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Abstract: Recent works have related the bulk first law of black hole mechanics to the first
law of entanglement in a dual CFT. These are first order relations, and receive corrections
for finite changes. In particular, the latter is naively expected to be accurate only for small
changes in the quantum state. But when Newton’s constant is small relative to the AdS
scale, the former holds to good approximation even for classical perturbations that contain
many quanta. This suggests that – for appropriate states – corrections to the first law of
entanglement are suppressed by powers of N in CFTs whose correlators satisfy ’t Hooft
large-N power counting. We take first steps toward verifying that this is so by studying
the large-N structure of the entropy of spatial regions for a class of CFT states motivated
by those created from the vacuum by acting with real-time single-trace sources. We show
that 1/N counting matches bulk predictions, though we require the effect of the source on
the modular hamiltonian to be non-singular. The magnitude of our sources is εN with ε
fixed-but-small as N → ∞. Our results also provide a perturbative derivation – without
relying on the replica trick – of the subleading Faulkner-Lewkowycz-Maldacena correction
to the Ryu-Takayagi and Hubeny-Rangamani-Takayanagi conjectures at all orders in 1/N .
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1 Introduction

There has been much activity exploring the intriguing connection between entanglement in
holographic field theories and the gravitational field equations of the bulk dual. This pro-
gram traces its roots to Jacobson’s seminal paper [1], which proposed the Einstein equation
to be a thermodynamic equation of state for some unknown quantum mechanical system
in which the area of surfaces measures entanglement entropy across causal horizons. Sev-
eral groups [2–5] have now used related arguments to derive the linearized gravitational
field equations in the context of the anti-de Sitter/conformal field theory (AdS/CFT) cor-
respondence, where the underlying quantum system is well understood; see also the related
works [6–8]. A key assumption in these more recent derivations is the Ryu-Takayangi (RT)
conjecture [9, 10] and its covariant generalization by Hubeny-Rangamani-Takayanagi (HRT)
[11], both of which relate entanglement entropy of subregions of the field theory to the ge-
ometry of bulk surfaces. A partial converse of this result – that the bulk field equations
imply aspects of the Ryu-Takayanagi conjecture – has also been argued by Lewkowycz and
Maldaena [12], though see [13] for a discussion of the so-called homology constraint, [14] for
questions about the possible role of complex bulk surfaces, and [15] for concerns regarding
strong time-dependence.
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Much of the recent discussion has centered on the so-called first law of entanglement

δSA = δ〈HA〉 . (1.1)

Here A is a subregion of some Cauchy surface for the CFT, SA := −Tr(ρA log(ρA)) is the
von Neumann entropy of the associated reduced density matrix ρA, HA := − log(ρA) is the
modular Hamiltonian, and δ denotes the first variation with respect to the state when the
operator HA is held fixed on the right hand side. The relation (1.1) holds at first order,
but receives corrections for finite changes.

According to the HRT conjecture, in holographic theories the left hand side of (1.1) can
be extracted from the bulk geometry. The right hand side is typically difficult to evaluate,
though it reduces to a simple integral of the CFT stress tensor [16] (see also [17]) when A is
a ball-shaped region and the system is in its global vacuum state. The combination of these
two results makes (1.1) a useful formula for studying the relationship between entanglement
and geometry. In particular, in this context (1.1) coincides with the first law of black hole
mechanics in the bulk applied to the Rindler-like Killing horizon defined by a ball-shaped
region A on the AdS boundary [17]. This argument for the first law can then be inverted
to derive linearized bulk equations of motion from HRT [2–5].

The starting point for our work is the observation (see e.g. [4]) that the entanglement
first law (1.1) is generally useful only for infinitesimal changes in the quantum state; higher
order corrections tend to make significant contributions when it instead undergoes any sub-
stantial change. In contrast, the bulk first law of black hole mechanics accurately describes
classical deformations – typically involving very large numbers of quanta – so long as the
changes in entropy and energy are small in comparison with their background values. In
particular, corrections to the bulk first law stem from gravitational back-reaction and are
thus suppressed by powers of the bulk Newton constant GN . This suggests that corrections
to the entanglement first law (1.1) will be correspondingly suppressed, at least for states
that would be appropriately semi-classical with respect to the bulk. Our goal below is to
show suppressions by powers of N in similar computations involving the entropy of spatial
regions for CFTs whose correlators satisfy ’t Hooft power counting and whose spectrum of
light operators is sufficiently sparse. We consider a class of CFT states motivated by those
created from the vacuum by acting with real-time single-trace sources, though we require
the source to have non-singular effects on the modular Hamiltonian. In order to model
sources that would produce semi-classical coherent states in any bulk dual, the magnitude
of our sources is taken to be εN with ε fixed-but-small as N → ∞. See also [18] for other
investigations of entanglement in large N gauge theories.

For such states, we verify bulk predictions of powers of N via a direct calculation in
the CFT. Though it differs in detail, the suppression found here is analogous to the large
N suppression of such corrections found previously in [19, 20]. Our analysis also provide
additional benefits. First, our explicit formula for second order relative entropy makes
manifest the agreement with appropriately-integrated bulk stress tensors – here defined
to include contributions from the stress tensor of bulk gravitons – required by comparing
corrections to the bulk and boundary first laws [21, 22]. As a result, it again demonstrates
that a consistent holographic theory of gravity must couple universally to all forms of
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bulk stress-energy. It also provides a perturbative derivation of the Faulkner-Lewkowycz-
Maldacena subleading correction to the RT and HRT conjectures at all orders in 1/N [23].

Before proceeding, we should elaborate on the above restriction to sources with non-
singular action on the modular Hamiltonian. As explained in section 2 below, from a dual
bulk point of view this requires our perturbations to vanish in some neighborhood of the
bifurcation surface of our bulk Rindler-like horizon. So the leading-order large-N RT or
HRT entanglement cannot change. They do, however, affect the above-mentioned order N0

entanglement. They also change 〈HA〉 and thus the relative entropy RA = 〈HA〉 − SA at
order N2. We will show that these powers of N are correct at all orders in ε; the fact that
∆SA is of smaller order in N than SA itself is the 1/N suppression advertised above.

The rest of the paper is organized as follows. We begin with a brief description of
our setup in section 2. Section 3 then computes 〈HA〉, RA and SA to second order for our
family of states. It also argues to all orders that the powers of N in 〈HA〉, RA and SA
are precisely those predicted by intuition from a bulk dual. We conclude in section 4 with
a brief discussion of our results as well as comments on possible extensions. Appendix A
derives a simple and completely general formula (A.14) for the second order change in RA
in bipartite quantum systems that gives the above-mentioned explicit formulas for RA and
∆SA.

2 Setting and assumptions

We wish to study excitations of the vacuum |0〉 of a large N CFT in d spacetime dimensions
on R× Sd−1. Since we take our inspiration from a possible bulk dual, we impose assump-
tions similar to those in e.g. [24] and [25, 26], taking our CFT to satisfy ’t Hooft large-N
factorization [27] and to have a sparse spectrum of light operators. As usual, light operators
are those whose scaling dimension ∆i of Oi(x) remains finite as we take N → ∞ and the
sparse spectrum condition requires that for any fixed ∆ the number of such operators with
∆i < ∆ remains finite at large N .

The factorization condition states that the set of light single-trace gauge-invariant local
operators should admit a basis {Oi(x)} for which〈

Oi1(x1) . . .Oik(xk)
〉
c
∼ N2−k , (2.1)

where 〈. . . 〉c is the connected vacuum correlator and similar notation without the subscript
c will also be employed for the full correlator. Furthermore, heavy operators (those that
do not remain light as N →∞) decouple in the sense that connected correlators involving
both heavy and light operators are much smaller. In fact, we assume that we study a low
energy process from which operators of finite-but-large dimension are sufficiently decoupled
that sums over the Oi below always converge. Indeed, our only use of the sparse spectrum
condition will be to assume that such sums with coefficients of order Np converge to a result
of the same order in N .

It will be convenient to take the basis operators Oi to have definite scaling dimension
∆i at large N and in fact to diagonalize the order N0 term in the connected two-point
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function. We also require 〈
Oi(x)

〉
= 0 , (2.2)

for all i, which can be achieved by subtracting appropriate expectation values. Note that
we have not required the Oi to be scalars; we have merely suppressed any tensor or spinor
indices. Thus, up to the above subtractions, one member (say, O0) of our basis is 1/N

times the CFT stress tensor which necessarily satisfies ∆ = d; i.e. O0 = 1
N (T −〈T 〉), where

we have suppressed the spacetime indices ab.
Our expectations that corrections to the first law of entanglement are suppressed arise

from considering the semi-classical behavior of a supposed bulk gravitational dual. Semi-
classical bulk states can be created from the vacuum through the action of large classical
sources for the perturbative bulk fields. As usual, we may choose to locate these sources at
the boundary where they may be translated into sources for the local single-trace Oi above.
Now, single and multi-trace sources mix under time-evolution, but this mixing is again
controlled by the 1/N expansion: since the stress tensor generates time evolution, to any
order in 1/N a light operator O(x) can be replaced inside such correlators with an operator
at another time that is a sum over k of k-trace terms weighted by 1/Nk−1. Semi-classical
behavior is preserved in time, so it should suffice to restrict attention to states of the form

|α〉 := U |0〉 , U := Te−iαJ , (2.3a)

J :=
∑
k=1

N−(k−1)
∫
dx1 . . . dxk ji1...ik(x1, . . . , xk)Oi1(x1) . . .Oik(xk) , (2.3b)

where the classical sources ji1...ik are fixed smooth c-number functions of order N0 and we
allow distributional terms so that terms in the k-trace contributions to (2.3b) may effectively
include only m < k integrals over operator location.

We have introduced the real number α to be used as an expansion parameter. The
symbol T denotes time-ordering, and we employ the convenient abuse of notation that
defines Te−iαJ to be the natural time-ordered exponential associated with the particular
representation of J given above as an integral over the CFT spacetime. Using the standard
AdS/CFT dictionary, the above normalizations would give the bulk field φi dual to Oi an
expectation value 〈φ〉α ∼ α.

We wish to choose α so that (2.3) would behave semi-classically in a bulk gravitational
dual. Since the bulk is perturbative at largeN , bulk quantum fluctuations become negligible
in the limit α� 1 and gravitational back reaction scales like

G〈φ〉2α ∼
α2

N2
. (2.4)

To allow this effect to be as large as possible consistent with a perturbative treatment we
take

α = εN � 1 (2.5)

where ε is a small parameter to be held constant in the limit N →∞.
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Our particular interest is in the effect of such sources on a region A of some Cauchy
surface Σ in the CFT spacetime, or more generally on the associated domain of dependence
D(A). The region A is held fixed as we take N →∞. We denote the complementary region
on this Cauchy surface by Ac, so that Σ = A ∪ Ac. As a density matrix, the state |α〉
is σα := |α〉〈α|. The associated reduced density matrices and the un-perturbed modular
Hamiltonians for A and Ac are then

ρAα = ρA := TrAc(σα) , HA := − log
(
ρA(α=0)

)
,

ρAcα = ρAc := TrA(σα) , HAc := − log
(
ρAc(α=0)

)
. (2.6)

As implied above, we will often suppress the label α on ρA, ρAc when the meaning is clear,
though HA, HAc will always represent the modular Hamiltonians at α = 0. An important
property of these objects is

[HA, HAc ] = 0, (2.7)

where both HA and HAc are interpreted as operators on the full CFT Hilbert space by
tensoring each with the identity operator (1Ac or 1A) on the complementary region. The
result (2.7) would be immediate for truly bipartite systems that decompose as a tensor
product of a system on A with a system on Ac. It is less trivial in quantum field theory,
but still holds for ball-shaped regions A in CFTs since the vacuum is invariant under a Z2

conformal symmetry that exchanges A and Ac. This symmetry must then exchange HA

and HAc as well, requiring their commutator to be symmetric. The manifest antisymmetry
of [HA, HAc ] then forces the commutator to vanish.

It is also useful to define the operator K := HA −HAc . Recall that K annihilates the
vacuum:

K|0〉 = (HA −HAc)|0〉 = 0 . (2.8)

For ball-shaped regions A in a constant-time slice, K generates the conformal isometry of
R ⊗ Sd−1 that moves A orthogonally to itself while preserving the domain of dependence
D(A); i.e., it generates the natural forward “time-translation” on D(A) and the natural
backward “time-translation” on D(Ac) [16]. For lack of a better name, we will refer to K
as the boost Hamiltonian, though this term is only an accurate description of K in the
large-sphere limit when A becomes a half-plane.

Finally, we introduce a basis for the space of light local gauge-invariant single trace
operators {OiA(x)} ({OiAc(x)}) on the domain of dependence D(A) (D(Ac)) that again
satisfy (2.1) and (2.2). Below we will consider ball-shaped regions in a constant-time Cauchy
surface Σ = Sd−1 so that the modular Hamiltonians HA, HAc can be expressed as integrals
of the stress tensor over A,Ac in any CFT [16].

2.1 Adapting the source

A key step in our argument will be to write the source-operator J from (2.3b) in a manner
adapted to the decomposition Σ = A∪Ac. The basic idea is to use the Heisenberg equations
of motion for the CFT to express J in terms of operators on Σ. Thinking of the CFT Hilbert

– 5 –



space as a tensor product of separate Hilbert spaces for A and Ac would then allow J to
be written as a sum of terms, each of which is the tensor product of a (possibly trivial)
operator on A with one on Ac.

J =
∑
a

JaA ⊗ JaAc . (2.9)

We would like to then expand the JaA, J
a
Ac as a sum or products of the {OiA(x)} ({OiAc(x)})

and use (2.1) to count powers of N .
There are, however, several potential obstacles to consider. First, evolving the source to

the Cauchy surface Σ will generally mix the Oi with both heavy operators and highly non-
local expressions such as Wilson loops that cannot be expanded in terms of the {OiA(x)}
({OiAc(x)}). However, our calculations below will involve only correlation functions of
sources with HA, HAc . For the ball-shaped regions to be considered, up to the choice of
zero-point our HA, HAc are integrals of the stress tensor, which is one of our light operators.
Since the stress tensor also generates time evolution, to any order in 1/N a light operator
O(x) can be replaced inside such correlators with an appropriately-smeared sum of products
of {OiA(x)} ({OiAc(x)}). So in this sense we may write

J = OA +OAc +
∑
k=2

1

Nk−1

∫
[D(A)∪D(Ac)]k

dx1 . . . dxk j̃i1...ik(x1, . . . , xk)Oi1(x1) . . .Oik(x1) ,

(2.10)

where we have used the fact that operator mixing is suppressed by powers of 1/N and
defined

OA =

∫
D(A)

jAi (x)OiA(x), OAc =

∫
D(Ac)

jA
c

i (x)OiAc(x). (2.11)

The combinations of operators represented by OA,OAc will play important roles below.
Although not explicitly indicated, we will make use of a similar decomposition of the multi-
trace parts of (2.10) into sums of products of operators associated separately with A and
Ac. Since (2.3) requires time-ordered products of such operators, we should really perform
an expansion of the form (2.10) to express the source J(t) at each time in terms of operators
that evolve to the regions A,Ac, but to avoid clutter in our notation we will not explicitly
indicate the time at which given operators are to act.

In terms of a holographic bulk dual, the rewriting of (2.3) as (2.10) could be described
as evolving sources to a bulk Cauchy surface intersecting the boundary at A∪Ac and then
using e.g. the methods of [28–34] to write the corresponding bulk operators in terms of
boundary operators1 in D(A), D(Ac). At least for operators Oi not associated with bulk
gauge fields, this interpretation nicely side-steps issues (see e.g. [35–44]) associated with the
expectation that our CFT will be a gauge theory so that its Gauss-law constraint forbids
factorization of its Hilbert space into separate Hilbert spaces for A and Ac.

However, even without a Gauss-law constraint, quantum field theory Hilbert spaces do
not admit a precise tensor product structure. This fact is associated with singularities in

1Since our analysis is perturbative, this construction may be performed in empty AdS so that ball-shaped
regions A,Ac define Rindler-AdS regions with a common bifurcate Rindler horizon.
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various n-point correlation functions which can give contributions localized precisely on the
boundary ∂A where A and Ac meet.2 The issue could be ignored if we were to consider
only correlators smeared with smooth functions; we could simply deform the smearing
functions so that they vanish in some small neighborhood of ∂A and then recover the
original undeformed correlators by continuity as these neighborhoods shrink to zero size.
But the fact that HA, HAc are integrals of the stress tensor against non-smooth functions3

means that more care will be required. In section 3 below we simply restrict to sources that
induce changes in energy ∆〈HA〉 and entropy ∆SA that can be approximated by replacing
each term in (2.10) with a source that differs from the original in some neighborhood Acollar

of ∂A and vanishes smoothly in a smaller neighborhood Asource-free of ∂A, and then letting
the width of Acollar vanish. Roughly speaking, these are the sources that do not produce
distributional terms localized at ∂A. We refer to such sources as having non-singular action
on the modular Hamiltonian HA.

In practice, rather than working through the above limit explicitly, we will simply
consider the regulated operators mentioned above which we take to vanish in a common
neighborhood Asource-free of ∂A. The limit Acollar, Asource-free → ∅ will be left implicit. Such
sources may for example be obtained by choosing the original stress-tensor sources to be
supported in the interior of D(A) ∪ D(Ac). Nevertheless, the fact that the multi-trace
terms in either (2.3) or (2.10) are multi-local, means that they can include products of
operators in D(A) with those in D(Ac). Thus U is generally not a product of separate
unitary transformations on D(A) and D(Ac).

3 Results with no singular terms

We now study the changes in energy and entropy associated with applying U to |0〉 for the
above sources.

3.1 Energy

Changes in the energy are straightforward to evaluate and take the form

∆〈HA〉 = 〈T̄ eiαJHATe
−iαJ −HA〉

= iεN〈[J,HA]〉 − ε2N2

2
〈[J, [J,HA]]T 〉+O(ε3N2), (3.1)

where T̄ denotes anti-time-ordering and [J, [J,HA]]T is the operation defined by the second
order expansion of the first line; as indicated by the notation, one may think of this term
as an appropriately time-ordered version of a double commutator.

Since the first order term also clearly follows from the first line, it remains only to show
that the omitted terms are of order ε3N2 and in particular involve no higher powers of
N . We expect that this argument is also standard, but we state it here for completeness.
The point is to note the repeated commutator structure of T̄ eiαJHATe

−iαJ − HA, which
2In the bulk description mentioned above, it is associated with the fact that operators at the bifurcation

surface of the Rindler horizon cannot be mapped to either the D(A) or D(Ac).
3The first derivative of the smearing function is discontinuous at ∂A.
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requires that at order αn all n sources must be connected to each other and also to HA.
Considering for the moment only the single-trace contribution OA + OAc to all sources J
from (2.10) and using (2.1) then gives only terms of order εnN2.

One may then show that multi-trace contributions are further suppressed by at least
an additional N−2: Since the coefficient of each multi-trace contribution to (2.10) contains
an explicit factor of 1/N , the only possible exception could come from including a single
double-trace contribution Oi1Oi2 to one of the sources. But since 〈Oi1〉 = 〈Oi2〉 = 0, the
repeated commutator structure again means that all that all non-zero contributions are fully
connected. From (2.1), the replacement of a single-trace operator by Oi1Oi2 thus yields an
extra 1/N in this connected correlator giving the stated suppression by two powers of 1/N .

We should also comment further on the linear term in (3.1). Recall that we take sources
in (2.10) to vanish near ∂A. This must in particular be true of the single-trace term, which
can thus be written as OA + OAc . Writing HA as an integral of NO0 (plus a constant)
and using (2.1) would suggest that this single-trace part makes the linear term of order
εN2. But the OAc term clearly commutes with HA. And since [OA, HAc ] = 0 we have
[OA, HA] = [OA,K]. The fact that K annihilates the vacuum then implies 〈[OA, HA]〉 = 0.
As a result, the linear term in (3.1) receives contributions only from multi-trace terms in
(2.10) and is thus suppressed by an extra N−2 as described above. Thus the linear term is
in fact of order εN0.

3.2 Entropy

Computing changes in entropy and relative entropy is more complicated than computing
∆〈HA〉. The main issue is that expanding the logarithm in SA requires using the highly non-
trivial Baker-Campbell-Hausdorf (BCH) formula. Nevertheless, subject to the assumption
that all sources in (2.10) vanish near ∂A, we will argue below that changes in the entropy
SA and relative entropy RA take the form

RA := ∆〈HA〉 −∆SA =
〈
eHA∆ρA

[
f(K)− f ′(K)

]
∆ρA e

HA
〉

+O(ε3N2) , (3.2a)

= ε2N2〈OAKOA〉+O(ε3N2) +O(ε2N0) (3.2b)

∆SA = O(εN0) (3.2c)

where ∆ρA = ρA − ρA0 and f is the smooth function

f(y) =
y

1− e−y
. (3.3)

This f appears because it is the generating function of the Bernoulli numbers which play
an important role in the BCH formula [45]. While it is generally redundant to describe
〈HA〉, SA, and RA := 〈HA〉 − SA, we choose to do so – and in fact give two expressions
for RA – both in order to state definite results and to describe the relative sizes of various
contributions. For example, the explicit term in (3.2a) is a general result for the second
order term in the relative entropy RA of any bipartite quantum system,4 but the large N

4While continuum field theories are not truly bipartite, we may nevertheless use this formula due to our
assumption that sources vanish near ∂A. See appendix A for details.
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structure is more apparent from (3.2b). Since our current interest focuses on the latter,
and since (3.2b) may be derived from more general arguments, we relegate the calculation
leading to (3.2a) to appendix A. Equation (3.2a) may nevertheless be useful for applications
that require subleading terms of order ε2N0 as well as the leading term of order ε2N2.

Although deriving these results will require some work, the intuition behind (3.2b) and
(3.2c) is easy to understand. Note that keeping only the single-trace term would make
U a product of separate (commuting) unitary transformations UA and UAc on A and Ac.
This would require ∆SA = 0 and thus RA = ∆〈HA〉. So contributions to ∆SA require
the multi-trace terms in (2.10), which are of order N0. Deriving (3.2c) thus amounts to
controlling cross-terms involving both single-trace and multi-trace source terms. This is
done in section 3.3 below.

The explicit term in (3.2b) is the second-order effect of purely single-trace sources on
RA, or equivalently on 〈HA〉. Since either can depend only on the restriction of the state
to A, they are unchanged by the action of the UAc defined above. We may thus consider
only UA, which commutes with HAc and thus induces identical changes in both HA and K.
Indeed, since the linear term in (3.1) vanishes for single-trace sources that vanish near ∂A,
it suffices to compute only the second-order term

− ε2N2

2
〈[OA, [OA,K]]T 〉. (3.4)

Using K|0〉 = 〈0|K = 0 then shows the only non-zero term to be the one displayed in
(3.2b). Along with the fact that the first order change in RA vanishes identically by the
first law, the errors in (3.1) and (3.2c) then imply those in (3.2b).

3.3 Multi-trace contributions to ∆SA

The task that remains is to show that including multi-trace contributions to (2.10) can
change SA only by terms of order N0. The argument is somewhat lengthy, so we break it
into several parts. We first reorganize the action of the single-trace source-terms in order to
show that they have little impact. We then work to write a series expansion of SA to which
we can usefully apply the large-N counting rule (2.1). Here there are two difficulties, one of
which is associated with the fact that SA is defined as a non-linear function of the reduced
density matrix ρA on region A and not as a vacuum expectation value. Any power series
expansion of SA thus naturally involves many traces over Ac that must be eliminated in
order to use (2.1). The other involves controlling contributions from possible disconnected
correlators. After completing these tasks, we combine the results and count powers of N .

3.3.1 Reorganizing the action of single-trace sources

To begin, recall the definitions

ρA = TrAc σα = TrAc

(
Te−iαJσ0T̄ e

iαJ
)
. (3.5)

Recall also that dropping the multi-trace contributions and computing only

Usingle = Te−iα
∫
dtJsingle (3.6)
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would give a product of separate unitary transformations on A and Ac that do not change
SA. Similarly, we may note that the entropy of ρA must be identical to the entropy of

ρconj
A = TrAc

(
U−1singleσαUsingle

)
= [UAsingle]

−1ρAU
A
single, (3.7)

where UAsingle is the part of Usingle that acts on A. We thus have

SA = −TrA

(
ρconj
A log ρconj

A

)
. (3.8)

Now, σα itself is defined (see (2.3)) by conjugating |0〉〈0| with a time-ordered unitary
U . This unitary is the product of many factors of the form

e−iαJ(t)δt = e−iαJsingle(t)δte−iαJmulti(t)δt +O(δt2) (3.9)

where we have separated the single- and multi-trace parts of the source at time t. Note that
our new conjugation by Usingle merely replaces the U in (2.3) by U−1singleU , or equivalently
replaces each factor (3.9) with

e−iαJ
conj
multi(t)δt, (3.10)

where Jconj
multi(t) is a multi-trace term conjugated by a time-ordered exponential built from

single-trace sources at earlier times; there is no effect on (3.9) from sources at later times
as these merely cancel between U−1single and U . One may make an analogy between U and
the time-ordered exponential that implements Heisenberg-picture time-evolution in some
quantum system, with Jsingle playing the role of the free Hamiltonian and Jmulti playing the
role of the interaction terms. Our conjugation by Usingle then plays the role of passing to
the interaction picture, where the new time evolution is a product of factors like (3.10).

We wish to write
ρconj
A = ρA0

(
1 + ρ−1A0∆ρconj

A

)
(3.11)

for

∆ρconj
A = ρconj

A − ρA0 = TrAc

(
U−1singleσαUsingle − σ0

)
, (3.12)

and to expand (3.8) in powers of ρ−1A0∆ρconj
A . We then expand ∆ρconj

A , in powers of α. In
this latter step will write each ∆ρconj

A as a sum of terms of the form

TrAc

(
[Jconj

multi-1, [J
conj
multi-2 . . . [J

conj
multi-k, |0〉〈0|]] . . . ]

)
, (3.13)

where Jconj
multi-j is a time integral of Jconj

multi(t) and the factors are appropriately time-ordered.
It is important to note that |0〉〈0| is not conjugated by any such unitary; the privileged

position of this operator at the end of the chain of repeated commutators means that, in our
analogy with transforming between the Heisenberg and interaction pictures, this operator
can be thought of as labeled by the earliest possible time so that the picture-changing
transformation acts on it trivially. The point of the form (3.13) is that we will shortly (see
section 3.3.2) transform the expansion of (3.8) into a form involving only vacuum correlators
of products of operators. The repeated commutator structure of Jconj

multi-j will then forbid
single-trace terms from appearing in correlators unless they are appropriately connected to
multi-trace terms.
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3.3.2 The entropy as a correlator

The next step in our argument is to show how SA can be written as a sum of vacuum
correlators of products of the Oi with functions of the boost Hamiltonian K, and where the
remaining N -dependence of each term follows directly from powers of α = εN and (2.10). In
particular, all extra traces over Ac will be removed, and the modular Hamiltonians HA, HAc

will not appear except in the combination K = HA−HAc . This last feature will be critical
in controlling contributions from disconnected correlators.

As a first step toward this goal, we may use (3.11) to express SA as the vacuum
correlator

SA = −TrA

[
ρA0

(
1 + ρ−1A0∆ρconj

A

)
log ρconj

A

]
= −

〈(
1 + ρ−1A0∆ρconj

A

)
log ρconj

A

〉
, (3.14)

where operators on region A are to be interpreted as operators on the full CFT Hilbert space
by tensoring them with the identity on Ac. Note that log

(
ρconj
A ⊗ 1Ac

)
=
(

log ρconj
A

)
+

log1Ac =
(

log ρconj
A

)
, so that we may interpret log ρconj

A as the logarithm of an operator on
the full Hilbert space.

We next remove the explicit traces over Ac. These enter through the definition (2.6),
and are potentially problematic because the sources involve products of operators on A

with operators on Ac. The trick to proceeding is to use the assumption that each term in
(2.10) is supported away from ∂A (so that contributions to each source-term from A and
Ac commute with each other) to write each term (3.13) as a sum of terms in which all
operators on Ac have been commuted to act directly either on |0〉 from the left or on 〈0|
from the right.

Using the entanglement properties of |0〉, we may now replace each operator in Ac by
a so-called “mirror operator” on A; see e.g. [46], though the particular terminology is from
the more recent [47]. To explain how this works, let us for the moment take A to be the
“southern” hemisphere of our Sd−1 at t = 0. In any relativistic theory, given an operator
O, not necessarily a scalar or even local, we may study the CPT conjugate operator OCPT .
Since the parity operation exchanges the north and south hemispheres, the CPT conjugate
of any northern hemisphere operator at t = 0 (i.e., on Ac) is an operator on the t = 0

southern hemisphere A. Furthermore, these operators satisfy

OCPT |0〉 = eK/2O|0〉; 〈0|OCPT † = 〈0|O†eK/2, (3.15)

where the second relation is just the Hermitian conjugate of the first. These are just Kubo-
Martin-Schwinger (KMS) relations in terms of the imaginary time evolution generated by
our K, so they encode the thermal nature of |0〉 with respect to HA. Thus the mirror
operator Õ := e−K/2OCPT e+K/2 satisfies

Õ|0〉 = O|0〉; 〈0|Õ† = 〈0|O†eK . (3.16)

The key point is that the CPT conjugate of an Oi is just another Oj (or perhaps
a linear combination thereof). So at the expense of introducing additional factors of
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e−K/2 = e−HA/2eHAc/2, we may replace the Ac operators acting on σ0 by CPT-conjugate
operators acting on A. Conformal invariance then guarantees that we can again perform
a corresponding operation to replace operators on Ac with those on A for more general
ball-shaped regions. The new operators eHAc/2 may then be commuted past A-operators
to act on σ0, where they may be replaced by factors of eHA/2 using (2.8). The net result is
thus to write ∆ρA as a sum of terms of the form

TrAc

(
Oi1A . . .O

in
A e
−HA/2Oj1A . . .O

jm
A e+HA/2|0〉〈0|e+HA/2Ok1A . . .OkrA e

−HA/2Ol1A . . .O
ls
A

)
.

(3.17)
Operators supported away from Ac can now be pulled outside the trace over Ac. By

assumption these include all OiA, but we should take care with the factors of eHA/2 which
include support near ∂A. We may do so in each term by using the Zassenhaus formula

eX+Y = eXeY e−[X,Y ]/2e
1
6
(2[Y,[X,Y ]]+[X,[X,Y ]]) . . . (3.18)

for HA/2 = X + Y , with X = H far
A /2 a Hermitian integral of the subtracted stress tensor

NO0
A weighted by a smooth function supported away from ∂A and Y a similar integral

supported close enough to ∂A to avoid overlap with the support of any OiA appearing in
the given term. Since both are smooth integrals, the supports of X and Y will overlap with
each other and thus yield non-zero commutators in (3.18). It is convenient to collect all
factors involving Y into a single operator eHnear

A /2. Note that commutators of X,Y receive
contributions only from regions in the support of both operators, so that eHnear

A /2 is again
supported in a region close to ∂A that avoids overlap with the support of any OiA appearing
in the given term.

We now have

e−HA/2 = e−H
far
A /2e−H

near
A /2, (3.19a)

e+HA/2 = e+H
near
A /2e+H

far
A /2 (3.19b)

e−HA/2 = e−H
near†
A /2e−H

far
A /2, (3.19c)

e+HA/2 = e+H
far
A /2e+H

near†
A /2, (3.19d)

where (3.19b) is the inverse of (3.19a) and the final two relations (3.19c), (3.19d) are the
adjoints of (3.19a), (3.19b). The expressions (3.19) allow us to safely reformulate (3.17) as

Oi1A . . .O
in
A e
−Hfar

A /2Oj1A . . .O
jm
A

× TrAc

(
e−H

near
A /2e+H

near
A /2e+H

far
A /2|0〉〈0|e+Hfar

A /2e+H
near
A /2e−H

near
A /2

)
×Ok1A . . .OkrA e

−Hfar
A /2Ol1A . . .O

ls
A . (3.20)

Since e−Hnear
A /2 is the inverse of eHnear

A /2, these operators all cancel. The remaining factors
of e+Hfar

A /2 may then be extracted from the trace as well. Reversing the steps involving
Hnear
A , H far

A then reconstructs the original factors of e±HA/2 outside the trace, leaving just
(3.17) where the trace acts only on |0〉〈0| as one would naively expect. Using TrAc |0〉〈0| =
e−HA then removes all explicit traces over Ac. While we could take this final factor of
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e−HA to cancel the two factors of eHA/2 adjacent to |0〉〈0| in (3.17), due to the structure of
(3.13) it is convenient to instead keep all of these factors explicit. The latest factor of e−HA

coming from the trace is distinguished, and we shall refer to it below as the ‘final’ e−HA .
The above steps have written each factor of ∆ρconj

A as a product of OiA with two factors
of e−HA/2, two factors of e+HA/2, and our final e−HA . But as noted above we wish to expand
in powers of ρ−1A0∆ρconj

A = eHA∆ρconj
A . We may then use

1 = eHAce−HAce−HAc/2e−HAc/2eHAc/2eHAc/2 (3.21)

to insert the indicated factors of eHAc/2. Commuting them past the OiA and exponentials
of HA as needed allows us to replace all exponentials of HA with exponentials of K =

HA −HAc . In particular, in this way we obtain a distinguished ‘final’ factor of e−K .
We are now close to achieving our goal. If ρ−1A0∆ρconj

A would commute with ρA0, we
could use log ρconj

A − log ρA0 = log
(

1 + ρ−1A0∆ρconj
A

)
and expand (3.14) in a standard Taylor

series. Combined with our results above, this would give an infinite sum of terms with each
being a vacuum correlator of a product of Oi and exponentials of K, consistent with the
form required above.5

But since ρ−1A0∆ρconj
A and ρA0 generally do not commute we must use the Baker–

Campbell–Hausdorff formula to evaluate log ρconj
A = log

[
ρA0

(
1 + ρ−1A0∆ρconj

A

)]
. An explicit

formulation of this identity due to Dynkin takes the form (see e.g. [48])

log
(
eXeY

)
=
∞∑
k=1

(−1)k−1

k

∑
pi+qi≥1

[
X(p1)Y (q1) . . . X(pk)Y (qk)

](∑k
i=1(pi + qi)

)(∏k
i=1 pi!qi!

) , (3.22)

where[
X(p1)Y (q1) . . . X(pk)Y (qk)

]
≡ [X, [X, . . . [X︸ ︷︷ ︸

p1 Xs

, [Y, . . . [Y︸ ︷︷ ︸
q1 Y s

, [X, . . . [X︸ ︷︷ ︸
pk Xs

, [Y, [Y, . . . Y︸ ︷︷ ︸
qk Y s

] . . . ] . (3.23)

We wish to set X = −HA = log ρA0 and Y = log
(

1 + ρ−1A0∆ρconj
A

)
.

The important observation is that the form of ρ−1A0∆ρA found above clearly commutes
with HAc , so [HAc , Y ] = 0 as well. Recalling from (2.7) that X = −HA also commutes with
HAc allows us to replace each X in the above repeated commutators with −K = HAc−HA.
The result is an expression for SA as an infinite sum over terms, each of which is a vacuum
correlator involving only products of OiA and functions of K, and with all further explicit
dependence on N coming from (2.10) as desired.

3.3.3 Counting powers of N

We are now ready to count powers of N . Consider then contributions at order αp involving
r single-trace operators Ofrom single that come from single-trace source-terms and s single-
trace operators Ofrom multi that come from multi-trace source-terms. Such a contribution

5With the exception of the term 〈ρ−1
A0∆ρconj

A HA〉. This term resembles the mulit-trace contributions to
∆〈log ρA0〉 considered in section 3.1 and is also of order N0 for similar reasons.

– 13 –



is equal to a product of connected correlators each with ri of the Ofrom single and si of the
Ofrom multi such that r =

∑
i ri and s =

∑
i si. We need not keep track of the factors of

K since each contributes an explicit factor of N that is cancelled by the extra 1/N from
(2.1) associated with the O0 it contributes to any correlator. Each connected correlator
gives ri + si − 2 factors of 1/N by (2.1). The single-trace sources provide an additional r
explicit powers of N . For double-trace sources the explicit N from α = εN cancels against
the 1/N in (2.10) and for higher-trace sources the contribution is more suppressed. So the
total number of factors of 1/N is greater than or equal to

∑
i(si − 2). We wish to show

that this sum is non-negative.
Recall that the reason multi-trace sources affect the entropy is that they can contain

products of operators in A with operators in Ac. But a given term will only be sensitive to
the correlations created by these sources if at least one operator from A and one from Ac

appear in the same connected correlator. So it is natural to expect that the entropy will
only receives contributions from terms with si ≥ 2 for all i, which would imply the desired
result.

To show that this is so, we note that there are no contributions from terms with si = 0.
This is because all of the Ofrom single occur in nested commutators inside some Jconj

multi-j and
therefore must be connected to at least one Ofrom multi in order to contribute.

Now suppose si = 1, where we take the relevant Ofrom multi-j to come from a m-trace
source term living inside some Jconj

multi-j . Since 〈Ofrom multi-j〉 = 0, a non-vanishing connected
correlator must involve other operators. None of these can come from single-trace source
terms in other Jconj

multi-k for k 6= j, which must instead stay attached to their own multi-trace
sources. So since si = 1, if any of these operators come from a final K then the correlator
must vanish due to K|0〉 = 0 = 〈0|K and the fact that (3.13) prohibits a final K from
intervening between factors coming from any given Jconj

multi-j . So the correlator consists only
of Ofrom multi-j , single-trace source-terms, and K’s coming from a single Jconj

multi-j . Terms of
this form exponentiate, and have the effect of replacing the operator Ofrom multi-j in J

conj
multi-j

with a classical source of order N , demoting Jconj
multi-j to an (m − 1)-trace source of order

N−m−3 (i.e., the same order as the (m− 1)-trace sources already appearing in (2.10)). So
we need not consider such terms separately when counting powers of N . In particular,
double-trace sources demoted to single-trace sources in this way can be absorbed into the
Usingle of section 3.3.1 and do not contribute to the entropy. So all relevant terms have
si ≥ 2 and the largest possible contribution to the entropy is of order N0 as anticipated
above.

4 Discussion

The work above contains first steps toward studying the von Neumann entropy of excited
states in CFTs satisfying the ’t Hooft large N counting rule (2.1). We considered the
entropy of ball-shaped regions for states produced by real-time sources with non-singular
action on the modular Hamiltonian and of the form (2.10). From a dual bulk point of view,
such sources produce small classical waves – or more properly quantum coherent states
with large amplitude of order εN – on both sides of a Rindler horizon but which do not
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disturb the bifurcation surface itself. They also add O(N0) entangled sets of particles across
the horizon. As the former does not change the HRT entropy, one expects that the CFT
entanglement changes only at order N0. We have verified that this is indeed the case by a
direct argument in the CFT. While our results are directly formulated in terms of a 1/N

expansion, it may be interesting to follow [5] and attempt to formulate a version of our
results that would hold in arbitrary CFTs, whether or not they have a large-N counting
rule like (2.1).6

One consequence of our work is the explicit formula (3.2b) for the order ε2N2 relative
entropy. When interpreted in the bulk theory, this formula is precisely the bulk stress tensor
on the A side of the bulk horizon, integrated so as to give the associated change in the boost
energy K. This may be seen from the fact that (3.2b) is just the contribution to K from
the excitations on the A side of the bifurcation surface, and by bulk causality that it thus
gives the value of the boost Hamiltonian K in a related bulk solution produced from the
vacuum using only the sources OA in the causal past of A. The above claim then follows by
writing K in terms of a standard ‘bulk stress tensor’ that includes quadratic contributions
from gravitons as well. For concreteness, one may choose the graviton contribution to be
given by the AdS analogue of the Landau-Lifshitz ‘pseudo-tensor’ expression [49], though
our requirement that perturbations vanish near the bifurcation surface means that many
other choices give equivalent results7.

The above observation means that our analysis provides a new argument for the univer-
sal coupling of gravity to all classical forms of stress-energy. Though it differs in detail from
[4], this interpretation of our classical (O(N2)) result is inspired by the quantum (O(N0))

argument of that reference and reinforces the connection found there between the universal
structure of variations in SA and the universal coupling of bulk gravity.

Another consequence is to give a derivation of the order N0 Faulkner-Lewkowycz-
Maldacena correction [23] to the Ryu-Takayagi and Hubeny-Rangamani-Takayanagi con-
jectures (for ball-shaped regions A). In the semi-classical bulk, this argument is perturbative
in departures from empty AdS. It thus complements the original reasoning in [23] in that
it does not rely on the Lewkowycz-Maldacena argument [12], or on any other use of the
replica trick. At first order in ε the result follows from the first law, but the arguments
of section 3 also give this result at higher orders. In general, we may decompose SA into
a first-law-piece and RA. Recall that at second order RA is quadratic in the first order
contribution to ∆ρA and in particular is given by

− iαTrAc([Jdouble, |0〉〈0|]) = TrAc

(
e−iαJdouble |0〉〈0|eiαJdouble − |0〉〈0|

)
+O(ε2), (4.1)

where Jdouble is the double-trace part of (2.10). As before the only terms in Jdouble that
can contribute to ∆SA are those that involve one operator in A and one in Ac. Such terms
throw entangled pairs into the bulk, with one member of each pair on each side of the bulk

6We thank Tom Faulkner for discussion on this point.
7There is, however, a preferred expression when perturbations do not vanish at the bifurcation surface.

The bulk relative entropy HA−S of the classical bulk is then the so-called canonical energy density of [50],
which is naturally expressed as an integral of what one may call a bulk stress tensor. See [51] for further
discussion of this connection.
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horizon. Given the agreement of bulk and CFT vacuum correlators, it is manifest that the
corresponding change in bulk entanglement at this order can be computed just as we have
done in the CFT and that the results agree. A similar argument holds at higher orders in
ε, where the repeated commutator structure of (3.13) reproduces the effect of propagating
small effects from the multi-trace sources through the large semi-classical coherent state
produced by the single-trace parts of (2.10). It also extends to higher orders in N to argue
that bulk entanglement gives the full series of 1/N corrections to HRT. Note, however, that
since our sources are confined to D(A) ∪D(Ac) all perturbations vanish at the bulk HRT
surface. Our derivation is thus insensitive to possible perturbative shifts of the HRT surface
of the kind predicted in [52]. Conversely, extending our results to allow sources supported
on ∂A would in principle allow us to test the conjecture of [52] that the full CFT entropy is
given by the generalized entropy of a quantum extremal surface, defined as the bulk surface
that extermizes the bulk generalized entropy.

We have focussed on ball-shaped regions for simplicity, but we expect our arguments to
generalize to arbitrary regions A. Indeed, as described in [53], one may address perturbative
deformations of ball-shaped regions by inserting additional factors of the stress tensor (or,
equivalently, of NO0). These insertions tend to add another operator to each connected
correlator, giving an extra 1/N from (2.1) that cancels the explicit new factor of N . A
similar argument can be used to compute corrections to (3.15) and construct the relevant
“mirror operators” for these deformed regions. So the only ingredients of our analysis that
remain to be checked are that HA, HAc can be thought of as operators on the full CFT
Hilbert space that commute both with each other, and with local operators supported away
from ∂A. It should be possible to analyze these assumptions perturbatively as well. We
expect that these will indeed hold at this level, but verifying this is beyond the scope of
our work.

The extension to include sources supported near ∂A would clearly be of great interest.
At linear order in ε the contribution to SA from such sources is governed by the first law
and was effectively studied in [2, 3]. But at this order there is no displacement of the bulk
extremal surface. In particular, for ball-shaped regions A the bulk HRT surface continues to
coincide with the bifurcation surface of the corresponding event horizon; i.e., with the causal
holographic information surface of [54], which is expected to compute some coarse-grained
version of the CFT entropy [54–56]. In contrast, the two are distinguished at second order,
so comparing bulk and CFT computations may give insight into the nature of the relevant
coarse-graining. In particular, one might hope to either support or falsify the conjecture
[56] that it corresponds to the maximizing the entropy over all states for which certain
one-point functions coincide with the original state.

In addition, comparing bulk and CFT computations to second order would derive or
falsify the HRT conjecture at a non-trivial level. Even for static perturbations the fact
that it avoids the replica trick would make this a useful complement to the Lewkowycz-
Maldacena argument [12], and the perturbative method should be able to address general
time-dependence to which [12] does not apply. And since second-order results are sensitive
to the displacement of the HRT surface, they could in particular detect any possible motion
of this surface in imaginary directions within the complexified AdS spacetime; i.e., they
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could help diagnose the possible role of complex extremal surfaces as explored in [14].
One reason that we have avoided such singular terms here is that they are in principle

sensitive to the particular way that entanglement is to be defined in the CFT. Since the
CFT is a gauge theory, this can involve a number of subtle issues [35–44]). Lewkowycz-
Maldacena [12] suggests that the correct notion of CFT entropy is defined by the replica
trick, which is precisely the computational tool we wish to avoid. However, the results of
[35–44]) also suggest that the various definitions of entropy differ only by a local boundary
term that will cancel in computing the mutual information between pairs of regions A,B.
One should thus be able to ignore such concerns in this context. We hope to compute the
‘singular’ second order terms and to explore the above issues in the near future, perhaps
using a suitably-generalized version of the calculation in appendix A.
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A Computing the relative entropy

This appendix derives an explicit formula for the second order change δ2RA in the relative
entropy RA corresponding to an arbitrary change δρA in the reduced density matrix for
A. This result is not directly used in the main text, other than writing (3.2a). Our final
expression (A.14) bears a striking resemblance to Eq. (C7) of [5]. In fact, (A.14) can also be
derived from a straightforward generalization of the calculation leading to (C7). We present
a different, somewhat more involved calculation here because we hope that this approach
will be useful for analyzing the additional terms at order ε2 that arise when the sources in
(2.10) do not vanish in a neighborhood of ∂A.

The setting for the calculation below is an arbitrary bipartite quantum system, meaning
that it is the tensor product of a system on A and one on Ac. As discussed in the main text,
the actual system we study is not strictly of this form, though it can be treated as such
at least under our assumption that each term in (2.10) vanishes in a neighborhood of ∂A.
So a critical step in realizing the hope expressed in the paragraph above is understanding
modifications that arise when this assumption fails.
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A.1 The Baker–Campbell–Hausdorff Formula

We will compute δ2RA using the BCH formula in the form (3.22). Since we work only to
order Y 2, it will be useful to rewrite (3.22) as

log
(
eXeY

)
= X + Y +

∞∑
n=1

Cn[X(n)Y (1)] +

∞∑
n=1

n−1∑
k=0

Dn,k[X
(k)Y (1)X(n−k)Y (1)] +O(Y 3) ,

(A.1)

where Cn and Dn,k are rational numbers. It was shown in [45] that

Cn =
(−1)nBn

n!
, (A.2)

where Bn are the first Bernoulli numbers (B0 = 1, B1 = −1/2, . . . ). The Bernoulli numbers
can be defined by the smooth generating function

f(y) :=
y

1− e−y
=

∞∑
n=0

Bn
n!

(−y)n , (A.3)

where the sum on the right hand side converges for y ∈ (−2π, 2π). Note that B2m+1 = 0

for m ≥ 1.
To compute δ2RA we will also need the coefficients Dn,0. To our knowledge these

coefficients have not previously been explicitly computed. But a straightforward application
of the recursive technique developed in [45] yields8

Dn,0 = − 1

2(n+ 1)!

n+1∑
k=1

(−1)n−k
(
n+ 1

k

)
BkBn+1−k = −Bn+1

2(n!)
. (A.5)

To obtain the second equality first note that for even n the only non-vanishing terms in
the sum are k = 1 and k = n, and that these terms cancel. For n = 1 the equality is
easily checked by hand. For odd n ≥ 3, only the even k terms survive so (−1)n−k =

−1. The remaining sum is easily evaluated using a well known identity due to Euler and
independently rediscovered by Ramanujan (see for example Eq. (1.2) in [57])

m∑
j=1

(
2m

2j

)
B2jB2m−2j = −2mB2m , m ≥ 2 . (A.6)

8Iterating Eq. (12) of [45] in such a way as to obtain all terms with two Y ’s gives

log(eXeY ) = X + Y +

∞∑
k=1

Rk

∫ 1

0

dt

(
AdX + tAdY +

∞∑
m=1

Rm[AdX
(m)tAdY ] + . . .

)n

Y (A.4)

where Rn = (−1)nBn/n! and AdZW = [Z,W ]. After collecting all of the the terms that give nested
commutators of the form [Y X(n)Y ] we obtain the first equality in (A.5).
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A.2 Computing δ2RA

Taking a second variation of RA gives

δ2RA = Tr(δρA δ[log(ρA)]) + Tr
(
ρA δ

2[log(ρA)]
)
. (A.7)

To evaluate the variation of the logarithm we first rewrite

log(ρA + δρA) = log
[
e−HA(1 + eHAδρA)

]
(A.8)

and apply (A.1) with X = −HA and Y = log(1 + eHAδρA). We then Taylor expand Y

using

log(1 + Z) = Z − Z2

2
+O(Z3) . (A.9)

None of the Dn,k≥1 terms from (A.1) contribute to (A.7) because they can only appear in
the second term of (A.7) and

Tr
(
ρA

[
H

(k≥1)
A (ρ−1A δρA)(1)H

(n−k)
A (ρ−1A δρA)(1)

])
= Tr

([
H

(k≥1)
A δρ

(1)
A H

(n−k)
A (ρ−1A δρA)(1)

])
, (A.10)

which vanishes by cyclicity of the trace. The remaining terms give

δ2RA =
1

2
Tr
(
eHAδρ2A

)
+

∞∑
n=1

(
Bn
n!

)
Tr
(
eHA

[
H

(n)
A δρ

(1)
A

]
δρA

)
+
∞∑
n=1

(−1)nDn,0 Tr
([(

eHA
)(1)

H
(n)
A δρA

]
δρA

)
. (A.11)

Note that when [HA, δρA] = 0, (A.11) reduces to the term studied in [53].
We now evaluate the sums in (A.11). It is useful to rewrite the first trace as

Tr
(
eHA

[
H

(n)
A δρ

(1)
A

]
δρA

)
=

n∑
j=0

(−1)j
(
n

j

)
Tr
(
eHAHn−j

A δρAH
j
AδρA

)
=

n∑
j=0

(−1)j
(
n

j

)〈
eHAHn−j

A δρAH
j
AδρAe

HA

〉
=
〈(
eHA δρA

)
(−K)n

(
δρA e

HA
)〉
, (A.12)

where the first line is straightforward to prove by induction. In the second equality we have
inserted a factor of eHAρA = 1 into the trace to convert it to an expectation value with
respect to the reduced density matrix ρA. Since all of the operators inside the expectation
value live on A, this is equivalent to the expectation value with respect to the full density
matrix ρ = |0〉〈0|, which, as in the main text, is denoted by 〈. . . 〉. The last equality follows
from HA|0〉 = HAc |0〉, the definition K := HA −HAc , and the binomial expansion.
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Similarly, the second trace in (A.11) can be rewritten in the form

Tr
([(

eHA
)(1)

H
(n)
A δρA

]
δρA

)
=

n∑
j=0

(−1)j
(
n

j

)
Tr
(
Hn−j
A

[
eHA , δρA

]
Hj
AδρA

)
=

n∑
j=0

(−1)j
(
n

j

)(〈(
eHAδρA

)
Hn−j
Ac Hj

A

(
δρA e

HA
)〉
−
〈(
eHAδρA

)
Hn−j
A Hj

Ac

(
δρA e

HA
)〉)

= [(−1)n − 1]
〈(
eHAδρA

)
Kn
(
δρA e

HA
)〉
, (A.13)

which clearly vanishes for even n. Inserting (A.12) and (A.13) into (A.11) and performing
the sums gives

δ2RA =
〈
eHAδρA

[
f(K)− f ′(K)

]
δρA e

HA
〉
, (A.14)

where f is the smooth function defined in (3.3). Note that here (and in previous expressions
involving correlators) the operators HA, δρA should be understood as tensor products with
the identity operator on Ac. We computed the above sums using (A.3), (A.5) and the trick

∞∑
n=1

Bn+1

n!
(−y)n = −∂y

( ∞∑
n=0

Bn
n!

(−y)n − y

2

)
= −f ′(y) +

1

2
. (A.15)

Our manipulations of the infinite sums (A.3) and (A.15) are somewhat formal since
each sum converges only for y ∈ (−2π, 2π) while the eigenvalues of HA are unbounded.
Nevertheless, since both the initial and final expressions involve only analytic functions of
HA, we expect that with appropriate care the final result can be justified for general HA.
The representation of log ρ used in e.g. appendix C of [5] may be useful for this purpose.

Note that since K is Hermitian and

f(y)− f ′(y) =
−1 + y + e−y

(1− e−y)2
> 0 (A.16)

for real y, the eigenvalues of f(K)−f ′(K) are real and positive. This fact implies δ2RA ≥ 0,
with equality if and only if δρAeHA annihilates the vacuum. But since the restriction of
|0〉 to A is non-degenerate, this can occur only if δρA = 0. Thus (A.14) is consistent with
positivity of the relative entropy.
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