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Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province,

Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy
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Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Department of Virology, United States Army Medical
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Buffalo, New York; Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand;
Bureau of Epidemiology, Department of Disease Control Sciences, Ministry of Public Health, Nonthaburi, Thailand;

Department of Entomology, University of California, Davis, Davis, California; Institute for Immunology and Informatics,
University of Rhode Island, Providence, Rhode Island; Insect-Virus Interactions Group, Department of Genomes
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Abstract. Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV) transmis-
sion dynamics was studied in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance of
93 hospitalized subjects with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic
sampling. A total of 438 associates were enrolled from 208 houses with household members with a history of fever, located
within a 200-m radius of an initiate case. Of 409 associates, 86 (21%) had laboratory-confirmed DENV infection. A total of
63 (1.8%) of the 3,565 mosquitoes collected were dengue polymerase chain reaction positive (PCR+). There was a
significant relationship between spatial proximity to the initiate case and likelihood of detecting DENV from associate
cases and Aedesmosquitoes. The viral detection rate from human hosts and mosquito vectors in this study was higher than
previously observed by the study team in the same geographic area using different methodologies. We propose that the
sampling strategy used in this study could support surveillance of DENV transmission and vector interactions.

INTRODUCTION

Dengue illness is a disease of increasing public health
importance.1 Available data and modeling estimate that there
are 390 million dengue virus (DENV) infections annually
with 96 million manifesting clinically.2 International travel,
population growth, increasing urbanization, and a changing
global ecology foster an increasingly favorable environment
for the expanding dengue endemic areas and the peridomestic
Aedes aegypti, which transmit the viruses.3 There are currently
no licensed drugs or vaccines to treat or prevent dengue. When
applied properly, vector control and personal protective mea-
sures have successfully disrupted epidemic and endemic
DENV transmission.4,5 Unfortunately, successful vector con-
trol programs have been the exception and difficult to sustain.6

The strategic use of safe and efficacious dengue vaccines in
combination with appropriately targeted and sustained vector
control measures is increasingly being considered as the opti-
mal approach to produce a sustained reduction in dengue’s
global burden.7

Once a vaccine is available, numerous questions will remain
about how to most effectively target and co-implement vaccina-
tion and vector control programs. The prospect of implementing
large-scale, control programs raises a number of questions:

1) How will vaccination and vector control affect the com-
plex, dynamic, and evolving interactions between vector,
virus, and host occurring at the macro (i.e., country or

region) and micro (i.e., province, district, village, or neigh-
borhood) spatial scales?

2) How will vaccination and vector control affect the com-
plex, dynamic, and evolving interactions between vector,
virus, and host at the population (i.e., Aedes species,
DENV serotypes and genotypes, and people of various
ethnic backgrounds) level?

3) Howwill “herd immunity” be affected and howwill this influ-
ence DENV evolution at the micro- and macro-population
levels and the associated observed clinical phenotypes?

4) What effect, if any, will existing herd immunity (due to
vaccination or natural infection) to non-dengue flaviviruses
(e.g., Japanese encephalitis and yellow fever viruses) have
on DENV transmission and the observed clinical pheno-
types following infection?

The overarching study objective was to explore DENV
transmission dynamics and virus–vector–host interactions
prior to, during, and following the introduction of dengue
vaccines into central Thailand. The authors pursued this
objective by building on observations from previous prospec-
tive studies such as the focality of DENV transmission, pres-
ence or history of fever increasing the likelihood of isolating
virus from a household, and the significance of year-round
DENV transmission.8–10 Study methods were modified in an
effort to maximize DENV isolation rates from human hosts
and mosquito vectors and further explore earlier observa-
tions, which included:

1) Enrolling initiate and associate cases throughout the year
(i.e., high dengue season and low dengue season) to
explore trends in seasonal and spatial DENV transmission.

2) Only enrolling DENV polymerase chain reaction positive
(PCR+) initiate cases to increase the likelihood of captur-
ing active transmission.

*Address correspondence to Stephen J. Thomas, Viral Diseases Branch,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue,
Silver Spring, MD 20910. E-mail: stephen.j.thomas3.mil@mail.mil
†This work was completed while at the Department of Virology,
United States Army Medical Component, Armed Forces Research
Institute of Medical Sciences, Bangkok, Thailand.
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3) Only enrolling associates with fever or a history of fever
within the last 7 days or sharing a household with someone
meeting these criteria to increase the likelihood of identi-
fying associates with recent infection.

4) Reassessing associates for the occurrence of fever between
the acute and convalescent blood collection to capture
additional viremic cases.

5) Expanding the age of enrollment to include children above
the age of 6 months and adults to improve understanding
of transmission inside the home.

6) Extending the enrollment of associates and mosquito col-
lection from 100 to 200 m radius around the initiate.

In this report, the authors describe initiation of the baseline
phase (i.e., prior to vaccine introduction) and include detailed
accounts of study methodology and the entomologic, clinical,
epidemiologic, virologic, serologic, and molecular characteri-
zation of human cases captured by active and passive surveil-
lance methods between November 2009 and December 2010.

METHODS

Ethics statement. The study protocol was approved by the
Institutional Review Boards (IRBs) of the Thai Ministry of
Public Health (MOPH), Walter Reed Army Institute of
Research (WRAIR), and the State University of New York
(SUNY), Upstate Medical University. The IRBs of the Uni-
versity of California, Davis (UCD), University of Rhode
Island (URI), and University at Buffalo established relying
agreements with WRAIR IRB.
All study subjects engaged in documented informed con-

sent or assent process, as applicable, prior to participating in
any study activities. In the event the subject was unable to
participate in the informed consent/assent process, a recog-
nized health-care proxy represented them in the process and
documented consent. From this point forward, when the
authors discuss consent, assent is also implied as applicable.
Role of the funding source. Funding sources for this project

included National Institutes of Health grants R01 GM083224-01
and P01 AI034533. Additional funding was provided by the U.S.
Military Infectious Diseases Research Program. The funding
sources had no involvement in study design, data collection,
analysis or interpretation, report writing, or publication sub-
mission. The corresponding author had full access to all study
data and final responsibility for the decision for publication.
Study location. The study was conducted in Kamphaeng

Phet (KPP) Province in northcentral Thailand. There were
725,846 registered residents of KPP in 2009 (Thailand,
Department of Provincial Administration, 2010). The KPP
Provincial Hospital (KPPPH) is located in the province’s cen-
tral district. The Armed Forces Research Institute of Medical
Sciences (AFRIMS), Department of Virology field site (KPP
AFRIMSVirology Research Unit [KAVRU]) is located on the
KPPPH grounds. The Department of Entomology, AFRIMS
field site is located a short distance from KPPPH.11

Demographics of house residents were collected and house
spatial coordinates were identified using a geographic posi-
tioning system (GPS) handheld unit (TrimbleÒ GeoXH™,
GeoExplorerÒ 2008 series; Trimble Navigation Limited, ASC
Scientific Carlsbad, CA) and geo-coded into a geographic
information system (GIS) database (CorporationArcMap™,
version 9.1; ESRI, Redlands, CA).

Study definitions. The authors recognize the potential con-
fusion using terms such as “index case,” “contacts,” and “clus-
ter investigations.” As the index case may not be the true first
infection in space and time and the contact may not be a true
infection resulting from DENV transmission from the initiat-
ing case, we have attempted to more accurately define the
relationships investigated in this study without making claims
of causation. The hospitalized dengue cases serving as the
initiator of community transmission investigations are referred
to as the “initiating case,” or “initiate.” The enrolled individ-
uals residing within the initiate’s home or within 200 m of the
initiate are referred to as “associates” and if found to have
DENV infection, as “associate cases.” The combination of
the initiate, associate, and associate cases is referred to as a
“spatiotemporal group.”.
Symptomatic DENV infection in either initiating or associ-

ated cases are defined as any febrile illness (reported or mea-
sured fever) paired with a confirmatory molecular or serologic
assay run on the acute or acute and convalescent blood
sample pair, respectively. Subclinical DENV infections are
defined as associated cases (all initiating cases were symptom-
atic and hospitalized) with a positive molecular or serologic
result, but without reported or measured fever during the
period between the acute and convalescent blood sample col-
lection (0–14 days).
Subjects are serologically classified as having an “acute”

DENV infection if their acute and/or convalescent blood sample

Figure 1. Method of identifying and enrolling associates around an
initiating case. The clinical research team would begin at the initiate’s
home, identify a collection of homes within 200 m of the initiate’s home,
identify homes with an occupant having active fever or history of fever
within the past 7 days, and enroll associates only from those homes while
bypassing homes without active fever or history of fever. The entomol-
ogy research team, meanwhile, collected mosquitoes inside and outside
the home from all homes within a 200-m radius of the initiating case
home regardless of fever history. Once investigations and enrollment of
associates were completed in one grouping, the teams would return to
the initiating case’s home and then identify, using the aerial map, the
next grouping of homes moving in a clockwise manner.
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pair (or day 0 and/or day 14 blood samples in associates) was
dengue immunoglobulin M (IgM) positive; or if IgM is nega-
tive, immunoglobulin M (IgG) is positive with rising titer.
Subjects are classified as “recent” DENV infection if IgM was
negative and IgG was positive with declining titer. These are
further categorized as “primary” infection if the IgM to IgG
ratio is ³ 1.8 and “secondary” infection if the ratio is < 1.8.12

Initiate case identification and evaluation. KAVRU pro-
vides the KPPPH dengue diagnostic research assays for
patients presenting with fever or history of fever and dengue-
like symptoms as outlined in the World Health Organization
(WHO) guidelines for the diagnosis and treatment of den-
gue.13 Hospital staff members identified suspected dengue
cases, completed and documented the informed consent pro-
cess allowing the testing of a blood sample, and then sent the

sample to KAVRU for reverse transcriptase PCR (RT-PCR)
testing. Virus RNA was extracted from human serum or mos-
quito suspension using Qiagen Viral RNA Extraction kits.
Serotype-specific DNA fragments from each unknown sam-
ple were amplified by TaqDNA polymerase through RT-PCR
performed at KAVRU following modifications to the
Lanciotti protocol.14 Suspected cases > 6 months of age, that
provided a sample collected within the prior 24 hours, and
had detectable DENV RNA by RT-PCR were provided the
opportunity for study enrollment as initiate cases. Following
acquisition of informed consent, the acute blood sample was
accessed and served as the baseline sample. Demographic and
clinical laboratory information was collected. Initiate case
house spatial coordinates were recorded and geo-coded into
a GIS database. Mosquitoes inside and outside the initiate

Figure 2. Flow diagram of initiate and associate enrollment and testing outcome.
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home were collected by aspiration and processed as described
in preparation for DENV RNA detection RT-PCR.10 In
approximately 14 days, a second blood sample was collected
from the initiating case for serologic testing by in-house IgM/
IgG enzyme immunoassay (EIA).
Associate case identification and evaluation. Residents

> 6 months of age sharing the initiate household as their
primary residence were provided the opportunity for study
enrollment. Residents previously enrolled as an associate
within the past 6 months were excluded in an attempt to
improve geographic diversity and the likelihood of isolating
DENV (i.e., reduce chances of recent infection and lingering
homo- or heterotypic immunity). Following the informed con-
sent process, clinical information and a blood sample were
collected. In approximately 14 days, a second blood sample
was collected for serologic testing. General well-being of the
associates was tracked by active surveillance (i.e., combination
of self-reporting and outreach by staff via phone or daily home
visit by village health worker over the 14-day period). If,
between the day of enrollment and the day of convalescent
blood sampling, the associate develops fever, a second acute
blood sample was collected and the 14-day “clock” started

again. Therefore, it was possible an associate might have two
acute samples, one triggered as an associate of the initiating
case (acute sample 1) and one triggered by the development of
illness (acute sample 2), as well as one convalescent sample.
Individuals not residing within the same house as the initi-

ate case, but living in a home within a 200-m radius of the
initiate case were also considered for enrollment as associates.
If anyone within the home reported an active fever or history
of fever (temperature ³ 38°C) within the past 7 days, all resi-
dents of the home, > 6 months of age, were eligible for enroll-
ment. Following the informed consent process, residents had
clinical and demographic information and an acute blood sam-
ple collected. Associates were followed and blood collected as
detailed above.
House mapping, associate case home identification, and

entomologic sampling. GPS mapped initiate households were
used to construct a digital map, enabling the team to precisely
identify houses located within a 200-m radius of the initiate

Table 1

Initiate and associate group demographic data and infection characterization

Initiate (N = 93)

Associate

Available serology (N = 409) Available serology + fever (N = 156) Dengue + serology (N = 86)

Age (years)
Minimum 2.6 0.58 0.58 0.83
Maximum 56.0 94.2 77.0 82.0
Mean 18.7 31.4 20.1 23.1

Sex (%)
Female 48 54 57 55
Male 52 46 43 45

Total case count = 93 Acute sample not available, no clinical symptoms. Total case count = 86
Infecting DENV type (% of total typed cases)
DENV-1 16 1
DENV-2 60 16
DENV-3 24 24
DENV-4 0 0
Not detected 58

Serology results (% of total results)
Acute primary 2 3 6 16
Acute secondary 85 17 25 80
Recent secondary 2 1 1 3
No serologic diagnosis 8 79 67
JE infection 0.2

DENV = dengue virus; JE = Japanese encephalitis.

Table 2

Symptom complex in primary versus secondary associate infections

Symptom Primary (N = 14) Secondary (N = 72) P value

Fever 11 (0.79) 50 (0.69) 0.749
Headache 5 (0.36) 37 (0.51) 0.384
Rhinorrhea 3 (0.21) 16 (0.22) 1.000
Anorexia 5 (0.36) 27 (0.38) 1.000
Cough 4 (0.29) 27 (0.38) 0.762
Nausea 0 (0.00) 25 (0.35) 0.008
Drowsiness 0 (0.00) 12 (0.17) 0.202
Muscle or joint pain 3 (0.21) 36 (0.50) 0.077
Abdominal pain 2 (0.14) 15 (0.21) 0.727
Retro-orbital pain 3 (0.21) 22 (0.31) 0.749
Rash 4 (0.29) 10 (0.14) 0.231
Diarrhea 2 (0.14) 14 (0.19) 1.000
Bleeding 0 (0.00) 5 (0.07) 0.586
Hospitalized 1 (0.07) 6 (0.05) 1.000

Table 3

Clinical spectrum of EIA positive associates by age groups

Symptom
0–9 Years
(N = 22)

10–19 Years
(N = 31)

20–29 Years
(N = 10)

> 30 Years
(N = 23)

P
value

Fever 18 (0.82) 24 (0.77) 8 (0.80) 11 (0.48) 0.052
Headache 6 (0.27) 20 (0.65) 7 (0.70) 9 (0.39) 0.021
Rhinorrhea 8 (0.36) 7 (0.23) 3 (0.30) 1 (0.04) 0.043
Anorexia 9 (0.41) 11 (0.35) 6 (0.60) 6 (0.26) 0.325
Cough 13 (0.59) 11 (0.35) 4 (0.40) 3 (0.13) 0.012
Nausea 4 (0.18) 12 (0.39) 5 (0.50) 4 (0.17) 0.101
Drowsiness 2 (0.09) 7 (0.23) 1 (0.10) 2 (0.09) 0.519
Muscle or

joint pain
7 (0.32) 16 (0.52) 7 (0.70) 9 (0.39) 0.189

Abdominal
pain

3 (0.14) 8 (0.26) 2 (0.20) 4 (0.17) 0.741

Retro-orbital
pain

1 (0.05) 15 (0.48) 4 (0.40) 5 (0.22) 0.002

Rash 5 (0.23) 6 (0.19) 2 (0.20) 1 (0.04) 0.282
Diarrhea 2 (0.09) 8 (0.26) 3 (0.30) 3 (0.13) 0.285
Bleeding 2 (0.09) 2 (0.06) 1 (0.10) 0 (0.00) 0.440
Hospitalized 1 (0.05) 3 (0.10) 2 (0.20) 1 (0.04) 0.432

EIA = enzyme immunoassay.
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case.10,15 Study nurses visited households starting closest to
the initiate house and moving in sequential fashion to the
periphery of the area and back to the initiate house, then back
out again along a different line until the circle was complete
or 25 eligible associates were enrolled, whichever occurred
first (Figure 1).
On day 1 of each initiate/associate case investigation, adult

Ae. aegypti were collected using standard backpack aspirators
from inside and within the immediate vicinity of each poten-
tial associate’s house. The end of each aspirator tube was
fitted with a 1-pint cardboard cage. After completing the col-
lection for each home, the cage was labeled and stored on dry
ice for transportation to the laboratory where the chilled mos-
quitoes were examined, speciated, and processed for DENV
detection. A thorough adult aspiration collection usually
requires ~10–15 minutes per house. It was estimated that
approximately 25% of the adult Ae. aegypti were captured in
a single pass through the house (T. W. Scott, unpublished
data). All specimens were identified to species by entomology
field supervisors to ensure speciation accuracy and quality
control. As previously mentioned, mosquitoes inside and out-
side of the initiate home were collected by aspiration and
processed as described with serotype-specific DENV RNA
detection RT-PCR performed on each individual mosquito.10

Statistical analyses. Data were analyzed using SPSS (SPSS
for Windows version 19) and R (The R Project for Statistical
Computing 2.12). Demographic, clinical, and laboratory
parameters were analyzed at the initiate, associate, and house
levels. Student’s t test and analysis of variance (ANOVA)
were used to test for differences in continuous variables.
Fisher’s exact test and Pearson’s c2 were used to examine
associations between categorical variables.

RESULTS

Enrollment of initiates and associates. Figure 2 depicts
enrollment of initiates and associates and results of serologic
and molecular testing for DENV infection. Approximately
49% (149/306) of patients hospitalized with suspected dengue
were PCR+ and of those 62% (93/149) were enrolled in the
study. Of the 4,438 households within a 200-m radius of the
93 initiate homes, 217 (4.8%) had someone with active fever

or history of fever; 115 of these associate households had
volunteers who consented to enroll. Initiate and associate
households contained 793 individuals meeting enrollment
criteria, and 438 (55%) consented to enroll as associates.
Complete serologic data were available on 93% of the enrolled
associates and of these 21% had a positive dengue serology. Of
the 86 associates with positive serology, 42% also were PCR+.
All PCR+ associates had fever at the time of enrollment.
Eleven associates who enrolled without fever developed fever
following their first acute blood sampling; of these eight were
serology positive and seven were PCR+.
Of note, logistic limitations guided enrollment on days with

heavy dengue patient census accounting for the difference
between the 149 PCR+ cases meeting inclusion criteria and
the 93 ultimately enrolled. In these instances, the study team
randomly selected which initiate cases would lead to an asso-
ciate case investigation using a random numbers table.
Characteristics of the initiating cases. Each of the 93 initiate

cases was a hospitalized acute, PCR+DENV infection (Table 1).
Infections with DENV-2 were most numerous followed by
DENV-3 and then DENV-1; there were no DENV-4 infec-
tions. Most cases were acute secondary DENV infections
(85%). Approximately half of all cases were DF (48%) and
half dengue hemorrhagic fever (DHF) (52%); there were no
deaths among the initiates.
Associated cases available for enrollment. The number of

associate houses within 200 m of an initiating case ranged
from 1 to 232 with a mean of 47.7 (standard deviation [SD]
42 houses). The number of households enrolled ranged from
1 to 9 with a mean of 2.2 (SD 1.5 households). For each spatio-
temporal group, there was a range of associates enrolled from
0 to 18 people with a mean of 4.7 (SD 4.0 people).
Characteristics of the associated cases. The majority (79%)

of 409 enrolled associates had no serologic evidence of infec-
tion, 20% had evidence of an acute DENV infection, and
there was one case with evidence of Japanese encephalitis
(JE) infection (IgM+, no encephalitis; Table 1). There was
complete concordance between the DENV serotype of the
initiating case and the DENV serotypes detected in associate
cases in that spatiotemporal unit. Nested PCR results among
associates revealed that DENV-3 was the most common
infection followed by DENV-2 and then DENV-1.
There was a significant difference in the reporting of nausea

between primary and secondary DENV infections and signif-
icant variation in reporting of headache, rhinorrhea, cough,
and retro-orbital pain among the age groups (Tables 2 and 3).
There was a statistically significant difference in the probabil-
ity of an associate experiencing a DENV infection based on
the DENV type infecting the initiate. DENV-3 infection in
the initiate carried the highest probability of associate infec-
tion (Table 4).
Spatial distribution of associate case households. Closer

proximity of a household to the initiate was correlated with

Table 4

Probability of dengue virus infection in associates according to the
initiating case infecting DENV serotype

Serologic diagnosis

Infecting DENV of initiate

DENV-1 DENV-2 DENV-3

EIA negative 43 191 88
EIA positive 4 (0.09) 44 (0.19) 38 (0.30)

DENV = dengue virus; JE = Japanese encephalitis; EIA = enzyme immunoassay.
Numbers in parentheses are the proportions EIA positive. The infectingDENV type is taken

from the initiating case. The differences are significant (Fisher’s exact test, P value = 0.003).

Table 5

Spatial distribution of households and enrolled households

Distance from initiate household (m)

> 0–40 > 40–80 > 80–120 > 120–160 > 160–200

Total households 539 814 971 1,051 1,063
Enrolled households 103 (0.191) 53 (0.065) 32 (0.033) 13 (0.012) 7 (0.007)

Numbers in parentheses indicate proportions of houses enrolled for each distance category. Differences are significant, P value < 0.001 by Fisher’s exact test.
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an increased associate household enrollment (Table 5). House-
holds further from the initiate household had a lower rate
of DENV infection among associate household residents
(Table 6). This pattern of transmission was not gradual with
distance. In an associate from a household with fever, for
example, the rate of infection was similarly high (around 0.3)
within 120 m and very low in households with fever beyond
120 m. This would indicate that spatiotemporal transmission
in this investigation was primarily limited to 120 m and
extending the radius from 100 to 200 m did not substantially
increase the efficiency of detecting dengue cases or viremia.
DENV infection in Ae. aegypti collected in the homes of

human dengue cases. A total of 3,565 Ae. aegypti were col-
lected from 4,438 households (i.e., all households). A total of
233 (6.5%) mosquitoes were from initiate households, of which
23 (9.9%) were DENV PCR+. There was a greater likelihood
that one or more collected mosquitoes were DENV PCR+
within the initiate house or a house closer to the initiate’s
house (Table 7).
There were 162 initiate households with at least one associ-

ate resident who had complete serology and 212 associate
households with at least one associate with complete serology.
Of the initiate households, female Ae. aegypti were collected
in 54.9% and 58.5% of the associate households had collected
female Ae. aegypti. Of the female mosquitoes collected in
initiate households 29% of households had a DENV PCR+
mosquito, whereas 6.5% of associate households had a DENV
PCR+ mosquito. There was a higher likelihood of finding a
DENV PCR+mosquito in an initiate household (Table 8). Of
the 31 initiate households with a DENV serology and an
associate resident, 54.8% of the houses had femaleAe. aegypti

captured and 64.7% of these households had a DENV PCR+
mosquito. Of the 42 associate households with a DENV serol-
ogy + associate, 57.1% of households had a femaleAe. aegypti
mosquito and one (4.1%) of these households had a DENV
PCR+ mosquito. Despite a similar likelihood of finding
female Ae. aegypti in households with a DENV+ serology
resident, there was a higher likelihood of finding DENV
PCR+mosquitoes in the initiate household (Table 8). In total,
there were 46 households with a DENV PCR+ mosquito and
an associate residing with complete serology; 80.4% were
initiate households (Table 8). There was a high degree of
concordance between the isolated DENV serotypes from

mosquitoes within a cluster and the infecting serotype of the
index case (Table 9). In 2010, only one cluster (10-077) was
found discordant from the mosquito (DENV-2) as compared
with the index case (DENV-1).

DISCUSSION

Our current study further characterizes the complex trans-
mission dynamics and virus–vector–host interactions in a
well-characterized spatial area around an infected viremic inpa-
tient in Central Thailand. We demonstrated a significant
relationship between spatial proximity to the initiate case
and likelihood of detecting DENV from associate cases and
A. aegypti with higher than anticipated virus detection from
both human hosts and mosquito vectors. We propose that the
sampling strategy described is valuable for ongoing surveil-
lance of DENV transmission during and after field studies
and the introduction of dengue vaccines.
The design of this study was built on observations from

previous prospective cohort studies of DENV transmission
conducted with and without initiate case and associate (contact/
cluster) investigations.8–10,16,17 Modifications were made to
the study design in an attempt to increase the detection of
virus, symptomatic and subclinical associates of initiate cases,
and infected mosquito vectors. The result was a demographi-
cally diverse group of DENV infected people representing a
broad virologic, serologic, and clinical spectrum. Substantial
virus detection rates were observed in both human associate
cases and mosquitoes.
The age range of initiate cases was surprisingly wide (2.6–

56 years), and the mean age was higher than expected at
18.7 years.18 This observation is consistent with unpublished
data from the authors across additional dengue seasons and
data from other sources. For example, in 2010, the Thailand
MOPH reported that the highest case rate for DHF was in the
10–14-year age group, and that the 5–9- and 15–24-year age
groups had the second and third highest rates, respectively.
These findings are in contrast to decades of data where the
mean age of hospitalized dengue was in the age range of 5–
9 years.19–22 One explanation for the shift is that smaller birth
cohorts had reduced number of susceptibles, thereby
impacting the force of infection and the time in a person’s life
when they acquire their first and second DENV infection, the

Table 6

Spatial distribution of associates and associates with DENV infection by serology

Initiate household

Distance from initiate household

> 0–40 > 40–80 > 80–120 > 120–160 > 160–200

Total associates with available serology 187 41 67 51 38 25
EIA positive associates 42 (0.225) 14 (0.341) 12 (0.179) 16 (0.314) 0 (0.000) 2 (0.080)

DENV = dengue virus; JE = Japanese encephalitis; EIA = enzyme immunoassay.
Numbers in parentheses indicate proportions of associates that were EIA positive within the initiate house and for each distance category. Differences are significant, P value < 0.001 by Fisher’s

exact test.

Table 7

Spatial distribution of female Aedes aegypti within houses and PCR+ mosquitoes within houses

Initiate household

Distance to initiate household

> 0–40 > 40–80 > 80–120 > 120–160 > 160–200

Total mosquitoes 233 328 545 733 745 981
PCR+ mosquitoes 23 (0.099) 10 (0.030) 7 (0.013) 13 (0.018) 7 (0.009) 3 (0.003)

Numbers in parentheses indicate proportions of mosquitoes that were PCR+ for each distance category. Differences are significant, P value < 0.001 by Fisher’s exact test.
PCR+ = polymerase chain reaction positive.
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latter being more often associated with clinically significant
disease in Thailand.18

We also enrolled associates across a wide age range
(7 months–94.2 years) with a mean age almost double the
initiate cases (31.4 versus 18.7 years). Serologic evidence of
DENV infection and symptomatic DENV infection was
observed in a number of subjects aged 40 years and older.
Most of these were secondary (i.e., post-primary) DENV
infections, but we also detected primary DENV infections,
defined serologically, in the 50–59- and 85+-year age groups.
Dengue occurs throughout the year with all four serotypes
circulating with high rates of infection and transmission
(hyperendemic) in KPP. Pediatric cohort studies have dem-
onstrated high DENV infection attack rates (combined symp-
tomatic and subclinical) in the range of 2.2–7.9% per year
(average incidence 5.8%) over at least the preceding 10 years.9

Based on these observations, it was assumed that lifelong KPP
residents have experienced multiple DENV infections by their
late 20s. A modified plaque reduction neutralization assay
(single dilution neutralization assay, 1:30 dilution, 70% viral
plaque reduction) completed on a cohort of children enrolled
in a KPP prospective study from 1998 to 2004 revealed a
gradually increasing prevalence of neutralizing antibodies to
at least one DENV type from 45% among 4-year-olds to 91%
among 13-year-olds (I. K. Yoon, unpublished data).10,16,23

Our finding that all PCR+ associate cases had fever at the
time of enrollment may also underscore the increasing infec-
tion burden in adults as they are more likely to experience
symptomatic DENV infections compared with primary infec-
tion in children. Our observation of symptomatic dengue in
older individuals merits reconsideration of traditional views
on the force of infection in hyperendemic areas and the dura-
bility of homotypic and heterotypic immunity.
There was complete concordance between the infecting

DENV serotypes in the initiate case and the corresponding
associate cases. This finding supports the concept that DENV
transmission is focal and serotype-conserved in space and
time.17,24 The authors’ acknowledge that the assumption that
each initiating case represents the true index (i.e., first) infec-
tion in each spatiotemporal group may be incorrect. Because

most DENV infections are asymptomatic or not clinically
severe enough to drive health-care-seeking behavior, it is pos-
sible the initiating case simply represents the first clinically
overt infection in that defined geographic area.
The ratio of symptomatic to subclinical infection among

primary infections was 1:0.2; the ratio in secondary infections
was 1:0.4 and similar (1:0.4) among the 86 serologically posi-
tive associates. These ratios are consistent with previous work
by our group and others, including previous cluster and cohort
studies, which reported symptomatic to subclinical ratios
ranging from 1:0.2 to 1:18.9,10,25–28 The differences in results
are most likely associated with the study’s surveillance focus
in and around symptomatic, PCR+ initiating cases. Previous
studies conducted routine biologic sampling to capture sub-
clinical cases and cluster studies exploring houses with or
without active or a recent history of fever.9

The probability of an associate becoming infected was asso-
ciated with a number of factors.29–31 As mentioned above, a
significant association existed between the DENV serotype
infecting the initiating case and the proportion of associates
subsequently infectedwith the sameDENVserotype (P < 0.001).
Associates in samples initiated by a DENV-3 infection had a
30% chance of being serologically positive. The likelihood of
infection was 19% for associates in DENV-2 samples and 9%
in DENV-1 samples. Taken by itself, this may point to viral
properties allowing for more efficient transmission, such as
higher titer viremia in the human host or mosquito vector, a
longer duration of viremia increasing the potential window
for transmission to vectors and/or shorter incubation period
in the mosquito. Another significant association was between
the distance a potential associate lived from an initiating case
and the likelihood of becoming infected (negative correlation,
P < 0.001). It is reasonable to assume the factors culminating
in an initiate infection (i.e., convergence of susceptible host
and infected vector in space and time) would also drive effi-
ciency of transmission and associate infections until a geo-
graphic barrier was introduced (i.e., next susceptible beyond
the dispersal distance of the vector) or other factors limited
transmission (i.e., protective herd immunity of associates).
We did not define the relative roles of humans and mosqui-
toes in moving virus from one house to another within clus-
ters, although in general, humans tend to move more often
and greater distances than Ae. aegypti.29–31

Approximately, 29% of all households had femaleAe. aegypti
and 1.8% of the females collected were infected with DENV.
Although initiating case houses and associate houses with a
PCR+ contact had similar rates of female Ae. aegypti infesta-
tion (55% and 59%, respectively), the percentage of PCR+
mosquitoes was higher in the initiate case households (9.9%)
compared with noninitiate households with and without a
DENV positive contact, 1.2% and 1.1%, respectively. There
was a significant association (P < 0.001) between the distance

Table 8

Associate infection rates by infection status of female Aedes aegypti captured in households

Initiate houses Associate houses

PCR+ female
Ae. aegypti

Females captured
Ae. aegypti

No females captured
Ae. aegypti

PCR+ females
Ae. aegypti

Females captured
Ae. aegypti

No females captured
Ae. aegypti

Total associates with available serology 26 88 71 8 125 90
Serology positive associates 11 (0.423) 17 (0.193) 14 (0.197) 1 (0.125) 25 (0.200) 18 (0.200)

PCR+ = polymerase chain reaction positive.
Numbers in parentheses indicate proportions of associates that were serology positive within the initiate house and for each category.

Table 9

Isolated DENV serotypes from Aedes aegypti mosquitoes obtained
in clusters

Years 2009–2010

Number of Ae. aegypti samples 3,545
DENV-1 5
DENV-2 36
DENV-3 22
DENV-4 0

DENV = dengue virus; JE = Japanese encephalitis.
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of a home from the initiating case and the proportion of

PCR+ mosquitoes found within the house. These observa-
tions are concordant with previous reports and intuitive; once

a clinical case of dengue is identified there is a high likelihood

of finding infected vector(s) co-residing in the same geo-

graphic location as the ill human.
Initiate cases represented the full spectrum of DENV infec-

tions clinically, serologically, and virologically. We consider
the finding of more than one in five associates of an initiating

case having serologic and, in some cases, clinical evidence of

an acute DENV infection significant from an epidemiologic

and transmission dynamics standpoint. These results repre-

sent the initial phase of a multi-year prospective study. The

study design used improved the efficiency of capturing DENV

in associates and vector populations compared with previous

efforts by focusing surveillance in areas and households where

DENV transmission was most likely to be occurring. Our

observations emphasize the focal spread of DENV and its

spatial restriction associated with the mosquito vector and

suggests that initiate cases were important in this study (ill

and PCR+) in transmitting DENV to mosquitoes and thus to

others living near the initiate. Previous studies support the

observation that patient DENV viremia was a marker of human

infectiousness and blood meals containing high concentra-

tions of DENV were positively associated with the prevalence
of infectious mosquitoes.32 Our results and study design may

be useful when designing experiments to study fine scale pat-

terns of DENV transmission and to increase detection of case

contacts with inapparent infections.
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