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Generalizable spelling using a speech
neuroprosthesis in an individual with
severe limb and vocal paralysis

Sean L. Metzger 1,2,3,6, Jessie R. Liu 1,2,3,6, David A. Moses 1,2,6,
Maximilian E. Dougherty1, Margaret P. Seaton 1, Kaylo T. Littlejohn1,2,4,
Josh Chartier 1,2, Gopala K. Anumanchipalli1,2,4, Adelyn Tu-Chan5,
Karunesh Ganguly 2,5 & Edward F. Chang 1,2,3

Neuroprostheses have the potential to restore communication to people who
cannot speak or type due to paralysis. However, it is unclear if silent attempts
to speak can be used to control a communication neuroprosthesis. Here, we
translated direct cortical signals in a clinical-trial participant (Clinical-
Trials.gov;NCT03698149)with severe limb and vocal-tract paralysis into single
letters to spell out full sentences in real time. We used deep-learning and
language-modeling techniques to decode letter sequences as the participant
attempted to silently spell using code words that represented the 26 English
letters (e.g. “alpha” for “a”). We leveraged broad electrode coverage beyond
speech-motor cortex to include supplemental control signals from hand cor-
tex and complementary information from low- and high-frequency signal
components to improve decoding accuracy. We decoded sentences using
words from a 1,152-word vocabulary at a median character error rate of 6.13%
and speedof 29.4 characters perminute. In offline simulations,we showed that
our approach generalized to large vocabularies containing over 9,000 words
(median character error rate of 8.23%). These results illustrate the clinical
viability of a silently controlled speech neuroprosthesis to generate sentences
from a large vocabulary through a spelling-based approach, complementing
previous demonstrations of direct full-word decoding.

Devastating neurological conditions such as stroke and amyo-
trophic lateral sclerosis can lead to anarthria, the loss of ability to
communicate through speech1. Anarthric patients can have intact
language skills and cognition, but paralysis may inhibit their ability
to operate assistive devices, severely restricting communication
with family, friends, and caregivers and reducing self-reported
quality of life2.

Brain-computer interfaces (BCIs) have the potential to restore
communication to such patients by decoding neural activity into
intended messages3,4. Existing communication BCIs typically rely on
decoding imagined arm and hand movements into letters to enable
spelling of intended sentences5,6. Although implementations of this
approach have exhibited promising results, decoding natural attempts
to speak directly into speech or textmay offer faster andmore natural
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control over a communication BCI. Indeed, a recent survey of pro-
spective BCI users suggests that many patients would prefer speech-
driven neuroprostheses over arm- and hand-driven neuroprostheses7.
Additionally, there have been several recent advances in the under-
standing of how the brain represents vocal-tract movements to pro-
duce speech8–11 and demonstrations of text decoding from the brain
activity of able speakers12–19, suggesting that decoding attempted
speech from brain activity could be a viable approach for commu-
nication restoration.

To assess this, we recently developed a speech neuroprosthesis to
directly decode full words in real time from the cortical activity of a
person with anarthria and paralysis as he attempted to speak20. This
approach exhibited promising decoding accuracy and speed, but as an
initial study focusedonapreliminary 50-word vocabulary.While direct
word decoding with a limited vocabulary has immediate practical
benefit, expanding access to a larger vocabulary of at least 1000words
would cover over 85% of the content in natural English sentences21 and
enable effective day-to-day use of assistive-communication
technology22. Hence, a powerful complementary technology could
expand current speech-decoding approaches to enable users to spell
out intended messages from a large and generalizable vocabulary
while still allowing fast, direct word decoding to express frequent and
commonly used words. Separately, in this prior work the participant
was controlling the neuroprosthesis by attempting to speak aloud,
making it unclear if the approach would be viable for potential users
who cannot produce any vocal output whatsoever.

Here, we demonstrate that real-time decoding of silent attempts
to say 26 alphabetic codewords from theNATOphonetic alphabet can
enable highly accurate and rapid spelling in a clinical-trial participant
(ClinicalTrials.gov; NCT03698149) with paralysis and anarthria. During
training sessions, we cued the participant to attempt to produce
individual code words and a hand-motor movement, and we used the
simultaneously recorded cortical activity from an implanted 128-
channel electrocorticography (ECoG) array to train classification and
detection models. After training, the participant performed spelling
tasks in which he spelled out sentences in real time with a 1152-word
vocabulary using attempts to silently say the corresponding alphabetic
code words. A beam-search algorithm used predicted code-word
probabilities from a classification model to find the most likely sen-
tence given the neural activity while automatically inserting spaces
between decoded words. To initiate spelling, the participant silently
attempted to speak, and a speech-detectionmodel identified this start
signal directly from ECoG activity. After spelling out the intended
sentence, the participant attempted the hand-motor movement to
disengage the speller. When the classification model identified this
hand-motor command from ECoG activity, a large neural network-
based language model rescored the potential sentence candidates
from the beam search and finalized the sentence. In post-hoc simula-
tions, our system generalized well across large vocabularies of over
9000 words.

Results
Overview of the real-time spelling pipeline
We designed a sentence-spelling pipeline that enabled a clinical-trial
participant (ClinicalTrials.gov; NCT03698149) with anarthria and
paralysis to silently spell out messages using signals acquired from a
high-density electrocorticography (ECoG) array implanted over his
sensorimotor cortex (Fig. 1).We tested the spelling systemunder copy-
typing and conversational task conditions. In each trial of the copy-
typing task condition, the participant was presented with a target
sentence on a screen and then attempted to replicate that sentence
(Supplementary Movie 1). In the conversational task condition, there
were two types of trials: Trials in which the participant spelled out
volitionally chosen responses to questions presented to him (Supple-
mentary Movie 2) and trials in which he spelled out arbitrary,

unprompted sentences (Supplementary Movie 3). Prior to real-time
testing, no day-of recalibration occured (Supplementary Movie 4);
model parameters and hyperparameterswerefit using data exclusively
from preceding sessions.

When the participant was ready to begin spelling a sentence, he
attempted to silently say an arbitrary word (Fig. 1a). We define silent-
speech attempts as volitional attempts to articulate speech without
vocalizing. Meanwhile, the participant’s neural activity was recorded
from each electrode and processed to simultaneously extract high-
gamma activity (HGA; between 70 and 150Hz) and low-frequency
signals (LFS; between 0.3–100Hz; Fig. 1b). A speech-detection model
processed each time point of data in the combined feature stream
(containing HGA+LFS features; Fig. 1c) to detect this initial silent-
speech attempt.

Once an attempt to speak was detected, the paced spelling pro-
cedure began (Fig. 1d). In this procedure, an underline followed by
three dots appeared on the screen in white text. The dots disappeared
one by one, representing a countdown. After the last dot disappeared,
the underline turned green to indicate a go cue, at which time the
participant attempted to silently say the NATO code word corre-
sponding to the first letter in the sentence. The time window of neural
features from the combined feature stream obtained during the 2.5-s
interval immediately following the go cue was passed to a neural
classifier (Fig. 1e). Shortly after the go cue, the countdown for the next
letter automatically started. This procedure was then repeated until
the participant volitionally disengaged it (described later in this
section).

The neural classifier processed each time window of neural fea-
tures to predict probabilities across the 26 alphabetic code words
(Fig. 1f). A beam-search algorithm used the sequence of predicted
letter probabilities to compute potential sentence candidates, auto-
matically inserting spaces into the letter sequences where appropriate
and using a language model to prioritize linguistically plausible sen-
tences. During real-time sentence spelling, the beam search only
considered sentences composed of words from a predefined 1152-
word vocabulary, which contained common words that are relevant
for assistive-communication applications. The most likely sentence at
any point in the task was always visible to the participant (Fig. 1d). We
instructed the participant to continue spelling even if there were
mistakes in the displayed sentence, since the beam search could cor-
rect themistakes after receivingmore predictions. After attempting to
silently spell out the entire sentence, the participant was instructed to
attempt to squeeze his right hand to disengage the spelling procedure
(Fig. 1h). The neural classifier predicted the probability of this
attempted hand-motor movement from each 2.5-s window of neural
features, and if this probability was greater than 80%, the spelling
procedure was stopped and the decoded sentence was finalized
(Fig. 1i). To finalize the sentence, sentences with incomplete words
were first removed from the list of potential candidates, and then the
remaining sentences were rescored with a separate language model.
Themost likely sentence was then updated on the participant’s screen
(Fig. 1g). After a brief delay, the screen was cleared and the task con-
tinued to the next trial.

To train the detection and classification models prior to real-time
testing, we collected data as the participant performed an isolated-
target task. In each trial of this task, a NATO code word appeared on
the screen, and the participantwas instructed to attempt to silently say
the codeword at the corresponding go cue. In some trials, an indicator
representing the hand-motor command was presented instead of a
code word, and the participant was instructed to imagine squeezing
his right hand at the go cue for those trials.

Decoding performance
To evaluate the performance of the spelling system, we decoded
sentences from the participant’s neural activity in real time as he
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attempted to spell out 150 sentences (two repetitions each of 75
unique sentences selected from an assistive-communication cor-
pus; see Table S1) during the copy-typing task. We evaluated the
decoded sentences using word error rate (WER), character error
rate (CER), words per minute (WPM), and characters per minute
(CPM) metrics (Fig. 2). For characters and words, the error rate is
defined as the edit distance, which is the minimum number of
character or word deletions, insertions, and substitutions required

to convert the predicted sentence to the target sentence that was
displayed to the participant, divided by the total number of char-
acters or words in the target sentence, respectively. These metrics
are commonly used to assess the decoding performance of auto-
matic speech recognition systems23 and brain-computer interface
applications6,20.

We observed a median CER of 6.13% and median WER of 10.53%
(99% confidence interval (CI) [2.25, 11.6] and [5.76, 24.8]) across the

anything
is

possible_...

anything
is

possible_..

anything
is

possible_.

anything
is

possibl_...

anything
is

possibl_..

anything
is

possibl_.

a_...

a_..

a_.

_...

_..

_.

anything
is

possible_
anything

is
possibl_

Letter-
classification

RNN

cont.
2.5-s
cycles

Accumulate
letter

probabilities

Realtime
beam search
& language
modelling

Display
current
most
likely

sentence

pa
pb

pz

0.10

0.14

0.01

...

0.03

0.06

0.02

...

0.80

0.02

0.01

...

...
w1 w2 w18

Speech-detection
RNN & thresholding

2.5-s
window

of
neural
activity

ON

Ta
sk

R
ec

or
de

d 
D

at
a

D
ec

od
in

g 
Pi

pe
lin

e

Activation Spelling Finalization

Start
spelling

System waits
for detection of
a silent-speech

attempt

Rescore sentences
with DistilGPT-2

Finalize
sentence &

end
spelling

cycle

“Alpha” “November”

Hand-motor command
deactivates speller

Detected 
speech
attempt

“Echo”

Streamed
neural

features

2.5-s letter decoding cycles

... w18

a d g

b e h

...

a...

... ...

.

..
2.5

s

c f i

< 0.8
pmotor

Finalize
sentence (panel i)

_Go cue a_

)

2.5 s

Hand-motor
command

Denoised 
microphone

activity

Low-frequency
signals

(z-scored)

High-gamma
activity

(z-scored)

Time (s)
w1 w2 2.5 s

...
{

>=
 0.8

pmotor

{{

Article https://doi.org/10.1038/s41467-022-33611-3

Nature Communications |         (2022) 13:6510 3



real-time test blocks (each block contained multiple sentence-spelling
trials; Fig. 2a, b). Across 150 sentences, 105 (70%) were decoded
without error, and 69 of the 75 sentences (92%) were decoded per-
fectly at least one of the two times they were attempted. Additionally,
across 150 sentences, 139 (92.7%) sentences were decoded with the

correct number of letters, enabled by high classification accuracy of
the attempted hand squeeze (Fig. 2e).We also observed amedianCPM
of 29.41 and median WPM of 6.86 (99% CI [29.1, 29.6] and [6.54, 7.12])
across test blocks, with spelling rates in individual blocks as high as
30.79 CPM and 8.60 WPM (Fig. 2c, d). These rates are higher than the

Fig. 1 | Schematic depiction of the spelling pipeline. a At the start of a sentence-
spelling trial, the participant attempts to silently say a word to volitionally activate
the speller. b Neural features (high-gamma activity and low-frequency signals) are
extracted in real time from the recorded cortical data throughout the task. The
features from a single electrode (electrode 0, Fig. 5a) are depicted. For visualiza-
tion, the traces were smoothed with a Gaussian kernel with a standard deviation of
150milliseconds. Themicrophone signal shows that there is no vocal output during
the task. c The speech-detection model, consisting of a recurrent neural network
(RNN) and thresholding operations, processes the neural features to detect a silent-
speech attempt. Once an attempt is detected, the spelling procedure begins.
d During the spelling procedure, the participant spells out the intended message
throughout letter-decoding cycles that occur every 2.5 s. Each cycle, the participant
is visually presented with a countdown and eventually a go cue. At the go cue, the
participant attempts to silently say the code word representing the desired letter.
e High-gamma activity and low-frequency signals are computed throughout the

spelling procedure for all electrode channels and parceled into 2.5-s non-
overlapping time windows. f An RNN-based letter-classification model processes
each of these neural time windows to predict the probability that the participant
was attempting to silently say each of the 26 possible code words or attempting to
perform a hand-motor command (g). Prediction of the hand-motor command with
at least 80% probability ends the spelling procedure (i). Otherwise, the predicted
letter probabilities are processed by a beam-search algorithm in real time and the
most likely sentence is displayed to the participant. g After the participant spells
out his intendedmessage, he attempts to squeeze his right hand to end the spelling
procedure and finalize the sentence. h The neural time window associated with the
hand-motor command is passed to the classification model. i If the classifier con-
firms that the participant attempted the hand-motor command, a neural network-
based language model (DistilGPT-2) rescores valid sentences. The most likely
sentence after rescoring is used as the final prediction.

Fig. 2 | Performance summary of the spelling system during the copy-typing
task. a Character error rates (CERs) observed during real-time sentence spelling
with a language model (LM), denoted as ‘+LM (Real-time results)’, and offline
simulations in which portions of the system were omitted. In the ‘Chance’ condi-
tion, sentences were created by replacing the outputs from the neural classifier
with randomly generated letter probabilities without altering the remainder of the
pipeline. In the ‘Only neural decoding’ condition, sentences were created by con-
catenating together the most likely character from each of the classifier’s predic-
tions during a sentence trial (no whitespace characters were included). In the
‘+Vocab. constraints’ condition, the predicted letter probabilities from the neural
classifier were used with a beam search that constrained the predicted character
sequences to form words within the 1152-word vocabulary. The final condition ‘+
LM (Real-time results)’ incorporates language modeling. The sentences decoded
with the full system in real time exhibited lower CERs than sentences decoded in
the other conditions (***P <0.0001, P-values provided in Table S2, two-sided Wil-
coxon Rank-Sum test with 6-way Holm-Bonferroni correction). b Word error rates

(WERs) for real-time results and corresponding offline omission simulations fromA
(***P <0.0001, P-values provided in Table S3, two-sided Wilcoxon Rank-Sum test
with 6-way Holm-Bonferroni correction). c The decoded characters per minute
during real-time testing. d The decoded words perminute during real-time testing.
In a–d, the distribution depicted in each boxplot was computed across n = 34 real-
time blocks (in each block, the participant attempted to spell between 2 and
5 sentences), and each boxplot depicts the median as a center line, quartiles as
bottom and top box edges, and the minimum and maximum values as whiskers
(except for data points that are 1.5 times the interquartile range, which are indivi-
dually plotted). e Number of excess characters in each decoded sentence.
f Example sentence-spelling trials with decoded sentences from each non-chance
condition. Incorrect letters are colored red. Superscripts 1 and 2 denote the correct
target sentence for the two decoded sentences with errors. All other example
sentences did not contain any errors. Data to recreate panels a–e are provided as a
Source Data file.
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median rates of 17.37 CPM and 4.16WPM (99% CI [16.1, 19.3] and [3.33,
5.05]) observed with the participant as he used his commercially
available Tobii Dynavox assistive-typing device (as measured in our
previous work20).

To understand the individual contributions of the classifier, beam
search, and language model to decoding performance, we performed
offline analyses using data collected during these real-time copy-typ-
ing task blocks (Fig. 2a, b). To examine the chance performance of the
system, we replaced themodel’s predictions with randomly generated
values while continuing to use the beam search and language model.
This resulted in a CER and WER that was significantly worse than the
real-time results (z = 7.09, P = 8.08 ×10−12 and z = 7.09, P = 8.08 ×10−12

respectively, two-sided Wilcoxon Rank-Sum test with 6-way Holm-
Bonferroni correction). This demonstrates that the classification of
neural signals was critical to system performance and that system
performance was not just relying on a constrained vocabulary and
language-modeling techniques.

To assess how well the neural classifier alone could decode
the attempted sentences, we compared character sequences
composed of the most likely letter for each individual 2.5-second
window of neural activity (using only the neural classifier) to the
corresponding target character sequences. All whitespace char-
acters were ignored during this comparison (during real-time
decoding, these characters were inserted automatically by the
beam search). This resulted in amedian CER of 35.1% (99% CI [30.6,
38.5]), which is significantly lower than chance (z = 7.09,
P = 8.08 × 10−12, two-sided Wilcoxon Rank-Sum test with 6-way
Holm-Bonferroni correction), and shows that time windows of
neural activity during silent code-word production attempts were
discriminable. The median WER was 100% (99% CI [100.0, 100.0])
for this condition; without language modeling or automatic
insertion of whitespace characters, the predicted character
sequences rarely matched the corresponding target character
sequences exactly.

To measure how much decoding was improved by the beam
search, we passed the neural classifier’s predictions into the beam
search and constrained character sequences to be composed of only
words within the vocabulary without incorporating any language
modeling. This significantly improved CER and WER over only using
the most likely letter at each timestep (z = 4.51, P = 6.37 × 10−6 and
z = 6.61, P = 1.19 × 10−10 respectively, two-sidedWilcoxonRank-Sum test
with 6-way Holm-Bonferroni correction). As a result of not using lan-
guagemodeling,which incorporates the likelihoodofword sequences,
the system would sometimes predict nonsensical sentences, such as
“Dono tooth at again” insteadof “Donotdo that again” (Fig. 2f). Hence,
including language modeling to complete the full real-time spelling
pipeline significantly improved median CER to 6.13% and median WER
to 10.53% over using the system without any language modeling
(z = 5.53, P = 6.34 × 10−8 and z = 6.11, P = 2.01 × 10−9 respectively, two-
sided Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni correc-
tion), illustrating the benefits of incorporating the natural structure of
English during decoding.

Discriminatory content in high-gamma activity and
low-frequency signals
Previous efforts to decode speech from brain activity have typically
relied on content in the high-gamma frequency range (between 70 and
170Hz, but exact boundaries vary) during decoding12,13,24. However,
recent studies have demonstrated that low-frequency content
(between 0 and 40Hz) can also be used for spoken- and imagined-
speech decoding14,15,25–27, although the differences in the dis-
criminatory information contained in each frequency range remain
poorly understood.

In this work, we used both high-gamma activity (HGA;
between 70 and 150 Hz) and low-frequency signals (LFS; between

0.3 and 16.67 Hz after downsampling with anti-aliasing) as neural
features to enable sentence spelling. To characterize the speech
content of each feature type, we used the most recent 10,682 trials
of the isolated-target task) to train 10-fold cross-validated models
using only HGA, only LFS, and both feature types simultaneously
(HGA+LFS). In each of these trials, the participant attempted to
silently say one of the 26 NATO code words. Models using only LFS
demonstrated higher code-word classification accuracy than
models using only HGA, and models using HGA+LFS out-
performed the other two models (z = 3.78, P = 4.71 × 10−4 for all
comparisons, two-sided Wilcoxon Rank-Sum test with 3-way
Holm-Bonferroni correction; Figs. 3a and S4 and Table S4),
achieving a median classification accuracy of 54.2% (99% CI [51.6,
56.2], Figs. 3a and S5). Confusion matrices depicting the classifi-
cation results with each model are included in the supplement
(Figs. S5–7).

We then investigated the relative contributions of each electrode
and feature type to the neural classificationmodels trained using HGA,
LFS, andHGA+LFS. For eachmodel,wefirst computed eachelectrode’s
contribution to classification by measuring the effect that small
changes to the electrode’s values had on the model’s predictions28.
Electrode contributions for the HGAmodel were primarily localized to
the ventral portion of the grid, corresponding to the ventral aspect of
the ventral sensorimotor cortex (vSMC), pars opercularis, and pars
triangularis (Fig. 3b). Contributions for the LFSmodelweremuchmore
diffuse, covering more dorsal and posterior parts of the grid corre-
sponding to dorsal aspects of the vSMC in the pre- and postcentral gyri
(Fig. 3d). Contributions for the HGA model and the LFS model were
moderately correlated with a Spearman rank correlation of 0.501
(n = 128 electrode contributions per feature type, P <0.01). The sepa-
rate contributions from HGA and LFS in the HGA+LFS model were
highly correlatedwith the contributions for theHGA-only and LFS-only
models, respectively (n = 128 electrode contributions per feature type,
P <0.01 for both Spearman rank correlations of 0.922 and 0.963,
respectively; Fig. 3c, e). These findings indicate that the information
contained in the two feature types that was most useful during
decoding was not redundant and was recorded from relatively distinct
cortical areas.

To further characterize HGA and LFS features, we investigated
whether LFS had increased feature or temporal dimensionality, which
could have contributed to increased decoding accuracy. First, we
performed principal component analysis (PCA) on the feature
dimension for the HGA, LFS, and HGA+LFS feature sets. The resulting
principal components (PCs) captured the spatial variability (across
electrode channels) for the HGA and LFS feature sets and the spatial
and spectral variabilities (across electrode channels and feature types,
respectively) for the HGA+ LFS feature set. To explain more than 80%
of the variance, LFS required significantly more feature PCs than HGA
(z = 12.2, P = 7.57 × 10−34, two-sidedWilcoxon Rank-Sum test with 3-way
Holm-Bonferroni correction; Fig. 3f) and the combined HGA+LFS fea-
ture set required significantly more feature PCs than the individual
HGA or LFS feature sets (z = 12.2, P = 7.57 × 10−34 and z = 11.6,
P = 2.66 × 10−33, respectively, two-sided Wilcoxon Rank-Sum test with
3-way Holm-Bonferroni correction; Fig. 3f). This suggests that LFS did
not simply replicate HGA at each electrode but instead added unique
feature variance.

To assess the temporal content of the features, we first used a
similar PCA approach to measure temporal dimensionality. We
observed that the LFS features required significantly more temporal
PCs than both theHGA andHGA+LFS feature sets to explainmore than
80%of the variance (z = 12.2,P = 7.57 × 10−34 and z = 12.2, P = 7.57 × 10−34,
respectively, Fig. 3g; two-sided Wilcoxon Rank-Sum test with 3-way
Holm-Bonferroni correction). Because the inherent temporal dimen-
sionality for each feature type remained the samewithin the HGA+LFS
feature set, the required number of temporal PCs to explain this much

Article https://doi.org/10.1038/s41467-022-33611-3

Nature Communications |         (2022) 13:6510 5



variance for the HGA+LFS features was in between the corresponding
numbers for the individual feature types. Then, to assess how the
temporal resolution of each feature type affected decoding perfor-
mance, we temporally smoothed each feature time series with Gaus-
sian filters of varying widths. A wider Gaussian filter causes a greater
amount of temporal smoothing, effectively temporally blurring the
signal and hence lowering temporal resolution. Temporally smoothing
the LFS features decreased the classification accuracy significantly
more than smoothing theHGAorHGA+LFS features (Wilcoxon signed-
rank statistic = 737.0, P = 4.57 × 10−5 and statistic = 391.0, P = 1.13 × 10−8,
two-sided Wilcoxon signed-rank test with 3-way Holm-Bonferroni
correction; Fig. 3h). The effects of temporal smoothing were not sig-
nificantly different between HGA and HGA+LFS (Wilcoxon signed-rank
statistic = 1460.0, P =0.443). This is largely consistent with the out-
comes of the temporal-PCA comparisons. Together, these results
indicate that the temporal content of LFS had higher variability and
contained more speech-related discriminatory information than HGA.

Differences in neural discriminability between NATO code
words and letters
During control of our system, the participant attempted to silently say
NATO code words to represent each letter (“alpha” instead of “a”,
“beta” insteadof “b”, and so forth) rather than simply saying the letters
themselves. We hypothesized that neural activity associated with
attempts to produce code words would be more discriminable than
letters due to increased phonetic variability and longer utterance
lengths. To test this, we first collected data using amodified version of
the isolated-target task in which the participant attempted to say each
of the 26 English letters instead of the NATO code words that repre-
sented them. Afterwards, we trained and tested classification models
using HGA+LFS features from the most recent 29 attempts to silently
say each code word and each letter in 10-fold cross-validated analyses.
Indeed, code words were classified with significantly higher accuracy
than the letters (z = 3.78, P = 1.57 ×10−4, two-sided Wilcoxon Rank-Sum
test; Fig. 4a).

Fig. 3 | Characterization of high-gamma activity (HGA) and low-frequency
signals (LFS) during silent-speech attempts. a 10-fold cross-validated classifica-
tion accuracy on silently attempted NATO code words when using HGA alone, LFS
alone, and both HGA+LFS simultaneously. Classification accuracy using only LFS is
significantly higher than using only HGA, and using both HGA+LFS results in sig-
nificantly higher accuracy than either feature type alone (**P = 4.71 × 10−4, z = 3.78
for each comparison, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bon-
ferroni correction). Chance accuracy is 3.7%. Each boxplot corresponds to n = 10
cross-validation folds (which are also plotted as dots) and depicts the median as a
center line, quartiles as bottom and top box edges, and the minimum and max-
imum values as whiskers (except for data points that are 1.5 times the interquartile
range). b–e Electrode contributions. Electrodes that appear larger and more opa-
que provide more important features to the classification model. b, c Show con-
tributions associated with HGA features using a model trained on HGA alone (b)
vs using the combined LFS +HGA feature set (c). d, e depict contributions

associated with LFS features using a model trained on LFS alone (d) vs the com-
bined LFS +HGA feature set (e). f Histogram of the minimum number of principal
components (PCs) required to explain more than 80% of the total variance,
denoted as σ2, in the spatial dimension for each feature set over 100 bootstrap
iterations. The number of PCs required were significantly different for each feature
set (***P <0.0001,P-values provided inTable S5, two-sidedWilcoxonRank-Sum test
with 3-way Holm-Bonferroni correction). g Histogram of the minimum number of
PCs required to explain more than 80% of the variance in the temporal dimension
for each feature set over 100 bootstrap iterations (***P <0.0001, P-values provided
in Table S6, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni cor-
rection, *P <0.01 two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni
correction). h Effect of temporal smoothing on classification accuracy. Each point
represents the median, and error bars represent the 99% confidence interval
around bootstrapped estimations of the median. Data to recreate all panels are
provided as a Source Data file.
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To perform a model-agnostic comparison between the neural
discriminability of each type of utterance (either code words or let-
ters), we computed nearest-class distances for each utterance using
the HGA+LFS feature set. Here, each utterance represented a single
class, and distances were only computed between utterances of the
same type. A larger nearest-class distance for a code word or letter
indicates that that utterance is more discriminable in neural feature
space because the neural activation patterns associated with silent
attempts to produce it are more distinct from other code words or
letters, respectively. We found that nearest-class distances for code
words were significantly higher overall than for letters (z = 2.98,
P = 2.85 ×10−3, two-sided Wilcoxon Rank-Sum test; Fig. 4b), although
not all code words had a higher nearest-class distance than its corre-
sponding letter (Fig. 4c).

Distinctions in evoked neural activity between silent- and
overt-speech attempts
The spelling systemwascontrolledby silent-speechattempts, differing
from our previous work in which the same participant used overt-
speech attempts (attempts to speak aloud) to control a similar speech-
decoding system20. To assess differences in neural activity and
decoding performance between the two types of speech attempts, we
collected a version of the isolated-target task in which the participant
was instructed to attempt to say the codewords aloud (overtly instead
of silently). The spatial patterns of evoked neural activity for the two
types of speech attempts exhibited similarities (Fig. S8), and inspec-
tions of evoked HGA for two electrodes suggest that some neural
populations respond similarly for each speech typewhile othersdonot
(Fig. 5a–c).

To compare the discriminatory neural content between silent-
and overt-speech attempts, we performed 10-fold cross-validated
classification analyses using HGA+LFS features associated with the
speech attempts (Fig. 5d). First, for each type of attempted speech
(silent or overt), we trained a classification model using data collected
with that speech type. To determine if the classification models could
leverage similarities in the neural representations associatedwith each
speech type to improve performance, we also created models by pre-
training on one speech type and then fine-tuning on the other speech
type. We then tested each classification model on held-out data asso-
ciated with each speech type and compared all 28 combinations of
pairs of results (all statistical results detailed in Table S7). Models

trained solely on silent data but tested on overt data and vice versa
resulted in classification accuracies that were above chance (median
accuracies of 36.3%, 99% CI [35.0, 37.5] and 33.5%, 99% CI [31.0, 35.0],
respectively; chance accuracy is 3.85%). However, for both speech
types, training and testing on the same type resulted in significantly
higher performance (P < 0.01, two-sided Wilcoxon Rank-Sum test, 28-
way Holm-Bonferroni correction). Pre-training models using the other
speech type led to increases in classification accuracy, though the
increase was more modest and not significant for the overt speech
type (median accuracy increasing by 2.33%, z = 2.65, P =0.033 for
overt, median accuracy increasing by 10.4%, z = 3.78, P = 4.40 × 10−3 for
silent, two-sided Wilcoxon Rank-Sum test, 28-way Holm-Bonferroni
correction). Together, these results suggest that the neural activation
patterns evoked during silent and overt attempts to speak shared
some similarities but were not identical.

Generalizability to larger vocabularies and alternative tasks
Although the 1152-word vocabulary enabled communication of a wide
variety of common sentences, we also assessed howwell our approach
can scale to larger vocabulary sizes. Specifically, we simulated the
copy-typing spelling results using three larger vocabularies composed
of 3303, 5249, and 9170 words that we selected based on their words’
frequencies in large-scale English corpora. For each vocabulary, we
retrained the language model used during the beam search to incor-
porate the new words. The large language model used when finalizing
sentenceswasnot altered for these analyses because itwasdesigned to
generalize to any English text.

High performance was maintained with each of the new voca-
bularies, with median character error rates (CERs) of 7.18% (99% CI
[2.25, 11.6]), 7.93% (99% CI [1.75, 12.1]), and 8.23% (99% CI [2.25, 13.5])
for the 3303-, 5249-, and 9170-word vocabularies, respectively (Fig. 6a;
median real-time CER was 6.13% (99% CI [2.25, 11.6]) with the original
vocabulary containing 1,152 words). Median word error rates (WERs)
were 12.4% (99% CI [8.01, 22.7]), 11.1% (99% CI [8.01, 23.1]), and 13.3%
(99% CI [7.69, 28.3]), respectively (Fig. 6b; WER was 10.53% (99% CI
[5.76, 24.8]) for the original vocabulary). Overall, no significant dif-
ferences were found between the CERs or WERs with any two voca-
bularies (P >0.01 for all comparisons, two-sided Wilcoxon Rank-Sum
test with 6-way Holm-Bonferroni correction), illustrating the general-
izability of our spelling approach to larger vocabulary sizes that enable
fluent communication.

Fig. 4 | Comparison of neural signals during attempts to silently say English
letters and NATO code words. a Classification accuracy (across n = 10 cross-
validation folds) usingmodels trainedwith HGA+LFS features is significantly higher
for NATO code words than for English letters (**P = 1.57 × 10−4, z = 3.78, two-sided
Wilcoxon Rank-Sum test). The dotted horizontal line represents chance accuracy.
bNearest-class distance is significantly larger for NATO codewords than for letters
(boxplots show values across the n = 26 code words or letters; *P = 2.85 × 10−3,
z = 2.98, two-sidedWilcoxon Rank-Sum test). In a, b, each data point is plotted as a

dot, and each boxplot depicts the median as a center line, quartiles as bottom and
top box edges, and theminimumandmaximumvalues as whiskers (except for data
points that are 1.5 times the interquartile range). c The nearest-class distance is
greater for the majority of code words than for the corresponding letters. In b and
c, nearest-class distances are computed as the Frobenius norm between trial-
averaged HGA+LFS features. Data to recreate all panels are provided as a Source
Data file.
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Finally, to assess the generalizability of our spelling approach
to behavioral contexts beyond the copy-typing task structure, we
measured performance as the participant engaged in a con-
versational task condition. In each trial of this condition, the
participant was either presented with a question (as text on a
screen) or was not presented with any stimuli. He then attempted
to spell out a volitionally chosen response to the presented
question (Supplementary Movie 2) or any arbitrary sentence if no
stimulus was presented (Supplementary Movie 3). To measure the
accuracy of each decoded sentence, we asked the participant
to nod his head to indicate if the sentence matched his intended
sentence exactly. If the sentence was not perfectly decoded,
the participant used his commercially available assistive-
communication device to spell out his intended message. Across
28 trials of this real-time conversational task condition, the
median CER was 14.8% (99% CI [0.00, 29.7]) and the median WER
was 16.7% (99% CI [0.00, 44.4]) (Fig. 6c, d). We observed a slight
increase in decoding error rates compared to the copy-typing
task, potentially due to the participant responding using incom-
plete sentences (such as “going out” and “summer time”) that
would not be well represented by the language models. Never-
theless, these results demonstrate that our spelling approach can
enable a user to generate responses to questions as well as
unprompted, volitionally chosen messages.

Discussion
Here, we demonstrated that a paralyzed clinical-trial participant
(ClinicalTrials.gov; NCT03698149) with anarthria could control a
neuroprosthesis to spell out intended messages in real time using
attempts to silently speak. With phonetically rich code words to
represent individual letters and an attempted hand movement to
indicate an end-of-sentence command, we used deep-learning and
language-modeling techniques to decode sentences from electro-
corticographic (ECoG) signals. These results significantly expand our
previous word-decoding findings with the same participant20 by
enabling completely silent control, leveraging both high- and low-
frequency ECoG features, including a non-speech motor command to
finalize sentences, facilitating large-vocabulary sentence decoding
through spelling, and demonstrating continued stability of the rele-
vant cortical activity beyond 128 weeks since device implantation.

Previous implementations of spelling brain-computer interfaces
(BCIs) have demonstrated that users can type out intended messages
by visually attending to letters on a screen29,30 or by using motor
imagery to control a two-dimensional computer cursor4,5 or attempt to
handwrite letters6. BCI performance using penetratingmicroelectrode
arrays in motor cortex has steadily improved over the past 20
years31–33, recently achieving spelling rates as high as 90 characters per
minute with a single participant6, although this participant was able to
speak normally. Our results extend the list of immediately practical

Fig. 5 | Differences in neural signals and classification performance between
overt- and silent-speech attempts. aMRI reconstruction of the participant’s brain
overlaidwith implanted electrode locations. The locations of the electrodes used in
b and c are bolded and numbered in the overlay. b Evoked high-gamma activity
(HGA) during silent (orange) and overt (green) attempts to say the NATO code
word kilo. c Evoked high-gamma activity (HGA) during silent (orange) and overt
(green) attempts to say the NATO code word tango. Evoked responses in b and
c are aligned to the go cue, which ismarked as a vertical dashed line at time0. Each
curve depicts the mean ± standard error across n = 100 speech attempts. d Code-

word classification accuracy for silent- and overt-speech attempts with various
model-training schemes. All comparisons revealed significant differences between
the result pairs (P <0.01, two-sided Wilcoxon Rank-Sum test with 28-way Holm-
Bonferroni correction) except for those marked as ‘ns’. Each boxplot corresponds
to n = 10 cross-validation folds (which are also plotted as dots) and depicts the
median as a center line, quartiles as bottom and top box edges, and the minimum
and maximum values as whiskers (except for data points that are 1.5 times the
interquartile range). Chance accuracy is 3.84%. Data to recreate all panels are
provided as a Source Data file.
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and clinically viable control modalities for spelling-BCI applications to
include silently attempted speech with an implanted ECoG array,
which may be preferred for daily use by some patients due to the
relative naturalness of speech7 and may be more chronically robust
across patients through the use of less invasive, non-penetrating
electrode arrays with broader cortical coverage.

In post-hoc analyses, we showed that decoding performance
improved as more linguistic information was incorporated into the
spelling pipeline. This information helped facilitate real-time decoding
with a 1152-word vocabulary, allowing for a wide variety of general and
clinically relevant sentences as possible outputs. Furthermore,
through offline simulations, we validated this spelling approach with
vocabularies containing over 9000 common English words, which
exceeds the estimated lexical-size threshold for basic fluency and
enables general communication34,35. These results add to consistent
findings that language modeling can significantly improve neural-
based speechdecoding12,15,20 and demonstrates the immediate viability
of speech-based spelling approaches for a general-purpose assistive-
communication system.

In this study, we showed that neural signals recorded during
silent-speech attempts by an anarthric person can be effectively used
to drive a speech neuroprosthesis. Supporting the hypothesis that
these signals contained similar speech-motor representations to sig-
nals recorded during overt-speech attempts, we showed that a model
trained solely to classify overt-speech attempts can achieve above-
chance classification of silent-speech attempts, and vice versa. Addi-
tionally, the spatial localization of electrodes contributing most to
classificationperformancewas similar for bothovert and silent speech,
with many of these electrodes located in the ventral sensorimotor
cortex, a brain area that is heavily implicated in articulatory speech-
motor processing8–10,36.

Overall, these results further validate silently attempted speech as
an effective alternative behavioral strategy to imagined speech and
expand findings from our previous work involving the decoding of
overt-speech attempts with the same participant20, indicating that the
production of residual vocalizations during speech attempts is not
necessary to control a speech neuroprosthesis. These findings illus-
trate the viability of attempted-speech control for individuals with
complete vocal-tract paralysis (such as those with locked-in syn-
drome), although future studies with these individuals are required to
further our understanding of the neural differences between overt-
speech attempts, silent-speech attempts, and purely imagined speech
as well as how specific medical conditions might affect these

differences. We expect that the approaches described here, including
recordingmethodology, task design, andmodeling techniques, would
be appropriate for both speech-related neuroscientific investigations
and BCI development with patients regardless of the severity of their
vocal-tract paralysis, assuming that their speech-motor cortices are
still intact and that they are mentally capable of attempting to speak.

In addition to enabling spatial coverage over the lateral speech-
motor cortical brain regions, the implanted ECoG array also provided
simultaneous access to neural populations in the hand-motor (hand
knob) cortical area that is typically implicated during executed or
attemptedhandmovements37. Our approach is thefirst to combine the
two cortical areas to control a BCI. This ultimately enabled our parti-
cipant to use an attempted hand movement, which was reliably
detectable and highly discriminable from silent-speech attempts with
98.43% classification accuracy (99% CI [95.31, 99.22]), to indicate when
he was finished spelling any particular sentence. This may be a pre-
ferred stopping mechanism compared to previous spelling BCI
implementations that terminated spelling for a sentence after a pre-
specified time interval had elapsed or extraneously when the sentence
was completed5 or required a head movement to terminate the
sentence6. By also allowing a silent-speech attempt to initiate spelling,
the system could be volitionally engaged and disengaged by the par-
ticipant, which is an important design feature for a practical commu-
nication BCI. Although attempted handmovement was only used for a
single purpose in this first demonstration of a multimodal commu-
nication BCI, separate work with the same participant suggests that
non-speech motor imagery could be used to indicate several distinct
commands38.

One drawback of the current approach is that it relies on code
words instead of letters during spelling. Although the use of these
longer code words improved neural discriminability, they are less
natural to use. Separately, the participant had to attempt to produce
code words at a pre-defined pace during spelling, which enabled
straightforward parcellation of the neural activity into separate time
windows for classification but reduced flexibility for the user. Future
work can focus on improving letter decoding and implementing flex-
ible, user-controlled pacing (for example, through augmented speech-
attempt detection) to facilitatemorenaturalistic spelling. Additionally,
the present results are limited to only one participant; to fully assess
the clinical viability of this spelling system as a neuroprosthesis, it will
need to be validated with more participants.

In future communication neuroprostheses, it may be possible to
use a combined approach that enables rapid decoding of full words or

Fig. 6 | The spelling approach can generalize to larger vocabularies and con-
versational settings. a Simulated character error rates from the copy-typing task
with different vocabularies, including the original vocabulary used during real-time
decoding. b Word error rates from the corresponding simulations in a. In a and
b, each boxplot corresponds to n = 34 blocks (in each of these blocks, the partici-
pant attempted to spell between two to five sentences). cCharacter andword error
rates across the volitionally chosen responses and messages decoded in real time
during the conversational task condition. Each boxplot corresponds to n = 9 blocks
(in each of these blocks, the participant attempted to spell between two to four

conversational responses; each dot corresponds to a single block). In a–c, each
boxplot depicts themedian as a center line, quartiles as bottom and top box edges,
and theminimumandmaximum values aswhiskers (except for data points that are
1.5 times the interquartile range, which are individually plotted). d Examples of
presented questions from trials of the conversational task condition (left) along
with corresponding responses decoded from the participant’s brain activity (right).
In thefinal example, theparticipant spelledout his intendedmessagewithoutbeing
prompted with a question. Data to recreate panels a–c are provided as a Source
Data file.
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phrases from a limited, frequently used vocabulary20 as well as slower,
generalizable spelling for out-of-vocabulary items. Transfer-learning
methods could be used to cross-train differently purposed speech
models using data aggregated across multiple tasks and vocabularies,
as validated in previous speech-decoding work13. Although clinical and
regulatory guidelines concerning the implanted percutaneous con-
nector prevented the participant from being able to use the current
spelling system independently, development of a fully implantable
ECoG array and a software application to integrate the decoding
pipeline with an operating system’s accessibility features could allow
for autonomous usage. Facilitated by deep-learning techniques, lan-
guage modeling, and the signal stability and spatial coverage afforded
by ECoG recordings, future communication neuroprostheses could
enable users with severe paralysis and anarthria to control assistive
technology and personal devices using naturalistic silent-speech
attempts to generate intended messages and attempted non-speech
motor movements to issue high-level, interactive commands.

Methods
Clinical trial overview
This study was conducted as part of the BCI Restoration of Arm and
Voice (BRAVO) clinical trial (ClinicalTrials.gov; NCT03698149). The
goal of this single-institution clinical trial is to assess the incidence of
treatment-emergent adverse events associated with the ECoG-based
neural interface and to determine if ECoG and custom decoding
methods can enable long-term assistive neurotechnology to restore
communication andmobility. The data presented here and the present
work do not support or inform any conclusions about the primary
outcomes of this trial. The clinical trial began in November 2018. The
Food and Drug Administration approved an investigational device
exemption for the neural implant used in this study. The study pro-
tocol was approved by the Committee on Human Research at the
University of California, San Francisco. The data safety monitoring
board agreed to the release of the results of this work prior to the
completion of the trial. The participant gave his informed consent to
participate in this study after thedetails concerning theneural implant,
experimental protocols, and medical risks were thoroughly explained
to him. The full clinical-trial protocol, alongwith a note that frames the
present work within the exploratory clinical trial, can be found as a
supplementary file alongside the online version of this article.

Participant
The participant, who was 36 years old at the start of the study, was
diagnosed with severe spastic quadriparesis and anarthria by neurol-
ogists and a speech-language pathologist after experiencing an
extensive pontine stroke (Note S1). He is fully cognitively intact.
Although he retains the ability to vocalize grunts and moans, he is
unable to produce intelligible speech, and his attempts to speak aloud
are abnormally effortful due to his condition (according to self-
reported descriptions; Note S2). He typically relies on assistive
computer-based interfaces that he controls with residual head move-
ments to communicate. This participant has participated in previous
studies as part of this clinical trial20,38, although neural data from those
studieswerenot used in the present study. Heprovided verbal consent
(using his assistive computer-based interface) to participate in the
study and allow his image to appear in the supplementary videos
accompanying this article. He also provided verbal consent (again
using this interface) to have a designated third-party individual phy-
sically sign the consent forms on his behalf.

Neural implant
The neural implant device consisted of a high-density electro-
corticography (ECoG) array (PMT) and a percutaneous connector
(Blackrock Microsystems)20. The ECoG array contained 128 disk-
shaped electrodes arranged in a lattice formation with 4-mm center-

to-center spacing. The array was surgically implanted on the pial
surface of the left hemisphere of the brain over cortical regions
associated with speech production, including the dorsal posterior
aspect of the inferior frontal gyrus, the posterior aspect of themiddle
frontal gyrus, the precentral gyrus, and the anterior aspect of the
postcentral gyrus8,10,39. The percutaneous connector was implanted
in the skull to conduct electrical signals from the ECoG array to a
detachable digital headstage and cable (NeuroPlex E; Blackrock
Microsystems), minimally processing and digitizing the acquired
brain activity and transmitting the data to a computer. The device
was implanted in February 2019 at UCSF Medical Center without any
surgical complications.

Data acquisition and preprocessing
We acquired neural features from the implanted ECoG array using a
pipeline involving several hardware components and processing steps
(Fig. S2). We connected a headstage (a detachable digital connector;
NeuroPlex E, Blackrock Microsystems) to the percutaneous pedestal
connector, which digitized neural signals from the ECoG array and
transmitted them through an HDMI connection to a digital hub
(Blackrock Microsystems). The digital hub then transmitted the digi-
tized signals through an optical fiber cable to a Neuroport system
(Blackrock Microsystems), which applied noise cancellation and an
anti-aliasing filter to the signals before streaming them at 1 kHz
through an Ethernet connection to a separate real-time computer
(Colfax International). The Neuroport systemwas controlled using the
NeuroPort Central Suite software package (version 7.0.4; Blackrock
Microsystems).

On the real-time processing computer, we used a custom
Python software package (rtNSR) to process and analyze the ECoG
signals, execute the real-time tasks, perform real-time decoding,
and store the data and task metadata20,24,40. Using this software
package, we first applied a common average reference (across all
electrode channels) to each time sample of the ECoG data. Com-
mon average referencing is commonly applied to multi-channel
datasets to reduce shared noise41,42. These re-referenced signals
were then processed in two parallel processing streams to extract
high-gamma activity (HGA) and low-frequency signal (LFS) fea-
tures using digital finite impulse response (FIR) filters designed
using the Parks-McClellan algorithm43 (Fig. S2; filters were
designed using the SciPy Python package (version 1.5.4)). Briefly,
we used these FIR filters to compute the analytic amplitude of the
signals in the high-gamma frequency band (70–150 Hz) and an
anti-aliased version of the signals (with a cutoff frequency at
100 Hz). We combined the time-synchronized high-gamma ana-
lytic amplitudes and downsampled signals into a single feature
stream at 200 Hz. Next, we z-scored the values for each channel
and each feature type using a 30-s sliding window to compute
running statistics. Finally, we implemented an artifact-rejection
approach that identified neural time points containing at least 32
features with z-score magnitudes greater than 10, replacing each
of these time points with the z-score values from the preceding
time point and ignoring these time points when updating the
running z-score statistics. During real-time decoding and in offline
analyses, we used the z-scored high-gamma analytic amplitudes as
the HGA features and the z-scored downsampled signals as the LFS
features (and the combination of the two as the HGA+LFS feature
set). The neural classifier further downsampled these feature
streams by a factor of 6 before using them for inference (using an
anti-aliasing filter with a cutoff frequency at 16.67 Hz), but the
speech detector did not.

We performed all data collection and real-time decoding tasks in
the participant’s bedroomor a small office room nearby. We uploaded
data to our lab’s server infrastructure and trained the decodingmodels
using NVIDIA V100 GPUs hosted on this infrastructure.
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Task design
We recorded neural data with the participant during two general types
of tasks: an isolated-target task and a sentence-spelling task (Fig. S1). In
each trial of the isolated-target task, a text target appeared on the
screen alongwith 4dots on either side. Dots onboth sides disappeared
one by one until no dots remained, at which point the text target
turned green to represent a go cue. At this go cue, the participant
either attempted to say the target (silently or aloud, depending on the
current task instructions) if it was either a NATO code word or an
English letter. If the targetwas a text string containing theword “Right”
and an arrow pointing right, the participant instead attempted to
squeeze his right hand. We used the neural data collected during the
isolated-target task to train and optimize the detection and classifi-
cation models and to evaluate classifier performance (Method S1 and
Note S3).

The sentence-spelling task is described in the start of the Results
section and in Fig. 1. Briefly, the participant used the full spelling
pipeline (described in the following sub-section) to either spell sen-
tences presented tohimas targets in a copy-typing task condition or to
spell arbitrary sentences in a conversational task condition.We did not
implement functionality to allow the participant to retroactively alter
the predicted sentence, although the language model could alter
previously predicted words in a sentence after receiving additional
character predictions. Data collected during the sentence-spelling task
were used to optimize beam-search hyperparameters and evaluate the
full spelling pipeline.

Modeling
We fit detection and classification models using data collected during
the isolated-target task as the participant attempted to produce code
words and the hand-motor command. After fitting these models off-
line, we saved the trained models to the real-time computer for use
during real-time testing. We implemented these models using the
PyTorch Python package (version 1.6.0). In addition to these two
models, we also used languagemodels to enable sentence spelling.We
used hyperparameter optimization procedures on held-out validation
datasets to choose values for model hyperparameters (see Table S8).
We used the Python software packages NumPy (version 1.19.1), scikit-
learn (version 0.24.2), and pandas (version 0.25.3) during modeling
and data analysis.

Speech detection. To determinewhen the participant was attempting
to engage the spelling system, we developed a real-time silent-speech
detection model. This model used long short-term memory layers, a
typeof recurrent neural network layer, to process neural activity in real
time and detect attempts to silently speak20. This model used both LFS
and HGA features (a total of 256 individual features) at 200Hz.

The speech-detection model was trained using supervised learn-
ing and truncated backpropagation through time. For training, we
labeled each time point in the neural data as one of four classes
depending on the current state of the task at that time: ‘rest’, ‘speech
preparation’, ‘motor’, and ‘speech.’ Though only the speech prob-
abilities were used during real-time evaluation to engage the spelling
system, the other labels were included during training to help the
detectionmodel disambiguate attempts to speak fromother behavior.
See Method S2 and Fig. S3 for further details about the speech-
detection model.

Classification. We trained an artificial neural network (ANN) to classify
the attempted code word or hand-motor command yi from the time
window of neural activity xi associated with an isolated-target trial or
2.5-s letter-decoding cycle i. The training procedure was a form of
maximum likelihood estimation, where given an ANN classifier para-
meterized by θ and conditioned on the neural activity xi, our goal
during model fitting was to find the parameters θ* that maximized the

probability of the training labels. This can be written as the following
optimization problem:

θ* =argmaxθ
Y
i

pθðyi∣xiÞ=argminθ �
X
i

logpθðyi∣xiÞ ð1Þ

We approximated the optimal parameters θ* using stochastic gradient
descent and the Adam optimizer44.

To model the temporal dynamics of the neural time-series data,
we used an ANN with a one-dimensional temporal convolution on the
input layer followed by two layers of bidirectional gated recurrent
units (GRUs)45, for a total of three layers.Wemultiplied the final output
of the last GRU layer by an output matrix and then applied a softmax
function to yield the estimated probability of each of the 27 labels ŷi
given xi. See Method S3 for further details about the data-processing,
data-augmentation, hyperparameter-optimization, and training pro-
cedures used to fit the neural classifier.

Classifier ensembling for sentence spelling. During sentence spel-
ling, we usedmodel ensembling to improve classificationperformance
by reducing overfitting and unwanted modeling variance caused by
randomparameter initializations46. Specifically, we trained 10 separate
classification models using the same training dataset and model
architecture butwith different randomparameter initializations. Then,
for each time window of neural activity xi, we averaged the predictions
from these 10 different models together to produce the final predic-
tion ŷi.

Incremental classifier recalibration for sentence spelling. To
improve sentence-spelling performance, we trained the classifiers
used during sentence spelling on data recorded during sentence-
spelling tasks from preceding sessions (in addition to data from the
isolated-target task). In an effort to only include high-quality sentence-
spelling data when training these classifiers, we only used data from
sentences that were decoded with a character error rate of 0.

Beam search. During sentence spelling, our goal was to compute the
most likely sentence text s* given the neural data X. We used the for-
mulation from Hannun et al23. to find s* given its likelihood from the
neural data and its likelihood under an adjusted language-model prior,
which allowed us to incorporate word-sequence probabilities with
predictions from the neural classifier. This can be expressed for-
mulaically as:

s* = argmaxspncðs∣X ÞplmðsαÞ∣s∣β ð2Þ

Here, pncðs∣X Þ is the probability of s under the neural classifier given
each window of neural activity, which is equal to the product of the
probability of each letter in s given by the neural classifier for each
window of neural activity xi. plm (s) is the probability of the sentence s
under a language-model prior. Here, we used an n-gram language
model to approximate plm (s). Our n-gram language model, with n = 3,
provides the probability of each word given the preceding two words
in a sentence. We implemented this language model using custom
code as well as utility functions from the NLTK Python package
(version 3.6.2). The probability under the language model of a
sentence is then taken as the product of the probability of each word
given the two words that precede it (Method S4).

As inHannun et al.23, we assumed that the n-gram language-model
prior was too strong and downweighted it using a hyperparameter α.
We also included a word-insertion bonus β to encourage the language
model to favor sentences containing more words, counteracting an
implicit consequence of the language model that causes the prob-
ability of a sentence under it plm (s) to decrease as the number ofwords
in s increases. ∣s∣ denotes the cardinality of s, which is equal to the
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number of words in s. If a sentence swas partially completed, only the
words preceding the final whitespace character in s were considered
when computing plm (s) and ∣s∣.

We then used an iterative beam-search algorithm as in Hannun
et al.23 to approximate s* at each timepoint t = τ. We used a list of the B
most likely sentences from t = τ−1 (or a list containing a single empty-
string element if t = 1) as a set of candidate prefixes, where B is the
beam width. Then, for each candidate prefix l and each English letter c
with pncðc∣xτ Þ>0:001, we constructed new candidate sentences by
considering l followed by c. Additionally, for each candidate prefix l
and each text string c+, composed of an English letter followed by the
whitespace character, with pncðc+ ∣xτ Þ>0:001, we constructed more
new candidate sentences by considering l followed by c+. Here and
throughout the beam search, we considered pncðc+ ∣xτ Þ=pncðc∣xτ Þ for
each c and corresponding c+. Next, we discarded any resulting candi-
date sentences that containedwords or partially completedwords that
were not valid given our constrained vocabulary. Then, we rescored
each remaining candidate sentence el with pðelÞ=pncðel∣X 1:τ ÞplmðelÞα ∣el∣β.
The most likely candidate sentence, s*, was then displayed as feedback
to the participant

We chose values for α, β, and B using hyperparameter optimiza-
tion (see Method S5 for more details).

If at any time point t the probability of the attempted hand-motor
command (the sentence-finalization command) was >80%, the Bmost
likely sentences from the previous iteration of the beam search were
processed to remove any sentence with incomplete or out-of-
vocabulary words. The probability of each remaining sentence l̂ was
then recomputed as:

pð̂lÞ=pnc ð̂l∣X 1:t�1Þplm ð̂lÞ
α
∣̂l∣

β
pgpt2 ð̂lÞαgpt2 ð3Þ

Here, pgpt2 ð̂lÞ denotes the probability of l̂ under the DistilGPT-2
languagemodel, a low-parameter variant of GPT-2 (implementedusing
the lm-scorer Python package (version 0.4.2); see Method S4 for more
details), and αgpt2 represents a scaling hyperparameter that was set
through hyperparameter optimization. The most likely sentence l̂
given this formulationwas thendisplayed to the participant and stored
as the finalized sentence.

See Method S5 for further details about the beam-search
algorithm.

Performance evaluation
Character error rate and word error rate. Because CER and WER are
overly influenced by short sentences, as in previous studies6,20 we
reported CER and WER as the sum of the character or word edit dis-
tances between each of the predicted and target sentences in a
sentence-spelling block and then divided this number by the total
number of characters or words across all target sentences in the block.
Each block contained between two to five sentence trials.

Assessing performance during the conversational task condition.
To obtain ground-truth sentences to calculate CERs and WERs for the
conversational condition of the sentence-spelling task, after com-
pleting each block we reminded the participant of the questions and
the decoded sentences from that block, and then, for each decoded
sentence, he either confirmed that the decoded sentence was correct
or typed out the intended sentence using his commercially available
assistive-communication device. Each block contained between two to
four sentence trials.

Characters and words per minute. We calculated the characters per
minute and words per minute rates for each sentence-spelling (copy-

typing) block as follows:

rate =
P

iNiP
iDi

ð4Þ

Here, i indexes each trial, Ni denotes the number of words or char-
acters (including whitespace characters) decoded for trial i, and Di

denotes the duration of trial i (in minutes; computed as the difference
between the time at which the window of neural activity correspond-
ing to the final code word in trial i ended and the time of the go cue of
the first code word in trial i).

Electrode contributions. To compute electrode contributions using
data recorded during the isolated-target task, we computed the deri-
vative of the classifier’s loss function with respect to the input features
across time as in Simonyan et al.28, yielding ameasure of howmuch the
predicted model outputs were affected by small changes to the input
feature values for each electrode and feature type (HGAor LFS) at each
time point. Then, we calculated the L2-norm of these values across
time and averaged the resulting values across all isolated-target trials,
yielding a single contribution value for each electrode and feature type
for that classifier.

Cross-validation. For each fold, we used stratified cross-validation
folds of the isolated-target task. We split each fold into a training set
containing 90% of the data and a held-out testing set containing the
remaining 10%. In all, 10% of the training dataset was then randomly
selected (with stratification) as a validation set.

Analyzing neural-feature principal components. To characterize the
HGA and LFS neural features, we used bootstrapped principal com-
ponent analyses. First, for each NATO code word, we randomly sam-
pled (with replacement) cue-aligned time windows of neural activity
(spanning from the go cue to 2.5 s after the go cue) from the first
318 silently attempted isolated-target trials for that code word. To
clearly understand the role of each feature stream for classification, we
downsampled the signals by a factor of 6 to obtain the signals used by
the classifier. Then, we trial averaged the data for each code word,
yielding 26 trial averages across time for each electrode and feature set
(HGA, LFS, and HGA+LFS). We then arranged this into a matrix with
dimensionality N × TC, where N is the number of features (128 for HGA
and for LFS; 256 for HGA+LFS), T is the number of time points in each
2.5-s window, and C is the number of NATO code words (26), by con-
catenating the trial-averaged activity for each feature. We then per-
formed principal component analysis along the feature dimension of
this matrix. Additionally, we arranged the trial-averaged data for each
code word into a matrix with dimensionality T ×NC. We then per-
formed principal component analysis along the temporal dimension.
For each analysis, we performed the measurement procedure 100
times to obtain a representative distribution of the minimum number
of principal components required to explain more than 80% of the
variance.

Nearest-class distance comparison. To compare nearest-class dis-
tances for the code words and letters, we first calculated averages
across 1000bootstrap iterations of the combinedHGA+LFS feature set
across 47 silently attempted isolated-target trials for each code word
and letter. We then computed the Frobenius norm of the difference
between each pairwise combination. For each code word, we used the
smallest computed distance between that code word and any other
codeword as the nearest-class distance.We then repeated this process
for the letters.

Generalizability to larger vocabularies. During real-time sentence
spelling, the participant created sentences composed of words from a
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1152-word vocabulary that contained common words and words rele-
vant to clinical caregiving. To assess the generalizability of our system,
we tested the sentence-spelling approach in offline simulations using
three larger vocabularies. The first of these vocabularies was based on
the ‘Oxford 3000’ word list, which is composed of 3000 core words
chosen based on their frequency in the Oxford English Corpus and
relevance to English speakers47. The second was based on the ‘Oxford
5000’ word list, which is the ‘Oxford 3000’ list augmented with an
additional 2,000 frequent and relevant words. The third was a voca-
bulary based on the most frequent 10,000 words in Google’s Trillion
Word Corpus, a corpus that is over 1 trillion words in length48. To
eliminate non-words that were included in this list (such as “f”, “gp”,
and “ooo”), we excluded words composed of 3 or fewer characters if
they did not appear in the ‘Oxford 5000’ list. After supplementing each
of these three vocabularies with the words from the original 1152-word
vocabulary that were not already included, the three finalized voca-
bularies contained 3303, 5249, and 9170words (these sizes are given in
the same order that the vocabularies were introduced).

For each vocabulary, we retrained the n-gram language model
used during the beam-search procedure with n-grams that were valid
under the new vocabulary (Method S4) and used the larger vocabulary
during the beam search. We then simulated the sentence-spelling
experiments offline using the same hyperparameters that were used
during real-time testing.

Statistics and reproducibility
Statistical analyses. The statistical tests used in this work are all
described in the figure captions and text. In brief, we used two-sided
Wilcoxon Rank-Sum tests to compare any two groups of observations.
When the observations were paired, we instead used a two-sided Wil-
coxon signed-rank test. We used Holm-Bonferroni correction for
comparisons in which the underlying neural data were not indepen-
dent of each other. We considered P-values <0.01 as significant. We
computed P-values for Spearman rank correlations using permutation
testing. For each permutation, we randomly shuffled one group of
observations and then determined the correlation. We computed the
P-value as the fraction of permutations that had a correlation value
with a largermagnitude than the Spearman rank correlation computed
on the non-shuffled observations. For any confidence intervals around
a reported metric, we used a bootstrap approach to estimate the 99%
confidence interval.On each iteration (of a totalof 2000 iterations), we
randomly sampled the data (such as accuracy per cross-validation
fold) with replacement and calculated the desired metric (such as the
median). The confidence interval was then computed on this dis-
tribution of the bootstrapped metric. We used SciPy (version 1.5.4)
during statistical testing.

Reproducibility of experiments. Because this is a pilot study with a
single participant, further work is required to definitively determine if
the current approach is reproducible with other participants.

Data exclusions. During the copy-typing condition of the sentence-
spelling task, the participant was instructed to attempt to silently spell
each intended sentence regardless of how accurate the decoded sen-
tence displayed as feedback was. However, during a small number of
trials, the participant self-reported making a mistake (for example, by
using thewrong codeword or forgetting his place in the sentence) and
sometimes stopped his attempt. This mostly occurred during initial
sentence-spelling sessions while he was still getting accustomed to the
interface. To focus on evaluating the performance of our system rather
than the participant’s performance, we excluded these trials (13 trials
out of 163 total trials) from performance-evaluation analyses, and we
had the participant attempt to spell the sentences in these trials again
in subsequent sessions tomaintain the desired amount of trials during
performance evaluation (2 trials for each of the 75 unique sentences).

Including these rejected sentences when evaluating performance
metrics only modestly increased the median CER and WER observed
during real-time spelling to 8.52% (99% CI [3.20, 15.1]) and 13.75% (99%
CI [8.71, 29.9]), respectively.

During the conversational condition of the sentence-spelling task,
trials were rejected if the participant self-reported making a mistake
(as in the copy-typing condition) or if an intendedword was outside of
the 1152 word vocabulary. For some blocks, the participant indicated
that he forgot one of his intended responses when we asked him to
report the intended response after the block concluded. Because there
was no ground truth for this conversational task condition, we were
unable to use the trial for analysis. Of 39 original conversational
sentence-spelling trials, the participant got lost on 2 trials, tried to use
an out-of-vocabulary word during 6 trials, and forgot the ground-truth
sentence during 3 trials (leaving 28 trials for performance evaluation).
Incorporating blocks where the participant used intended words out-
side of the vocabulary only modestly raised CER and WER to median
values of 15.7% (99% CI [6.25, 30.4]) and 17.6%, (99% CI [12.5, 45.5])
respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Relevant data are available under restricted access per the guide-
lines from our clinical-trial protocol which allow us to share de-
identified data with researchers at other institutions but precludes
us from making all of the data publicly available. Access can be
obtained upon reasonable request. Requests for relevant data can
be made to Dr. Edward Chang (edward.chang@ucsf.edu).
Responses can be expected within 3 weeks. Any provided data
should be kept confidential and should not be shared with others
unless approval to do so is obtained from Dr. Chang. The partici-
pant has requested to remain anonymous; as a result, information
that could identify him is not included in this article and will not be
included in any shared data. The source data to re-create the
manuscript figures (including accuracies, statistical values, and
cross-validation accuracies) are provided with this publication in
the associated GitHub repository: github.com/ChangLabUcsf/
silent_spelling. Source data are provided with this paper.

Code availability
The code to train the models, use model predictions from neural data
to spell sentences, and recreate all of the figures is available at:
github.com/ChangLabUcsf/silent_spelling.
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