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Abstract

Recent neuroscience studies suggest that the hippocampus en-
codes a low-dimensional ordered representation of evidence
through sequential neural activity. Cognitive modelers have
proposed a mechanism by which such sequential activity could
emerge through the modulation of the decay rate of neurons
with exponentially decaying firing profiles. Through a lin-
ear transformation, this representation gives rise to neurons
tuned to a specific magnitude of evidence, resembling neurons
recorded in the hippocampus. Here we integrated this cogni-
tive model inside reinforcement learning agents and trained the
agents to perform an evidence accumulation task designed to
mimic a task used in experiments on animals. We found that
the agents were able to learn the task and exhibit sequential
neural activity as a function of the amount of evidence, similar
to the activity reported in the hippocampus.

Keywords: Evidence accumulation; Cognitive model; Deep
RL; Neural sequences

Introduction
Evidence accumulation is a central concept in cognitive psy-
chology and neuroscience that describes the process by which
the brain integrates sensory information over time to make
decisions. Sequential sampling models, with the Drift Diffu-
sion Model (Ratcliff, 1978) being a prominent example, posit
that decision-making involves the accumulation of evidence
towards one of several thresholds, each representing a differ-
ent decision outcome. Decision is reached when the accu-
mulated evidence crosses a pre-defined threshold, suggesting
that enough information has been gathered to make a confi-
dent choice (Ratcliff & McKoon, 2008).

Neuroscience research supports the notion of evidence ac-
cumulation through findings that neural activity in areas such
as the dorsolateral prefrontal cortex (DLPFC) and the poste-
rior parietal cortex (PPC) reflects the process of accumulat-
ing evidence during decision-making tasks (Gold & Shadlen,
2007). For instance, the firing rates of neurons in these ar-
eas have been shown to increase in a manner consistent with
the accumulation of evidence toward a decision threshold
(Shadlen & Newsome, 2001).

A recent neuroscience study (Nieh et al., 2021) found that
neurons in the hippocampus encode the amount of evidence

such that different neurons are tuned to a different magni-
tude of evidence. As a population, neurons activated sequen-
tially as a function of the amount of evidence, forming a low-
dimensional manifold. Specifically, Nieh et al. (2021) trained
mice on the “accumulating towers task” where while mice
moved along a virtual track, objects (referred to as “towers”)
appeared on both sides of the track. When they arrived at the
end of the track, to earn a reward, mice had to choose the left-
or right-hand side, depending on which side had more tow-
ers (see also Morcos and Harvey (2016), Pinto et al. (2018)
and Engelhard et al. (2019) all of which used the same exper-
imental paradigm). The difference in the number of towers
is an abstract latent variable that corresponds to the amount
of evidence for either of the two options. Nieh et al. (2021)
recorded the activity of hundreds of individual neurons from
the dorsal CA1 sub-region of mice hippocampus while they
performed the accumulating towers task. The results indi-
cated the existence of cells tuned to a particular difference
in the number of towers, such that a population of neurons
tiled the entire evidence axis. This neural coding scheme
based on sequences resembles coding of other variables in
the hippocampus, specifically time and space through time
cells (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008;
MacDonald, Lepage, Eden, & Eichenbaum, 2011; Salz et al.,
2016) and place cells (Bures, Fenton, Kaminsky, & Zinyuk,
1997) respectively (Eichenbaum, 2014; Howard & Eichen-
baum, 2015).

Here we sought to construct artificial agents that receive
pixel inputs very similar to those of the mice in the accumulat-
ing towers task and can solve the task while exhibiting neural
sequences similar to those recorded in the hippocampus. We
base our approach on a computational cognitive framework
that proposed a unified representation for coding time, space,
and sequences in the hippocampus (Howard et al., 2014). The
framework uses a set of neurons that perform leaky integra-
tion of the input, each with a different time constant. Each
such neuron has an impulse response that decays exponen-
tially as a function of time. The output of the leaky integra-
tors is transformed into a set of sequentially activated neurons
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through a linear transformation that resembles lateral inhibi-
tion (Shankar & Howard, 2012). Importantly, if the decay rate
of the leaky integrators is modulated by a time derivative of
some variable, then the decay becomes an exponential func-
tion of that variable. For example, if the modulator is the time
derivative of traveled distance (velocity), then the impulse re-
sponse of the leaky integrators is an exponential function of
distance. Applying the same linear transformation gives rise
to neurons that sequentially activate as a function of distance,
not time. An extension of this work (Howard, Luzardo, &
Tiganj, 2018) demonstrated that modulating the decay rate
by the change in the amount of evidence gives rise to neu-
rons tuned to a particular magnitude of evidence. Previous
work (Mochizuki-Freeman, Maini, & Tiganj, 2023) used this
framework to train deep learning agents on a simple version
of the accumulating towers task. The simple version of the
task did not use a realistic visual environment but directly
provided relevant features to the agent (three bits of informa-
tion, including two bits to signal the occurrence of a tower on
either side and one bit to signal the end of the environment).

Here we used a more realistic version of the environment
presented in Mochizuki-Freeman, Kabir, Gulecha, and Tiganj
(2023) that closely followed the design of the environment
used in Nieh et al. (2021). The agent received realistic visual
inputs that were then passed through an encoder composed
of several convolutional layers and a single fully connected
layer. The outputs of the encoder modulated the decay rate of
leaky integrators in the evidence accumulation module, the
input of which was set to a delta pulse at the beginning of
each trial. The output of the leaky integrators underwent the
same linear transformation described in (Howard et al., 2014;
Shankar & Howard, 2012) and it was followed by another
dense layer. Finally, the output of the dense layer was fed
into the RL module based on the A2C architecture (Mnih et
al., 2016). Critically, unlike in previous work (Mochizuki-
Freeman, Maini, & Tiganj, 2023), the agent had to learn rel-
evant features from the realistic environment, such that the
error signal was backpropagated through the evidence accu-
mulation module, leading to an adjustment of the weights in
the encoder to select the appropriate features.

Methods
Accumulating towers task
We used the accumulating towers task environment described
in Mochizuki-Freeman, Kabir, et al. (2023) (see also Lee,
Engelhard, Witten, and Daw (2022) for another implemen-
tation of the same task). The environment closely mimics the
virtual reality environment used in mice recordings (Nieh et
al., 2021; Pinto et al., 2018). As described in Mochizuki-
Freeman, Kabir, et al. (2023), the environment receives ac-
tions (forward, left, or right) and outputs pixel observations
(Fig. 1). It has two 10.5 cm-wide arms at the end of a 200cm
long straight track (Fig. 2). The agent must go through a con-
fined path that is bounded by walls that are 10 cm apart. At
the end of the track, the agent selects one of the two arms.

Different numbers of towers are placed along each of the two
sides with a minimum gap of 7 cm between any two towers.
At each trial, the number of towers on each side is chosen
randomly, between 1 and 15. The towers only appear when
they are within 5 cm of the agent and disappear as the agent
passes them. The towers have a 1 cm width, while the entire
track has a 6 cm height. The forward action moves the agent
down the track at a fixed speed of 1cm/step. The left and right
actions change the agent’s alignment in 7.5◦ increments to a
max of ±15◦ along the straight portion of the maze and with-
out a bound in the arms. Once the agent reaches the end of
the track, it receives a reward of either 10 if it made a correct
choice or 0 otherwise. It also receives a reward of −0.1 for
attempting to turn beyond 15◦ in either direction when in the
main track or for making contact with the back wall.

Neural-level cognitive model for evidence
accumulation
We use a neural-level model for evidence accumulation de-
scribed in Mochizuki-Freeman, Maini, and Tiganj (2023) that
provides a neural network implementation of the framework
proposed in Howard et al. (2014, 2018). Unlike previous
work, here we backpropagate the error through the entire net-
work to make the encoder learn what to feed as an input to
the evidence accumulation model. The evidence accumula-
tion model has two layers. The first layer consists of N re-
currently connected neurons with activity F (F is an N long
vector, where each element represents the activity of a single
neuron). The strength of the recurrent connection s (s is also
an N long vector) is modulated by a time derivative of some
latent variable n, α = dn/dt:

dF(s; t)
dt

= α(−sF(s; t)+ f (t)) . (1)

f (t) is set to 1 at the beginning of each trial for a single time
step and then set to 0 for the rest of the trial. By reorganizing
terms in the above equation and applying the chain rule we
can rewrite the equation as a function of n, instead of t:

dF(s;n)
dn

=−sF(s;n)+ f (n). (2)

If the latent variable n equals time t, then F would de-
cay exponentially with rate constants s as a function of time
(Fig. 4a). If the latent variable n is count (e.g., the number of
observed towers), then α = 1 every time a new tower is ob-
served and 0 otherwise, resulting in F exponentially decaying
with rate constants s as a function of count (Fig. 4b). For the
accumulating towers task we expect the network to learn that
the latent variable n should be the difference in the number of
towers on the left and the right side of the wall. To make it
possible for the network to learn this, we feed the output of
the encoder directly to n.

Earlier work (Howard et al., 2014) has described Eq. 2 as
an approximation of the Laplace transform of f (n) with dis-
crete and real s (rather than continuous and complex, as in the
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Figure 1: The accumulating towers task. In each trial, the agent moves down a narrow corridor and observes “towers” (white
objects) on the left- and right-hand sides of the wall. To obtain the reward, the agent needs to turn left or right at the end of
the corridor, depending on which side has more towers. Similar to the task performed by mice, the towers only become visible
as the agent approaches them and then disappear shortly after. The walls of the environment have a textured pattern to provide
optic flow to the agent. Adapted from (Mochizuki-Freeman, Kabir, et al., 2023).

Figure 2: Schematic of the accumulating towers environment
showing two inserts that illustrate the agent’s visual input.
Adapted from (Mochizuki-Freeman, Kabir, et al., 2023).

regular Laplace transform). Inverting the Laplace transform
reconstructs the input as a function of the internal variable
n∗, which corresponds to n. The inverse, which we denote
as f̃(n∗; t) can be computed using the Post inversion formula
(Post, 1930):

f̃(n∗;n) = L−1
k F(s;n) =

(−1)k

k!
sk+1 dk

dsk F(s;n), (3)

where n∗ := k/s and k → ∞. The reconstruction gives rise
to units tuned to a particular n (bottom row in Fig. 4). By
solving ∂f̃n∗;n/∂n = 0 we see that f̃(n∗;n) peaks at n∗ = n.

As in Mochizuki-Freeman, Maini, and Tiganj (2023), for
a neural network implementation, we discretize the Laplace
and inverse Laplace transform for both s and t. We write
a discrete-time approximation of Eq. (1) as an RNN with a
diagonal connectivity matrix and a linear activation function:

Fs;t = WFs;t−1 + ft , (4)

where W = diag(e−α(t)s∆t). A discrete approximation of the
inverse Laplace transform, f̃n∗;t , can be implemented by mul-
tiplying Fs;t with a derivative matrix L−1

k computed for some
finite value of k.

Agent architecture

We constructed deep RL agents based on the A2C architec-
ture (Mnih et al., 2016) (Fig. 3). The agents consisted of
three main modules: a convolutional encoder to reduce an in-
put image to a latent vector, a neural-level cognitive model for
evidence accumulation described in the previous section, and
actor and critic networks to generate action and value predic-
tions.

We used the same encoder layer as Mochizuki-Freeman,
Kabir, et al. (2023). At each time step, the agents received
as input 60 × 60 grayscale pixel values from the environ-
ment. Those images were fed into three successive convo-
lutional layers: 64 kernels of size 8×8 (stride 2), 32 kernels
of size 2× 2 (stride 1), and 64 kernels of size 3× 3 (stride
2). This reduced the input to tensors of size 27× 27× 64,
then 26× 26× 32, and then 12× 12× 64, respectively. The
resulting tensor was flattened into a 9216-element vector and
passed through a fully connected layer, which reduced the
9216 intermediate units to 32 output features. All layers in
the encoder had ReLU activation functions.

The convolutional encoder was followed by the evidence
accumulation network consisting of 32 f̃ modules, with N =
20 (total of 640 f̃ neurons). Each encoder output was fed into
the modulatory input of one evidence accumulation module.
Parameter k was set to 8 and n∗ consisted of N log-spaced
values between 0.1 and 20.

To evaluate the contribution of the evidence accumulation
network, we also conducted experiments where it was re-
placed by commonly used recurrent neural networks: a sim-
ple RNN, GRU, and LSTM, each consisting of 640 neurons
to match the number of neurons in f̃. To better understand
the computational role of sequentially activated cells in com-
parison to exponentially decaying cells, we also conducted
experiments on an evidence accumulation network that had
only F neurons, without f̃ neurons.

The output of the evidence accumulation layer was passed
to an actor network and a critic network, which produced ac-
tion logits and state value estimates, respectively. The actor
and the critic network each consisted of two-layers: a fully
connected layer of 640 neurons followed by a fully connected
output layer of 3 (actor head) or 1 (critic head) neurons.
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Figure 3: Agent architecture. Pixel inputs are fed into a CNN encoder followed by a neural-level cognitive model for evidence
accumulation. The output of the evidence accumulator is fed into an A2C-based RL agent.

a b

Figure 4: Example of the Laplace and inverse Laplace trans-
form with and without modulatory input. (a) In the absence of
modulatory input, the impulse response of the Laplace trans-
form decays exponentially with decay rate s. The impulse
response of the inverse Laplace transform has a unimodal
shape. Note that if time t was shown on the log-scale, the
unimodal curves would be equally wide and equidistant pro-
viding a log-compressed representation consistent with We-
ber’s law. (b) α modulates the decay rate of units in F and it
is proportional to the change in the count. This makes units
in f̃ develop unimodal basis functions that are tuned to count
rather than to time and peak at n∗.

Training

During training, we explored five different learning rates
(0.001, 0.0005, 0.0001, 0.00005, and 0.00001) for the Adam
optimizer, and three different entropy bonus coefficients (0.0,
0.0001, and 0.00001). We ran each agent configuration four
times for 12 million environment steps. For each training
step, we fed into the agent 5120 total environment steps, col-
lected from 20 environments running in parallel for 256 time
steps each, and then performed a backpropagation pass and
stepped the optimizer.

Learning Rate Entropy
f̃ 0.0001 0

F 0.0001 0.0001
GRU 0.00005 0.00001

LSTM 0.00005 0.0001
RNN 0.00001 0.00001

Table 1: Hyperparameters of the top-performing agents for
each of the different agent architectures.

Results

We trained and evaluated five different groups of agents on
the accumulating towers task. Two groups were based on
evidence accumulation model: one group included the full
model with Laplace and inverse Laplace transform (f̃), and
the other included only the Laplace transform (F). We also
compared three groups of agents based on existing recurrent
architectures: a GRU, LSTM, and simple RNN. For each of
the five models, we performed 100 validation runs every 1000
episodes. At the end of the training, we selected the hyper-
parameter configuration for each model that had the highest
average validation reward. The top-performing hyperparam-
eters for each model are summarized in Table 1.

Agents based on the cognitive model learned the
task as fast as the GRU-based agents despite having
much fewer parameters

The f̃ agents learned the task and converged to a reward value
of 10 at a similar number of training steps as the GRU and
LSTM agents (Fig 5 and Fig. 6). This indicates that the se-
quential map-like representation provided by the cognitive
model could be used by actor and critic networks to suc-
cessfully learn the task, even without the recurrent network
containing any trainable parameters. On the other hand, the
RNN and F agents did not learn the task within 12M environ-
ment steps highlighting the importance of the inverse trans-
form which gives rise to the sequential representation.
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Figure 5: Agent performance on the accumulating towers task. Each gray line represents the performance of a single agent over
the course of training. The red line represents the mean performance of the four agents. The maximum mean reward was 10.
Agent architecture: (a) f̃, (b) F, (c) GRU, (d) LSTM, (e) RNN.

Figure 6: Agent performance on the accumulating towers
task. Mean and standard deviation across the four agents.

Neural activity inside the recurrent layer resembles
activity in mice hippocampus
We visualized the neural activity of one representative agent
for each of 5 models after 10M environment steps of training
(Fig. 7). The neurons in the f̃ agents activated sequentially
as a function of evidence, resembling the activity in neural
recordings from the hippocampus (Nieh et al., 2021).

Discussion
Advancements of pixel-to-action deep RL agents (Mnih et al.,
2013, 2015; Silver et al., 2017) provide an opportunity for
integration with neural-level cognitive models in realistic be-
havioral tasks. The neural activity of such agents can be com-
pared to the neural activity in electrophysiological recordings,
and performance can be compared to animal performance.

Here we integrated a neural-level evidence accumulation
model (Howard et al., 2014; Mochizuki-Freeman, Maini,

Encoder Memory RL Total
f̃ 325,824 0 823,044 1,148,868

F 325,824 0 823,044 1,148,868
GRU 325,824 1,294,080 823,044 2,442,948

LSTM 325,824 1,725,440 823,044 2,874,308
RNN 325,824 431,360 823,044 1,580,228

Table 2: Number of parameters for different agent architec-
tures and different components. Note that the evidence ac-
cumulation module has no trainable parameter hence f̃ and F
have no trainable memory parameters.

& Tiganj, 2023) into pixel-to-action deep RL agents. This
work constitutes an important test for understanding whether
a neural-level cognitive model can become a working part
of a differentiable architecture. In previous work, Maini et
al. (2023) demonstrated on simple toy-examples that a neu-
ral network can select basic modulatory features using the
framework from Howard et al. (2014). Here we scaled this to
a realistic behavioral task in a realistic visual environment.

We found that agents based on the evidence accumulation
model learned as well as agents based on GRU and LSTM
architectures despite having less than half of the parameters
as those agents (Table 2). In particular, recurrent weights in
the evidence accumulation model were not trainable, result-
ing in much fewer parameters than in GRU and LSTM agents.
We also found that agents that included only the Laplace but
not the inverse Laplace transform did not learn. The inverse
transform is a simple linear mapping that resembles lateral
inhibition (it implements a spatial derivative of order k). This
mapping turns exponentially decaying neurons into sequen-
tially activated ones. It appears that sequential activation put
the network in a position where learning was more efficient.
This is consistent with previous work on spatial navigation,
where the existence of place and grid cells resulted in faster
learning (Banino et al., 2018).

Previous work has shown that under particular circum-
stances (mnemonic demand), neural activity in deep rein-
forcement learning agents resembles the activity of time cells
(Lin & Richards, 2021). Similarly, Banino et al. (2018) has
shown the emergence of grid cells in deep reinforcement
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Figure 7: Neural activity of agents after 10M steps of accumulating towers task. Similar to plots in (Nieh et al., 2021; Morcos
& Harvey, 2016), neurons are sorted by peak activity. Each row is normalized such that the activity ranges from 0 to 1. Agent
architecture: (a) f̃, (b) F, (c) GRU, (d) LSTM, (e) RNN. While we had a total of four agents for each architecture, here we
displayed one representative agent. The neural activities in other agents were qualitatively similar to the selected examples. For
f̃ agent, only neurons that had non-zero activity are shown (220 out of 640).

learning agents during a spatial navigation task. Here we ob-
served the emergence of cells that activate sequentially as a
function of evidence, but only for the agents based on the ev-
idence accumulation model. Specifically, neural activity in
the f̃ layer exhibited sequential activation as a function of ev-
idence (Fig. 7a), similar to Nieh et al. (2021). This implies
that the encoder learned to increase activity in response to
the change in the amount of evidence (appearance of a new
tower). Importantly, if the encoder was sensitive only to the
appearance of a new tower on one side of the wall, then f̃
neurons would activate sequentially as a function of the total
number of towers on that side of the wall. The fact that they
activated sequentially as a function of evidence suggests that
the encoder actually learned to subtract the number of tow-
ers on the two sides by appropriately modulating the recur-
rent weights. Specifically, the encoder learned to change the
baseline activity of α every time a new tower would appear.
The magnitude of the change was either positive or negative,
depending on whether the tower appeared on the left or the
right side of the wall. Agents based on other architectures,
including F, RNN, GRU and LSTM (Fig. 7b-e) were mainly
characterized by decaying and growing neural activity as a
function of the amount of evidence. This is in contrast to the
neural data reported in Nieh et al. (2021).

Previous work (Mochizuki-Freeman, Maini, & Tiganj,
2023) used the same cognitive model but did not have real-
istic visual inputs and a trainable encoder. That work also ex-
plicitly computed the subtraction between different evidence
accumulation modules by using computational properties of
the Laplace domain. The subtraction was useful since the
amount of evidence is the subtraction between the number
of towers on the two sides. Since we used 32 evidence ac-
cumulation modules here, computing a subtraction was not
computationally feasible. However, as mentioned above, the
encoder learned to modulate the decay rate of the nodes in the
evidence accumulator differently depending on which side of
the wall the towers appeared.

Future work should investigate how to better utilize the
structured representation in f̃. In the present work, while f̃

consisted of a structured representation where units activated
sequentially as a function of the amount of evidence, it was
fed into fully connected layers that are part of the actor-critic
architecture. These fully connected layers are initialized with
random weights, therefore destroying the structure of the rep-
resentation. While the agents still benefited from having f̃,
we hypothesize that networks designed to preserve the struc-
ture will lead to better performance (e.g., faster learning). An
example of such a network is a convolutional neural network,
which takes advantage of the spatial structure. In general,
networks capable of deploying attention to parts of f̃ or nav-
igating f̃ as searchable space could lead to more human-like
evidence accumulation and decision-making.
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