burger et al. 1996). These samples were optimum for the present study because obsidian can be very homogeneous. Also it has a water content of only a few percent which can be lost during irradiation. So it is possible to check weights after irradiation to determine if any powder has been lost. (All obsidian samples should lose weight during irradiation due to the loss of volatiles, but comparison of the changes for samples with the same origin can determine if any sample lost an unusual amount, i.e. obsidian powder.)

Procedures in present work

In the previous LBNL work errors could be reduced to the level of detection, i.e. about 1%. But there were many such errors and these were slowly reduced to hopefully lower levels over a period of 5 years between 1991 and 1996. The precision did not improve markedly until 1996 when the "last" error was reduced to a much lower level.

Encapsulated Al samples are wiped clean with ethyl alcohol on a cotton Q-tip before and after irradiation to remove any contaminating powder.

The neutron capture cross section is interpolated for each sample position in the quartz tube with standards. Four of the 7 obsidian samples studied in this work were in the same capsule as the standards. Fortuitously, the quartz tube containing the other three obsidian samples happened to have its samples in exactly the same positions that they would have had in the tube with standards. In the future each sealed quartz tube will have its own triplicate set of Standard Pottery standards.

The obsidian samples were weighed in triplicate before and after encapsulation in Al foil and after irradiation. Some significant loss of powder during irradiation (or sample handling during tube vacuum sealing or opening) was detected in two of the 7 samples (see Table 2).

The sample track between the Ge detectors allows the sample position to vary 1-2 mm. The counting rate of the 46 Sc 1121 keV gamma ray is counted in the two detectors and the ratio determines the exact relative position of all of the samples and standards. The uncertainty can be reduced to less than 0.1% in a gamma ray count of several hours. Such errors in geometry will cause all singles measurements to vary coherently, while coincidence measurements will be rather insensitive to the position of the sample along the axis of the two detectors.

The efficiency of the electronic system for detecting gamma rays depends strongly on the count rate. This efficiency is measured with pulsers feeding each of the two detector preamplifiers and the electronic system measuring the pulser output of the preamplifiers. The uncertainty from this pulser measurement can be reduced to about 0.1% with counts of several hours. Again the errors for each element measured by singles will vary coherently, but the errors in coincidence measurements will vary nearly coherently with those of the singles.

Counting errors in coincidence measurements will be much larger than those in singles because their count rate is much lower. For this reason only singles results were included in the study of the 6 most precisely measured elements in this work. The particular gamma ray singles or coincidences used for the measurement of each element are shown in Table 3.

The LWAICS has low levels of contamination from earlier INAA studies, and these were measured and corrections were made in the abundances for each sample. The Al encapsulating foil is warranted 99.9999% pure, but contains impurities or laboratory contaminations of many elements. The Sc impurity is very high, 0.2 ppm, (see Table 3) but is very homogeneous and can be quantitatively subtracted out. We measure the weight of Al in each capsule and the weights are sufficiently similar that the variation in weight has a minimal effect on the subtracted Sc component. Nevertheless for the obsidian measurements, the Sc impurity for each sample was calculated from the measured Al weight. Sb may be homogeneous in the Al foil but it is also a contaminant that can be introduced in our laboratory. Zn is very high in the Al and not homogeneous. This results in a much larger precision in the Zn determinations (about 0.6%) than

would be expected from the sample counting statistics. Impurity levels in the Al encapsulating foils are calculated for all elements studied in this work and are subtracted from each sample.

Results

Three measurements were made on the same sample on three consecutive days to determine the precision attainable exclusive of any source variation or laboratory contamination (see Table 4). The coefficient of variation for the 6 best measured elements was 0.19%, the value expected from the counting, precision and geometry errors. If ratios are taken to one of the elements, then the geometry and precision errors (each of which behaves coherently for all of the 6 elements) should disappear. This is exactly what happened.

Five of the obsidian samples taken from two areas about 2 km apart had very nearly the same abundances (see Table 5). We call this the main Chivay group. The average coefficient of variation was 0.26%, larger than the 0.19% expected from the known errors (see Table 6a). This left $0.18 \pm .06\%$ from other causes. When ratios were taken to one of the element abundances, the coefficient of variation did not drop, but was 0.25% (see Table 6b). This suggests that there is an inhomogeneity in the source samples studied or contamination in the sample preparation procedures of $0.25 \pm .05\%$.

The sample Chivay 6 used for determining variations associated with counting the same sample has a larger concentration of most elements measured than the main Chivay group, by about 0.8%. But the Sb abundance is significantly smaller. Chivay-6 then either represents a different composition profile than the main group or there are much larger weight or efficiency losses than expected (see Table 7).

Sample Chivay-3 has much different abundances (over 1%) for several elements and has a different composition than the main group or Chivay-6.

The element abundances in the main Chivay source group were compared with the Titicaca Basin chemical group of artifacts measured in 1977. The abundances for the 8 well measured elements in both studies agreed within 1.1%, which is excellent agreement. The provenience of the artifacts was assigned to Chivay in the Burger et al. 1996 publication. The coefficients of variation of the old work are about 5 times larger than in the present study. This could be due to either a larger natural variation in the artifacts because they come from a more extended source area or better measurement techniques than before.

Plans

We plan to remeasure all the artifacts in the 1977 Titicaca Basin chemical group with the LWAICS and the new INAA methodology (the powders are still available). This may determine if the 0.3% precision can be maintained and if the larger spread in the old artifact data was due to natural or instrumental causes.

References

L. W. Alvarez, W. A. Alvarez, F. Asaro and H. V. Michel "Extraterrestrial Cause for the Cretaceous-Tertiary Extinction: Experiment and Theory", *Science* 208, 1095-1108 (1980)

Frank Asaro

"Analysis of ARHCO-1 by the Lawrence Berkeley Laboratory",

report to the Atlantic Richfield Company at Hanford, November 9, 1976, abstracted in "Applied Gamma-Ray Spectrometry and Neutron Activation Analysis" by F. Asaro in *Proceedings of the XX. Colloquium Spectroscopium Internationale and 7. International Conference on Atomic Spectroscopy, Praha 1977 Invited Lectures II* p.413 (1977) and "Chemical source groups in Ecuadorian obsidian" by F. Asaro, H.V. Michel and R.L. Burger, Lawrence Berkeley Laboratory preprint LBL-13247, September 1981

R. L. Burger, F. Asaro and F. Stross

"The Chivay obsidian source and the geological origin of Titicaca Basin obsidian artifacts", Submitted to *Andea Past*

R. L. Burger and F. Asaro

"Trace Element Analysis of Obsidian Artifacts from the Andes: New Perspectives on Pre-Hispanic Economic Interaction in Peru and Bolivia"

Revista del Museo, Nacional, Lima 43, 281 (1977), English version in Lawrence Berkeley Laboratory Unpublished Report LBL-6343, June 1977 (80 pages)

R. H. Cobean, J. R. Voigt, M. D. Glascock, and T. L. Stocker "High precision trace element characterization of major Mesoamerican obsidian sources and further analyses of artifacts from San Lorenzo Tenochtitlán, Mexico" *LAA* 2, 69-91 (1991)

I. Perlman and F. Asaro, "Pottery Analysis by Neutron Activation" Science and Archaeology (ed. R.H. Brill, MIT Press, Cambridge, MA, 1971) p. 182-195

I. Perlman and F. Asaro "Pottery Analysis by Neutron Activation" *Archaeometry* 11, 21-52 (1969)

C. T. Williams and F. Wall, "An INAA scheme for the routine determination of 27 elements in geological and archaeological samples", 105-119, 1991 in *Neutron activation and Plasma Emission Spectrometric Analysis in Archaeology, Techniques and Applications* ed M.J. Hughes, M.R. Cowell and D.R. Hook, British Museum Occasional Paper 82

Joseph Yellin

"Trace element characteristics of Central Anatolian obsidian flows and their relevance to pre-history" *Israel Journal of Chemistry*, 35 175-190 (1995)

								ſ					1			ſ				
	fV.	4	8	6	6					Obsidian	weights used		101.21	99.54	101.33		105.64	97.26	106.03	102,16
	C. 0] (%	0	0	0	0	-				otal	(mg)		0.24	0.23	0.00		0.13	2.34	0.03	1 22
	Number of elements	7	9	9	9	land	its)			final	Δ		Ť	Ť	Ĩ		Ť	<u> </u>	Ť	
	Number of samples	6	7	4 of each	8	of Jerusalem n, London, Eng	measuremen		les + obsidian	er irradiation &	swabbing		86 ± .08	38 ± .06			80 ± .06	$01 \pm .10$		$63 \pm .00$
IA.			ion	BMSP		iversity Museum	olicate des		vl capsul	Afte			356.8	353.3	Tare		363.8	359.(Tare	353.6
ats by IN∕	terial name	RHCO-1	Yale Collect	ked, E4 and	NNZD-C	Hebrew Uni ral History	g from trip r Al cansu		Sealed A		$\Delta (mg)$		-0.03	-0.02	-0.00		-0.11	-0.57	-0.03	-0.37
leasuremei	Ma	A	From Y	Podmore F	2	HUJ = The MHM = Natu	ions (in mg s and theii			swabbing iation			± .03	±.01	±.01		± .03	±.03	±.03	+ .00
st precision m	laterial	ver Basalt	tumba, Mex.	andards	Venenzi Dag, Iia	Y H	square deviat			Before initial & irrad		1996)	357.07	353.59	358.30	.996).	363.82	361.42	367.43	354.85
le 1. Previous bes	Type of m	Columbia Riv	Obsidian from O	3 pottery st	Obsidian from N Anato	y National Laborator Reactor	s and root-mean-s Chivav obsidian s	a minimage (num		h obsidian powder		Jhivay (Burger et al. 1 May 9, 1995	$357.10 \pm .01$	$353.61 \pm .02$	$358.30 \pm .02$	hivay (Burger et al. 1 1 August 15, 1995	$363.93 \pm .01$	$361.99 \pm .04$	$367.46 \pm .08$	$355.22 \pm .03$
Tab			_	991		Berkele search H	weight	101	apsules	Wit		east of C made of				ast of C made or				
	Reference	F. Asaro, 1976	Cobean et al. 199	Williams and Wall, 1	J. Yellin, 1995	Ernest Orlando Lawrence University of Missouri Re	Table 2. Mean		Alci	Empty		of Cerro Ancachita, 6 km or the before irradiation were	$255.65 \pm .01$	$253.84 \pm .01$	$256.97 \pm .03$	of Cerro Ancachita, 8 km e nts before irradiation were	$258.22 \pm .03$	$262.26 \pm .01$	$261.43 \pm .02$	$251.78 \pm .03$
	Facility	LBL	MURR	MHM	HUJ	LBL = MURR =				Sample number		Samples from west Weight measuremer	S16-104	S16-105	S16-106	Samples from east c Veight measuremer	S16-266	S16-267	S16-268	S16-269

<u>_</u> _
A
e
ī
1
%
6
96
6
S S
th
ц
an
Ś
Ы
A
×
the
n
n i
10
lat
jŢ
an
nt
3
В
ŕo
sf
ce
an
pr
In
ab
рц
In
Ц
^{sk}
ac
<u>د</u>
I <u>X</u>
ščt
ffe
Ц
ю.
le
ab
Ξ

gamma rays (keV) m	LWAICS ^L background	capsules (wit	וה עוקוויס כיוסו שבעי h assumed 100 mg Al veight) b	capsules v	Mod Tor 5 empty A (with true Al weight) b	
			ò		2	1
	$0.0017 \pm .0000$	0.2079	± .0020	0.0812	± .0003	
	$0.0011 \pm .0001$	0.0061	± .0028	0.0024	± .0011	
	$0.0044 \pm .0001$	0.0017	± .0022	0.0007	± .0009	
	$0.0005 \pm .0000$	0.0012	± .0003	0.00045	± .00010	
	$0.0002 \pm .0000$	0.0001	± .0003	0.0000	± .0001	
	$0.0040 \pm .0006$	0.011	± .010	0.004	± .004	
32.0	$0.0003 \pm .0000$	0.0026	± .0006	0.0010	± .00025	
78.9	$0.004 \pm .000$	0.0004	± .0004	0.00015	± .00014	
	$0.007 \pm .009$	0.10	± .14	0.038	± .055	
.2.5	$0.0362 \pm .0005$	0.014	± .006	0.0056	± .0023	
	$0.067 \pm .002$	3.5	+ .6	1.38	± .23	
	$0.0003 \pm .0002$	0.043	± .005	0.0167	± .0018	
54.7	$1.75 \pm .08$	6.1	± 2.2	2.4	± 1.6	
				25	55.7 ± 2.2	
	0.3 6 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w 0.0017 ± .0000 0.2079 0.0011 ± .0001 0.0061 0.0011 ± .0001 0.0017 0.0012 ± .0001 0.0017 0.0002 ± .0000 0.0012 0.0012 ± .0000 0.0011 0.0012 ± .0000 0.0011 0.0012 ± .0000 0.0011 0.0012 ± .0000 0.0011 0.0012 ± .0000 0.0011 0.0012 ± .0000 0.0014 0.0012 ± .0000 0.0014 0.0012 ± .0000 0.0014 0.0012 ± .0000 0.0114 0.0012 ± .0000 0.0144 0.0013 ± .0000 0.0144 0.0013 ± .0000 0.0144 0.0003 ± .0000 0.0144 0.0003 ± .0000 0.0144 0.0003 ± .0000 0.0143 0.0003 ± .0000 0.043 0.0003 ± .0000 0.043 0.0003 ± .0000 0.043	weight) ⁰ 0.0017 ± .000 0.2079 ± .0020 0.0011 ± .0001 0.2079 ± .0028 0.0011 ± .0001 0.0061 ± .0028 0.0012 ± .0000 0.0017 ± .0023 0.0002 ± .0000 0.0012 ± .0003 0.0001 ± .0006 0.0011 ± .0001 0.0001 ± .0006 0.00012 ± .0003 0.0001 ± .0006 0.0001 ± .0003 0.0001 ± .0006 0.0011 ± .0004 0.0001 ± .0006 0.0011 ± .0006 0.0001 ± .0006 0.0011 ± .0006 0.0001 ± .0006 0.0011 ± .0006 0.0001 ± .0006 0.0012 ± .0006 0.0001 ± .0006 0.0014 ± .0006 0.0001 ± .0006 0.0014 ± .0006 0.0001 ± .0006 0.0014 ± .0006 0.0001 ± .0005 ± .14 0.0001 ± .0005 0.0104 ± .0006 0.0003 ± .0002 0.0104 ± .006 0.0003 ± .0002 0.043 ± .005 0.0012 ± .005 0.043 ± .005 0.175 ± .08 6.1 ± 2.2	weight) ⁰ weight) ⁰ $0.0017 \pm .0000$ $0.2079 \pm .0020$ 0.0812 $0.0011 \pm .0001$ $0.0061 \pm \pm .0028$ 0.0024 $0.0012 \pm .0001$ $0.0017 \pm .0003$ 0.0007 $0.0002 \pm .0000$ $0.0012 \pm \pm .0003$ 0.00045 $0.0002 \pm .0000$ $0.0011 \pm \pm .0003$ 0.00045 $0.0002 \pm .0000$ $0.0011 \pm \pm .0003$ 0.00045 $0.0003 \pm .0000$ $0.0011 \pm \pm .0006$ 0.0010 $0.0004 \pm .0006$ $0.0011 \pm \pm .0006$ 0.0010 $0.0007 \pm .0000$ $0.0004 \pm \pm .0006$ 0.0010 $0.007 \pm .0000$ $0.0004 \pm \pm .0006$ 0.0010 $0.007 \pm .0002$ $0.0104 \pm \pm .0006$ 0.0010 $0.007 \pm .0002$ $0.0104 \pm \pm .0006$ 0.0010 $0.007 \pm .0002$ $0.0104 \pm \pm .0006$ 0.0016 $0.0003 \pm .00025$ $0.0102 \pm .00056$ 1.38 $0.0003 \pm .00022$ $0.0167 \pm .0025$ 0.0167 $0.0003 \pm .00022$ $0.043 \pm \pm .0055$ 0.0167 $0.0003 \pm .00022$ $0.043 \pm \pm .0055$ 0.0167	weight) weight) weight) weight) 0.0017 ± .0001 0.0011 ± .0001 0.0012 ± .0023 0.00812 ± .0003 0.0011 ± .0001 0.0011 ± .0001 ± .0023 0.00812 ± .0003 0.0011 ± .0001 0.0017 ± .0003 0.0007 ± ± .0003 0.0001 0.0012 ± .0003 0.0011 ± .0001 ± .0003 0.00045 ± .0001 0.0012 ± .0006 0.0011 ± .001 0.00045 ± .0001 ± .0001 0.0014 ± .000 0.0011 ± .001 0.0010 ± .0003 0.0010 ± .0004 0.0012 ± .000 0.0011 ± .001 0.0010 ± .0004 ± .0011 0.0014 ± .000 0.0014 ± .000 0.0011 ± .0004 ± .0025 0.0017 ± .009 0.0114 ± .0004 ± .0003 ± .0005 ± .0025 0.007 ± .002 0.014 ± .0005 0.0010 ± .0025 ± .0025 0.007 ± .003 0.003 ± .0002 0.0045 ± .0025 ± .0025 0.0067 ± ± .003 0.0066 ± .006 0.0016 ± .0025 0.007 ± .002 0.0143 ± .005 0.00167 ± .005

	M.E.d		0.06	0.10	0.11	0.24	0.11	0.16	0.13	0.11	0.08		inting	l, if				0.10	0.11	0.24	0.11	0.16	0.14
	C.V.c		0.19	0.20	0.30	0.06	0.19	0.17	0.19			0.19	h larger cou	ve Sc ometry, anc				0.05	0.24	0.16	0.07	0.09	0.12
~	ƙ RMSD ^b		± .0065	± .051	± .031	± .0003	± .0032	± .073	rages (%)			(%)	e 6 elements with	to their respective fficiency and ge-				± .012	± .025	± .0008	± .0012	± .040	rages (%)
	- Mean &		3.385	25.203	10.305	0.5105	1.691	43.772	Ave	iciency (%)	metry (%)	all uncertainty	f variation for th	nd and third runs rtainties due to e	error.		3.385	25.206	10.306	0.5106	1.691	43.777	Ave
4	3-96	ments)	± .003	± .038	± .025	± .0016	± .003	± .085		certainty in effi	certainty in gec	Over	(Coefficients of	nces in the secor iminate the unce	ample counting (
	4-	ingles measure	3.391	25.244	10.338	0.5108	1.695	43.814		Average un	Average un)	ed uncertainties.	element abunda m, we should el	to the average s		3.385	25.199	10.320	0.5099	1.692	43.736	
)	Date 2-96	0.3% (all are s	± .002	± .036	± .024	± .0014	± .003	± .077					tent with expecte	atio of all of the rst run, 3.385 pp	tient of variation	c abundance							
	4-2	ors of less than	3.378	25.146	10.299	0.5103	1.689	43.688					ariation is consis) It we take the r undance in the fi	e average coeffic	a 3.385 ppm S	3.385	25.198	10.320	0.5114	1.692	43.779	
	-96	le counting err	± .002	± .036	± .023	± .0013	± .003	± .070					coefficient of va	vith those errors. ply by the Sc ab	prrect, reduce the	s normalized to	± .002	± .036	± .023	± .0013	± .003	± .070	
	4-1	ents with samp	3.385	25.220	10.277	0.5104	1.690	43.815					iction: Average	are consistent v ances and multi	terpretation is co	ent abundance	3.385	25.220	10.277	0.5104	1.690	43.815	
	·	Elem	Sc	Th	Cs	Fe(%)	Та	Cee	_				Dedu	errors abund	our in	Elem	Sc	Th	Cs	Fe(%)	Та	Cee	

Table 4. Comparison of abundances on three long runs on the same sample of obsidian, Chivay-6 (S16-268)^a.

Deduction: The average coefficient of variation is consistent with the expected errors due only to the statistics in counting gamma rays.

 ∞

					7			2	5			7	5		5		_
		vay-7	5-269		,00 [.] +	± .06	± .03	±.00.	±	± .12		± .02′	±	± 4.1	± .01;	9: +	+ 031
	'ay	Chi	S10		3.365	25.10	10.21	0.509	1.682	43.34		3.860	0.286	247.4	0.336	32.2	0.000
	8 km East of Chiv	ivay-5	6-267		± .004	± .05	± .03	±.001	± .004	± .09		± .020	± .003	± 3.9	± .010	9: +	+
dn	Collected from 8	Ch	S1		3.368	25.16	10.29	0.506	1.678	43.78		3.878	0.295	247.7	0.324	33.1	0000
idian source grou		vay-4	-266		± .007	± .06	± .03	± .002	± .005	± .12		± .027	± .005	± 3.8	± .015	9. +	
VIAIN UNIVAY ODS		Chiv	S16	neasurements)	3.378	25.21	10.26	0.507	1.688	43.59		3.882	0.297	250.6	0.329	31.9	0 600
-	ıy	/ay-2	-105	(all are singles n	± .003	± .03	± .02	± .002	± .003	± .05		± .014	± .002	± 3.5	± .006	9: +	+ 016
	km East of Chive	Chiv	S16	of less than 0.3%	3.373	25.11	10.27	0.507	1.681	43.57	preater than 0.3%	3.873	0.290	248.3	0.320	31.7	0.052
	Collected from 6	/ay-1	-104	counting errors o	± .003	± .03	± .02	± .001	±.003	±.07	counting errors	± .017	± .002	± 3.7	± .007	+ 9. +	- 010
		Chiv	S16	ints with sample	3.378	25.12	10.26	0.509	1.677	43.76	ants with sample	3.934	0.294	249.3	0.333	32.4	2000
	·	Ele-	ment	Eleme	Sc	Th	Cs	Fe(%)	Та	Ce ^e	Eleme	Нf	Euf	Rb	Cof	Zn	ราง

R	
6	`
ð	
ð	
-	
;	
ອີ	
÷	
Ð	
Ч	
- Si	١
Ē	'
2	
Щ	
\sim	
ള	
Ц	
Ţ	
<u> </u>	
- 9	
- 23	
p	
. 2	
, Ô	
0	
>	>
ъ,	•
\geq	
.н	
5	
\cup	
O)	
Ę.	
Ξ	
-8	
5	
Ē	
-	
9	
2	
0	
<u> </u>	
Б.)
ğ)
in gr)
ain gr)
main gr)
e main gr)
he main gr)
the main gr)
of the main gr)
of the main gr)
s of the main gr)
les of the main gr)
ples of the main gr	
mples of the main gr	, ,
amples of the main gr	
samples of the main gr	
n samples of the main gr	•
in samples of the main gr	
in samples of the main gr	
ces in samples of the main gr	
nces in samples of the main gr	
ances in samples of the main gr	
idances in samples of the main gr	
indances in samples of the main gr	
oundances in samples of the main gr	
abundances in samples of the main gr	
t abundances in samples of the main gr	
nt abundances in samples of the main gr	
ent abundances in samples of the main gr	
nent abundances in samples of the main gr	
ement abundances in samples of the main gr	
Ilement abundances in samples of the main gr	
Element abundances in samples of the main gr	
5. Element abundances in samples of the main gr	
5. Element abundances in samples of the main gr	
le 5. Element abundances in samples of the main gr	
ble 5. Element abundances in samples of the main gr	
able 5. Element abundances in samples of the main gr	

	י אוחש									
Ele-	Mean &	& RMSD ^b for	C. of V.	M. E.	Ele-	Mean &	RMSD ^b for	C. of V.	M. E.	
ment	Chivay N	Main Group of 5	(%)c	p(%)	ment	Chivay Ma	iin Group of 5	(%)c	p(%)	
Elements v	with counting err	rors less than 0.3	%		Elements	with counting erro	DIS			
(all are sin	gles measureme	nts)			greater th	1an 0.3%				
Sc	3.372	± .0059	0.18	0.06	Hff	3.885	± .028	0.7	0.5	
Тh	25.14	± .045	0.18	0.10	Euf	0.292	± .0044	1.5	1.1	
Cs	10.26	± .029	0.28	0.11	Rb	248.7	± 1.3	0.5	0.7	
Fe(%)	0.508	± .0013	0.26	0.23	Cof	0.328	± .0065	2.0	2.5	
Та	1.681	± .0043	0.26	0.12	Zn	32.3	± .54	1.7	1.8	
Cee	43.61	± .18	0.41	0.14	Sb	0.914	± .024	2.6	2.1	
	Average (%)		$0.26 \pm .04$	0.13		Average (%)		$1.5 \pm .2$	1.5	-
Efficiencv	uncertaintv(%)			0.11)				
Geometry	uncertainty (%)			0.08						
Overall ex	pected uncertain	ntv (%)	0.19							
Source or	laboratory proble	ems (%)	$0.18 \pm .06$							
	roord fromtoom									
	F			4-71-4		0.10.00/0/0/	-11-	-		
Deduction: efficiency or	I nere is an ave geometry meas	erage source int	nomogeneity for or laboratory co	the 6 best mean in the contraction in the contracti	asured elements of rohlems Measurer	0.18 ± 0.06%, 01 ments of ratios sh	else there are loud	unknown weig weight efficie	int errors, ency and	
geometry con	cerns.		f tomo on to							
Table 6	b. Coefficient	ts of variation	for the best me	sasured eleme	ents of the main (Chivay source a	fter normalizi	ng all abunda	nces to the	
			Chi	ivay-1 Sc abu	ndance of 3.378	ppm ^a .)		
		Element	Mean & RI	MSD ^b for Chiva	ay Main Group	C. of V. (%)C	M. E. (%)d			
		Sc	3.378		4					
		Th	25.182	± .047		0.19	0.10			
		Cs	10.269	± .036		0.30	0.11			
		Fe(%)	0.5085	± .0014		0.28	0.23			
		Та	1.684	± .0046		0.27	0.12			
		Cee	43.68	± .16		0.37	0.14			
			Average (%)			$0.28 \pm .04$	0.14			
		Source inhor	moveneity or lah	contamination ((%)	0.75 + 05				
		2000	mosciency or the		(0/	0.10				

Deduction: Taking ratios did not improve the agreement. So there is an average variation in abundance of $0.25 \pm .05\%$ which is due either to inhomogeneity of the source for the elements studied or contamination in the sample preparation procedures.

10

190 . -1+J 4 4 C t r 5 いりょう ý 4 . È ٢ Tabl

Deductions:

are consistent with this value (as well as no enhancement) except for the abundance of Sb, which appears to be lower than that of the main Chivay group. The best measured elements in Chivay-6 are enhanced in abundance by 0.8% relative to the main Chivay group. Abundances of all of the other elements Either Chivay-6 represents a distinctly different composition or else there is an unexpected weight or efficiency error. The latter explanations necessitate a three sigma error in the measurement of the ratio of Sb in Chivay-6 to the main Chivay group or else Sb contamination of all of the samples in the latter.

Chivay-3 has a different composition pattern than any of the other 6 Chivay samples.