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There is no horizontal gravity force in geopotential coordinates
James C. McWilliamsa,1 ID

Contributed by James McWilliams; received August 16, 2024; accepted September 12, 2024; reviewed by William K. Dewar and Stephen Griffies

In response to a recent challenge to the longstanding practice in modeling large-scale
circulations in the atmosphere and ocean that neglects any horizontal component of
Earth’s gravity-rotation force, this paper demonstrates that a coordinate transformation
into geopotential coordinates has no such horizontal force. This framework should be
understood as the justification for and, if warranted, the basis for making further
refinements to such geophysical models.

gravity force | Earth’s rotation | geopotential coordinates

Earth’s gravity field is nearly spherically symmetric (or better, spheroidally), and Earth’s
rotation rate is mostly constant, even though neither is strictly true. As a consequence,
gravity is mostly considered as vertically aligned, and a “traditional approximation” is
made for the Coriolis force that only considers the projection of the rotation vector in the
vertical direction. For brevity, we use the term gravity to denote both the gravitational
attraction to Earth’s mass and the centrifugal force of Earth’s rotation about its polar
axis.

It has long and widely been understood in geophysical fluid dynamics that the meaning
of vertical is parallel to Earth’s gravitational-centrifugal potential force [e.g., ref. 1, section
213: “When in relative equilibrium, the (ocean’s) free surface is of course a level-surface
with respect to gravity and centrifugal force”], although the common practice in both
research and teaching has been to write the dynamical equations as if the gravity-rotation
field were spatially uniform over the atmospheric or oceanic domains of interest. To my
knowledge, no one has challenged this practice until a recent dispute over the advocation
of “horizontal gravity” (2–5) and its refutations (e.g., refs. 6–8). Because this dispute
remains unresolved in the published literature, this note is an explicit demonstration of
the statement in the title.

Here, we consider corrections to these simple representations with uniform gravity.
We do so as a proof of concept by considering a spatially variable geopotential function
Φ that provides a force ∇Φ, but all in an “absolute” Cartesian coordinate framework,
rather than a more realistic spheroidal one. The generalization to a proper planetary
geometry should be straightforward, if lengthy (n.b., Chaps. 7, 8, and 12 in ref. 9); e.g.,
an assessment of the errors in approximating fluid equations in a spheroidal geometry
with an spherical one is in ref. 10.

1. Geopotential Coordinates

Consider “absolute” Cartesian coordinates (�, �, � , �) with Φ(�, �, �); the extremely
small time derivatives of Earth’s gravity and rotation will be ignored here. The conserva-
tive, incompressible Boussinesq Equations with the traditional Coriolis approximation
and a simple thermodynamics of density conservation are the following:

Du
D�

+ f �̂ × u = −
1
�0
∇p +

�
�0
∇Φ

D�
D�

= 0

∇ · u = 0 . [1]

The (east,north, “up”) vector components are (�, �, �) and (u, v,!). p is the dynamic
pressure and � is the disturbance density (after subtracting off the background hydrostatic
resting state); �0 is a reference value for total density; and f is the Coriolis frequency.
Gravity is implicit in the geopotential function Φ. For a uniform geopotential field,
Φ = − g� . As usual, the material derivative is

D
Dt

= ∂� + u∂� + v∂� + !∂� . [2]
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Now make a transformation of Eq. 1 into nonorthogonal
geopotential coordinates, (x, y, Z, t), defined by

x = � , y = � , Z = −
Φ
g
, t = � . [3]

Thus, (east,north,time) retain their original meaning, but now
“up” is perpendicular to geopotential surfaces, and Z is a height
of and/or distance between such surfaces (Fig. 1). We assume that
the domain in Z is of limited extent (i.e., a small fraction of solid
Earth’s radius), and the local origin of Z is within the domain
of interest. Near Earth’s surface the Jacobian of this coordinate
transformation, ∂�Z , is nonzero. For definiteness, we specify that
the average direction of the unit vector Ẑ is equal to that of �̂ ; i.e.,

�̂ = −
〈
∇Φ
|∇Φ|

〉
, [4]

where the angle brackets denote a volume average over the do-
main. Similarly, the average value of the gravitational acceleration
g is the constant,

g = | 〈 ∇Φ 〉 | . [5]

The basics of this representation of Earth’s gravity-rotational
force are presented in ref. 11, section 1.3.2 with an opposite-sign
convention for Φ but with the same net force, of course.

The mathematics of this transformation are a special case of the
results in ref. 12, which deals with coordinate transformations like
in Eq. 3 in which only the vertical coordinate is transformed to
a general s(�, �, � , �) (e.g., pressure, entropy/density, or terrain-
following coordinates); this approach was pioneered in ref. 13.
The derivation details mostly will not be repeated here except
to present the results; however, the special case of hydrostatic
balance with a geopotential coordinate s = Z is different in
some aspects from those considered in ref. 12, and its important
properties are derived in Section 3.

Fig. 1. Sketch of the geometry of the absolute Cartesian coordinates (�, �, �)
and the transformed geopotential coordinates (x, y, Z) in relation to the
gravity-rotation potential function Φ and its gradient ∇Φ. The horizontal
coordinates, (�, �) and (x, y), are the same in the two systems. The absolute
coordinates are orthogonal, while the geopotential coordinates are not.

The resulting horizontal momentum equations are

Du
Dt
− fv = −

1
�0

px

Dv
Dt

+ fu = −
1
�0

py , [6]

where (u, v) are the horizontal velocities, the traditional approxi-
mation for the Coriolis force has not been changed, and subscripts
denote partial derivatives. The substantial derivative has the same
meaning as in Eq. 2, but a different expression,

D
Dt

= ∂t + u∂x + v∂y + w∂Z , [7]

and the transformed vertical velocity is

w = !Z� + uZ� + vZ� . [8]

The general vertical momentum equation could be obtained
by projection of the first equation in Eq. 1 onto the unit
vector Ẑ, with an accompanying decision about the Coriolis
force approximation. However, for most large-scale oceanic and
atmospheric dynamics, the hydrostatic approximation suffices as
part of the Primitive Equations, a subset of Eq. 1. In geopotential
coordinates, the Z -momentum equation is

1
�0

pZ = − g
�
�0

. [9]

The remarkable result—i.e., the title of this paper—is that the
horizontal pressure gradient force in Eq. 6 and the hydrostatic
balance in Eq. 9 have isomorphic functional forms between the
cases of variable Φ with geopotential coordinates and a uniform
vertically-aligned gravity field in absolute coordinates. This result
is derived in Section 3.

The density conservation equation in Eq. 1 is formally
unchanged,

D�
Dt

= 0 , [10]

with the transformation of the material derivative in Eq. 2. The
incompressible continuity equation is

∂x

[
u
Z�

]
+ ∂y

[
v
Z�

]
+ ∂z

[
w
Z�

]
= 0 . [11]

In summary, the hydrostatic Primitive Equations in geopo-
tential coordinates are Eqs. 6–11. They closely resemble the
mathematical form of the Primitive Equations in a uniform
gravity field in absolute coordinates, with the exception of the
extra metric factor 1/Z� in the continuity Eq. 11, as well as the
implicit reinterpretations of the vertical coordinate Z in Eq. 3,
material derivative in Eq. 2, and vertical velocity w in Eq. 8.

2. Discussion and Conclusions

In a coordinate system not aligned with gravity, there is indeed
a nonvertical gravity force. However, as anticipated by ref. 1,
this force can be accommodated in a fluid at rest in hydrostatic
balance; i.e., there is a balancing nonvertical pressure-gradient
force. This seems likely to be the error in ref. 4, and a similar
error is made in ref. 14 and its cited literature. This misalignment
is absent in geopotential coordinates, and its expression of the
force balance in the background resting state is simpler.
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The evident conclusion from Section 1 is that there is
nothing in the transformed Primitive Equations that resembles
a “horizontal gravity” force, although there is spatial variation
of the gravitational-centrifugal potential field Φ that is mostly
implicit. However, as remarked at the end of that section, it does
appear explicitly in a few places.

For the latter it is useful to partition Φ into its average
component and small deviation,

Φ = − g� + Φ̃(�, �, �) , [12]

whence
Z = � + Z̃(�, �, �) [13]

and
Z̃ ≈ −

1
g
Φ̃ . [14]

With this approximation, the geopotential vertical velocity in
Eq. 8 becomes

w = ! +
(
uZ̃� + vZ̃� + !Z̃�

)
, [15]

and after multiplication by Z� and application of the derivative
transformation formulas in Eq. 17, the continuity Eq. 11
becomes [

ux −

(
Z̃��
Z�
−

Z̃�Z̃��
Z2
�

)
u

]

+

[
vy −

(
Z̃��
Z�
−

Z̃�Z̃��
Z2
�

)
v

]

+

[
wz −

Z̃��
Z2
�
w

]
= 0 , [16]

because the leading term in Eq. 13 has no horizontal derivative
nor second vertical derivative in absolute coordinates. In each
square-bracketed term, the expected velocity gradient is first
and the metric correction in parentheses is second. Note that
the metric terms involve second derivatives of the transformed
vertical coordinate Z (Section 3). The appearance of such metric
terms in the continuity equation is usual in nonorthogonal
coordinate systems with a transformed vertical coordinate (12),
and they reflect the distorted geometry of the transformation.
Physically restated, the simple Cartesian expression of mass
conservation equal to volume conservation in the Boussinesq
continuity equation in Eq.1has a deformed differential-geometry
expression in Eq. 16.

It would be straightforward to adapt a Cartesian Primitive
Equation model code to a geopotential one by including the
extra metric terms in Eq. 16 based on the measured geopotential
fields, while otherwise leaving the model equations unaltered and
remembering that a transformation back into an absolute vertical
coordinate � and an absolute vertical velocity ! could be done
diagnostically post hoc.

There are several ways to estimate how different its answer
might be. One comes from a geoid map (Fig. 2). Compared
to a flat geoid surface the measured geoid has horizontal slopes
on the order of Z̃� ∼ 10−4. Another is the relative correction
to vertically uniform gravity by expanding the R−2 dependence
of a spherical geopotential about the mean radius R0 with a
domain height of H , yielding a relative correction of 2H/R0 ∼

10−3, where H is the domain height. Both of these estimates are

comfortably small compared to other inaccuracies in geophysical
fluid simulations.

Thus, there is no horizontal gravity force in geopotential
coordinates, consistent with most modeling practices for large-
scale circulation, albeit often implicitly so. Furthermore, the
traditional neglect of variable gravity in oceanic and tropospheric
simulations is a fairly safe practice, although it also could be
extended by adding the metric terms indicated here in an
appropriate planetary-geometry geopotential-coordinate system.

3. Methods

Here, we derive the pressure gradient and hydrostatic balance relations in
geopotential coordinates. With the coordinate definition in Eq. 3, first consider
the transformation relationship for derivatives:

∂� = ∂x + Z�∂Z
∂� = ∂y + Z�∂Z
∂� = Z� ∂Z
∂� = ∂t . [17]

Next consider the unit vectors in the transformed coordinates:

x̂ = �̂ , ŷ = �̂ , Ẑ = −
∇Φ
|∇Φ|

. [18]

The gradient operator can be expressed in the orthogonal absolute
coordinates as

∇ = �̂∂� + �̂∂� + �̂∂� . [19]

Thus, using this relation and the definition of Z in Eq. 3, the relations in
Eq. 18 can be inverted to give

�̂ = x̂ , �̂ = ŷ , �̂ =
1
Z�

(
|∇Z |̂Z − Z�̂x − Z�̂y

)
. [20]

These imply the transformation rule for a gradient (applied here to the
pressure p):

∇p = p� �̂ + p� �̂ + p� �̂

=
(
∂xp + Z�∂Zp

)
x̂ +

(
∂yp + Z�∂Zp

)
ŷ

+ Z� ∂Zp
1
Z�

(
|∇Z |̂Z − Z�̂x − Z�̂y

)
= px̂x + pŷy + |∇Z|pẐZ . [21]

Therefore, the pressure gradient force retains its same functional form in
the transformed horizontal momentum Eq. 6 as in the absolute horizontal
momentum equations.

From the pressure- and potential-gradient terms in Eq. 1, the hydrostatic
“vertical” momentum equation in geopotential coordinates is

Ẑ ·
1
�0
∇p = Ẑ ·

�
�0
∇Φ

1
�0
|∇Z|pZ =

(
−
∇Φ
|∇Φ|

)
·
�
�0
∇Φ

1
�0

pZ = − g
�
�0

, [22]

where we have made use of Eqs. 3 and 18. This, too, has the same form as
hydrostatic balance in a uniform gravity field in absolute coordinates, but now
the variable gravity field is implicit in the transformed geopotential height
coordinate Z.

Notice that a factor of |∇Z| cancels out in going from the penultimate to the
final relation in Eq. 22. This is permitted because |∇Z| 6= 0 for geopotential
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Fig. 2. The geoid undulation, geoid height, or geoid anomaly is the height of the geoid relative to a given spheroid of reference. This plot is from EGM96 (15),
but a more modern and complete dataset is EGM2008 available at https://epsg.org/crs_3855/EGM2008-height.html, with an even newer release expected soon.

coordinates. In a generalization to nonhydrostatic dynamics for small-scale or
rapidly changing flows, this factor must be retained along with the vertical
acceleration, Dw/Dt �̂ , in Eq. 1, which leads to a more complicated vertical
momentum balance than in Eq. 22 in geopotential coordinates. Similarly, the
complete Coriolis force could be retained. Nevertheless, as discussed in Section 2,
this added complexity is mathematically well behaved because of the relative
smallness of Z̃ and its derivatives.

Data, Materials, and Software Availability. There are no data underlying
this work.
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