
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Differential Privacy for Non-standard Settings

Permalink
https://escholarship.org/uc/item/02k1w3jp

Author
Chen, Joann Qiongna

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02k1w3jp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Differential Privacy for Non-standard Settings

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Joann Qiongna Chen

Dissertation Committee:
Professor Zhou Li, Chair
Professor Gene Tsudik
Professor Yanning Shen

2024

Portions of Chapter 3 © 2022 IEEE
Portions of Chapter 4 © 2023 ACM

All other materials © 2024 Joann Qiongna Chen

DEDICATION

To my God, whose faithfulness has been my rock.
To my family, whose unwavering support has fueled my academic pursuit.

To my friends, whose encouragement has illuminated the path of my PhD journey.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 LDPResolve: Local Differentially Private DNS Resolution 3
1.2.2 DPRA: Differentially Private Resource Allocation 4
1.2.3 Privacy Risks in Curriculum Learning 4

2 Background 6
2.1 Differential Privacy . 6

2.1.1 A Primer on Differential Privacy . 6
2.1.2 Properties . 8

3 LDPResolve: Local Differentially Private DNS Resolution 9
3.1 Introducation . 9
3.2 Background . 11

3.2.1 DNS Communications and Dataset 11
3.2.2 DNS-based User Tracking . 12
3.2.3 DSCorr: DNS Session Correlation with Domain Embedding 13
3.2.4 Domain importance . 18
3.2.5 Differential Privacy . 20

3.3 Domain Resolution under LDP . 21
3.3.1 Overview of LDPResolve . 21
3.3.2 Perturb for LDPResolve . 25

3.4 Evaluation of LDPResolve . 29
3.4.1 Impact on User Tracking . 31

iii

3.4.2 Impact of Parameters . 32
3.4.3 Sensitive Set with SLDs . 36
3.4.4 Noisy SL . 37
3.4.5 Adaptive Tracking against LDPResolve 37
3.4.6 Comparison with K-resolver . 39
3.4.7 Prototype . 40

3.5 Discussion . 42

4 DPRA: Differentially Private Resource Allocation 45
4.1 Introduction . 45
4.2 Background . 48

4.2.1 Problem Definition . 48
4.2.2 Differential Privacy . 52
4.2.3 Differentially Private Allocation in AKR 54

4.3 Modeling Resource Allocation . 55
4.3.1 Privacy Amplification from Allocation 55
4.3.2 Design Space . 57
4.3.3 Privacy Modeling . 58

4.4 Noisy Mechanisms . 62
4.4.1 Constant Noise (CST) . 63
4.4.2 Uniform Mechanism (UNI) . 64
4.4.3 One-sided Geometric Mechanism (GEO) 67
4.4.4 Double Geometric Mechanism (DGEO) 69

4.5 Evaluation . 71
4.5.1 Evaluation Setup . 72
4.5.2 Evaluation Results . 74
4.5.3 Impact of Parameters . 78

4.6 Discussion . 81
4.6.1 Related Work . 81
4.6.2 Privacy Consumption over Multiple Rounds 82
4.6.3 Other Settings . 84
4.6.4 Real-world Examples and Utility Analysis 85
4.6.5 Limitations . 86

5 Privacy Risks in Curriculum Learning and DPDefenses 88
5.1 Introduction . 88
5.2 Preliminary . 91

5.2.1 Curriculum Learning . 91
5.2.2 Privacy Risks in Machine Learning 92

5.3 Datasets and Target Models . 94
5.4 Methodology . 96

5.4.1 Curriculum Designs . 96
5.4.2 Basic MIA . 100
5.4.3 Our Proposed MIA . 102
5.4.4 Basic AIA . 105

iv

5.4.5 Defense Methods . 105
5.5 Evaluation Results . 107

5.5.1 Evaluation of Basic MIA . 108
5.5.2 Analysis with Data Memorization . 116
5.5.3 Evaluation of Diff-Cali . 119
5.5.4 Evaluation of AIA . 122
5.5.5 Evaluation of Defense . 123

5.6 Discussion . 126
5.7 Related Work . 127

6 Conclusion 130
6.1 Perspective . 133

Bibliography 135

v

LIST OF FIGURES

Page

1.1 Comparison of DP Publications to Known Deployments (2006 – 2021) [57]. . 2

3.1 An example of sessions constructed from DNS queries. Different colors rep-
resent different source IP addresses, and different shapes represent different
queried domain names. 14

3.2 The objective of the adversary, who aims to correctly link a DNS session to
its requesting user, regardless of IP churns. 15

3.3 CDF of “shared” and “unique” domain for top 10k domains. Domains are
ranked by session-wise popularity. 19

3.4 Workflow of LDPResolve. The symbols are defined in Section 3.3.2. A DNS
query might be perturbed and sent to AltRR based on (XS ,YP ,ϵ1,ϵ2)-ULDP. 24

3.5 An illustration of how data are perturbed under (XS ,ϵ1,ϵ2)-URR. 27
3.6 Comparison of TrkAcc before (“raw”) and after deploying LDPResolve

(“2k” and “10k”). “2k” and “10k” are values set to Ns. All numbers are
percentage. 32

3.7 ChgRatio vs. ϵ1, ϵ2 and NS. s, n, (s,s), (s,n) and (n,n) are explained in
“Evaluation metrics”. 35

3.8 Comparison on TrkAcc of LDPResolve and K-resolver by k. 40
3.9 Comparison of RTT between different settings of LDPResolve. “ldp” are all

queries. “ldp-sensitive” and “ldp-nonsensitive” are queries to domains in and
not in the sensitive list. “ldp-prefetch” is RTT of all queries when prefetch of
sensitive domains is enabled. 41

4.1 An example of RA. An allocator has six resources and the total number of
requests sent by attacker is six. Privacy of the victim is violated when the
attacker observes one of the requests is not fulfilled. 49

4.2 Comparison of different mechanisms. The ranges of ϵ for CST and UNI are
limited. CST’s utility never exceeds 0.5 because at least k dummy requests are
required to make it differentially private. The utility of GEO does not increase
when ϵ is between 1.8 to 2.3, and we speculate this is because the parameters
leading to the optimal utility have not been discovered through simulation. 74

4.3 Allocation results by GEO with p=0.90, which sets the bias to 10. The x-axis
represents the number of fulfilled requests of the attacker, and the y-axis repre-
sents the frequency of each output out of 100 million rounds. We increase the
simulation rounds from 10 million to 100 million in order to yield precise results. 75

vi

4.4 Distribution of output over 5 million runs. Before RA, we draw noise from a
double geometric distribution with ϵ=1 and k=10. After RA, the distribution
changes, and the privacy leakage increases (the empirical ϵ rises to 2.07). . . 77

4.5 Impact of xℓ and xr on UNI. 79
4.6 Impact of p and xℓ on GEO. 79
4.7 Impact of s and µ on DGEO. 80
4.8 Privacy protection and utility under k=15,20. The ranges for the x-axis differ

for k because not all utility values can be derived under every ϵ. 80

5.1 The training accuracy of different training methods with ResNet-18 on CI-
FAR100 along the increase of epochs (total of 90 epochs). Bootstrapping,
transfer learning, and baseline reach higher accuracy faster and converge to a
better result. 98

5.2 t-SNE of the classification results on the difficult batch of SVHN. 100
5.3 MIA accuracy on CIFAR-100, Tiny ImageNet. ResNet-18 is used for target

model training. 109
5.4 Attack model’s confidence score for both member and non-member samples

on CIFAR-100 and Tiny ImageNet. ResNet-18 is used for target model train-
ing, and data samples are arranged according to their difficulty scores from
bootstrapping. 111

5.5 TPR/FPR of NN-based MIA and Diff-Cali under different training method
trained with ResNet-18 on CIFAR100. 112

5.6 Loss distribution for models trained on Tiny ImageNet with ResNet-18. . . 114
5.7 MIA accuracy for target model trained on Tiny ImageNet with ResNet-34 and

MobileNet, respectively. 115
5.8 Attack model’s confidence score for both member and non-member samples

on Purchase. MLP is used for target model training, and data samples are
arranged according to their difficulty scores from bootstrapping. 115

5.9 Memorization: violin plots of prediction probability of 800 most difficult sam-
ples, according to bootstrapping CL. The horizontal bars of each violin rep-
resent the minimum and maximum of the prediction probability. 117

5.10 Shapley: violin plots of prediction probability of 800 most valuable samples
according to KNN-Shapley. 118

5.11 Reverse Shapley: violin plots of prediction probability of 800 least valuable
samples according to KNN-Shapley. 118

5.12 Diff-Cali’s accuracy for models trained on CIFAR100 and Tiny ImageNet with
ResNet-18. 120

5.13 Diff-Cali’s member and non-member confidence score for models trained on
Tiny ImageNet with ResNet-18. 121

5.14 Diff-Cali’s member and non-member confidence score for models trained on
CIFAR100 with ResNet-18. 121

5.15 Attribute inference attack accuracy on UTKFace 123
5.16 Attack model’s confidence score for member and non-member samples of

CIFAR-100 trained on ResNet-18 with DP-SGD. 126

vii

LIST OF TABLES

Page

3.1 Impact of ϵ1 on TrkAcc (shown in percentage) and overall std. std s and
std n are std for sensitive and non-sensitive domains. 34

3.2 Impact of ϵ2 on TrkAcc, std, std s and std n. 34
3.3 Impact of NS on TrkAcc, std, std s and std n. 34

4.1 Notations frequently used in this paper. 48
4.2 A summary of different mechanisms and their utility under some representa-

tive ϵ values. Note that k=10 and δ=10−6. 63
4.3 Comparison of different settings of DGEO with k = 10. We use 5 different ϵ

values (first row). Row 2 shows the empirical ϵ is close to the original ϵ, which
indicates our simulation has only small errors. Row 3 is the empirical ϵ after
RA, which deviates from the original ϵ. The last row shows our theoretical
bound of ϵ given in Theorem 4.9 is close to the empirical value. 77

5.1 Target model’s average test accuracy on different datasets. ResNet-18 is used
for all image datasets, and MLP for non-image datasets Purchase, Texas, and
Location. Transfer learning CL does not apply to non-image datasets. The
target model accuracy is relatively low except for SVHN because we use a
subset of the original training data. 98

5.2 The average training accuracy of datasets in Table 5.1. Image datasets are
trained on ResNet-18 while non-image datasets are trained on MLP. Numbers
are all in percentage. We observe that all training accuracies are nearly 100%.
Note that for non-image datasets, we skip the transfer method as there is no
commonly used pre-trained model for the tabular dataset. 99

5.3 Accuracy of NN-based MIA on models trained on 8 datasets. Transfer learning
CL does not apply to non-image dataset Purchase, Texas and Location. . . . 107

5.4 Average accuracy of NN-based, metric-based, label-only and our Diff-Cali at-
tacks on models trained on CIFAR100 with ResNet-18. 110

5.5 The average accuracy of NN-based attacks on models trained on different
network architectures with CIFAR100. 113

5.6 Average accuracy of AIA (± standard deviation (STD)) on model trained
with different methods. ResNet-18 is the target model architecture. 122

5.7 The average accuracy of MIA (± standard deviation (STD)) on target model
trained on CIFAR100 with ResNet-18 and different defense methods. All num-
bers are in percentage, entry without ± STD means the STD is less than 0.01%.124

viii

ACKNOWLEDGMENTS

To my advisor, Zhou Li, I am sincerely grateful for your unwavering support from Day 1 of
my PhD journey. You have provided me with the invaluable privilege to pursue my research
freely and with confidence, serving as a true role model throughout. Your patience, guidance,
and support have empowered me to not only navigate the challenges of academia but also
to aspire for further academic pursuits.

To my committee members, Gene Tsudik and Yanning Shen, it has been a privilege to have
known and learned from you both. Your steadfast support and wise counsel have been
invaluable throughout this journey.

To Athina Markopoulou, you have been a pivotal mentor throughout my journey. You have
generously supported me during my job search journey and your example truly embodies
what it means to be a mentor and educator.

Special thanks to my mentors and collaborators: Tianhao Wang, Somesh Jha, Kamalika
Chaudhuri, Yang Zhang, Zhikun Zhang, Xinlei He, and Zheng Li. I am especially grateful
to Tianhao Wang for teaching me the essential aspects of differential privacy and mentoring
me through our initial research projects.

I want to express my gratitude to my friends, the GEECS community, my lab mates, and
my fellow EECS and ICS cohort members for their support in balancing my research com-
mitments with social events. Special thanks go to: Helmina Bong, Makena Crowe, Aaron
San Juan, Elina van Kempen, Heather Lott, Victor Ong, Beverly Quon, Robert Marosi,
Hieu Le, Floranne Ellington, Nilab Ismailoglu, Jiacen Xu, Nathan Furman, Danyu Sun, and
Tom Wang. Additionally, I deeply appreciate the support and guidance from the EECS
department staff throughout my PhD journey, especially: Amy Pham, Julie Strope, Lioubov
Konkova, Jasmine Garcia, Marisa Mendoza, Beverly Randez, and Stephany Monterroso. I
genuinely could not have made it this far without their support.

Thank you to the differential privacy community, who provided valuable insights and re-
views on my projects. Thank you to the Seabreeze Church community, who have constantly
encouraged and prayed for me over the past five years.

This thesis was partially supported by NSF CNS-2220434 and the European Health and
Digital Executive Agency (HADEA) within the project “Understanding the individual host
response against Hepatitis D Virus to develop a personalized approach for the management
of hepatitis D” (D-Solve) (grant agreement number 101057917).

Reprint Notice

Portions of this dissertation are reprints of, or largely based on, the materials in [41, 49],
used with permission from the IEEE and ACM, respectively.

ix

VITA

Joann Qiongna Chen

2024 Ph.D. in Electrical and Computer Engineering
University of California, Irvine

2020-24 Graduate Research Assistant
University of California, Irvine

2022 Research Scientist Intern
Meta Reality Labs

2022 Teaching Assistant
University of California, Irvine

2021 Research Intern
CISPA Helmholtz Center for Information Security

2019 M.S. in Electrical Engineering
University of Southern California

2017 B.Eng. in Telecommunication Engineering
Xidian University

PUBLICATIONS

[1] JoannQiongnaChen, Xinlei He, Zheng Li, Yang Zhang, Zhou Li.“A Comprehensive
Study of Privacy Risks in Curriculum Learning,” arXiv:2310.10124.

[2] Joann Qiongna Chen, Tianhao Wang, Zhikun Zhang, Yang Zhang, Somesh Jha,
Zhou Li. “Differentially Private Resource Allocation,” accepted by the 39th Annual
Computer Security Applications Conference (ACSAC), December, 2023.

[3] Deliang Chang*, Joann Qiongna Chen*, Zhou Li, Xing Li. “Hide and Seek: Revis-
iting DNS-based User Tracking,” Proceedings of the 7th IEEE European Symposium on
Security and Privacy (EuroS&P), June, 2022.

[4] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng,
Zhou Li, Ninghui Li, and Somesh Jha. “Continuous Release of Data Streams under
both Centralized and Local Differential Privacy,” Proceedings of the 28th ACM Confer-
ence on Computer and Communications Security (CCS), Virtual, Nov., 2021.

[5] Baojun Liu, Chaoyi Lu, Yiming Zhang, Zhou Li, Fenglu Zhang, Haixin Duan, Ying
Liu, Joann Qiongna Chen, Jinjin Liang, Zaifeng Zhang, Shuang Hao, Min Yang.
“From WHOIS to WHOWAS: A Large-Scale Measurement Study of Domain Regis-
tration Privacy under the GDPR,” In Proceedings of the 28th Annual Network and
Distributed System Security Symposium (NDSS), Virtual, Feb., 2021.

* First two authors contributed equally to this work

x

ABSTRACT OF THE DISSERTATION

Differential Privacy for Non-standard Settings

by

Joann Qiongna Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2024

Professor Zhou Li, Chair

In the increasingly digitized world, the intersection of data utilization and privacy protection

presents significant challenges and opportunities. This dissertation explores the concept of

Differential Privacy (DP), a framework that promises robust privacy protections while al-

lowing the utility of data in diverse applications. Our research addresses the translation of

DP from a theoretical construct into practical tools that can be integrated into real-world

systems, focusing on DNS resolution and resource allocation.

One of the core advancements presented in this work is the development of a differentially

private DNS resolution method that significantly reduces tracking accuracy rates with a

provable guarantee. This is complemented by a prototype that the public can easily install

on their local machines.

In the domain of resource allocation, we introduce novel differentially private mechanisms

designed for environments such as cloud computing, virtual machine allocation, and network

bandwidth management. These mechanisms not only ensure the confidentiality of sensitive

metadata but also maintain system performance by integrating noise distribution techniques

that optimize the trade-off between privacy protection and resource utility. This part of

the study provides a comprehensive analysis of how differential privacy can be pragmati-

cally applied to manage resources efficiently while adhering to stringent privacy standards,

xi

showcasing empirical results that support the feasibility of these approaches.

Additionally, the research broadens the scope of privacy-enhancing technologies beyond DP,

exploring their application in machine learning.

Through rigorous empirical studies and innovative system design, this dissertation not only

contributes to the academic field but also aims to influence real-world practices by enhancing

the privacy and utility of systems in which large volumes of personal data are processed.

The implications of this dissertation offer directions for future work in securing digital in-

teractions and promoting a safer, more transparent digital environment. We anticipate the

widespread adoption of privacy-preserving technologies across multiple sectors, promoting a

balanced approach to data privacy that is adaptable to the changing digital landscape.

xii

Chapter 1

Introduction

1.1 Motivation

Personal data stands at the crossroads of progress and peril as technologies grow so rapidly.

Its immense potential, if harnessed appropriately, can revolutionize numerous areas, from

healthcare to finance. However, misusing this same data can lead to serious privacy viola-

tions. For example, the Netflix Prize competition was intended to improve its collaborative

filtering algorithm, but the sequel was canceled following a privacy lawsuit [210] . While

domain registration services provide a valuable directory, they can sometimes clash with the

directives of the General Data Protection Regulation (GDPR) [167] . We are also seeing

a rise in global surveillance with increasing instances of cross-border monitoring, yet our

legal frameworks are ill-equipped to address this. Similarly, the U.S. lacks a unified federal

law for consumer data tracking. Another pressing issue is the growing use of Artificial In-

telligence (AI) and the privacy concerns around it. Recognizing its importance, the White

House released an Executive Order on October 30, 2023, to ensure the safe and responsible

development of AI [105]. These evolving trends pose significant challenges to personal pri-

vacy and digital rights. This dissertation seeks to navigate this privacy quandary, aiming to

1

harness data’s potential while safeguarding individual privacy.

DP has emerged as a beacon of hope in this uncertain digital age [62] . While highlighting

the importance of safely using AI, the recent presidential order also emphasized the power

of DP [105]. Essentially, DP promises a strong provable privacy guarantee, ensuring that

an individual’s data footprint has minimal influence on the resulting output. This unique

feature not only thwarts adversaries armed with extensive data knowledge but also offers

opportunities for numerous real-world applications.

Year

1000

2000

0

3000

4000
Publications

2006 2010 2014 2018
0

2

4

6

8
Deployments

2022

10

Figure 1.1: Comparison of DP Publications to Known De-
ployments (2006 – 2021) [57].

The concept of DP, initially

hailed as a theoretical mar-

vel within academic circles,

has witnessed a tremendous

surge in research, marked by

notable theoretical advances

and empirical enhancements.

While my primary research

focus is translating this aca-

demic theory into tangible,

real-world tools, it is evident

that the broader community

has yet to embrace its practical implementation fully. This discrepancy becomes partic-

ularly clear when considering the relatively modest number of real-world deployments, as

illustrated in Figure 1.1. For example, differentially private stochastic gradient descent (DP-

SGD) has demonstrated significant promise in machine learning [13]. However, the accuracy

of models trained with DP-SGD often leaves room for improvement. While recent research

shows that it’s feasible to train differentially private machine learning models that main-

tain high accuracy, this usually incurs substantial computational overhead. This overhead,

2

especially prohibitive for users with limited resources, hinders the broader deployment of

DP-SGD.

1.2 Contributions

The outline and contributions of this thesis are as follows:

1.2.1 LDPResolve: Local Differentially Private DNS Resolution

In Chapter 3 and [41], we explore adapting local differential privacy (LDP) into Domain

Name System (DNS) resolution to bound privacy leakage. We first study DNS-based user

tracking in both open-world and closed-world settings to understand the root causes of

tracking and how naive defenses may compromise legitimate applications that rely on user

DNS records, such as malicious domain detection. To mitigate the DNS-based user tracking

without damaging the legitimate DNS applications, we propose to integrate LDP into DNS.

Based on a novel LDP notion, (XS ,YP ,ϵ1,ϵ2)-ULDP [174], and parallel domain resolving,

we design LDPResolve to solve the dilemma of DNS data utility and privacy. We then

evaluate LDPResolve on a real-world DNS dataset and report our discoveries. A client-

side prototype of LDPResolve is also developed. We demonstrate that the DNS-based

user tracking can be effectively curbed with the deployment of LDPResolve, e.g., tracking

accuracy degraded from 93% to 10.1%. This chapter presents the first attempt adapting

LDP into DNS resolution. Our study suggests the threats coming from the DNS-based user

tracking should be mitigated and it is feasible to protect users’ privacy without damaging

the utility of legitimate applications.

3

1.2.2 DPRA: Differentially Private Resource Allocation

In Chapter 4 and [49], we first study the existing resource allocators and find that they

have no or very limited privacy guarantees against allocation-based side channel attacks.

After investigating an existing resource allocation design that offers differential privacy [19],

we found that the mechanism assumes the attacker knows the total number of requests

after DP noise is added. However, we observe that the practical attacker only has a partial

view of the Resource Allocator (RA). Therefore, we choose to model resource allocation

privacy from the attacker’s perspective. Due to the randomness introduced by the RA, we

benefit from “privacy amplification” through such modeling and achieve a better privacy-

utility tradeoff. In summary, we conduct a rigorous privacy analysis of differentially private

resource allocation and derive tighter privacy bounds from the attacker’s perspective for four

noisy mechanisms: CST, UNI, GEO, and DGEO. We theoretically and empirically evaluate

our proposed mechanisms. Our mechanism, GEO, achieves the best privacy-utility tradeoff

and significantly outperforms the baseline.

1.2.3 Privacy Risks in Curriculum Learning

In Chapter 5 and [48], we take a quantitative approach to measure the privacy risks of

curriculum learning (CL). CL, which trains a machine learning model with data following

a meaningful order, i.e., from easy to hard, has been proven to be effective in accelerating

the training process and achieving better model performance. We take the first attempt

to investigate the privacy risk in CL despite its great success and deployment in crucial

areas like image and text classification. More specifically, we select two popular CL meth-

ods, bootstrapping [89] and transfer learning [239], as the evaluation objects. Additionally,

we constructed two other curricula, named baseline curriculum and anti-curriculum, to un-

derstand the impact of data ordering and repetition, respectively. We use nine real-world,

4

large-scale datasets (six image datasets and three tabular datasets), train target models with

those CL methods and a normal method, and attack the models with representative mem-

bership inference attack (MIA) methods. Regarding MIA, our evaluation shows that the

target models become slightly more vulnerable under CL. For example, the average attack

accuracy (trained on ResNet-18 with transfer learning) on our selected image datasets ranges

from 0.01% to 2.46%. More importantly, we find CL has a much bigger impact on the sam-

ples within the difficult group compared to the easy group, with the biggest gap of 4.23%

in terms of attack accuracy for CIFAR100 (ResNet-18 is the architecture). This observation

holds for both image and non-image datasets. Finally, we study the effectiveness of existing

DP defense methods designed for privacy-preserving machine learning models and find that

they are still effective in CL setting.

5

Chapter 2

Background

In recent years, numerous privacy incidents have highlighted the precarious balance between

technological advancement and the protection of personal data. One notable example is

the Netflix Prize competition, which aimed to refine recommendation algorithms but was

abruptly canceled following a privacy lawsuit that exposed the risks of anonymized data [210].

Additionally, GDPR-compliant domain registration services have highlighted the complexi-

ties of data privacy regulations [167]. The rapid growth of Artificial Intelligence (AI) has also

introduced new dimensions to privacy issues [105]. This dissertation explores some of these

critical privacy challenges by introducing differential privacy (DP) to various applications

and examining privacy issues in machine learning.

2.1 Differential Privacy

2.1.1 A Primer on Differential Privacy

In the central setting, a trusted data curator adds noise (e.g., through the Laplace mechanism

or other mechanisms) to fulfill a DP notion (e.g., (ϵ, δ)-DP) given a query from a data

6

consumer, which bounds the information leakage provably.

Definition 2.1 ((ϵ,δ)-Differential Privacy [61]). An algorithmM satisfies (ϵ,δ)-differential

privacy against an adversary, where ϵ,δ ≥ 0, iff for any two neighboring datasets D and D′,

and any subset Y of all possible outcomes of algorithmM, we have

Pr[M(D)∈Y]≤eϵPr[M(D′)∈Y]+δ (2.1)

We consider two datasets D and D′ to be neighbors, denoted as D ≃ D′ if and only if

D=D
′
+u or D

′
=D+u, where D+u denotes the dataset resulted from adding one user’s

data u to the dataset D. ϵ measures privacy loss at a differential change in data, which

is also called privacy budget. δ models the probability when the algorithm M fails to be

differentially private, which is also called “failure probability”. The value of δ is normally

very small in order to keep the algorithm satisfying DP most of the time. When δ=0, we

simplify the (ϵ,0)-DP to ϵ-DP and call it pure DP.

Definition 2.2 (ϵ-Local Differential Privacy [235]). An algorithmML satisfies ϵ-local differ-

ential privacy (ϵ-LDP), where ϵ>0, if and only if for any pair of input x1 and x2 ∈D, we have

∀y∈Range(ML) :Pr[ML(x1)=y]≤eϵPr[ML(x2)=y] (2.2)

where Range(ML) denotes the set of all possible output results of an algorithmML.

LDP has seen strong adoption from the industry. Companies like Google [68], Apple [7] and

Samsung [184] have developed their own LDP implementation to compute aggregated user

statistics in a privacy-preserving way. The data collection protocol under LDP consists of

three steps [235]: Encode (users report their answers in a specific format), Perturb (the

7

answers are randomized), and Aggregate (the answers are merged and decoded to obtain

statistics, e.g., item frequency). In our work, we focus on the LDP protocols that support

frequency estimation (e.g., Google’s RAPPOR [68]).

2.1.2 Properties

The following composition properties hold for both DP and LDP algorithms, each commonly

used for building complex differentially private algorithms from simpler subroutines.

Sequential Composition. Combining multiple subroutines that satisfy DP for ϵ1, ··· ,ϵk

results in a mechanism that satisfies ϵ-DP for ϵ=
∑

iϵi.

ParallelComposition. Given k algorithms working on disjoint subsets of the dataset, each

satisfying DP for ϵ1,···,ϵk, the result satisfies ϵ-DP for ϵ=maxiϵi.

Post-processing. Given an ϵ-DP algorithmM, releasing g(M(V)) for any g still satisfies

ϵ-DP. That is, post-processing an output of a differentially private algorithm does not incur

any additional loss of privacy.

8

Chapter 3

LDPResolve: Local Differentially

Private DNS Resolution

3.1 Introducation

Domain name system (DNS) translates human-readable domain names to machine-readable

IP addresses. It is an essential component of the Internet infrastructure as DNS queries

underpin almost every user’s Internet activity. Nowadays, trillions of users’ requests on a

single day are processed by DNS [30].

Under normal configuration, a user’s DNS queries will be sent to a recursive resolver, which

acts as an agent to obtain the authoritative answers from authoritative nameservers. The

plaintext information of every query is visible to recursive resolvers, even when DNS en-

cryption like DNS-over-HTTPS [110] or DNS-over-TLS [108] is used (the requests are only

encrypted between users and recursive resolvers). Hence, a recursive resolver holding a large

amount of DNS logs also poses privacy threats to users. One prominent threat is user

tracking [195], through which a user’s activities across different networks and devices can

9

be correlated, for purposes like personalized advertisement, surveillance, etc. This threat is

more acute nowadays as public resolvers handle the lion’s share of users’ DNS requests and

are well-motivated to launch user tracking [31, 109, 10, 104].

Understanding DNS-based User Tracking. There are in general two types of setting

when considering DNS-based user tracking: closed-world and open-world settings. In the

closed-world setting, all possible victim users must be known to the adversary, and it has

been a well studied area [101, 100, 128, 132, 102, 129, 219]. Tracking in the open-world

setting (i.e., the user sending DNS requests may be unknown) has been studied in [41].

More specifically, this chapter focuses on the problem of DNS-based tracking as discussed

in [41]. This problem is formulated as assigning a DNS session (or a sequence of DNS queries

within a short period) to a user, exploiting the similarity of DNS behaviors from the same

user by utilizing the contextual correlation between domains.

Mitigation with differentially private domain resolving. To prevent user tracking, a

straightforward solution is to add random dummy queries to the original users’ queries.

Spreading users’ queries across resolvers is another solution, which has been exercised in

K-resolver [104]. However, we argue that the threat is not adequately addressed by these

solutions, as they may introduce significant overhead at the client-side to achieve a certain

level of privacy. For instance, DNS queries have to be spread out to a large number of

resolvers to defend against tracking, as discussed in Section 3.4.6. A greater concern is that

these solutions impair the utility of DNS data irreversibly, and such DNS data is critical to

legitimate applications like malicious domain detection [251]. To address the tension between

utility and privacy, we make the first attempt to integrate differential privacy [60], a method

that controls utility loss under privacy guarantee, to the process of domain resolution. We

term our defense LDPResolve, which changes the behavior of a stub resolver under Local

Differential Privacy (LDP) so recursive resolver does not need to be trusted. Yet applying

LDP to our setting has to address two prominent challenges. First, take frequency estimation

10

(the primary usage scenario of LDP) as an example, only Direct Encoding (DE) of LDP [235]

can be chosen to avoid revamping DNS protocol, but it will incur very high utility loss.

Second, under the default randomized response protocol, the user has to issue false DNS

queries, but doing so will give the user the wrong DNS response and break every Internet

application.

To tackle these challenges, we propose a novel (XS ,YP ,ϵ1,ϵ2)-ULDP (Utility-optimized LDP)

protocol, which is adjusted from ULDP [174], as the base of our defense. Our key insight is

that though both user tracking and legitimate applications inspect domain names, different

domain names have different levels of importance to them (e.g., popular domain names are

important to user tracking but less so for malicious domain detection). (XS ,YP ,ϵ1,ϵ2)-ULDP

allows us to assign different privacy budgets for DNS queries. Under (XS ,YP ,ϵ1,ϵ2)-ULDP

protocol, we adapt parallel domain resolving to address the issue of false DNS queries. Hence,

users always obtain accurate responses.

Based on the evaluation, we found LDPResolve can achieve the desired outcome: the

tracking accuracy can be significantly reduced while the utility loss is controlled to a certain

level. To highlight, the tracking accuracy of DSCorr [41] can be degraded from 93% to

10.1% while the utility loss measured by the standard deviation of unpopular domains is less

than 10.

3.2 Background

3.2.1 DNS Communications and Dataset

DNS (Domain Name System) queries are issued before most network activities to map a user-

friendly domain name (e.g., www.google.com) to an IP address (e.g., 216.58.193.196). In

particular, a user-end software named stub resolver receives the user’s requests produced by

11

other applications and forwards them to a recursive resolver if the responses are not cached.

The recursive resolver can be an Internet Service Provider (ISP) resolver serving users within

the same network or a public resolver (e.g., Google Public DNS [2]) serving users all over the

Internet. It further forwards the requests to authoritative nameservers, which is organized

in a hierarchical structure and provides authoritative answers to the iterative queries.

Users’ DNS traffic between their stub resolvers and authoritative nameservers results in a

wealth of information valuable to applications like malicious domain detection [29, 153, 247,

52] and Internet traffic estimation [86]. Several organizations are gathering those telemetry

data and sharing it with other parties under the concept of Passive DNS, mainly through two

approaches. The first is to place a sensor array between recursive resolvers and authoritative

nameservers, such that only the DNS lookups resulting in cache miss on recursive resolver

are captured, and the client IP addresses are not seen. The Security Information Exchange

(SIE) of FarSight [11] is operated under this model. As clients’ requests are aggregated by

each recursive resolver, a prior study suggests users’ privacy is not violated when the sensors

are configured properly [217]. The second approach is to fetch raw DNS logs directly from

recursive resolvers and share the logs with client IP anonymized [152]. DNS Pai Project

maintained by Qihoo 360 is operated under this mode [9]. While it enables more powerful

applications, like finding abnormal domain associations [152], it could also raise privacy

issues like user tracking. In this work, we thoroughly study such risks and propose a new

approach to protect the end-users.

3.2.2 DNS-based User Tracking

In this dissertation, user tracking is defined as linking users’ network activities across differ-

ent networks without their consent, for purposes like personalizing advertisements or surveil-

lance. When the network activities are DNS communications, user tracking can be done by

linking raw DNS logs collected and shared by the recursive resolvers. Though such tracking

12

is trivial when a user uses a static IP address, many ISPs assign dynamic IP addresses that

change periodically to their customers, so the adversary needs to re-identify the user after

his/her IP address is changed. Also, the user could move between different ISP networks.

Yet, a large number of users can be impacted due to the consolidation of DNS resolvers and

the increasing dependency on the public resolvers [193], which can be queried wherever the

users are. Here are some attack scenarios: 1) the users use a public resolver configured by

their ISP (e.g., campus IT without DNS infrastructure chooses google public DNS); 2) the

users’ browsers set a default public resolver so all DNS traffic about the users is collected

(e.g., DNS-over-HTTPS resolver in Google Chrome [3]); 3) an ISP exchanges DNS data from

its resolver with another ISP; 4) a company retrieves DNS logs from multiple resolvers, e.g.,

DNS Pai mentioned in Section 3.2.1.

Some research has been done on DNS-based user tracking. Herrmann et al. [100] utilized

classification methods such as Bayesian classifier and k-nearest neighbor to identify the re-

occurrence of users based on their DNS queries. In [102, 132], the authors used a modified

k-means algorithm to cluster DNS logs of the same user. DNSMiner [128, 129] re-identified

the user by extracting unique and repetitive fingerprints from DNS traces. Sun et al. [219],

proposed a method called constrained Dirichlet multinomial mixture for clustering DNS

sessions without knowing the number of users in advance.

In this dissertation, we choose the attack methods from [100] and [41] as both cover closed and

open-world settings and can easily be extended to more general scenarios, such as dynamic

IP assignment or open-world setting.

3.2.3 DSCorr: DNS Session Correlation with Domain Embedding

We first present the threat model from [41], followed by the tracking method DSCorr,

which is designed to tailor DNS session correlation based on domain embedding.

13

Figure 3.1: An example of sessions constructed from DNS queries. Different colors represent
different source IP addresses, and different shapes represent different queried domain names.

ThreatModel. Following the settings in existing works [41, 100, 102, 128, 129, 132, 219],

we make two key assumptions: 1) Although the attacker has access to raw DNS logs, they

cannot access DHCP logs, making it difficult to link a user’s dynamic IP addresses to their

ID. 2) Tracking users behind a NAT is beyond the scope of this dissertation. Under NAT,

one source IP address (or its anonymized version) can be associated with multiple users,

complicating accurate user profiling, linking, and labeling (for evaluation purposes).

Exiting Defenses. To defeat DNS-based tracking, a user can employ privacy-preserving

DNS resolution techniques like Adaptive DNS [131] or Oblivious DNS [205]. However, these

techniques are still in the early stages of adoption, and our threat model assumes they are

not used by the victims. It is important to note that DNS encryption mechanisms, such

as DNS-over-TLS and DNS-over-HTTPS, do not prevent adversaries in our setting (i.e.,

the resolver), as DNS packets are decrypted by the resolver. Ironically, these mechanisms

might even enhance the adversary’s capability in user tracking since most of the resolvers

supporting these protocols are centralized [31, 109, 10, 104].

DNS Session. Following previous work [41], the general assumption is that the attacker

14

Figure 3.2: The objective of the adversary, who aims to correctly link a DNS session to its
requesting user, regardless of IP churns.

constructs DNS sessions from the raw DNS logs and performs data linking at the session

level. Without considering multiple users sharing the same IP address at the same time

(e.g., under NAT), a DNS session is defined as a sequence of DNS queries associated with

a source IP address within a period and issued by the same user [41]. A new session is

created for a DNS query and its following queries if the previous DNS query was observed at

least 45 minutes earlier. According to empirical analysis in [41], a device typically continues

sending DNS requests as long as it stays online. A different device may use the IP address

only if it has not been used for a period of time, usually longer than 45 minutes. Figure 3.1

illustrates how sessions are created from a stream of queries. Notably, a session does not

have to contain all DNS queries from a source IP, and its covered time period is variable.

Two consecutive sessions could belong to the same user. This setting is more flexible than

previous works that set a session to be 24 hours [128, 129], and it avoids errors caused by IP

churns across users. User tracking happens after session construction. Figure 3.2 illustrates

the process of linking user sessions for tracking purposes.

Open-world and Closed-world Settings. Many previous works have studied the closed-

world setting [100, 128, 129, 35, 102, 132, 219], while more recent research has begun exploring

the open-world setting [234, 41]. These two settings are well-defined in the literature of

15

website fingerprinting, and we use the definitions proposed by Wang et al. [234]:

• In the closed-world setting, users are assumed to visit only a set of web pages known

to the attacker, and the attacker must determine which of these pages were visited.

• In the open-world setting, users can visit any web pages, and the attacker must also

identify pages not included in the known set.

To extend this definition to DNS-based tracking:

• In the closed-world setting, a DNS session originates from users within a set known to

the attacker, and the attacker must identify which user issued the session.

• In the open-world setting, a DNS session can come from any user, and the attacker

must recognize when the session is from a user not in the known set.

Generally, the open-world setting is considered more realistic yet challenging. As pointed

out by Wang et al. [234], classifying pages with a low base rate is error-prone. Similarly,

users with a low base rate (i.e., users who issue only a few sessions) also exist in DNS-based

tracking.

Ethics. The DNS dataset used in this dissertation is provided by the IT department of an

[anonymized] campus, which manages the campus DNS resolvers. The source IPs are hashed

before the dataset is given to us. As the campus also runs a DHCP server, the user ID

behind each source IP is known to the IT department. To help us build the ground truth,

the IT department also hashes the user IDs and provides us the mapping between them and

the source IPs. Notably, the hashed user IDs are only used to verify the effectiveness of the

tracking methods employed in this dissertation; they are not used as input for any of the

tracking methods. Following similar treatment of DNS datasets in other works [152, 86, 190],

the raw data and all intermediate data are processed and stored on a server located on the

16

same campus, with strict access control. The use of the dataset in this dissertation is directly

authorized by the campus administration office. Therefore, only the code of LDPResolve

is made public, without the dataset.

DSCorr Terms. Let a DNS session be s and a domain be d. The sequence of domains

requested by s can be represented as <d1,...,dj,...,dm>, where dj is the d of the jth request

and m is the number of requests in s. The user u behind a session s has either been labeled

by the adversary before the tracking attack or is unknown. Let the sessions already labeled

be SL, and the sessions unlabeled be SU. In the closed-world setting, the users behind SL

and SU are identical. In the open-world setting, they might not be identical.

Workflow of DSCorr. The design of DSCorr is based on semi-supervised learning to

handle the open-world setting. At a high level, DSCorr leverages SL as the training

dataset and creates session clusters grouped by the labeled user IDs. Then, an s in SU will

be assigned to a session cluster in SL, or classified as “unknown”. Four steps are carried

out.

1. Each d is converted to a numerical vector through domain embedding [169].

2. Sessions in SL are grouped to create labeled session clusters and build profiles for

them. A cluster consists of sessions of the same user.

3. Given an s in SU, the k nearest session clusters are identified through a data-sketching

process.

4. Fine-grained distances between s to all neighboring session clusters are computed. s

will be clustered to a session cluster in SL with the minimum distance in the closed-

world setting. For the open-world setting, s might be classified as “unknown” if it is

far from any session clusters.

17

3.2.4 Domain importance

For DSCorr and other methods, the similarity between sessions largely depends on the

proportion of domains shared among them. Thus we are motivated to study the properties

of such domains, in particular, whether they are popular among users. To this end, for each

session si, we compare it to the next session si+1 of the same user, and categorize the domains

appearing in both sessions as shared and the domains in si only as unique. Figure 3.3 shows

the distribution of shared and unique domains in terms of session-wise popularity, defined

by the number of sessions in our dataset the domain appears in. It turns out shared domains

are more likely to be popular: 62.7% shared domains are popular, while the number is 35.4%

for unique domains. Domains ranked after 10k have a 97.6% chance of being unique.

The result indicates popular domain names have higher importance for tracking, which may be

counter-intuitive. We speculate the main reason is that the combination of popular domains

is more powerful in linking sessions of the same user. Our observation is also echoed by

Kim et al. [128] that a large number of users cannot be fingerprinted by unique domains.

Noticeably, DSCorr did not track users with user-specific domains (e.g., “ephemeral” or

“disposable” domains) [17, 50], and the integration of this method can be an important

future work.

Other Types of Tracking. Most of the other works in tracking looked into web-based

(or browser-based) tracking. In its basic form, web code like JavaScript from a third-party

content provider attempts to link user’s visits based on tagging [133, 14, 22] or fingerprint-

ing [135, 65, 64]. Tagging stores an identifier to a browser and attempts to make it persistent,

even when the user blocks or frequently clears HTTP cookie. For example, Flash cookie and

HTML5 session storage have been leveraged for this purpose. However, as surveyed by Bu-

jlow et al., those tagging methods are ineffective under private browsing [34]. Still, recent

work showed by filling DNS cache with responses customized to each user, private brows-

18

Figure 3.3: CDF of “shared” and “unique” domain for top 10k domains. Domains are ranked
by session-wise popularity.

ing can be circumvented [133]. For fingerprinting, the properties unique to each browser

instance (e.g., clock skew of the device [135] and fonts installed in the operating system [65])

are analyzed passively for identification. While prior research focused on tracking a user on

a single device, a recent study shows cross-device tracking is possible [255].

Different from web-based tracking, network-based tracking looks into the characteristics of

network flows and maps them to the user. For example, Kumpost et al.[141] built user profile

based on HTTP/HTTPS/SSH traffic. Verde et al.[229] leveraged characteristics of Netflow

to track users behind the NAT. Previous works showed that machine-learning approaches

using packet sizes and intervals can correlate flows of the same user, even when the network

flows are encrypted and mixed under Tor [179]. A related attack is website fingerprinting,

which identifies the website visited by a targeted user from the encrypted traffic with network

19

features similar to flow correlation. Protocols like HTTPS [141], DNS-over-TLS [106] and

DNS-over-HTTPS [209] are found vulnerable under this attack.

A few other works also use DNS to mine users’ characteristics under very different set-

tings. DNS cache-based tracking [133] uses JavaScript code to query domains and exploits

the client-side DNS cache to tag a user, while we passively analyze the DNS dataset. De-

fecTor [85] exploits DNS packets for website fingerprinting, while DSCorr focuses on re-

identifying users. DSCorr also differs from [112], which reveals sensitive queries by an

institution using the logged DNS queries between recursive resolvers and authoritative name

servers, while we use DNS queries between stub resolvers and recursive resolvers.

3.2.5 Differential Privacy

We leverage differential privacy (DP) mechanisms to protect users from DNS-based user

tracking. Given a query from a data consumer [60], the original idea of DP assumes there

is a trusted data curator adding noises to the result under a DP notion (also called Central

DP).

Different from the central setting, local differential privacy (LDP, as defined in Definition 2.2

assumes there is no trusted data curator, and the noises are added by the data providers

(e.g., Internet users) before the data are collected by the curator. The user enjoys better

privacy as the data curator needs not be trusted, but the data utility is often worse than

central DP under the same privacy budget.

In this dissertation, we focus on the LDP protocols that support frequency estimation (e.g.,

Google’s RAPPOR [68]).

20

3.3 Domain Resolution under LDP

In this section, we propose a new privacy-preserving domain resolution method to protect

the user against DSCorr and other tracking methods, while avoiding drastic changes to the

client-side and server-side DNS infrastructure. We first overview the design of our proposed

defense, LDPResolve, and its motivation. Then, we elaborate how LDP can be adapted

in DNS resolution so that the privacy leakage is bounded. In the next section, we evaluate

the effectiveness of LDPResolve.

3.3.1 Overview of LDPResolve

At a high level, similar to other works against traffic fingerprinting [21], LDPResolve adds

noise to DNS queries from the users’ end. Moreover, while user privacy is essential for

tracking mitigation, maintaining DNS data utility is fundamental for legitimate third-party

applications. Therefore, a defense that ignores data utility is unlikely to be supported by

DNS service providers. This is a similar situation to crowdsourcing statistics [68], where

Internet companies need to collect data from users at large while abiding by privacy laws.

Legislation like the Do Not Track Act [5] is directly related to DNS-based user tracking.

Thus, we envision our design also helping companies avoid legal issues while using DNS

data. Our study shows that Local Differential Privacy (LDP) has the potential to maintain

both data utility and user privacy simultaneously. Therefore, we develop LDPResolve,

which adapts LDP for DNS resolution.

For the legitimate applications to be modeled under LDPResolve, we focus on malicious

domain detection, which extensively leverages DNS data [251]. After literature survey, we

found the frequency of domain visits is an important detection feature used by many research

works [29, 153, 247, 52, 147, 51, 77, 194, 220]. Hence, we select the LDP protocols used for

frequency estimation [235].

21

Challenges. Applying LDP to our setting involves overcoming two prominent challenges.

First, though Encode of LDP (see Section 3.2.5) have different options (i.e., 5 options are

listed in [235]), Direct Encoding (DE) is the only practical option for encoding DNS queries,

as all other methods have to change the format of a request1, which are unlikely to be

supported by DNS stakeholders. On the other hand, DE often results in much higher utility

loss than other methods when the cardinality of the answer set is large [235]. For example,

the variance of the estimation under DE can be two orders of magnitude larger than other

methods, when the privacy budget is tight and the answer set cardinality is high (see Table

2 of [235]). In our setting, users can resolve any domain among billions of the registered

domains, resulting in an unbearable error margin potentially.

Second, randomized response [237] is the default communication protocol under DE, in

which a user gives a false answer to the data curator at a certain probability. In our setting,

randomized response means replacing the domain to be queried (e.g., google.com) with

another domain drawn from a list (e.g., yahoo.com). Though it is expected to reduce tracking

accuracy, because the user’s DNS behaviors are altered, all Internet applications relying on

DNS are likely to be broken.

Solutions. For the first challenge, it can be addressed through extending a recently proposed

LDP concept, Utility-optimized LDP (ULDP) [174] (see Definition 3.1). The key insight

behind ULDP is that not all data are equally sensitive (e.g., the answer “Yes” is more

sensitive to the question “Have you ever cheated in an exam?” than the answer “No” [174]),

and the non-sensitive data output can be protected in a lesser way (i.e., adding less noise).

Overall, ULDP provides much better utility when non-sensitive data are dominant.

Definition 3.1 (XS ,YP ,ϵ)-ULDP [174]). Given XS ∈X , YP ∈Y , and ϵ∈R≥0, an obfuscation

mechanismMo from X to Y provides (XS ,YP ,ϵ)-ULDP if it satisfies the following properties:

1For example, assuming v is the answer provided by a user, when Unary Encoding (UE) [235] is used,
Encode(v)=[0,...,0,1,0,...,0], a binary vector where only v-th position is 1. When DE is used, Encode(v)=v.

22

1. For any y∈YI, there exists an x∈XN such that

Mo(y |x)>0 andMo(y |x′)=0 for any x′ ̸=x. (3.1)

2. For any x,x′∈X and any y∈YP ,

Mo(y |x)≤eϵMo(y |x′) (3.2)

where X (resp. Y) is a finite set of personal (resp. obfuscated) data. XS ∈ X is a set of

sensitive data common to all users, and XN =X \XS is the remaining personal data. YP ∈Y

is a set of protected data, and YI=Y\YP is a set of invertible data.

We extend ULDP to enable two-level privacy protection. For applications like malicious

domain detection, popular domains like google.com are usually not scrutinized because

they are quite unlikely to be malicious [187, 29, 77]. On the other hand, they are “anchors”

to user tracking, connecting sessions of the same user, as examined in Section 3.2.4. As

such, we treat the popular domains as sensitive data, adding higher-degree noise to them

under ULDP. The remaining unpopular domains are treated as non-sensitive data and be

processed with lower-degree noise to keep good data utility.

The second challenge can be addressed by parallel domain resolving : given a domain name d

to query, a user can send d to an alternative resolver (termed AltRR) when the risk of user

tracking is high, and send a dummy query d′ to the primary resolver. The idea of dispersing

DNS queries for better privacy was described in [38, 104]. Compared to previous works,

our mechanism is fine-tuned with LDP. As such, users’ privacy can be guaranteed under a

privacy budget ϵ. In addition, LDPResolve ensures the DNS data is usable by legitimate

applications that rely on aggregated statistics.

Workflow. Figure 3.4 illustrates the design and workflow of LDPResolve, following the

23

Alternative
Resolvers

Primary Resolver

(real query)
xs , x’n

xs

x’s

xn

x’n

xs

x’s

x’’s

xn

x’n

(x’n→x’n)

(xs → xs)

(x’s → x’’s)

(xn → x’’s)

(real query)

x’s , xn

LDPResolve

x’’s

(dummy query)

Figure 3.4: Workflow of LDPResolve. The symbols are defined in Section 3.3.2. A DNS
query might be perturbed and sent to AltRR based on (XS ,YP ,ϵ1,ϵ2)-ULDP.

concept of randomized response. When the stub resolver is about to send a DNS query for

domain d to a resolver configured by the user (i.e., primary resolver), she asks an oracle

integrated by the stub resolver whether d should be perturbed, depending on a generated

probability and whether d is listed in a sensitive set (set of popular domains). The sensitive

set is generated by a third-party, e.g., Alexa [8] or authoritative nameservers, and it is

periodically delivered to the stub resolver. When it is determined to be perturbed, it sends a

different query with domain name d′ to the primary resolver and the original d to an AltRR

to obtain the authentic answer.

AltRR. AltRR can be another resolver that is not colluding with the primary resolver. It

can be a local recursive resolver (RR), which directly talks to authoritative nameservers.

Instead of altering the entire DNS resolution [205], we use a combination structure of AltRR

and Primary RR, applying a DP-based approach to rationally distribute queries among RR.

In doing so, unlike previous work that considered only privacy, we can achieve a balance

between privacy, performance, and data utility. We expect the usage of AltRR will not

significantly increase the latency. Firstly, Hoang et al. showed that DNS resolution is

slightly longer with AltRR [104]. Secondly, only domains in the sensitive set go through

AltRR and we can use the prefetch strategy since the sensitive set is known beforehand. In

24

Section 3.4.7, we evaluate one AltRR implementation based on a local resolver.

As described in Section 2.1.1, Encode, Perturb, and Aggregate are the three key steps

for an LDP protocol. Since we choose DE for Encode, Aggregate becomes a trivial process

as no extra decoding is needed [235]. Perturb needs to be designed in light of ULDP and

we elaborate it next.

3.3.2 Perturb for LDPResolve

Let X be a set of DNS queries and Y be the perturbed queries. We use a randomized

mechanism A to map x∈X to y∈Y with probability P(y|x). We divide DNS queries into

sensitive queries about popular domains (termed XS ⊆X) and non-sensitive queries about

unpopular domains (termed XN ⊆X). After perturbation, YP⊆Y and YI⊆Y are generated,

which are associated with popular domains and unpopular domains respectively. We design

A to satisfy a new DP notation (XS ,YP ,ϵ1,ϵ2)-ULDP, as defined in Definition 3.2.

Definition 3.2 ((XS ,YP ,ϵ1,ϵ2)-ULDP). Given XS ,XN ⊆ X , YP ,YI ⊆ Y and ϵ1,ϵ2 ∈ R≥0, a

randomize mechanism A, where A(X)=Y , provides (XS ,YP ,ϵ1,ϵ2)-ULDP if it satisfies the

following properties:

1) For any y∈YI, ∃ x,x′∈XN

P(y|x)>0 and P(y|x′)=0,∀x′ ̸=x. (3.3)

2) For any x,x′∈X and any y∈YP ,

P(y|x)≤eϵ1P(y|x′) (3.4)

That is, ϵ1-differential privacy is guaranteed for ∀x∈X .

25

3) For any x,x′∈XS and any y∈YP ,

P(y|x)≤eϵ2P(y|x′) (3.5)

Where ϵ2-differential privacy is guaranteed for ∀x∈XS and ϵ1≥ϵ2.

We then provide a concrete construction (XS ,ϵ1,ϵ2)-URR (or (XS ,ϵ1,ϵ2)-Utility-optimized

Randomized Response) under it (see Definition 3.3). Figure 3.5 illustrates this protocol.

Definition 3.3 ((XS ,ϵ1,ϵ2)-URR). Given XS ⊆ X and ϵ1,ϵ2 ∈ R≥0, let c1 = eϵ2
eϵ2+|XS |−1

, c2 =

1
eϵ2+|XS |−1

, c3=
1

eϵ1+|XS |−1
, c4=

eϵ1−1
eϵ1+|XS |−1

. Then the (XS ,ϵ1,ϵ2)-URR can be defined as:

PuRR(y|x)=



c1 if xi∈XS ,y=x

c2 if xi∈XS ,y∈XS\{x}

c3 if xi∈XN ,y∈XS

c4 if xi∈XN ,y=x

0 otherwise

(3.6)

where c4≥c1≥c2≥c3, c1+(|XS |−1)c2=1, c4+|XS |c3=1.

With these notations, we are able to prove via two different approaches that (XS ,ϵ1,ϵ2)-URR

satisfies (XS ,YP ,ϵ1,ϵ2)-ULDP. The proof is shown below.

Proof. First Approach. We can show how the properties in Definition 3.2 hold by showing

all possible scenarios of input and output combinations satisfy the definition.

1) For any y∈YI , there ∃x,x′∈XN

PuRR(y|x)=c4>0 and PuRR(y|x′)=0,∀x′ ̸=x. (3.7)

26

xs
x’s

xn
x’n

xs
x’s
x’’s

xn
x’n

c1

c2

c3

c4

0

Figure 3.5: An illustration of how data are perturbed under (XS ,ϵ1,ϵ2)-URR.

2) For any x,x′∈XN and any y∈YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c4
c3
≤eϵ1 (3.8)

3) For any x,x′∈XS and any y∈YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c2

=eϵ2≤eϵ1 (3.9)

4) For any x∈XS , x′∈XN and any y∈YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c3

=
eϵ2(eϵ1+|XS |−1)
eϵ2+|XS |−1

≤eϵ1 (3.10)

Proof. Second Approach. We can demonstrate our protection mechanism as a two-layer

model as well: all input data has ϵ1-differential privacy guaranteed while for sensitive data,

another layer of ϵ2-differential privacy is provided.

27

– Layer 1. If we do not differentiate XS and XN , then we have same conclusion as

Equation 3.3 and 3.4.

1) For any y∈YI , there ∃x,x′∈XN

PuRR(y|x)=c4≥0 and PuRR(y|x′)=0,∀x′ ̸=x. (3.11)

2) For any x,x′∈X and any y∈YP ,

PuRR(y|x)
PuRR(y|x′)

≤ c1
c3
≤eϵ1 (3.12)

Therefore, for all input data, ϵ1-differential privacy is guaranteed.

– Layer 2. According to our definition, YP⊆XS , let ZP be the protected output set which

follows same definition of YP . Thus we have:

3) For any y,y′∈YP⊆XS and any z∈ZP

PuRR(z|y)
PuRR(z|y′)

≤ c1
c2

=eϵ2 (3.13)

Our (XS ,YP , ϵ1, ϵ2)-ULDP notion is adapted from the (XS ,YP , ϵ)-ULDP notion [174] by

introducing an additional ϵ in order to provide stronger protection over the sensitive data

entries (i.e., popular domains) while maintaining as much utility as possible for the non-

sensitive data (e.g., unpopular domains). (XS ,YP ,ϵ1,ϵ2)-ULDP provides ϵ1-DP and ϵ2-DP

for different input, and it inherits other basic properties of ULDP [174], like sequential

composition and post-processing.

28

SensitiveSet. As described in Section 3.3.1, we want to build the sensitive set and associate

it with a different privacy budget. The sensitive set consists of popular domains with a high

volume of visits. As implied by the results in Section 3.2.4, the repetitive queries of a user

to popular domain names form his/her “identifier”. Higher privacy protection for popular

domain names is thus a reasonable deduction. In our experiment, the list is generated based

on DNS sessions from another dataset of 9k users. When LDPResolve is installed by the

users, the sensitive set can be fetched periodically from a web server, like Adblock fetching

EasyList [12] The sensitive set can also be augmented with domains chosen by the user.

We assume the sensitive set is not a secret, so the adversary can obtain the set and actively

prune the enlisted domains before user tracking. In Section 3.4.5, we discuss the impact of

this strategy.

3.4 Evaluation of LDPResolve

We first describe the experiment settings for LDPResolve and three evaluation metrics. In

Section 3.4.1, we investigate to what extent LDPResolve can curb DNS-based user track-

ing. In Section 3.4.2, the three parameters of LDPResolve are assessed. In Section 3.4.4

and Section 3.4.3, we discuss alternative settings of LDPResolve, In Section 3.4.5, we

discuss the impact of the adaptive attack strategies. In Section 3.4.6, we compare against

another relevant work that disperses DNS requests. In Section 3.4.7, we implement a proto-

type of LDPResolve and evaluate its overhead.

Dataset. We extract anonymized DNS query logs from a campus resolver as our evaluation

dataset, which contain information such as hashed IPs, timestamps, domain names, qtypes,

etc. We use 30,716 DNS sessions collected from 1,000 different users in a two-week period to

evaluate both the open-world and the closed-world settings with a focus on the closed-world

setting, as it favors the adversary more. The average, min, and max DNS sessions per user

29

are 30.7, 12, 90 respectively. For a DNS session, the longest one covers 96.3 hours, while the

shortest one only issued 1 query. The median duration is 2.74 hours.

We choose 80% sessions of a user to fill SL and leave the remaining 20% for SU, which

enhances the capability of the attacker.

To generate the sensitive set, we collect another DNS dataset with 272,078 sessions from

9,000 users. It has no overlap with SL and SU. We rank domains based on their frequencies

in sessions and take the top NS domains as the sensitive set.

We simulate DNS queries under LDPResolve by perturbing their enclosed domains. We

vary different parameters, including ϵ1, ϵ2 and NS to assess their impact. In the default

setting, we only perturb sessions in SU, which represents the situation that the attacker

has acquired a “clean” SL and tries to correlate it with a noisy SU. The campus wireless

network assigns an IP for each device (though it is periodically changed based on DHCP),

so NAT/VPN egress endpoint is not expected.

Evaluation Metrics. We consider three metrics to evaluate the data utility. The first

is tracking accuracy (or TrkAcc), which is the same as the accuracy used to evaluate

DSCorr. The goal of LDPResolve is to reduce it as much as possible.

The second is standard deviation (or std) of the domain frequency (used by prior works

in malicious domain detection [29, 153, 247, 52]), measured by the session count. In addition

to std across all domains, we also measure it on the ones in sensitive set and non-sensitive

domains, and use std s and std n to represent their std respectively.

The third metric measures the utility at the session level. We measure the change ratio (or

ChgRatio) of domain names and domain pairs after perturbation. If O is original set of do-

main names (or domain pairs) and P is perturbed set, ChgRatio is computed as |O∩P |/|O|.

For ChgRatio on a single domain name, sensitive domain (s) and non-sensitive (n) domain

30

are calculated separately. For ChgRatio on domain pairs, pair of two sensitive domains

(s,s), one sensitive domain and one non-sensitive domain (s,n), and two non-sensitive do-

mains (n,n) are measured. We choose ChgRatio because it impacts the mapping of a domain

name to the source IP address or domain names to domain names, which is also utilized a

lot for malicious domain detection [147, 51, 77, 194].

3.4.1 Impact on User Tracking

We first measure the impact of LDPResolve on all tracking methods (jac, cos, bay, ja-bi,

co-bi, ba-bi, DSCorr) in the closed-world setting as described in [41]. We set ϵ1 = 10

and ϵ2 =2 to represent high & low privacy budgets. We set Ns to 2k and 10k out of more

than 2 million domain names from the 9k-user set, to assess the impact of the sensitive set.

When Ns = 2000, 72.6% domain names per session are sensitive, but 1.7% domains in SU

are sensitive, showing a long-tail distribution. When Ns=10000, the numbers are changed

to 92.4% and 8.3% respectively.

Figure 3.6 shows TrkAcc before and after LDPResolve is applied2. It turns out DSCorr

is influenced most: TrkAcc is dropped to 60.0% when Ns is 2k, and 10.1% when Ns is 10k,

from 93.0%. On the other hand, the impact to 1NN-Cosine (cos) is the the smallest among

all tracking methods: TrkAcc is dropped to 62.2% and 34.1% from 86.6%, when Ns is 2k and

10k respectively. The result indicates LDPResolve is effective in protecting users’ privacy,

and it has stronger influence on tracking methods with higher TrkAcc.

We also test LDPResolve in the open-world setting, by setting Ns to 10k. The original

TrkAcc for 1NN-Cosine and DSCorr are 70.9% and 82.3% respectively. Under LDPRe-

solve, TrkAcc of them are dropped to 51.9% and 50.8%. In the open-world setting, one can

achieve an accuracy of at least 50% by labeling all sessions as unknown. Thus, the TrkAcc

2Noticeably, bi-ba has higher TrkAcc comparing to DSCorr (95.7% vs 93.0%). This is because we use
80% and 20% data for training and testing here, varying the number of labeled sessions per user. DSCorr
performs better with less data.

31

jac cos bay ja-bi co-bi ba-bi DSCorr

Method

0

20

40

60

80

100
T
rk
A
cc

raw 2k 10k

Figure 3.6: Comparison of TrkAcc before (“raw”) and after deploying LDPResolve (“2k”
and “10k”). “2k” and “10k” are values set to Ns. All numbers are percentage.

drop here is sufficient enough to show the effectiveness of LDPResolve.

For the follow-up experiments, we choose 1NN-Cosine (uni-gram) as the tracking method

since it is more robust to noise, and focus on the closed-world setting.

3.4.2 Impact of Parameters

We discuss the impact of different parameters (ϵ1, ϵ2,Ns) in LDPResolve on the three

evaluation metrics here. We set a large ϵ1 (10) and a small ϵ2 (2) initially because we intend

to preserve more privacy for sensitive domains (more noise added) while maintaining better

utility for other domains (less noise added). Theoretically, eϵ1 needs to be at least the same

order as the size of the sensitive set Ns to avoid significant changes to non-sensitive domains.

32

To evaluate the impact of each parameter, we fix other parameters and vary the tested

parameter and obtain privacy and utility results.

We examine ϵ1 from 2 to 15 and ϵ2 from 0.5 to 10 with different size of the sensitive set

Ns. We evaluate the impact of these parameters based on their TrkAcc, std and ChgRatio.

Overall, a large ϵ1 and Ns with small ϵ2 is preferred. More specifically, by setting ϵ1 = 10,

ϵ2=2 and Ns=20,000, LDPResolve is able to decrease the tracking accuracy to 23.3% for

1NN-Cosine, which is proved to be the method most robust to noise. Regarding the utility

measured by std, our result indicates they can be preserved (especially for non-sensitive

domains). For instance, when ϵ2=2 and ϵ1=10, std n is only 5.71.

Impact of ϵ1. ϵ1 is the privacy budget for the whole domain set and the smaller ϵ1 will

introduce greater noise to all the domains. We tested 5 different ϵ1 ranging from 2 to 15

while setting ϵ2 and NS to 2 and 10000 respectively. The result of TrkAcc and std are shown

in Table 3.1. We see that as ϵ1 drops, TrkAcc drops drastically due to the higher-level noise

added. Besides, std of the whole domain set increases slowly with std of sensitive domains

remaining almost the same and std for non-sensitive domains grows, because we use ϵ2 to

control the changes on the sensitive domains.

Figure 3.7a supports this claim as well with the result on ChgRatio. The co-occurrence of any

sets of domains involving non-sensitive domains is dropping sharply from a very high level as

ϵ1 gets smaller. Meanwhile, 99.8% of non-sensitive domain names and 99.5% non-sensitive

domain pairs are unchanged when ϵ1 is set to 15. Only less than 16.8% of non-sensitive

domains and 1.3% non-sensitive domain pairs remain the same after the ϵ1 is decreased to

7. Since non-sensitive domains play a big role in security research, ϵ1 should be set to a

relatively high value in order to guarantee reasonable utility.

Impact of ϵ2. ϵ2 is the privacy budget for sensitive domains only, and the smaller ϵ2 intro-

duces more noise. Similarly to the last setting, we fix ϵ1 to 10, NS to 10000, and examine

33

ϵ1 15 10 9 8 7 6 5 2

TrkAcc 38.7 34.1 28.4 19.5 10.2 3.7 1.4 0.2
std 332.30 343.66 352.52 360.62 365.38 367.61 368.45 369.12
std s 1279.53 1279.63 1279.94 1280.39 1279.76 1279.92 1279.01 1280.31
std n 3.48 5.71 6.85 8.54 10.66 10.75 11.20 10.84

Table 3.1: Impact of ϵ1 on TrkAcc (shown in percentage) and overall std. std s and std n

are std for sensitive and non-sensitive domains.

ϵ2 10 8 7 6 5 2 0.5

TrkAcc 84.8 80.2 70.3 57.4 43.6 34.1 33.9
std 121.59 264.24 305.47 326.82 336.81 343.66 343.95
std s 241.10 731.94 967.65 1127.27 1214.65 1279.63 1282.55
std n 3.27 3.80 5.31 5.52 5.67 5.71 4.38

Table 3.2: Impact of ϵ2 on TrkAcc, std, std s and std n.

NS 1000 2000 5000 10000 20000

TrkAcc 68.0 62.2 48.8 34.1 23.3
std 363.13 388.23 376.73 343.66 304.17
std s 2552.22 2205.18 1669.81 1279.63 949.84
std n 1.72 2.15 6.54 5.71 7.13

Table 3.3: Impact of NS on TrkAcc, std, std s and std n.

the impact of different ϵ2 from 0.5 to 10. In this setting, we have the non-sensitive domains

not impacted so their utility to legitimate applications is preserved. But because tracking

relies on sensitive domains, it is disrupted.

As shown in Table 3.2, std of non-sensitive domains is small (all less than 6) and stable

across different ϵ2. A small difference is observed because a different set of non-sensitive

domains is perturbed every time we run the experiment. The same pattern can be found

in Figure 3.7b where the ChgRatio of domains or domain pairs without involving sensitive

domains remains almost unchanged under the fluctuation of ϵ2.

In conclusion, higher ϵ1 and lower ϵ2 are preferred for a good balance between privacy and

data utility.

34

2.55.07.510.012.515.0

ε1

0.00

0.25

0.50

0.75

1.00

R
at
io

s

n

(s,s)

(s,n)

(n,n)

(a) ChgRatio vs. ϵ1

0246810

ε2

0.0

0.2

0.4

0.6

0.8

R
at
io

s

n

(s,s)

(s,n)

(n,n)

(b) ChgRatio vs. ϵ2

5000 10000 15000 20000

NS

0.00

0.25

0.50

0.75

1.00

R
at
io

s

n

(s,s)

(s,n)

(n,n)

(c) ChgRatio vs. NS

Figure 3.7: ChgRatio vs. ϵ1, ϵ2 and NS. s, n, (s, s), (s,n) and (n,n) are explained in
“Evaluation metrics”.

Impact of NS. We fix ϵ1 to 10, ϵ2 to 2 and change NS from 1k to 20k. Table 3.3 shows

that by increasing NS, user tracking is severely interfered, with TrkAcc dropping from 68.0%

to 23.3%. In the meantime, its impact on non-sensitive domains is controlled, with std of

them ranging from 1.72 to 7.13. Figure 3.7c shows that with the increase of NS, ChgRatio

of sensitive domains, nonsensitive domains and pairs of nonsensitive domains are decreasing.

Here we explain this observation in depth. Followed by increase of Ns, 4 perturbation

probabilities c1, c2, c3, c4 all decrease. Sensitive domains will have a greater chance to be

changed as they are associated with c1,c2,c3, while non-sensitive ones are less changed as

it is only impacted by c4. With Ns increased, sensitive set is expanded to contain more

low-frequency domains, so std n also increases. For pairs associated with sensitive domains,

the perturbation breaks their relations, so the ChgRatio of them remain low with a trend of

decreasing.

From the result and explanation above, it is clear that Ns is also an essential parameter for

LDPResolve. Larger Ns is recommended when the legitimate applications highly rely on

the non-sensitive domains. Though due to the power-law distribution of domains, 1k and

20k have a big difference of influence on user sessions, only a small portion of the whole

domain set is impacted, as shown in Section 3.4.1.

Our default setting assumes SL is clean to the adversary. We further explore the scenario

35

when SL has noises injected by LDPResolve. The parameters are the same as our default

setting: ϵ1=10,ϵ2=2, Ns=10000.

Firstly, we assume SL is noisy while SU is clean. The tracking accuracy turns out to be

23.4%, which is even worse than 34.1% when we assume a clean SL and a noisy SU. There-

fore, such “data poisoning attack” is even more effective against user tracking. Secondly,

we allow one clean session for each user to be included in SL (SU is still clean). Tracking

accuracy will be increased to 41.9%. The result suggests even one clean session in SL can

give adversary great lift in countering LDPResolve. Finally, if both SL and SU are noisy,

the accuracy will drop back to 32.5%.

3.4.3 Sensitive Set with SLDs

So far we fill the the sensitive set with FQDNs (Full Qualified Domain Names). It can also be

constructed by extracting the SLDs (Second-Level Domains) part from the popular FQDNs,

by leveraging public suffix list [4]. Then, if the SLD of a domain name matches the sensitive

set, it will be considered as in XS . By doing so, the sub-domains under sensitive domains

are also protected.

By building the new sensitive set based on only 100 most popular SLDs from the same

9k-user dataset, tracking accuracy is dropped to 14.16%. This result shows that by adding

strong noises to a small set of SLDs, tracking will be significantly disturbed.

When applying this change, certain domains need to be excluded, i.e., not adding their

SLDs to sensitive set. One example is domains requested under PTR Record. Because all

PTR records are under the same SLD in-addr.arpa or ip6.arpa, if including those domains

in sensitive set, security research based on PTR records [185] will be significantly impaired.

36

3.4.4 Noisy SL

Our default setting assumes SL is clean to the adversary. We further explore the scenario

when SL has noises injected by LDPResolve. The parameters are the same as our default

setting: ϵ1=10,ϵ2=2, Ns=10000.

Firstly, we assume SL is noisy while SU is clean. The tracking accuracy turns out to be

23.4%, which is even worse than 34.1% when we assume a clean SL and a noisy SU. There-

fore, such “data poisoning attack” is even more effective against user tracking. Secondly,

we allow one clean session for each user to be included in SL (SU is still clean). Tracking

accuracy will be increased to 41.9%. The result suggests even one clean session in SL can

give adversary great lift in countering LDPResolve. Finally, if both SL and SU are noisy,

the accuracy will drop back to 32.5%.

3.4.5 Adaptive Tracking against LDPResolve

To counter LDPResolve, an adaptive attacker can try to eliminate the noises introduced

by different means. As ULDP ensures domains in the non-sensitive set are invertible, one

feasible option is to remove the observed domains that appear in the sensitive set, therefore

reduce the effect of change of domains. In this way, the queries left in the records contain only

authentic domains. Another option to eliminate the effect of LDPResolve is to estimate

the domain frequency by reversing (XS ,ϵ1,ϵ2)-URR.

Removing Sensitive Domains. By removing the sensitive domains in the DNS records,

most of the noises would be removed along with them. On the other hand, the tracking

effectiveness should not be restored to the level without LDPResolve, since there are less

domains to be used to connect sessions of the same user.

It turns out that tracking accuracy rises from 34.06% to 53.08% after this adaptive strategy.

37

For the vanilla setting (attacker has access to the clean data in both SL and SU and no

domains are removed), the accuracy is 86.6%. As such, we argue that even this strategy is

applied, the tracking accuracy is far from optimum for the adversary.

Reversing(XS ,ϵ1,ϵ2)-URR. LDPResolve uses (XS ,ϵ1,ϵ2)-URR to perturb a request. The

process depends on a few parameters (c1, c2, c3, c4). When they are known to the adversary,

she might attempt to reverse the perturbation process to estimate the real distribution of a

domain based on the observed distribution. We propose an implementation for this strategy

and evaluate its impact on LDPResolve. Mathematical details are listed below.

Suppose
∣∣X∣∣ is the total number of observed queries,

∣∣∣X̂∣∣∣ the estimate and
∣∣∣XN

∣∣∣ is the num-

ber of non-sensitive queries being observed. Note that
∣∣X∣∣= ∣∣∣X̂∣∣∣ under LDPResolve.

∣∣∣X̂N
∣∣∣

is the estimate of the real non-sensitive queries. According to the definition of (XS ,ϵ1,ϵ2)-

URR, we have:

∣∣∣X̂N
∣∣∣= 1

c4

∣∣∣XN
∣∣∣ (3.14)

Therefore, the estimate of real sensitive queries
∣∣∣X̂S

∣∣∣ would be:

∣∣∣X̂S
∣∣∣= |X|−∣∣∣X̂N

∣∣∣= |X|− 1

c4

∣∣∣XN
∣∣∣ (3.15)

For a specific observed sensitive query xS
0 , the total number of xS

0 follows the equation below:

38

∣∣xS
0

∣∣= c1
c1+c2+c3

∣∣x̂S
0

∣∣+ c2
c1+c2+c3

∑
k ̸=0

∣∣x̂S
k

∣∣ 1

|XS |

+
c3

c1+c2+c3

∣∣∣X̂N
∣∣∣ 1

|XS |

=
c1

c1+c2+c3

∣∣x̂S
0

∣∣+ c2
|XS |(c1+c2+c3)

(
∣∣∣X̂S

∣∣∣−∣∣x̂S
0

∣∣)
+

c3
c1+c2+c3

∣∣∣X̂N
∣∣∣ 1

|XS |

=
c1

c1+c2+c3

∣∣x̂S
0

∣∣+ c2
|XS |(c1+c2+c3)

(
∣∣X∣∣

− 1

c4

∣∣∣XN
∣∣∣−∣∣x̂S

0

∣∣)+ c3
c4(c1+c2+c3)|XS |

∣∣∣XN
∣∣∣

(3.16)

Therefore, we have the estimation of any observed domains as follows:

∣∣x̂S
0

∣∣= c2−c3
c4
−c2

∣∣X∣∣+∣∣xS
0

∣∣|XS |(c1+c2+c3)

(c1−c2)|XS |
(3.17)

Attacker will then use |x̂S
0 | for user tracking. It turns out this strategy does not work

well when the sensitive set is large, which introduces large randomness to the perturbation

process. When Ns is 10k, TrkAcc is slightly increased from 34.06% to 34.54%. As an

alternative solution, the adversary could choose to reverse the non-sensitive set only, which

are derived by excluding sensitive set from the entire domain set. This strategy increases

TrkAcc to 53.50%, but still far from the vanilla setting when LDPResolve is not deployed

(86.6%).

3.4.6 Comparison with K-resolver

As described in Section 3.3.1, K-resolver [104] is expected to deter tracking by dispersing

DNS queries across resolvers. We test K-resolver by splitting DNS requests into k slices, and

launch 1NN-Cosine tracking against it. The detailed evaluation results are shown below.

39

Figure 3.8: Comparison on TrkAcc of LDPResolve and K-resolver by k.

We vary k from 18 to 90 (with step size 8) and TrkAcc is reduced from 62.89% to 30.7%,

as shown in Figure 3.8. It turns out only when k is very large (over 74), K-resolver can

outperform LDPResolve (TrkAcc at 34.06%) in theory. However, finding such a big pool

of resolvers is quite difficult. In fact, Hoang et al. investigated 53 DNS-over-HTTPs resolvers

and found only 26 of them can provide reliable services. LDPResolve offers sufficient

protection by involving much fewer resolvers (only 2). In fact, as a deterministic hash

function is used by K-resolver, a group of domains will always be sent to the same resolver,

regardless of how much information they leak. The randomized protocol of LDPResolve

addresses this limitation.

3.4.7 Prototype

We implement a prototype of LDPResolve to evaluate its overhead. Our prototype is built

on top of dnsdist[1], an open-source DNS load-balancer. We write Lua, Python, and Shell

40

Figure 3.9: Comparison of RTT between different settings of LDPResolve. “ldp” are all
queries. “ldp-sensitive” and “ldp-nonsensitive” are queries to domains in and not in the
sensitive list. “ldp-prefetch” is RTT of all queries when prefetch of sensitive domains is
enabled.

scripts to customize dnsdist to support LDPResolve. The code we wrote is released on

GitHub.

For domains that are unperturbed, we query them through a primary resolver, which is a

public resolver (223.5.5.5) in our experiment. For domains that are perturbed, two kinds

of queries are issues: 1) queries sent to the alternative resolver (AltRR), which is set to be a

trusted local recursive resolver running PowerDNS [6] and directly talking to authoritative

nameservers, and 2) dummy queries (i.e., noise) sent to the primary resolver. The two types

of queries are issued in separate processes, so the impact on the normal DNS resolution is

confined. It is also worth mentioning that we create a local cache with a fixed size similar

to the sensitive set.

41

We randomly choose a group of sessions of one user in our dataset, replay the first 10k DNS

queries (qname/qtype combination) and evaluate the Round-trip Time (RTT) and traffic

volume.

RTT. Firstly, we measure the distribution of the query RTTs under LDPResolve. Figure

3.9 shows the CDF plot of the 10K queries. Because of the local cache, RTT for most of

the queries is less than 10ms (querying the primary resolver takes about 20ms). Responses

to the non-sensitive domain names are slower than the sensitive ones, because they are less

likely to be requested multiple times (so cached). We also examined the idea of prefetching

the domain names in the sensitive set, and the RTT turns out to be even smaller generally.

Overall, our result shows LDPResolve is efficient under parallel domain resolving.

Traffic Volume. We found the 10k queries generate about 2.76MB of DNS traffic to the

public resolver. When using LDPResolve, 3.28MB DNS traffic is generated, where 2.36MB

goes to the primary resolver, and 0.92MB goes to AltRR, which is 18.8% higher than querying

DNS normally. The traffic sent to the primary resolver is actually reduced because of the

local cache.

3.5 Discussion

Limitations of LDPResolve. 1) The utility could be worse for popular domains due to

ULDP, which can hurt the applications like domain popularity ranking at recursive resolvers.

From the level of authoritative nameservers, the impact is expected to be smaller, as queries

from RRs over the world are aggregated. 2) We consider the passive attacker who only does

traffic analysis and do not consider the active attacker who is able to change the state of

the user’s device, like changing DNS cache [133]. It would be an interesting study about

whether or how an active attacker would be affected under LDPResolve. 3) According

to our implemented prototype of LDPResolve, the overhead of traffic volume is moderate

42

and the latency can even be reduced when AltRR uses local resolver, local cache, or prefetch.

These options might not always be available to the users, so the performance result should

be perceived with a grain of salt.

Sensitive Set. As the sensitive set is generated based on the historical domain popularity,

an attacker can manipulate this set by crafting domain visits. There exist two strategies: 1)

injecting a malicious domain into the sensitive set so LDPResolve will perturb it at higher

probabilities, but it also makes a user less likely to visit it; 2) injecting many irrelevant

domains to “kick out” the real popular domains, but to override the query volume from

users requires significant network bandwidth. As such, there is no strong motivation for an

attacker to manipulate the sensitive set.

LDPResolve issues the same sensitive set to all users. An alternative approach is to let a

user customize it for better performance at her end. We can allow a user to manually change

or automatically generate it from her visiting history.

Limitations of Dataset. For evaluation, we use only one DNS dataset. We acknowledge

that using more datasets can address the potential bias caused by the user population, but

getting access to one, especially with session labels, is very challenging. Nevertheless, we

want to emphasize that our DNS dataset contains 10,000 users launching over 300,000 DNS

sessions, targeting 2 million domain names, which is sufficient for a large-scale study.

Alternative Defense Approach. To defend against DNS-based tracking, in addition to

LDPResolve, other approaches include spreading DNS requests to multiple resolvers [104]

and using an “oblivious DNS” which obfuscates the queries from clients [205]. However, none

of those approaches considered the data utility for legitimate purposes like malicious domains

detection. LDPResolve makes the first attempt to balance the privacy and utility of DNS

data. Our adversary model assumes the recursive resolver is not trusted. An alternative

setting is that recursive resolver performs privacy protection before sharing the data with

43

another party, e.g., Passive DNS [11, 9]. Noises can be added by the recursive resolver

following a differential privacy notion and better data utility is supposed to be achieved. We

leave this setting as a future work.

44

Chapter 4

DPRA: Differentially Private Resource

Allocation

4.1 Introduction

Resource allocation (RA) is a long-standing problem relevant to various application scenar-

ios, such as virtual machine assignment [164], storage allocation [148], network bandwidth

management [162], and channel allocation [228]. Prior works mostly focus on the efficiency

and cost of RA [123, 27, 90, 137, 116, 111, 175], e.g., how to improve resource utilization and

guarantee the quality of service to all users [111]. However, the privacy issues of RA have

been overlooked for a long time and were only studied recently. Angel et al. [20] reveal that a

powerful attacker can determine the existence of other parties in the RA system. Specifically,

for an allocator managing limited resources, when one party requests resources, the number

of resources the other parties can obtain will be affected. Therefore, the attacker can try to

send a large volume of requests and use the allocation results to infer the existence of other

users. Knowing the existence of others opens the door to more serious attacks that can infer

users’ activities. For example, although Metadata-private messengers (MPM) are designed

45

to hide the calling activities between clients, such privacy guarantees can be breached with

RA side-channel and traffic analysis [20].

Existing Resource Allocators. Most of existing allocators (e.g., the first-in-first-out al-

locator) do not offer any privacy guarantee [19]. Recently, Angel et al. [19] proposed an

allocator AKR1 that satisfies differential privacy (DP) [61]. Angel et al. consider the sce-

nario where the resource allocator owns a limited number of resources and the attacker

controls a large number of clients. The attacker learns of the existence of another victim

when the requests to the allocator are not fulfilled. To protect privacy during RA, AKR adds

dummy requests to the real ones and then assigns resources to randomly chosen requests.

The number of dummy requests follows the biased Laplace distribution, and by a standard

post-processing argument in DP (explained in Section 4.2.3), the existence of the victim is

differentially private to the attacker. While the dummy requests puzzle the attacker, we

found that the utility of AKR is not satisfactory. For instance, to achieve an acceptable level

of DP (with parameters ϵ=2,δ=10−6) more than 40% of the resources must be wasted in its

experiment setting.

Our Solution. Different from AKR, which implies the attacker knows the total number of

requests after noise is added, we observe that the practical attacker only has a partial view

of RA. Therefore we choose to model the RA privacy from the attacker’s view. Due to the

randomness introduced by RA, we benefit from “privacy amplification” [23, 67] through such

modeling and achieve better privacy-utility tradeoff.

Then, we implemented the DP mechanisms under four noise distributions, including con-

stant (CST), uniform (UNI), one-sided geometric (GEO), and double geometric (DGEO), and

tailored them to our new modeling. We conduct a rigorous privacy analysis and derive much

tighter privacy bounds than AKR. We prove GEO and DGEO always satisfy ϵ-DP under var-

ious parameters, while CST and UNI satisfy ϵ-DP under certain conditions. Interestingly,

1The first letter of the authors’ names.

46

we find that adding a constant noise (CST), which obviously violates traditional DP, can

be proven to satisfy DP in the context of RA, due to the randomness of the allocation pro-

cess. On the other hand, AKR only considers non-negative Laplace noise and relies on the

post-processing argument to satisfy (ϵ, δ)-DP.

Evaluation. We evaluate the proposed mechanisms empirically by simulating the RA pro-

cess of Alpenhorn [145] with 5 million to 100 million rounds of requests, to demonstrate the

privacy-utility tradeoff in real-world settings. (1) GEO outperforms other mechanisms when

ϵ is smaller (i.e., ϵ < 2) and has relatively stable performance; (2) DGEO performs better

with a larger ϵ (ϵ > 2). Compared to AKR which wastes 44% of the resources, DGEO only

wastes 10% of resources with ϵ= 2. Moreover, when ϵ= 2.25, AKR utilizes 60% of the re-

sources while DGEO achieves 97% utilization. (3) Parameters of the mechanisms have to be

carefully tuned and negative bias should be avoided. The advantage over AKR is especially

surprising as AKR is supposed to have better utility under the relaxed (ϵ, δ)-DP, whereas our

mechanisms follow the strict ϵ-DP. This justifies the effectiveness of our privacy analysis.

Contributions. The main contributions are summarized below:

• We conduct a rigorous privacy analysis of differentially private RA, and derive tighter

privacy bounds under the attacker’s view for four noisy mechanisms.

• We theoretically and empirically evaluate our proposed mechanisms. One mechanism,

called GEO, leads to the best privacy-utility tradeoff and outperforms AKR by a large

margin.

• We published the code in a GitHub repository [47].

47

4.2 Background

4.2.1 Problem Definition

Resource allocation (RA) assigns limited resources to the requesting parties, and we focus

on RA within computing systems in this paper. Examples include resource management

in data centers [18], assignment of virtual machines (VMs) in cloud [164], cache allocation

in computers [148], and channel allocation for Metadata-private Messenger (MPM) [145].

Below we first provide an abstract view of standard RA and describe its involved parties and

procedure. Then, we describe the attackers’ goals and capabilities in RA. The frequently

used notations are defined in Table 4.1.

Notation Description

D,D′ Neighboring datasets differing in one victim
k Number of available resources
m Number of compromised clients
d Number of noisy requests (can be negative)
y Number of resources dispatched to attacker

xℓ,xr,p,s,µ Parameters of the noisy mechanisms

Table 4.1: Notations frequently used in this paper.

RAParties and Procedure. Our abstraction of standard RA considers a scenario where

an allocator allocates resources based on the requests submitted by a number of clients. The

allocator can contain one server or a group of servers for fault-tolerance. In the setting of

data center, the allocator can be a virtual machine manager (VMM), and the client can

be a data center tenant. In the setting of MPM, where two users can set up a call in a

private way, the allocator can be a callee and the client can be a caller. Regarding the RA

procedure, we assume it takes rounds of interactions between the allocator and the clients.

In each round, the allocator receives requests from its clients for resources (e.g., CPUs in

a cloud and communication channels to be allocated to a caller in MPM) and makes the

best efforts to serve the requests. Hence, for each request, the allocator either accepts it and

48

Allocator
Request

Clients compromised
by attacker

Victim

Resource granted

Figure 4.1: An example of RA. An allocator has six resources and the total number of
requests sent by attacker is six. Privacy of the victim is violated when the attacker observes
one of the requests is not fulfilled.

allocates the resources, or rejects it when all resources have been occupied.

Following prior work [19], we assume the quantity of the resources is a limited number k,

and all resources are identical. Each round, some clients send requests, and each request

asks for one piece of resource. Because the resources are identical, the requests are also

identical (except the requesters’ IDs). We note that some assumptions can be relaxed (e.g.,

resources are not identical and each client can request multiple resources) to match different

application scenarios, and we discuss these variations in Section 4.6.3.

AdversaryModel. Since the clients’ requests might not always be fulfilled under limited

resources, the allocator’s response could leak information about the existence of some clients.

Figure 4.1 illustrates how such inference attack can be conducted. Formally, we assume the

attacker in the strongest attack scenario who can:

• compromise all clients except one victim client, and we denote the number of compro-

mised clients as m.

• know the number of available resources k before RA.

• compromise more clients than the resources, i.e., m≥k, and all requests are submitted

49

at the same time.

The attacker can tell there is a victim requesting a resource if less than k requests from the

attacker are fulfilled.

We assume the adversary is malicious who can behave arbitrarily rather than being semi-

honest. We only consider the privacy issues in RA and other issues like availability (e.g.,

the attacker blocks a victim from getting resources by overwhelming the allocator) are out

of scope. We note that an adaptive attacker can exploit the correlation of results between

multiple rounds, and infer more information that weakens the allocation privacy. We propose

a few approaches to tackle such adversary in Section 4.6.2.

Regarding the allocator, we assume it is trustworthy, and can see all clients and requests and

add noises. Hence, the allocator can analyze the historical data to estimate the parameters

to be used by our mechanisms without privacy issues. We also assume the communication

between the victim and the allocator is secure, so the number of the victim’s requests are

not leaked.

Impact of RA Side-channel Leakage. Even though the information about the victim

during RA is seemingly insignificant, it can be leveraged as a side channel to break privacy-

enhancing technologies or make the subsequent attacks more effective.

Specifically, Angel et al. described an attack based on the RA side-channel [20] against MPM.

MPM like Vuvuzela [228], Alpenhorn [145], Stadium [226] and Karaoke [144] hide both the

message content and its metadata (including sender, receiver, time of communication, etc.)

from the network adversaries. In essence, a user within an MPM initiates a conversation

with her friend on an agreed time or round and encrypts the messages with a shared key.

In the conversation round, the user initiates k channels to k friends (including the friend

to have the “real” conversation). To avoid leaking metadata, users are forced to send and

50

receive a message on each channel in each round 2. Since MPM requires the clients to always

be online, only the communicating parties of a client should be protected, while the client’s

existence is known.

It turns out the privacy guarantee of MPM can be entirely violated. As shown by Angel et

al. [20], a user usually has a greater number of friends than k channels. When the attacker

controls m (m≥k) friends of the user and lets them call the user, if the user is busy (e.g., not

responding) to more than m−k callers controlled by the attacker, the attacker knows the

user is communicating with others who are out of her control. Moreover, when the attacker

compromises the friends of multiple users, she can infer which users are likely active in a

given round with intersection and disclosure attacks [16, 163]. Specifically, the attacker can

narrow down the possible sender-recipient pairs by ignoring all the idle users during the first

round of calling. Then the attacker can build intersections of active users and keep reducing

the set of possible sender-recipient pairs during additional rounds. Because the requests and

resources are all identical under our assumptions, detecting such inference attack is also very

challenging.

Existing Resource Allocators. We aim to design an RA that hides the existence of the

victim while maximizing request fulfillment. One trivial solution that provides perfect privacy

is to have the allocator withhold all the resources and reject every request, but obviously,

this solution has zero utility. Angel et al. characterizes the existing allocators into (1) FIFO

(first in, first out) allocator, (2) Uniform allocator, (3) Slot-based resource allocator (SRA)

and (4) Randomized resource allocator (RRA) [19], while FIFO and uniform allocators are

non-private and SRA and RRA are private. However, both SRA and RRA incur prominent

utility loss.

2MPM is different from the normal messenger apps in that it can decline legitimate calls to providemetadata
privacy. Yet, given that each conversation round has very small latency (e.g., measured in micro-seconds in
the context of Alpenhorn [19]), the impact of call declining on user experience remains moderate.

51

4.2.2 Differential Privacy

Our work applies differential privacy (DP) mechanisms to RA. We briefly overview DP in

this subsection and describe how AKR applies DP to RA [19] in the next subsection.

In the standard (central) setting, a trusted data curator adds noise (e.g., through the Laplace

mechanism or Geometric mechanism) to fulfill a DP notion (e.g., (ϵ,δ)-DP) given a query

from a data consumer, which provably bounds the information leakage. (ϵ,δ)-DP [61] is

formally defined in Definition 2.1.

Laplace Mechanism [61]. It computes a function f on input dataset D while satisfying

ϵ-DP, by adding to f(D) a random noise. The magnitude of the noise depends on GSf , i.e.,

the global L1 sensitivity of f , defined as (on any two neighboring datasets D≃D′),

GSf =max
D≃D′
||f(D)−f(D′)||1 (4.1)

When f outputs a single element,M can be written as:

M(D) =f(D)+L
(

GSf
ϵ

)
(4.2)

where L (s) denotes a random variable sampled from the Laplace distribution with scale

parameter s such that Pr[L(s)=x]= 1
2s
e−|x|/s. When f outputs a vector,M adds independent

samples of L
(

GSf
ϵ

)
to each element of the vector.

GeometricMechanism[142]. If the output domain is discrete, one can use this mechanism,

which draws noise from the double geometric distribution: Pr[DG(s)=x]= 1−e−
1
s

1+e−
1
s
e−

1
s
|x|/GSf ,

for x∈Z. The Geometric mechanism satisfies ϵ-DP.

Composition. Two properties, i.e., composition, and post-processing, of DP, are frequently

used to build complicated algorithms from the basic mechanisms. See more details of these

52

properties in Section 2.1.2. Sequential composition states that combining multiple subrou-

tines that satisfy DP for (ϵ1,δ1),(ϵ2,δ2),··· results in a mechanism that satisfies (ϵ,δ)-DP for

ϵ=
∑

ϵi and δ=
∑

δi. On the other hand, advanced composition, e.g., Rényi DP [172], can

provide smaller privacy degredation (ϵ grows sub-linearly) comparing to sequential compo-

sition.

Definition 4.1 (Rényi Differential Privacy [172]). A mechanismM :X →Y is said to satisfy

(ν,τ)-RDP if the following holds for any two neighboring datasets D,D′

1

ν−1
logEo∼M(D)

[(
Pr[M(D)=o]

Pr[M(D′)=o]

)ν]
≤τ. (4.3)

Theorem4.1(RDP Sequential Composition [172]). IfM1 andM2 are (ν,τ1)-RDP and (ν,τ2)-

RDP respectively then the mechanism combining the two g(M1(D),M2(D)) is (ν,τ1+τ2)-RDP.

Theorem 4.2 (RDP to (ϵ,δ)-DP [172]). If a mechanism is (ν,τ)-RDP, then it also satisfies

(τ+ log1/δ
ν−1 ,δ)-DP.

k-fold Adaptive Composition [63]. In cases where the attacker interacts with the DP

algorithms over multiple rounds, the k-fold adaptive composition is to describe the privacy

leakage in these cases over time.

Theorem 4.3. For every ϵ > 0, δ, δ′ > 0 and k ∈N, the class of (ϵ,δ)-differentially private

mechanisms is (ϵ′,kδ+δ′)-differentially private under k-fold adaptive composition, for

ϵ′=
√

2kln(1/δ′)·ϵ+k ·ϵϵ0, (4.4)

where ϵ0=eϵ−1. For pure differential privacy, δ is set to 0.

53

4.2.3 Differentially Private Allocation in AKR

As all the requests are identical from the allocator’s point of view, the key of providing

privacy is to “control” the number of resources the attacker receives. Thus, AKR asks the

allocator to add dummy requests. Specifically, AKR sets the dataset D to be all requests

made by clients, and computes the noise L
(

GSf
ϵ

)
. To ensure the number of added requests

(i.e.,M(D) in Equation 4.2) is non-negative, a bias µ is added when sampling the Laplace

noise so that the probability of the noise being negative is bounded by δ, which we refer to

as the biased Laplace distribution. The workflow of AKR is:

• Input: k, µ, GSf , ϵ, D

• Noise d ←−
⌈
max

(
0,µ+L

(
GSf
ϵ

))⌉
• Set Q←−|D|+d dummy requests

• U←− uniformly select min(|Q|,k) items out of Q

• Output: U

Overall, AKR satisfies (ϵ,δ)-DP. Below is its DP proof.

Theorem4.4(DP Proof for AKR [19]). AlgorithmM is (ϵ, δ)-differentially private for ϵ=1/s

and δ=
∫ 1

−∞L(w|µ,1/ϵ)dw. Specifically, for any subset of values L in the range [f(D),∞) of

M:

Pr[M(D)∈L]≤eϵPr[M(D′)∈L]+δ (4.5)

and

Pr[M(D′)∈L]≤eϵPr[M(D)∈L] (4.6)

54

where f(S) computes the cardinality of set S.

Note that:

δ=

∫ 1

−∞
L(w|µ,1/ϵ)dw=


1
2
eϵ(1−µ) if µ>1

1− 1
2
eϵ(1−µ) if µ≤1

(4.7)

We can see µ tends to be large in order to have a small δ.

Given that the noise is non-negative, what the attacker observes after allocation can be seen

as a post-processing of the requests, as the victim’s request is indistinguishable from the

added dummy requests. Specifically, let Y be a random variable denoting the number of

resource attacker gets. Since the attacker only learns which requests of her were fulfilled,

from her point of view dummy requests and victim are indistinguishable. Thus for each

value l ∈ [0,k], Pr[Y = l|M(D)= t] =Pr[Y = l|M(D′)= t], where t is the number of requests

with dummies. Combined with the inequalities governing the probabilities thatM outputs

each value of t for D and D′, respectively. We have that Pr [Y = l|D] ≤ eϵPr [Y = l|D′]+ δ,

and similarly with D and D′ exchanged. Thus the distribution of the number of attacker’s

requests allocated are very close for D and D′.

4.3 Modeling Resource Allocation

In this section, we first demonstrate the problem of AKR’s modeling of RA. Then, we present

a taxonomy of different ways to “add noise” in RA and a general approach to model privacy.

4.3.1 Privacy Amplification from Allocation

We argue that AKR’s modeling of RA leads to suboptimal utility due to the lack of consider-

ation for the attacker’s view and capabilities. Though AKR, by its definition, does not reveal

55

the number of total requests each round, their proof indicates a stronger statement that

the DP guarantee holds even when the attacker observes the total number of requests after

noise is added (i.e., the number of requests from both the attacker and the victim). More

specifically, their proof guarantees that the noisy total number of requests is bounded by

(ϵ,δ)-DP when honest clients are added. However, such information is not actually accessible

to the attacker, thus it creates a gap between the proof and the actual definition of the RA

problem. Examining the attacker’s view is crucial for privacy amplification in our study. By

comprehending the capabilities and limitations of the attackers, we can construct a precise

analysis and avoid unnecessary noise. In real-world scenarios, the capability of an attacker

can be considerably limited, as they are typically not granted access to the internal states

of an allocator. In fact, if the attacker can observe the internal states of an allocator, she

just needs to access the number of requests before adding noise, which defeats all DP-based

protection.

We note that such a modeling gap is common in DP for ease of proof. For example, in DP-

SGD [71], the privacy guarantee is proved on each SGD step, implying that the attacker can

observe the intermediate steps, but such information should not be accessible to the attacker.

A similar case also appears in the proof of privacy blanket [24, Theorem 3.1] (which assumes

the attacker has unrealistic extra information for the ease of proof) for the shuffle DP model.

Hence, we propose to more precisely model the attacker’s capabilities and offer a tighter

bound under the notion of DP. By conducting the privacy analysis from scratch, we present

a set of “privacy amplification” results3. In this dissertation, the privacy amplification stems

from the fact that the attacker only has a partial view of the allocation result. The attacker

is aware of whether the other compromised clients receive the allocated resources, except

for the one uncompromised client. Compared to AKR, which has to introduce larger noise

to deter the (unrealistic) attacker, we can use smaller noise to satisfy DP. In Section 4.5.2

3Privacy amplification refers to the effect where we can prove the privacy cost is reduced after some opera-
tions (e.g., subsampling [23] and shuffling [67]).

56

(“Why Models Attacker’s View”), we elaborate the impact of privacy amplification.

4.3.2 Design Space

As described in Section 4.2.1, RA takes two steps: (1) receive a request, and (2) allocate

the resource if the request is accepted. Hence, for privacy protection, the allocator can add

noise to either (1) the number of requests (i.e., by adding dummy requests or removing

some requests), or (2) the number of available resources (i.e., by withholding some available

resource). After that, the allocator can randomly select requests and assign resources to

them. Therefore, the design space for the allocator is composed of:

• DS1: Choosing Where to Add Noise. The allocator can add noise to either the

number of requests or the number of resources or both. Our analysis shows that

randomizing the number of resources has the same effect as randomizing the number

of requests(explained later), thus we focus on designing methods to add noise to the

number of requests. In Section 4.6.4, we give a few real-world examples.

• DS2: ChoosingHowNoise isGenerated. The allocator adds noise to the observed

number of requests, and we have the flexibility to choose:

– The distribution of the noise.

– The range (support) of the distribution.

We found AKR only covered part of the design space: (1) AKR considered RA as post-

processing and only adds non-negative noise (dummy requests) to the requests. (2) AKR did

not consider distributions other than the Laplace distribution.

Adding Noise to Resource. Beyond adding noise to the requests, we can choose to add

noise to the resources. Here we consider that the noise is always negative, or the resources

are withheld from being assigned to clients. The positive noise can be seen as “creating”

57

resources on the fly and assigning more than what is asked by a client, which could be

impractical for a real-world system. Yet, we can prove that withholding any number of

resources can be equivalently modeled as assigning them to dummy requests. Specifically,

the allocator could withhold n resources from k requests, which results in k − n random

requests getting resources. This is equivalent to that n requests being randomly removed

from the system (so that the rest k−n requests are granted with resources). Thus, we only

consider adding noise to requests.

4.3.3 PrivacyModeling

Under DS1, we model RA’s privacy through the lens of DP as follows. We use d to denote

the random variable for the number of noisy requests. D denotes the number of requests

made in a round. Given two neighboring datasets D, D′, w.l.o.g., we assume D′ equals to

D plus the honest request from the victim client4. RA’s privacy can be quantified as:

Pr
[
ViewAM(D)=y

]
Pr
[
ViewAM(D′)=y

]= ∑xr

i=xℓ
Pr[d= i]Pr[y | |D|+d]∑xr

i=xℓ
Pr[d= i]Pr[y | |D′|+d]

(4.8)

where ViewAM(·) models the allocation outcomes in the attacker’s view. Note that ViewAM

differs fromM in Equation 2.1 in that ViewAM is a partial view of the final allocation outcome.

Pr[d= i] denotes the probability d= i, where d is a random variable and i is within some range

[xℓ,xr], and Pr [y | |D|+d] is the probability that attacker gets y resources. This equation

measures the difference in the attacker’s observation that is impacted by the one honest

request. If d ≥ 0, the allocator adds some dummy requests; d < 0 models removing some

requests (e.g., ignoring requests). Notice that Equation 4.8 follows ϵ-DP, which is different

4For the other neighboring case (D′ equals to D minus the honest request), the modeling and proofs are
similar, so it is omitted in this version due to page limit.

58

from AKR that follows (ϵ, δ)-DP.

With Pr[y | |D|+d], we are able to more precisely model RA privacy than AKR and captures

the randomness introduce by RA, since y represents only the output in the attacker’s view

(i.e., y≤|D|). We now describe the detailed analysis of Pr[y | |D|+d] under two cases: d≥0

and d<0. We enumerate all possible situations under RA and derive the exact probability

expressions for Pr[y | |D|+d] and Pr[y | |D′|+d](i.e., Equation 4.9 and Equation 4.10).

RequestAddition(d≥0). For the case of D, assuming there are m requests from D, given

a specific number of dummy requests d≥0, we have:

∀(k−d)+≤y≤min(k,m), Pr[y | |D|+d]=

(
m
y

)(
d

k−y

)(
m+d
k

) (4.9)

Pr[y | |D|+d] = 0 if y is outside of the above range. y has to satisfy y ≤min(k,m) because

what the attacker observes cannot exceed the total number of resources k or the number of

requests m. Similarly, y≥(k−d)+ (we use x+ to denote max(0,x)) because there are only d

other requests, so the attacker must get at least (k−d)+ resources.

We only model the case when the number of requests m≥ k−d because when m< k−d,

all requests are fulfilled (no privacy leakage). In that case, Pr[y | |D|+d] = 1 for y=m and

Pr[y | |D|+d]=0 otherwise.

The denominator of Equation 4.9 is
(
m+d
k

)
because we have a total of m+d requests and

we allocate k resources to them (equivalent to choosing k from m+d requests to allocate

resources). Thus there are
(
m+d
k

)
possible assignments. The numerator is

(
m
y

)(
d

k−y

)
because,

for the fixed set of m requests controlled by the attacker, y of them are fulfilled; there are
(
m
y

)
possible assignments. Similarly, for the rest d requests, there are

(
d

k−y

)
possible assignments.

So all together there are
(
m
y

)(
d

k−y

)
possible assignments that satisfy the constraint that y

resources go to m processes.

59

For the case of D′, which has an additional honest request, the attacker could receive one

fewer resource. Thus we have:

∀(k−d−1)+≤y≤min(k,m), Pr[y | |D′|+d]=

(
m
y

)(
d+1
k−y

)(
m+d+1

k

) (4.10)

Similar to Equation 4.9, in Equation 4.10, when m<k−d−1, Pr[y | |D′|+d] = 1 for y=m

and Pr[y | |D′|+d]=0 otherwise.

Request Removal (d < 0). For the case of D (the honest request does not exist), when

the number of added dummy requests is negative (d < 0), some requests will be removed

randomly. We have:

Pr[y | |D|+d]=

 1 if y=min(m+d,k)+

0 otherwise
(4.11)

This case is simpler than “Request Addition”, and what the attacker observes is determin-

istic: if after adding negative noise d, m+d is still greater than k, then the attacker will

always receive k resources; if m+d≤k, then the attacker will always receive m+d resources.

For the case of D′, there are m+1+d requests, and we need to consider whether the honest

request is fulfilled. Let x=min(m+1+d,k)+, which leads to two scenarios:

• Allocator assigns resources to the honest client: in this case, y can only be x−1. The

probability of the allocator assigning resources to the honest client is x
m+1

, which is

equivalent to the case of selecting x=min(m+1+d,k)+ items from a total of m+1

items without replacement and that the honest client is selected.

• Allocator does not assign resources to the honest client: y must be x if the honest

60

request is not fulfilled, which happens with probability 1− x
m+1

.

Thus we have:

Pr[y | |D′|+d]=


1− x

m+1
if y=x

x
m+1

if y=x−1

0 otherwise

(4.12)

where x=min(m+1+d,k)+.

We want to highlight that considering request removal (negative noise) is another key dif-

ference from AKR.

Attacker’s Strategy. From the attacker’s point of view, it is important to set m (the

number of compromised clients) to a value that can maximize privacy leakage (i.e., maximize

Equation 4.8). Recall that we assume k (resource capacity) is known to the attacker, and each

client can submit at most one request (see Section 4.2.1). Following the previous analysis

of request addition and request removal, we can derive the best attacker strategy below we

follow this strategy for this rest of the paper.

Theorem4.5. The maximum privacy leakage happens when the attacker sendsm=k requests.

Proof. We consider the cases of noise d < 0 and d≥ 0, and prove m= k causes maximum

privacy leakage in both cases.

First, considering the case when noise is non-negative (d≥0), the attacker’s goal is to choose

m to maximize the difference between the cases of D and D′. Note that the difference

can only be observed when m+d≥ k because otherwise, all requests will be granted with

resources. To ensure m+d≥k for all d≥0, we have m≥k. Based on the previous analysis,

61

when 0≤d<k, there is no privacy at y=k−d−1, because

Pr[y | |D|+d]=0,Pr[y | |D′|+d]=
m!k!

(k−d−1)!(m+d+1)!
(4.13)

Thus it does not matter to the attacker what value to set to m in this case. For d≥k, the

privacy protection is given by

Pr[y | |D|+d]

Pr[y | |D′|+d]
=

(
m
y

)(
d

k−y

)
/
(
d+m
k

)(
m
y

)(
d+1
k−y

)
/
(
d+m+1

k

)≤1+
k

m+d+1−k
(4.14)

In order to maximize the above, we need to set m to its minimum within the range of m≥k,

that is, m=k.

Now, we consider the case when negative noise (d<0) is added. By observing Equation 4.11

and Equation 4.12, we know that to trigger the different outputs for case D and D′ (i.e.,

y=m+d for case D and y=m+d+1 for case D′), m+d needs to be <k. The difference of

D and D′ (privacy protection) is then given by

Pr[y | |D|+d]

Pr[y | |D′|+d]
=

1

1−m+1+d
m+1

=
m+1

−d
(4.15)

To have m+ d < k (i.e., d < k−m) hold for all d < 0, we have m ≤ k. Now, in order to

maximize Equation 4.15, m is to be set to k.

4.4 Noisy Mechanisms

In this section, we analyze different noisy mechanisms under DS2. As the RA output is

discrete, we choose discrete distributions for the mechanisms. Specifically, we consider con-

stant, uniform, one-sided geometric, and double geometric distributions, and name them

CST, UNI, GEO, DGEO for short. Though these mechanisms have been studied in the stan-

dard DP [81, 79], we conducted new theoretical analysis to derive tighter privacy bounds,

62

CST UNI GEO DGEO AKR [19]

Privacy ϵ-DP ϵ-DP ϵ-DP ϵ-DP (ϵ, δ)-DP
Noise Constant Discrete uniform One-sided geometric Double geometric Laplace

Noise Sign + +/− +/− +/− +
DP Condition Noise c≥k Right bound xr≥k - - -
Utility (ϵ=0.65) 0.50 0.46 0.47 0.44 0.32
Utility (ϵ=1.7) 0.50 0.65 0.82 0.77 0.53
Utility (ϵ=2.3) 0.50 0.70 0.90 0.98 0.59

Table 4.2: A summary of different mechanisms and their utility under some representative ϵ
values. Note that k=10 and δ=10−6.

which require extensive proof work. In Table 4.2, a summary of different mechanisms is

given. In particular, 1) we prove the DP bounds for all mechanisms, though CST and UNI

only satisfy DP when certain conditions are met (i.e., noise sample space should be at least

k); 2) our mechanisms outperform AKR in utility by a large margin5.

4.4.1 Constant Noise (CST)

In this case, we consider request addition only, and the noise d always equals a constant

number c. Observing Equations (4.9) and (4.10), the valid y support sets differ in one case

where y=k−d−1. But as long as d≥k, both Pr[y | |D|+d] and Pr[y | |D′|+d] have the same

valid set of y∈{0,1,···,min(m,k)}, and the privacy can be quantified as:

Pr[y | |D|+d]

Pr[y | |D′|+d]
=

(my)(
d

k−y)
(d+m

k)

(my)(
d+1
k−y)

(d+m+1
k)

=
(m+d+1)(d+y+1−k)
(m+d+1−k)(d+1)

(4.16)

As a result, we have the following theorem:

Theorem 4.6. Assuming an allocator has k resources, constant noise has to be at least k to

satisfy DP.

Proof. Suppose the resource allocated to the attacker is y, and the attacker always sends

5The numbers come from simulation of Section 4.5.2. The theoretical analysis of utility has also been done,
but omitted due to page limit.

63

out m=k requests. Then we have

 y∈{(k−d)+,(k−d)++1,···,k} when D

y∈{(k−d−1)+,(k−d−1)++1,···,k} when D′
(4.17)

Note that y = (k − d)+ happens in D when all dummy requests get resources and the

remaining resources go to the attacker. Similarly, y= (k−d−1)+ happens in D′ when the

victim and all dummy requests get resources and the remaining resources go to the attacker.

When d≥ k, y ∈{0,1,···,k} for both D and D′. Thus, given m= k and Equation 4.16, we

can give an upper-bound of its privacy leakage as:

eϵ=
Pr[y | |D|+d]

Pr[y | |D′|+d]
=
(m+d+1)(d+y+1−k)
(m+d+1−k)(d+1)

≤ k+d+1

d+1
(4.18)

where eϵ= k+d+1
d+1

is reached at y=k.

This is a surprising result, as adding a fixed noise should not satisfy DP. In our case, adding

a fixed noise still provides privacy because of the randomness of the allocation process. Still,

we argue that it does not offer good utility. Due to the constraint c≥k, the utility is never

more than 0.5.

4.4.2 UniformMechanism (UNI)

In this case, the discrete noise (it can be negative or non-negative) is drawn uniformly from

[xℓ,xr]:

Pr[d= i]=
1

xr−xℓ+1
, i=xℓ,xℓ+1,...,xr (4.19)

xℓ and xr define the shape of distribution used in UNI, with xℓ defining the starting point.

Below, we prove that the attacker’s view satisfies DP when xr≥k or [−k−1,0]∈ [xℓ,xr].

64

Theorem 4.7. Assume the server has k resources. Adding a random noise drawn uniformly

from {xℓ,xℓ+1,...,xr} (both xℓ and xr≥k are integers) to the number of requests satisfies ϵ-DP,

where

eϵ≤max
y∈Y

(
f(y)+

∑xr

i=max(xℓ,k−y)g(i)

f1(y)+
∑xr

i=max(xℓ,(k−y−1)+)g(i+1)

)
(4.20)

and Y ={1,2,...,k}, g(i)= (k!)2(i!)2

y!((k−y)!)2(i−k+y)!(k+i)!
, f(y)=1xℓ+k≤y<k+(−k−xℓ)1y=0,xℓ<−k,

f1(y)=
k−y+1
k+1

1xℓ+k+1≤y≤k+
y+1
k+1
1xℓ+k≤y<k+(−k−1−xℓ)1y=0,xℓ<−k−1.

Proof. Assume an allocator has k resources. W.l.o.g., D contains m requests and D′ contains

m+1 requests. Before going further into examination of the privacy, we first consider the

value of m. For the view of an attacker, it is crucial to set m to an optimal value that causes

maximum leakage during allocation. This optimal value is k is shown in previous analysis

in Section 4.3.2.

We examine the probability the attacker gets assigned y resources after allocation. In the

case of D,

Pr
[
ViewAM(D)=y

]
=

+∞∑
i=−∞

Pr[d= i]Pr[y | |D|+d]

=
xr∑

i=max(xℓ,k−y)

Pr[d= i]Pr[y | |D|+d]+Pr[d=y−k]·1+Pr[d<−k]1y=0

=
1

xr−xℓ+1

 xr∑
i=max(xℓ,k−y)

(
m
y

)(
i

k−y

)(
m+i
k

) +1xℓ+k≤y<k+(−k−xℓ)1y=0,xℓ<−k


=

1

xr−xℓ+1

1xℓ+k≤y<k+(−k−xℓ)1y=0,xℓ<−k+
xr∑

i=max(xℓ,k−y)

k!k!i!i!

y!((k−y)!)2(i−k+y)!(k+i)!



65

Similarly, for the case of D′,

Pr
[
ViewAM(D′)=y

]
=

+∞∑
i=−∞

Pr[d= i]Pr[y | |D′|+d]

=
xr∑

i=max(xℓ,k−y−1,0)

Pr[d= i]Pr[y | |D′|+d]+Pr[d<−k−1]1y=0+
k−y+1

k+1
Pr[d=y−k−1]

+
y+1

k+1
Pr[d=y−k]

=
1

xr−xℓ+1

(
xr∑

i=max(xℓ,k−y−1,0)

(
m
y

)(
i+1
k−y

)(
m+i+1

k

) +

(
y+1

k+1

)
1xℓ+k≤y<k

+
k−y+1

k+1
1xℓ+k+1≤y≤k+(−k−1−xℓ)1y=0,xℓ<−k−1

)

=
1

xr−xℓ+1

(
k−y+1

k+1
1xℓ+k+1≤y≤k+

y+1

k+1
1xℓ+k≤y<k+(−k−1−xℓ)1y=0,xℓ<−k−1

+
xr∑

i=max(xℓ,(k−y−1)+)

(k!)2((i+1)!)2

y!(k−y)!2(i+1−k+y)!(k+i+1)!

)

Therefore, privacy protection here satisfies

eϵ≤max
y∈Y

(
f(y)+

∑xr

i=max(xℓ,k−y)g(i)

f1(y)+
∑xr

i=max(xℓ,(k−y−1)+)g(i+1)

)
(4.21)

where Y ={1,2,...,k}, g(i)= (k!)2(i!)2

y!((k−y)!)2(i−k+y)!(k+i)!
, f(y)=1xℓ+k≤y<k+(−k−xℓ)1y=0,xℓ<−k,

f1(y)=
k−y+1
k+1

1xℓ+k+1≤y≤k+
y+1
k+1
1xℓ+k≤y<k+(−k−1−xℓ)1y=0,xℓ<−k−1.

Yet, our analysis shows UNI is also not recommended when the utility requirement is more

critical. This is because utility degrades linearly to negative noise when number of requests

equals to the number of resources. In a nutshell, suppose total number requests is n and

n = k, removing requests causes less resource to be allocated with certainty, while adding

requests results in the same with a probability. With this, our goal is to have xℓ ≥ 0 and

66

xr ≥ k in order to achieve best privacy and utility tradeoff, and Section 4.5.3 studies how

these parameters should be determined.

4.4.3 One-sided Geometric Mechanism (GEO)

Intuitively, reducing the probability density of large noise can reduce the amount of dummy

requests added, and thus improve utility. To this end, we adopt the geometric distribution

within the range [xℓ,∞) with the noise distribution:

Pr[d= i]=p(1−p)i−xℓ , i=xℓ,xℓ+1,xℓ+2,... (4.22)

Like UNI, xℓ also models the starting point of the new distribution. For p, a larger value

makes the noise decay faster and has negligible probability for large value i, thus improving

utility. In terms of privacy, we can also prove attacker’s view satisfies DP (See Theorem 4.8

below).

Theorem 4.8. Assume the server has k resources. Adding a random noise drawn from the

geometric distribution (with parameter p and starting from integer xℓ) to the number of requests

satisfies ϵ-DP, where

eϵ≤max
y∈Y

f(y)+ p((k)!)2

y!((k−y)!)2
∑∞

i=max(k−y,xℓ)
g(i)

f1(y)+
p(1−p)−1((k)!)2

y!((k−y)!)2
∑∞

i=x0
g(i+1)


and Y ={0,1,...,k}, g(i)= (1−p)i−xℓ (i!)2

(i−k+y)!(k+i)!
,

f(y) = (1 − p)y−k−xℓ1k+xℓ≤y<k +
(
1−(1−p)−k−xℓ

)
1y=0,xℓ<−k, f1(y) =

p
k+1

(−y + k + 1)(1 −

p)y−k−1−xℓ1k+1+xℓ≤y≤k +
1+y
k+1

p(1− p)y−k−xℓ1k+xℓ≤y<k +
(
1−(1−p)−k−xℓ−1

)
1y=0,xℓ<−k−1, x0 =

max((k−y−1)+,xℓ).

Proof. Given an allocator with k resources and an attacker sending m=k requests, we assess

67

the probability of the attacker being allocated y resources.

Pr
[
ViewAM(D)=y

]
=

∞∑
i=max(k−y,xℓ)

p(1−p)i−xℓ

(
m
y

)(
i

k−y

)(
m+i
k

) +f(y)

=
p(k!)2

y!((k−y)!)2
∞∑

i=max(k−y,xℓ)

(1−p)i−xℓ(i!)2

(i−k+y)!(k+i)!
+f(y)

where

f(y)=p(1−p)y−k−xℓ1k+xℓ≤y<k+
(
1−(1−p)−k−xℓ

)
1y=0,xℓ<−k. Similarly, for the other case,

Pr
[
ViewAM(D′)=y

]
=
∞∑

i=x0

p(1−p)i−xℓ

(
m
y

)(
i+1
k−y

)(
m+i+1

k

) +f ′(y)=
∞∑

i=x0

p(1−p)i−xℓ(k!)2((i+1)!)2

y!((k−y)!)2(i+1−k+y)!(k+i+1)!
+f1(y)

where x0=max((k−y−1)+,xℓ) and

f1(y)=
(−y+k+1)p(1−p)y−k−1−xℓ

k+1
1k+1+xℓ≤y≤k

+
(1+y)p(1−p)y−k−xℓ

k+1
1k+xℓ≤y<k

+
(
1−(1−p)−k−xℓ−1

)
1y=0,xℓ<−k−1

Given above numerator and denominator, we have the privacy protection satisfies

eϵ≤max
y∈Y

f(y)+ p((k)!)2

y!((k−y)!)2
∑∞

i=max(k−y,xℓ)
g(i)

f1(y)+
p(1−p)−1((k)!)2

y!((k−y)!)2
∑∞

i=x0
g(i+1)


where Y ={0,1,...,k}, g(i)= (1−p)i−xℓ (i!)2

(i−k+y)!(k+i)!
,

f(y) = (1 − p)y−k−xℓ1k+xℓ≤y<k +
(
1−(1−p)−k−xℓ

)
1y=0,xℓ<−k, f1(y) =

p
k+1

(−y + k + 1)(1 −

p)y−k−1−xℓ1k+1+xℓ≤y≤k +
1+y
k+1

p(1 − p)y−k−xℓ1k+xℓ≤y<k +
(
1−(1−p)−k−xℓ−1

)
1y=0,xℓ<−k−1 and

x0=max((k−y−1)+,xℓ).

68

For the same reason in Section 4.4.2, negative noise has negative influence on utility in a

deterministic way. Therefore, though GEO tolerates negative noise (i.e., xℓ can be negative),

we do not recommend setting xℓ<0.

The two parameters xℓ and p both influence ϵ and utility: For xℓ>0, increasing xℓ reduces

both ϵ and utility, and increasing p raises ϵ and utility. For xℓ<0, utility and privacy varies

in different cases. Section 4.5.3 studies the parameter settings.

4.4.4 Double Geometric Mechanism (DGEO)

AKR adds a biased Laplace noise to the number of requests (explained in Section 4.2.3).

Likely, we propose to draw the noise from a biased double geometric distribution:

Pr[d= i]=
1−e−ϵ

1+e−ϵ
e−ϵ|i−µ|,∀i∈Z (4.23)

We call s=1/ϵ the scale of the noise and µ the bias of the noise. Adding double-geometric

noise with a scale 1/ϵ to the number of requests satisfies ϵ-DP [61, 142], and we prove it

below.

Theorem 4.9. Assume the server has k resources. Adding a random noise drawn from the

double geometric distribution (with bias µ and scale s) to the number of requests satisfies ϵ-DP,

where

eϵ≤max
y∈Y

(
f(y)+

∑+∞
i=(k−y)+e

− 1
s
|i−µ|g(i)

f1(y)+
∑+∞

i=(k−y−1)+e
− 1

s
|i−µ|g(i+1)

)

and Y ={1,2,...,k}, g(i)= (k!)2(i!)2

u!((k−y)!)2(i−k+y)!(k+i)!
, f(y)=e−

1
s
|y−k−µ|

1y ̸=k+
∑−k−1

i=−∞e
− 1

s
|i−µ|

1y=0,

f1(y)=
e−

1
s |y−k−1−µ|(k−y+1)

k+1
+ e

−1
s |y−k−µ|(y+1)

k+1
1y ̸=k+

∑−k−2
i=−∞e

− 1
s
|i−µ|

1y=0, and s is the scale param-

eter in double geometric distribution.

69

Here f(y) and f1(y) in Theorem 4.9 are from negative noise and the summations are from

positive noise. When positive noise is being added, the probability of attacker getting y

allocation can be straightforwardly calculated by substituting Pr[d= i] in Equation 4.8 with

biased double geometric distribution.

For negative noise, attacker can only get y < k with a probability of e−ϵ|y−k−µ| for the case

of D. Whereas for the case of D′ the attacker can still get k resources if noise equals to −1,

and the victim is removed. Or else, the attacker will get y<k resources in all other negative

noise cases. This whole process is given by f1(y). Finally, privacy bound in Theorem 4.9 is

derived from the worst case y.

Proof. Given an allocator with k resources and an attacker sending m=k requests, we assess

the probability the attacker is allocated y resources.

Pr
[
ViewAM(D)=y

]
=

+∞∑
i=−∞

Pr[d= i]Pr[y | |D|+d]

=
1−e− 1

s

1+e−
1
s

e−
1
s
|y−k−µ|

1y ̸=k+
−k−1∑
i=−∞

e−
1
s
|i−µ|

1y=0+
+∞∑

i=(k−y)+

e−
1
s
|i−µ|

(
m
y

)(
i

k−y

)(
m+i
k

)


=
1−e− 1

s

1+e−
1
s

 +∞∑
i=(k−y)+

k!k!i!i!e−
1
s
|i−µ|

y!((k−y)!)2(i−k+y)!(k+i)!
+e−

1
s
|y−k−µ|

1y ̸=k+
−k−1∑
i=−∞

e−
1
s
|i−µ|

1y=0


Similarly,

Pr
[
ViewAM(D′)=y

]
=

+∞∑
i=−∞

Pr[d= i]Pr[y | |D′|+d]

=
1−e− 1

s

1+e−
1
s

(
e−

1
s
|y−k−1−µ|(k−y+1)

k+1
+
−k−2∑
i=−∞

e−
1
s
|i−µ|

1y=0+
e−

1
s
|y−k−µ|(y+1)

k+1
1y ̸=k

+
+∞∑

i=(k−y−1)+

e−
1
s
|i−µ|(k!)2((i+1)!)2

y!((k−y)!)2(i+1−k+y)!(k+i+1)!

)

70

Given above numerator and denominator, we have privacy protection as follows

eϵ≤max
y∈Y

(
f(y)+

∑+∞
i=(k−y)+e

− 1
s
|i−µ|g(i)

f1(y)+
∑+∞

i=(k−y−1)+e
− 1

s
|i−µ|g(i+1)

)

where Y ={1,2,...,k}, g(i)= (k!)2(i!)2

u!((k−y)!)2(i−k+y)!(k+i)!
, f(y)=e−

1
s
|y−k−µ|

1y ̸=k+
∑−k−1

i=−∞e
− 1

s
|i−µ|

1y=0,

f1(y) =
e−

1
s |y−k−1−µ|(k−y+1)

k+1
+ e−

1
s |y−k−µ|(y+1)

k+1
1y ̸=k +

∑−k−2
i=−∞e−

1
s
|i−µ|

1y=0, and s is the scale pa-

rameter.

AKR chooses Laplace noise, which is similar to DGEO but in the continuous domain. AKR

sets a positive bias µ so that the probability that the noise is negative is bounded by δ, and

the authors prove AKR follows (ϵ,δ)-DP. In order to have a small δ (i.e., the probability

of failing DP to be small), µ must be fairly large which leads to unsatisfactory utility. For

example, when δ equals a common value of 10−6, µ has to be at least 15 (it is even larger

than the number of real requests and resources) to achieve ϵ=1 for k=10.

Hence, accommodating negative noise without using a large bias is essential to high utility

and we show it is possible. In a nutshell, negative noise may relax the pre-allocation ϵ, but

not necessarily introduces δ. Though negative noise causes a discrepancy in the possible

outcomes of D and D′ from the attacker’s view and in the range of y (resources dispatched

to attacker), which violates DP, together with non-negative noise they will not violate DP, as

proved in Theorem 4.9 (i.e., the attacker’s view satisifies DP). In Section 4.5.2, we provide

empirical analysis to show the impact of RA on utility and privacy from the attacker’s view.

4.5 Evaluation

In this section, we evaluate the privacy and utility of different mechanisms. Here we

summarize the key results. 1) Our mechanisms outperform AKR by 11% to 65% in terms of

utility (e.g., DGEO outperforms AKR by 53% given ϵ= 2). GEO has a clear advantage for

71

smaller ϵ while DGEO is able to achieve better utility with larger ϵ. 2) Different parameters

can achieve similar privacy protection but lead to very different levels of utility.

4.5.1 Evaluation Setup

Settings. To compare different mechanisms in privacy-utility tradeoff, we choose to simulate

RA using a real-world system setting. Similar to AKR, we take Alpenhorn [145], an MPM,

as one of our target systems. In essence, a user in Alpenhorn starts a conversation with

his/her friend on an agreed time or round. In a conversation round, the user initiates k

channels to k friends, then sends and receives messages on each channel to hide the real

communication pattern. Section 4.2.1 describes how its privacy guarantee can be violated.

The evaluation by AKR models how Alpenhorn allocates channels for requests to defend

against allocation-based side-channel attacks. Similar to AKR, we set the resource capacity

k=10 for most of the experiments, meaning that a user has maximum of 10 channels that

can be established with other clients. We also experiment with larger k (15,20) to test the

scalability of the proposed mechanisms and AKR. AKR sets an upper bound to the number

of requests in each round and considers at most 10% of them to be honest requests. We

remove the upper bound and set the number of victim requests to at most 1, to simulate

the worst case for the victim, as explained in Section 4.2.1. Note that AKR uses a Poisson

distribution to simulate the request number from all users while our total requests in case

D and D′ are fixed to m and m+1, respectively. Given that we assume at most one victim

exists during allocation, we did not apply the Poisson distribution. Unless otherwise stated,

we simulate 10 million independent rounds of allocation with requests of attacker m=k (the

optimal attacker strategy, as proved in Theorem 4.5), and measure privacy and utility.

In Section 4.6.5, we try to justify the the choice of simulation setup and discuss the limitation

of simulation.

72

Metrics. We evaluate the performance of different mechanisms under three metrics: privacy,

utility, and waiting overhead. Regarding privacy, we compute the empirical ϵ by Equation 4.8

with the simulation results and the larger value indicates more privacy leakage. Theoretical

ϵ can be derived from Theorem 4.6 to Theorem 4.9, but their values are not always com-

putable. For the study of parameters (Section 4.5.3), we compute some theoretical ϵ for the

comparison.

As for the utility, we mainly measure the empirical resource utilization U , or how many (in

ratio) resources are put into real use after allocation, from the simulation results. This differs

from the classic DP that considers the accuracy of the analysis results as utility, or how close

the noisy output is to the ground truth. The same utility measure is chosen by AKR as well.

U is given by:

U=
k∑

j=0

Pr[r=j]
j

k
(4.24)

where r is the number of fulfilled requests, k is the number of resources, and Pr[r=j] is the

probability of j requests being fulfilled.

While resource utilization is relevant to the overhead on the allocator, the overhead on the

client can be measured by their waiting time (or waiting overhead). We use the probability

of the victim getting the resource in any round, as the higher probability should lead to a

shorter waiting time for the resource. For example, in Alpenhorn (original version that is

not protected by DP) with k resources and m attacker requests, the probability that the

victim gets resource Pr[Va] is given by:

Pr[Va]=

(
k−1
m

)(
1
1

)(
k

m+1

) (4.25)

Denoting the Pr [Vb] as the probability that the victim gets resources after DP, the ratio

between Pr[Va] and Pr[Vb] represents the amount of waiting overhead caused by a DP mech-

73

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

DGEO
GEO
UNI
CST
AKR

Figure 4.2: Comparison of different mechanisms. The ranges of ϵ for CST and UNI are
limited. CST’s utility never exceeds 0.5 because at least k dummy requests are required to
make it differentially private. The utility of GEO does not increase when ϵ is between 1.8 to
2.3, and we speculate this is because the parameters leading to the optimal utility have not
been discovered through simulation.

anisms.

Implementation. We implement our code in Python 3.7.10 with NumPy 1.19.5 libraries.

The implementations are open-sourced6.

4.5.2 Evaluation Results

We compare the performance of different mechanisms, i.e., CST, UNI, GEO, DGEO, and AKR

with simulation.

First, we enumerate different ϵ values for each mechanism and compute the best utility value,

which is derived by searching in the space of possible mechanism parameters. Figure 4.2

illustrates the quantitative results of the tradeoff between privacy and utility. Note that, for

AKR, since it is (ϵ,δ)-DP, we set δ = 10−6, which is commonly chosen by other DP works

6https://github.com/dpra-dp/dpra

74

0 2 4 6 8 10
resources allocated to attacker

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

fre
qu

en
cy

1e7

D
D'

Figure 4.3: Allocation results by GEO with p=0.90, which sets the bias to 10. The x-axis
represents the number of fulfilled requests of the attacker, and the y-axis represents the
frequency of each output out of 100 million rounds. We increase the simulation rounds from
10 million to 100 million in order to yield precise results.

(Angel et al. even chooses a larger value, δ=10−4 [19]).

In general, we found that all of our proposed mechanisms have better utility than AKR for

every ϵ when the parameters are fine-tuned. Specifically, GEO has better utility given lower

ϵ (i.e., under 2) while DGEO yields better utility given more relaxed ϵ (i.e., over 2). AKR

reaches the utility of 0.58 with (2,10−6)-DP, while GEO and DGEO are able to achieve the

utility of 0.89 with 2-DP, increasing the utility by 0.31 (53%). Overall, the margin of DGEO

over AKR ranges from 0.05 to 0.39, GEO is able to outperform AKR over a range of 0.08

to 0.36, and UNI is able to outperform AKR by at most 0.15. This result is surprising as

(ϵ,δ)-DP usually yields better utility than ϵ-DP. We believe this is due to the fact that our

mechanisms have the ability to accommodate negative noise, while AKR has to use a large

bias to satisfy DP.

Since CST cannot achieve a utility value of more than 0.5, in the following experiments, we

75

focus on the other mechanisms. In the previous experiment, we change the mechanism

parameters to fit ϵ, but in the real-world deployment, the parameters are determined ahead.

Here we evaluate the impact of the parameters related to bias. For DGEO and AKR, they are

represented by µ. For UNI and GEO, the starting point (xℓ for UNI and GEO) model the bias.

We configure bias to a small value of 10. With the utility targeting 0.5, GEO and DGEO

are able to bound privacy with ϵ of 0.80 and 0.77. UNI and AKR result in much higher ϵ at

1.28 and 1.5. Hence, with a small bias, our mechanisms can protect allocation with better

privacy while achieving the same utility as AKR.

So far, the prior experiments quantitatively measure how the mechanisms perform. Like

Angel et al. [19], we visualize privacy protection under a fixed set of parameters. Specifically,

we measure the difference in allocation results (D and D′) based on the number of resources

allocated to the attacker. Figure 4.3 shows the visualization of GEO, when bias is configured

to 10. The lines of D and D′ stay close, suggesting the privacy leakage of GEO is small.

Regarding the waiting overhead Pr[Va], we found UNI, GEO, DGEO and AKR reach 1.45, 1.92,

1.91 and 1.88 when configuring bias to 10, suggesting our mechanisms either have similar or

lower waiting overhead than AKR. Still, we acknowledge that such overhead is significant

and we discuss this issue in Section 4.6.5.

WhyModelsAttacker’sView. In Section 4.4.4, we argue that modeling the attacker view

is better than modeling the whole view that is adopted by AKR. Here we justify this claim

under the same simulation. Figure 4.4 shows an example with the zero-mean (µ=0) double-

geometric distribution under simulation. Given two different cases D and D′, Figure 4.4a

depicts the difference of output before allocation and Figure 4.4b shows the output after

allocation from the attacker’s view, assuming DGEO with scale 1 is applied to allocate k=10

resources, and D contains m=10 requests. Our study shows that the existence of the victim

can drastically affect the portion of resources an attacker can get after allocation.

76

(a) Before RA. (b) After RA.

Figure 4.4: Distribution of output over 5 million runs. Before RA, we draw noise from a
double geometric distribution with ϵ=1 and k=10. After RA, the distribution changes, and
the privacy leakage increases (the empirical ϵ rises to 2.07).

Original ϵ used 4 2 1 0.5 0.2
Empirical ϵ before RA 4.00 2.00 1.03 0.54 0.27
Empirical ϵ after RA 3.28 2.26 2.01 1.90 1.79
Theoretical bound of ϵ after RA 3.29 2.26 2.07 1.91 1.79

Table 4.3: Comparison of different settings of DGEO with k = 10. We use 5 different ϵ
values (first row). Row 2 shows the empirical ϵ is close to the original ϵ, which indicates our
simulation has only small errors. Row 3 is the empirical ϵ after RA, which deviates from the
original ϵ. The last row shows our theoretical bound of ϵ given in Theorem 4.9 is close to
the empirical value.

Table 4.3 uses four different zero-mean double geometric distributions to further explain why

RA itself should be part of the privacy modeling. First, when the original ϵ decreases, more

noise is expected, which leads to an increase in privacy protection for both before and after

RA. However, given a relatively high scale (i.e., small ϵ), the privacy protection after RA

can be 6 times worse than that before RA. Such extra information leakage is an indicator

that the privacy budget is affected by RA.

We also take a step forward to measure the privacy amplification caused by modeling the

attacker’s view. We adjust AKR by replacing its Laplace noise with double geometric noise,

which we denote as AKR-DGEO, and compare it with DGEO. As their noise mechanisms

77

become the same, we can exemplifies the privacy-utility tradeoff without and with privacy

amplification. Our empirical analyses indicate that, for a utility measure of approximately

0.42, privacy amplification results in a decrease of the privacy parameter ϵ from 1.00 to

0.59. Likewise, when the utility measure is near 0.60, ϵ diminishes from 2.00 to 1.43 after

amplification.

4.5.3 Impact of Parameters

Impact of Parameters. To assess the impact of mechanism parameters, we compute the

privacy and utility values theoretically, as explained in Section 4.5.1. Here we first discuss

the guidelines for setting parameters before diving into the details. For UNI, one should

avoid large xr as the privacy benefit diminishes and utility drops noticeably. Regarding xℓ,

we found negative values do not offer good privacy and small xℓ is necessary to maintain

good privacy. For GEO, a negative starting point xℓ should be avoided as it does no good

to utility or privacy. We suggest that a small positive starting point xℓ with a moderately

high p value would be optimal for GEO. For example, an xℓ of 3 with p= 0.7 can achieve

reasonable privacy ϵ=1.24 and a good utility of 0.75. Our evaluation in Section 4.5.3 also

indicates that a small positive bias µ with a scale s around 1 would be optimal for DGEO.

For the larger resource capacity k, GEO and DGEO still perform well.

Starting Point xℓ and End Point xr of UNI. In Figure 4.5, we display privacy and utility

across various xr (xr =10,15,20) and xℓ values (along the x-axis). Notably, xr =15 largely

mirrors xr = 20 in terms of ϵ, even though xr = 20 is expected to offer superior privacy.

Regarding utility, xr=10 consistently ranks highest for different xℓ, followed by xr=15 and

xr = 20. Regarding xℓ, increasing its value enhances privacy (resulting in a lower ϵ), with

utility peaking when xℓ ranges between [−5,0]. However, we observe two outliers related

to xℓ in Figure 4.5a. First, a peak is observed when xℓ = −10, because all requests in D

are removed deterministically but the probability of the same situation for D′ is 1
k+1

, where

78

15 10 5 0 5 10
x

0.75

1.00

1.25

1.50

1.75

2.00

2.25

xr = 10
xr = 15
xr = 20

(a) ϵ of UNI given different xℓ and xr.

15 10 5 0 5 10
x

0.40

0.45

0.50

0.55

0.60

0.65

0.70

ut
ili

ty

xr = 10
xr = 15
xr = 20

(b) Utility of UNI given different xℓ and xr.

Figure 4.5: Impact of xℓ and xr on UNI.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

0.0

0.5

1.0

1.5

2.0

2.5
x = ­50
x = ­10
x = 0
x = 10
x = 20

(a) ϵ of GEO given different p and xℓ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

x = ­50
x = ­10
x = 0
x = 10
x = 20

(b) Utility of GEO given different p and xℓ.

Figure 4.6: Impact of p and xℓ on GEO.

victim exists. Second, when xℓ=xr =10, ϵ drops to 1.75 because this special case implies

that attacker gets no resource in victim’s absence.

Geometric Parameter p and Starting Point xℓ of GEO. Figure 4.6 depicts how p and

xℓ affect GEO. For xℓ =−50 and xℓ =−10, both ϵ and utility approach 0 due to the high

likelihood of request removal. At xℓ = 0, utility is high but ϵ consistently exceeds 2. For

xℓ = 10,20, ϵ is below 1.5, with utility rising as xℓ increases. For p, its influence on ϵ is

minimal, except at xℓ=10 where ϵ increases sharply after p=0.5. Utility consistently grows

with p across all settings.

79

0 1 2 3 4 5
s

0

2

4

6

8

10 = 10
= 0
= 5
= 10

(a) ϵ of DGEO given different scale s and bias µ.

0 1 2 3 4 5
s

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

= 10
= 0
= 5
= 10

(b) Utility of DGEO given different scale s and
bias µ.

Figure 4.7: Impact of s and µ on DGEO.

0.5 1.0 1.5 2.0 2.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ut
ili

ty

DGEO
GEO
UNI
AKR­10 6

AKR­10 12

(a) Comparison of mechanisms under k=15.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0
ut

ili
ty

DGEO
GEO
UNI
AKR­10 6

AKR­10 12

(b) Comparison of mechanisms under k=20.

Figure 4.8: Privacy protection and utility under k=15,20. The ranges for the x-axis differ
for k because not all utility values can be derived under every ϵ.

Geometric Scale s and Bias µ of DGEO. In DGEO, the scale parameter s determines the

noise’s decay rate. A smaller s results in noise more closely concentrated around the bias µ.

µ introduces more noise to the allocation, impacting post-allocation privacy. We evaluate

the influence of these parameters on privacy and utility, presenting the findings in Figure 4.7.

Introducing bias µ improves privacy, especially when s < 1. For larger s, the distribution

resembles a discrete uniform, keeping ϵ stable (around 2 for µ ≥ 0). s has limited utility

impact unless µ=0.

80

ResourceCapacity k. We set k to 10 for the prior experiments like Angel et al. [19]. Here

we test our mechanisms and AKR on k=15,20. Figure 4.8 shows the privacy-utility tradeoff.

For AKR, besides the default δ=10−6, we also evaluate δ=10−12, bringing its privacy closer

to ϵ-DP. Figure 4.8 illustrates that δ significantly impacts AKR’s utility, with average gaps

of 0.2 for k=15 and 0.1 for k=20. GEO and DGEO still perform well for these new k values

and better than AKR.

4.6 Discussion

4.6.1 RelatedWork

JointDP. We focus on the partial view of the attacker. The Joint DP definition proposed

by Kearns et al. [127] formalizes this intuition, primarily to compute equilibrium in games

with incomplete information [127, 196, 197]. Note that Joint DP is just a definition, and

classic DP primitives like Laplace mechanism are still used. We are the first to formally

investigate the design space and adapt various DP mechanisms to RA.

PrivateMatching andAllocation. Our problem can be seen as a variation of the private

allocation/matching problem, through which users have (non-binary) valuations for products

(potentially in multiple rounds), and the goal is to maximize welfare while protecting users’

private value for each good. Existing works [32, 124, 176, 125, 55, 107] have applied DP

algorithms (e.g., Laplace mechanism) that are asymptotically interesting. Our modeling of

RA is different and we explored different noisy mechanisms.

BiasedNoise. AKR employs biased noise to satisfy DP, while DGEO uses it to improve the

privacy-utility tradeoff. Biased noise has been examined before. Mazloom and Gordon [166]

introduced a modified 2-sided geometric distribution to generate noise that enables differen-

tially private access patterns with high efficiency. DJoin [177] cuts Laplace noise at zero to

81

provide distributed queries with DP. Shrinkwrap [25] offers a truncated Laplace mechanism

for differentially private data federation, where dummies are introduced to pad intermediate

results. He et al. [97] proposes a model for private record linkage, allowing the disclosure

of the true matching records while keeping the protocol executions indistinguishable when

non-matching records are replaced.

DPAgainstSide-channelLeakage. The leakage from RA can be considered as allocation-

based side channels [19]. A more common type of side channels is consumption-based, which

happens when the system resources (e.g., network bandwidth and cache) are consumed. A

number of works have applied DP to protect the system against the latter type of leakage.

The protected resources/services include procfs of system statistics [242], streaming traf-

fic [248], Trusted Execution Environment (TEE) [243], health data (e.g., ECG data) [201],

task schedules [43], and packet scheduler [26].

Another related line of work is differentially oblivious [40], which was proposed to address the

fundamental limitation of ORAM (Oblivious RAM). Though ORAM can protect the pro-

gram’s secret by hiding its memory access pattern, it incurs very high performance overhead.

By converting full obliviousness to differential obliviousness, one can obtain meaningful pri-

vacy with little overhead [40, 231, 136]. While this paper also hides a victim’s secret (i.e.,

its existence at certain time), it considers an orthogonal adversary model where the at-

tacker observes part of the true results without any mechanism to hide the victim-related

information.

4.6.2 Privacy Consumption over Multiple Rounds

Like Angel et al. [19], our analysis focuses on a single round. Privacy normally degrades over

multiple rounds rapidly. For instance, naively applying the sequential composition property

of DP over multiple rounds deteriorates the privacy guarantee (i.e., ϵ) linearly. Inspired by

82

previous work, we identify three ways to curb the privacy consumption: (1) using advanced

composition [172] to reduce the total ϵ, (2) reusing noise for repeated requests [223, 69],

and (3) bounding the number of requests. Though relaxations could happen for attacker’s

background knowledge [58], our approach does not limit the attacker’s background knowledge

but rather their view, and therefore we believe composition works in our case. Next, we

discuss how the three methods can be applied in more detail.

Using Advanced Composition. Traditional composition theorem in DP may result in a

union bound over noise, which is sub-optimal. Avoiding union bound for multiple queries

has been an important open problem in differential privacy [218]. The well-known advanced

composition theorem [63] adjusts pure DP to approximate (ϵ,δ)-DP with δ>0 to yield better

composition results. In cases where the attacker interacts with the allocator over multiple

rounds, we argue that the leakage can be modeled by the k-fold adaptive composition [63].

Mironov [172] proposed new bounding techniques for advanced composition under Rényi DP

(RDP) to this end. In our case, we can transform ϵ-DP to (α,ϵ)-RDP for any α>0 [172], com-

pose RDP with Theorem 4.1, and transform back to (ϵ,δ)-DP with Theorem 4.2. Popular

DP libraries like Opacus have supported RDP advanced composition [191]. Alternatively,

we can utilize Equations 4 and 5 in [182] to derive the (ϵ, δ)-DP bound directly and employ

numerical methods [82] to obtain more accurate results.

Yet, it is an open question to directly prove the RDP guarantee for our mechanisms (to avoid

conversions mentioned above and compose better). One possible route is to follow the proof

of the discrete Gaussian mechanism [36] and we leave it as a future work.

ReusingNoise. When new incoming requests are from the same set of clients of the previous

round, the server can avoid consuming extra privacy budget by reusing the noise generated

for the previous round [223, 69]. In this way, the attacker gains no more information than

the previous round while the server consumes no extra budget. Specifically, the output of the

83

algorithm remains the same if we fix the randomness that happens in a certain round. Thus,

the server can utilize a persistent secret key for a pseudo-random function (PRF) over the

same set of clients, where in each round the server is able to simulate the same randomness

for the same set of clients.

Bounding the Number of Requests. Drawing from [66], we can simplify the privacy

analysis by eliminating the need to consider every RA round for each client by capping

client requests over a period (e.g., a maximum of 2 calls daily for MPM clients).

4.6.3 Other Settings

Though our study primarily examines clients submitting binary requests for a single resource

under worst-case privacy, it can be extended to (1) the non-binary setting that clients can

submit requests for more than one resource, (2) the multi-resource setting that there are

multiple kinds of resources and clients can request arbitrary resources, and (3) the average-

case privacy.

Non-binaryRequests thatCan be FulfilledPartially. This setting can be transformed

to the binary case by casting each non-binary request as multiple binary requests. The global

sensitive will be changed to the number of maximum requests per client.

Non-binaryRequests thatCannot be Fulfilled Partially. The problem is transformed

into an optimization problem aiming for maximum utilization of resources [127]. In general,

the allocator picks the requests that maximize its target function. The allocator can add

noise to the number of requests, which we expect to yield worse utility compared to our

primary setting. This is because when requests for large resources are added or removed

from the allocator, a great amount of resources are wasted.

Multiple-resources Allocation. A multiple-resource allocator deals with multiple types

84

of resources simultaneously. In this setting, the privacy protection of the allocator subjects

to sequential composition, thus the overall privacy depends on the summation of all privacy

losses. The intuition is that the privacy leakage of each allocation can be seen as auxiliary

information, and be combined with leakage from allocations of other types of resources.

Multiple Honest Requests. Multiple honest requests in allocation happens when the at-

tacker is not strong enough to control all other clients except the victim. Assume the requests

are binary in this setting and the attacker does not know the resource distribution among

the honest requests. In this case, the honest requests (other than the one from the victim)

are equivalent to the dummy requests in our primary setting because the distribution among

them remains unknown to the attacker. Therefore, we can add less noises in this setting in

order to achieve the same privacy guarantee. We have justified the above assumption by

experimenting with DGEO (the results are omitted due to page limit).

4.6.4 Real-world Examples and Utility Analysis

Here we first give a few examples of how the noise under d≥0 and d<0 can be instantiated

in real-world systems. We follow the basic setting as described in Section 4.2.1 first (i.e., all

resources are identical and one request asks for one piece of resource).

• In the cloud setting, users request for VMs and whether they are served is based on the

available resources like CPU and memory. When d> 0, the allocator creates dummy

VMs that potentially occupy resources. When d < 0, not all the requested resources

are allocated to the VM (even though there are available resources).

• Inside a computer, requests to cache resources (e.g., cache ways) are automatically

generated during a memory access, which can lead to cache side-channel attacks [246].

d>0 will assign cache ways to dummy programs and d<0 will skip the caching of some

memory content. Either option will reduce the accuracy of the attack which relies on

85

cache contention between attacker and victim.

• In MPM, the requests are from a user’s friends who intend to start a conversation in

a round. Noise d>0 is to add fake friends and d<0 means to reject some requests.

For more complex allocators, we can extend the DP mechanisms following Section 4.6.3. For

example, the buddy system manages memory in power of two increments [134] and we can

support it by considering the memory requests as non-binary. When concurrent requests

are supported by multiple resource pools (e.g., hypervisor resource pools [230]), multiple-

resources allocation can be applied.

Regarding the results about privacy-utility tradeoff (e.g., summarized in Table 4.2), we argue

they are practical in the real-world setting. For example, a study of Google Cloud shows

the resource utilization is 40% - 60% and the resource waste due to early task termination is

4.53 - 14.22% [78]. In this case, the utility after DGEO and GEO should be acceptable (e.g.,

0.82 for GEO at ϵ=1.7).

4.6.5 Limitations

EmpiricalStudyonPrivacy. The privacy analysis in our evaluation is empirical-based (i.e.,

ϵ’s are calculated empirically based on our simulation result). We choose simulation for two

main reasons. First, we aim to compare the privacy-utility tradeoff of different mechanisms

at different privacy parameters (e.g., Figure 4.2) and the computational overhead will be

very high if the experiments are executed on the large-scale real-world systems. Second,

for the MPM system we evaluate, there is no published dataset about its communication

data, so we have to simulate the allocations. In fact, Angel et al. took a similar approach to

evaluate privacy empirically [19], and the scale of our simulation is comparable or larger (from

5 million rounds to 100 million rounds). Simulation has been leveraged to evaluate other

privacy-preserving systems for the same reason, like differentially oblivious database [192].

86

We also acknowledge the limitation of our simulation, which does not fully approximate

real-world, large-scale systems.

Efficiency. Adding dummies results in higher waiting overhead because the clients now

need to go through more rounds in order to get the desired resources. However, once the

resources are allocated, no additional delay should be observed.

The spatial overhead due to serving the dummy clients could be prominent, especially for

systems that operate on very limited resources. The same limitation exists in AKR, and the

overhead is often unavoidable for systems leveraging DP. On the other hand, our approach

provides better resource utilization than AKR, e.g., 98% under DGEO and 59% under AKR

when ϵ=2.3. Higher resource utilization also leads to smaller waiting overhead. For example,

for an approach with 40% utilization, the chances for a user to get resource allocated within

5 dialing rounds in Alpenhorn is about 99%. Our proposed mechanisms all surpass 40% as

shown in Table 4.2.

Attacks against DPRA. Potential side-channel attacks against DP algorithms, such as

timing attacks [122], may compromise our DPRA, but require adaptation to the RA setting.

87

Chapter 5

Privacy Risks in Curriculum Learning

and DPDefenses

5.1 Introduction

Key to the success of machine learning (ML), especially deep learning (DL), is the advance-

ment of algorithms, software, and hardware in training models on large-scale datasets. The

traditional way to train a neural network (NN) is by feeding the training pipeline with ran-

dom mini-batches in a sequence sampled from the training dataset. In other words, NN is

forced to “remember” samples repeatedly in random order. On the other hand, human al-

ways learns the easy concepts first and then the hard ones, as guided by curricula. Given that

NN is inspired by the human brain [199], curriculum learning (CL), which simulates human

learning by ordering the training data with difficulty scores and repeating the order across

training epochs, has been proposed [28]. With a “teacher” network, the difficult scores can

be generated ahead of the samples and guide the training process. Previous studies have

shown that CL can achieve both fast learning speed and high test accuracy [215, 236], and

CL has been adopted in many application domains like computer vision [28, 200, 59, 214],

88

natural language processing [28, 216, 254, 87, 155], and claiming prominent success [236].

Despite the huge success of ML, the privacy issues of ML are becoming more and more con-

cerning, given that the training data could contain a large amount of sensitive information.

The two most notable privacy attacks are membership inference attack (MIA) [118, 207] and

attribute inference attack (AIA) [212], where MIA aims to infer whether a given data sample

is used to train the target model and AIA aims to infer the sensitive attribute of a data sam-

ple. Numerous attacks have emerged and demonstrated that privacy threats are real (e.g.,

over 80% MIA accuracy against CIFAR100 [203]). Recent studies have also shown the data

samples are not equally vulnerable under privacy attacks [244], and the attack effectiveness

could differ across target classes [118], target individuals [159], and subgroups [42]. Yet,

all previous works assume standard, stochastic training is employed by the target model.

Hence, one interesting and important research problem is how new training techniques im-

pact privacy for the overall population and individual samples. In this work, we specifically

study the privacy risks of CL. We are particularly motivated because CL modifies the data

order, which differs from many new techniques such as contrastive learning [99] and other

self-supervised learning techniques [156]. In general, CL increases a model’s overall perfor-

mance and lets a model treat samples differently based on their difficulty levels1 Furthermore,

Shumailov et al. [208] studied the connection between data ordering and backdoor attacks,

which indicates data ordering could have negative impacts. This further motivates us to

investigate the privacy risks of CL.

Our Study. We take a quantitative approach to measure the privacy risks of CL. We

selected two popular CL methods, bootstrapping [89] and transfer learning [239], as the

evaluation objects, and constructed two other curriculum, named baseline curriculum and

anti-curriculum, to understand the impact of data ordering and repeating, respectively. We

selected 9 real-world, large-scale datasets (6 are image datasets and 3 are tabular datasets),

1The terms “difficulty level” and “difficulty score” are interchangeable.

89

trained target models with those CL methods and a normal method, and attacked the models

with representative MIA and AIA methods.

Regarding MIA, our evaluation shows that the target models become slightly more vulnerable

under CL, e.g., the average attack accuracy (trained on ResNet-18 with transfer leaning) on

our selected image datasets ranges from 0.01% to 2.46%. More importantly, we found CL

has a much bigger impact on the samples within the difficult group compared to the easy

group, with the biggest gap of 4.23% in terms of attack accuracy for CIFAR100 (ResNet-18

is the architecture). This observation sustains both image and non-image datasets. We

found the reason is that the data order reinforces the learning process hence making the

model memorize difficult samples better, which is supported by measuring the memorization

scores. Regarding AIA, we found CL does not increase the attack accuracy, which can be

explained by the fact that the sensitive attribute to be inferred is not influenced by data

ordering and repeating.

In addition to understanding the attacks, we also study existing defenses under the CL

settings, including DP-SGD [13], MemGuard [118], MixupMMD [149] and AdvReg [180].

The result shows that none of them can mitigate the threats from MIA without dampening

the model accuracy. In particular, DP-SGD is effective in curbing MIA, and the drop of

attack accuracy for the CL setting is even more than the normal setting. However, the

privacy provided by DP-SGD is at the cost of dropping the classification accuracy of the

target model.

Inspired by CL and a recent MIA that calibrates membership scores to achieve better attack

accuracy [238], we consider the difficulty score as input for calibration and proposed a new

MIA method, named Diff-Cali (difficulty calibrated MIA) . Our attack cannot only bring

the difficult samples to a more vulnerable stage but also achieves a higher true-positive rate

at low false-positive rate regions.

90

Contributions. The contributions of this work are summarized below.

• We take the first step to understanding the privacy risks introduced by CL.

• We conduct a comprehensive analysis to quantify the privacy risks and our results show

CL introduces disparate impacts to samples separated by difficulty levels.

• We propose a new MIA that exploits the difficulty scores for better attack performance.

5.2 Preliminary

5.2.1 Curriculum Learning

Curriculum learning (CL) [28] is designed to emulate the concept of the human learning

process. The general idea is to have a curriculum that imposes a structure on the training

data so the “student” ML models can learn from the easier samples before the harder ones.

As a result, training ML models under CL observes a shorter duration of convergence and

higher testing accuracy[28, 239, 84, 89]. For example, Weinshall et al. proposed to use

transfer learning to build the curriculum and achieved 0.5% to 3.5% higher accuracy than a

model trained in the normal setting [239]. CL has gained significant interest from the ML

community, powering real-world applications in many domains. Section 5.7 provides a more

detailed survey.

Below, we formalize CL following the definition of Hacohen et al. [89]. Let X = {Xi}Ni=1 =

{(xi,yi)}Ni=1 be the training dataset, where N is the number of samples, xi is a data point,

and yi is the label of xi. T is the ML model to be trained. Assuming Stochastic Gradient

Descent (SGD) is used for optimization, and each training iteration takes a mini-batch of

X , and a sequence of M mini-batches B1,...,BM will be used for each epoch. The standard

training procedure will sample X uniformly to generate the mini-batches. Instead, CL uses

91

a difficulty measurer f(X ,C) to generate difficult scores for X , and a training scheduler sorts

X by the difficult scores in an ascending order ahead of training. C is the curriculum, and we

will elaborate on its common options in Section 5.4.1. A sequence of subsets X ′1,...,X ′M ⊆X

are extracted from X after sorting, and the size of X ′i is determined by a pacing function

g(i). A mini-batch Bi is sampled uniformly from X ′i . Algorithm 1 summarizes the process.

Noticeably, slight changes can be applied (e.g., skip the step of mini-batch sampling), but

they should not affect the conclusions drawn from this study.

Algorithm1: Curriculum learning framework.

Input: Training dataset X ={Xi}Ni=1, difficulty measurer f(X ,C), pacing function
g(i), number of iterations M, number of epochs E, target model T

1 X ←f(X ,C);
2 for e∈1,...,E do
3 for i∈1,...,M do
4 X ′i←X [1,...,g(i)];
5 Bi←sample(X ′i);
6 T← train(T,Bi)

5.2.2 Privacy Risks in Machine Learning

Prior works have shown that the ML models could memorize sensitive information from the

training data, which can be inferred by an adversary who keeps querying the model. Two

major types of attacks are MIA [207, 180, 181, 203] and AIA [168, 212], which have been

extensively studied. The detailed literature survey of privacy attacks and other attacks is left

to Section 5.7. Membership InferenceAttack (MIA). Given a target model T and any

adversary’s external knowledge K, the goal of MIA is to determine whether a data sample

x was used to train the model. Formally, we have:

AMI :x,T,K 7→1 or 0 (5.1)

where T is the target model and K is the adversary’s external knowledge, e.g., the distribu-

tion of the training data for T . 1 (0) denotes the sample is a member (non-member).

92

MIA can lead to serious privacy threats. For example, given a model trained on clinical

records of cancer patients to determine the medicine dosage [118], the attacker can learn

whether a person has cancer by applying MIA to the model. We follow previous work [207,

203, 213, 151, 53] and assume that the adversary only has black-box access to T , which means

that the adversary can only query T with the data sample and obtain its corresponding

output. Then, AMI predicts membership with the output of T . Section 5.4.2 elaborates the

details.

Attribute Inference Attack (AIA). Different from MIA, the goal of AIA is to infer

attributes of a data sample that are not related to the target model’s original classification

task. A specific attack scenario is when AIA is used to infer some hidden sensitive attributes.

For instance, a target model is trained to conduct gender classification, while AIA aims to

infer the political view of a data sample. Such attribute is often hidden when training the

target model. However, due to the intrinsic overlearning property of ML [212], a target model

may try to capture attributes not directly relevant to its task. Note that AIA is different

from property inference attack (PIA) [76] which infers a property about the entire dataset

rather than a sample: e.g., PIA can tell whether a training dataset is gender-balanced.

Instead of having direct access to the sample, we follow previous work [168, 212] and consider

the adversary only has its representation (e.g., embedding) generated by a target model T .

Formally, AIA can be defined as:

AAI :h 7→s (5.2)

where h is a sample’s representation provided by T and s is the sample’s sensitive attribute

predicted by AAI . Section 5.4.4 elaborates the details.

93

5.3 Datasets and Target Models

In this work, we aim to quantify the privacy risks introduced by CL through the lens of

MIA and AIA. To this end, we select popular datasets and models that are used for ML

classification tasks. In our study, a total of 9 unique datasets are used, with 8 datasets used

for MIAs and 3 datasets used for AIA. Among these datasets, 6 of them are image datasets,

while the remaining 3 datasets consisted of non-image data.

MIADatasets. We use the following 8 datasets for MIA evaluation, which are also adopted

by previous work [99, 154, 171, 207] to study MIA. They are CIFAR100 [139], Tiny Ima-

geNet [146], Place100, Place 60[253], SVHN [183], Purchase[207], Texas hospital stays[207]

and Locations [245]. We focus on image datasets mainly (the first 5 datasets), but tabular

datasets are also evaluated. Below are the detailed descriptions for the datasets.

• CIFAR100 [139]. This dataset consists of 60,000 colored images in 100 classes, with

600 images per class. The size of each image is 32×32.

• Tiny ImageNet [146]. This is a subset of the ImageNet dataset[56]. It contains

100,000 colored images of 200 classes (500 for each class). The size of each image is

64×64.

• Place100. This dataset is a subset of Places365[253] dataset, which is composed of

more than 1.8 million images with 365 scene categories. Place100 is generated by

randomly selecting 100 scene categories with 600 random images per category.

• Place60. This dataset is similar to Place100, except that it has 60 classes containing

1,000 images each.

• SVHN[183]. The Street View House Numbers (SVHN) dataset is a real-world image

dataset containing over 600,000 digit images. This dataset includes images of house

94

numbers taken from Google Street View images. The size of each image is 32×32.

• Purchase. This is a tabular dataset about purchase styles. Following Shokri et

al. [207], we leverage the Purchase-100 dataset (abbreviated as Purchase) and use

10, 000 records for training. The dataset itself contains 197, 324 records from 100

classes, where each record has 600 binary features.

• Texas hospital stays. This dataset contains information about inpatient stays in

several health facilities. Following Shokri et al. [207], our task is to predict a patient’s

main procedure. After pre-processing, the resulting dataset has 67,330 records and

6,170 binary features.

• Locations [245] . The original dataset was released by Foursquare about its mobile

users’ location “check-ins”, which has 11,592 users and 1,136,481 check-in records.

Our task is to predict the user’s geo-social type (128 in total). Here we use the version

pre-processed by Shokri et al. [207], which has 446 binary features.

AIADatasets. Datasets with multiple attributes are required for AIA. To this end, we adapt

Place100 and Place60 used as MIA datasets to AIA setting as they both contain multiple

attribute labels. More specifically, the model for Place100 outputs whether a sample is

an indoor scene, while the sensitive attribute is the category of the scene, which contains

100 labels. Place60 has the total number of categories as 60. In addition to Place100 and

Place60, we introduce UTKFace [250] specifically for AIA study.

• UTKFace [250]. This is a large-scale facial dataset, which consists of over 20,000

face images with annotations of age, gender, and ethnicity. In our evaluation, we set

gender classification as the the task for target model, and the sensitive attribute to be

inferred is ethnicity, which includes 5 classes.

TargetModels. We adopt three popular neural network architectures as the target model’s

95

architecture for the image datasets. They are ResNet-18 [95], ResNet-34 [95] and Mo-

bileNet [204]. We choose these models because variants of ResNet are still achieving SOTA

(State of The Art) or near SOTA performance in image classification, and MobileNet is

widely used on mobile devices. We adopt cross entropy as the loss function and SGD as the

optimizer. We train all models for 200 epochs with a batch size of 128. The learning rate

is set to 0.12. For the non-image dataset Purchase and Location, we choose a 3-layer MLP

with the same number of epochs and batch size. The number of neurons in the hidden layer

is 256. For the Texas dataset, we use a 5-layer MLP with 512 neurons in the hidden layer

because this dataset contains more features. To avoid fortuitous outcomes, all experiments

are repeated 5 times with the standard deviation presented.

5.4 Methodology

In this section, we describe the curriculum designs experimented with by our study, the

implementation of the basic MIA and AIA, our proposed MIA, and the defense techniques

to be tested.

5.4.1 Curriculum Designs

We choose two popular curriculum learning (CL) methods, which also have open-sourced

implementations [88, 221], to train the target model. We expect our major observations

(described in Section 5.5) are also applicable to other CL methods, like self-paced curricu-

lum [140, 120], and automated curriculum [84], because they share similar high-level ideas

(e.g., self-paced curriculum differs from bootstrapping only in that self-paced curriculum

does not let the curriculum completely guide its learning process). Below we explain the two

CL methods.

2This learning rate is empirically chosen and has a very limited effect on attack accuracy. For example,
when using a learning rate of 0.001, the MIA accuracy is affected by less than 0.2% when attacking a ResNet-18
model trained on CIFAR100.

96

• Bootstrapping [89]. The target model T is first trained without CL, then it serves

as a difficulty measurer (f in Algorithm 1) to order the training samples by their loss.

• Transfer learning [239]. Different from bootstrapping, a pre-trained model is used

for the difficulty measurer. We use inception-v3 [222]3 as the pre-trained model to

evaluate the image datasets. The evaluation on tabular datasets with transfer learning

is skipped, as we did not find a widely used pre-trained model in such a setting.

To better assess the improvement brought by the above two CL methods and their vulnera-

bilities under attacks, we establish two other methods for comparison.

• Baseline curriculum. It uses a random curriculum that is irrelevant to the data

samples’ difficulty. This curriculum is then used across all training epochs. The normal

training process is different in that a random order is drawn for every training epoch.

• Anti-curriculum. It shares the same difficulty measurer with bootstrapping but

arranges the samples from difficult to easy, reversing the outcome of bootstrapping.

For the pacing function g, we choose varied exponential pacing [89], exponentially increasing

the fraction of data by steps (a step denotes the iterations with the same output of g).

According to [89], different pacing functions perform similarly.

In summary, the four CL methods differ in the difficulty measurer and each CL method

feeds training data using the same curriculum (or ordering) across all epochs. The baseline

and anti-curriculum methods help us understand the contribution of data ranking and order

fixing separately (e.g., anti-curriculum can be considered as using a wrong curriculum but

still repeating the order across epochs as advised by CL).

3It is a widely-used image recognitionmodel that achieves over 78.1% accuracy on the ImageNet dataset [56].

97

As described in Section 5.2.1, CL can accelerate the training process to reach higher accuracy.

We first validate this claim by evaluating the training performance and the testing accuracy

and comparing them to the normal training method, which does not use any curriculum as

guidance.

Dataset
Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.3842 0.4002 0.3776 0.3798 0.3803
CIFAR100 0.6081 0.6232 0.5991 0.6099 0.6127
Place100 0.2992 0.3159 0.2967 0.3088 0.3007
Place60 0.4756 0.4903 0.4815 0.4847 0.4707
SVHN 0.9592 0.9598 0.9566 0.9593 0.9599
Purchase 0.4931 0.5324 0.4760 0.5289 -
Texas 0.4809 0.4975 0.4606 0.4877 -
Location 0.5861 0.5914 0.5563 0.5838 -

Table 5.1: Target model’s average test accuracy on different datasets. ResNet-18 is used
for all image datasets, and MLP for non-image datasets Purchase, Texas, and Location.
Transfer learning CL does not apply to non-image datasets. The target model accuracy is
relatively low except for SVHN because we use a subset of the original training data.

0 20 40 60 80
Epoch

0

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

Figure 5.1: The training accuracy of different training methods with ResNet-18 on CIFAR100
along the increase of epochs (total of 90 epochs). Bootstrapping, transfer learning, and
baseline reach higher accuracy faster and converge to a better result.

Table 5.1 validates the effectiveness of CL. At least one of the four CL methods can outper-

form the normal training by 0.06% to 4.42%, and the corresponding average training accuracy

is given in Table 5.2. The maximum standard deviation in Table 5.1 is 0.0221 while 32 out

of 37 results have a standard deviation less than 0.01. This indicates the difference among

various CL methods is statistically significant.

98

Dataset
Method

Normal Bootstrapping Transfer Baseline Anti-curriculum

Tiny ImageNet 100.0 100.0 100.0 100.0 99.963
CIFAR100 100.0 100.0 99.997 99.993 100.0
Place100 100.0 100.0 100.0 100.0 100.0
Place60 100.0 99.996 99.972 100.0 99.918
SVHN 100.0 100.0 100.0 100.0 100.0
Purchase 100.0 100.0 / 99.990 100.0
Texas 96.770 94.030 / 95.600 97.410
Location 100.0 100.0 / 100.0 100.0

Table 5.2: The average training accuracy of datasets in Table 5.1. Image datasets are trained
on ResNet-18 while non-image datasets are trained on MLP. Numbers are all in percentage.
We observe that all training accuracies are nearly 100%. Note that for non-image datasets,
we skip the transfer method as there is no commonly used pre-trained model for the tabular
dataset.

It is worth noticing that bootstrapping and transfer learning always outperform normal

training, and anti-curriculum performs the worst consistently. Interestingly, we observe

that the baseline performs as well as the transfer learning curriculum for Place100 and

Place60, which means the transfer learning curriculum does not suit these two datasets well.

Figure 5.1 validates the major motivation of adopting CL, i.e., reaching higher accuracy while

converging faster. Throughout most of the training, bootstrapping and transfer learning

reach higher accuracy faster than all the other methods. At the same time, it takes the

longest for the anti-curriculum to reach the same training accuracy compared to all other

methods. This indicates that repeating a meaningful data order improves training. This

observation aligns with the discovery from previous work [241, 89]. Finally, CL is expected

to have a disparate impact on classification accuracy across samples. Besides the analysis

in Section 5.5, we also use t-distributed stochastic neighbor embedding (t-SNE) to visualize

the classification tasks carried out by bootstrapping and normal ML on the most difficult

batch of data of SVHN. Figure 5.2 shows all samples within the difficult batch, and it turns

out bootstrapping can separate samples from group “1”, “2” and “3” better than normal

training.

99

0
1
2
3
4
5
6
7
8
9

(a) Normal training

0
1
2
3
4
5
6
7
8
9

(b) Bootstrapping

Figure 5.2: t-SNE of the classification results on the difficult batch of SVHN.

5.4.2 Basic MIA

After providing a high-level overview of MIA in Section 5.2.2, we now delve into the details,

focusing on the three well-known attacks: NN-based (Neural Network-based) [207, 202],

metric-based [213], and label-only attacks [151, 53].

NN-based attack assumes a vector of prediction posteriors (e.g., confidence scores or loss)

of all class labels can be returned by the target model T when querying T with a data

sample x. It is also assumed that the adversary has a shadow dataset (D) that has the same

distribution and format as T ’s private training dataset. D is used to train a set of shadow

models S that behave similarly as T (e.g., having the same architecture as T like previous

work [207, 203, 213]). The attacker trains an attack model AMI using S. In particular, the

attacker queries every shadow model S with the samples from its own training dataset and

a disjoint testing dataset. The prediction posteriors of all samples and whether they are in

training (denoted member) or testing (denoted non-member) are used as input to train AMI .

Finally, the attacker queries T with a sample of interest x and uses the prediction posteriors

100

as the input to AMI to predict the membership status.

Compared to the NN-based attack, the model AMI of metric-based attacks does not need to

be trained. Instead, AMI generates a privacy risk score from the output of T and compares

it to class-specific thresholds.

For the label-only attack, it assumes only the prediction label instead of the prediction

posteriors are returned from T . Still, the adversary can continuously add adversarial pertur-

bations to the input sample x until its prediction label has been changed. The key insight

is that the magnitude of the adversarial perturbation is larger for the member sample as T

gives a more confident prediction. D and S can be used to select a threshold to separate the

perturbation magnitudes of members and non-members.

MIAModels. Following the original setting of the NN-based attacks [207], we adopt a 3-

layer MLP with 64 and 32 hidden neurons, and 2 output neurons, as our attack model AMI .

We use cross-entropy as the loss function and Adam as the optimizer with a learning rate

of 0.01. AMI is trained for 100 epochs. For metric-based attacks, we follow the implemen-

tation of Song et al. [213] and consider 4 metrics, including correctness, confidence, entropy,

and modified entropy. The associated attack methods are named metric-corr, metric-conf,

metric-ent, and metric-ment. For label-only attacks, we leverage the implementation from

ART [225].

Related research has shown that NN-based attacks often, though not universally, achieve bet-

ter attack accuracy compared to metric-based and label-only attacks [207, 203, 99]. Thus we

use NN-based attack (specifically black-box-top3) for most of our evaluation in Section 5.5.

101

5.4.3 Our ProposedMIA

Given that CL orders training samples by difficulty, impacting the model, we investigate

the potential enhancement of MIA when the target model is trained under CL. For this

purpose, we propose a novel MIA method called Diff-Cali specifically tailored for CL. We

first introduce calibrated MIA, which serves as inspiration for designing Diff-Cali, followed

by the details of Diff-Cali.

CalibratedMIA. Recently, Watson et al. [238] proposed to use a calibrated membership

score instead of the standard membership score (e.g., loss) to determine whether a sample

is a member. Assume s(T,x) is the original membership score, where T is the target model,

and x is a sample. The calibrated membership score scal(T,x) is defined as follows:

scal(T,x)=s(T,x)−ES←A(D)[s(S,x)] (5.3)

where S are shadow models4 that behave similarly as T , D is the shadow dataset, function

s(T,x) and s(S,x) output the membership scores from target and shadow models, A randomly

samples subsets of D to train S, and E computes the expectation of s(S,x). Finally, scal(T,x)

is compared to a fixed threshold θ, and a sample is considered a member if scal(T,x)≥θ.

Previous MIA methods could have a high false positive rate (FPR) on non-members, often

over-represented in the samples to be tested by the attacker. Equation 5.3 addresses this

issue by using the difference between the target model and shadow models to derive the

membership signal: if x is non-member to S, it is also more likely non-member to T , therefore

scal(T,x) should be small. The evaluation results in [238] show the area under ROC curve

(AUC) can be improved “by up to 0.10” (e.g., after calibrating the loss-based membership

score with Equation 5.3).

4S are named as reference models in [238], which resemble shadow models [207] as they are also trained on
the same data distribution of T .

102

Difficulty Calibrated MIA (Diff-Cali). Calibrated MIA compares scal(T,x) of all sam-

ples to a fixed threshold θ, and we argue that θ can be calibrated as well. We observe

that a CL curriculum re-orders the samples by their difficulty before the target model is

trained, and such strategy changes how a sample is memorized and vulnerable under MIA

(see Section 5.5.1 and Section 5.5.2). More specifically, we observe that CL makes the target

model more vulnerable to MIA, especially for difficult samples (Finding 1 in Section 5.5.1).

Therefore, we can update θ according to the curriculum and make the attack model more

accurate. We assume the attacker can generate a curriculum similar as the one used by the

target model. For example, the attacker can use the publicly released pre-trained model to

generate the curriculum. Alternatively, the attacker can train shadow models similar to the

target model and then build a curriculum according to loss from them.

We implement this idea for NN-based MIA. When the attack model AMI outputs the pre-

diction posteriors for an input x, the posterior of the label “member” is compared against

θ, and x is predicted as a member when the posterior is larger. When training AMI , we

adjust θ based on samples’ difficulty level to improve the training accuracy, and the pseudo-

code is shown in Algorithm 2. Specifically, in each epoch, the calibrated membership scores

scal(T,D) are generated for ∀x∈D, and we use the loss to compute s (Line 2). Next, we try to

find the threshold θ0 (ranging from 0 to 0.1 based on our empirical study) that achieves the

best accuracy in separating members and non-members from D (Line 3). After that, AMI

is updated by minimizing the training loss on D (Line 4) through adjusting the threshold

with the following function:

g(x,C,θ0)=
(|D|−C(x))(θ0−0.0001)

|D|−1
+0.0001 (5.4)

where C(x) indicates the rank of sample x given by curriculum C. The rank for the easiest

sample is 1, while the most difficult is |D|. g(x,C, θ0) is to assign a threshold θ from

[0.0001,θ0] (0.0001 is the initial threshold suggested by [238]) to each x based on its difficulty

103

level (determined by a curriculum C), that is, calibrating threshold of each x based their

difficulty level. The most difficult sample compares to 0.0001, the easiest one compares

to θ0, and others compare to θ that is ranged in [0.0001,θ0]. The more difficult x has a

smaller threshold, meaning that we are lowering the bar for them to be predicted as members

compared to the easy samples. During the testing phase, the threshold for a sample x is also

adjusted with g(x,C,θ0).

Algorithm 2: Training the attack model and adjusting threshold under Diff-Cali.
“pred” is “prediction”.

Input: Target model TTT , reference model SSS, shadow dataset DDD, labels of shadow
dataset LLL, attack model AMIAMIAMI , curriculum CCC, number of epochs EEE

1 for e∈1,...,E do
2 scal(T,D)=s(T,D)−s(S,D);
3 θ0=argmax

θ
pred(AMI ,L,scal(T,D));

4 AMI← train(AMI ,scal(T,D),g(x,C,θ0));

Diff-Cali follows the direction of addressing the issue caused by over-represented non-members [238,

37]. On top of those works, Diff-Cali is customized under CL to amplify the effects of MIA.

To demonstrate the benefit of Diff-Cali, we compare it with the score-based membership

attack after difficulty calibration with default threshold in [238] (Cal).

Overall, Diff-Cali outperforms Cal by 4.0% to 9.9% of attack accuracy while maintaining

the same AUC. Besides, Diff-Cali improves MIA’s TPR at extremely low FPR, making the

difficult sample more vulnerable. This focus (on the low FPR regime) is the setting with

the most practical consequences, i.e., de-identifying even a few users contained in a sensitive

dataset is far more significant than making an average-case statement like ‘most people are

not in the sensitive dataset’ [37]. Moreover, we conclude that the knowledge of the actual

curriculum being used is not required for the proformance boost from introducing Diff-Cali

(See Figure 5.5). The detailed evaluation of Diff-Cali across all metrics such as attack

accuracy, confidence score, and TPR at low FPR are presented in Section 5.5.3.

Some recent works suggest to use class-specific thresholds [213]. We did not adjust the

104

threshold by classes because our threshold has been fine-tuned with difficulty levels.

5.4.4 Basic AIA

Song et al. proposed an inference-time attack and model-repurposing attack [212] for AIA,

and here we focus on the first attack and follow the same setting as this work. We consider

the model evaluation to be partitioned [212] or the model is trained under federated learn-

ing [168]. The target model T is split into two parts, i.e., an encoder and a classifier, and

the adversary has black-box access to the encoder E. The attacker has an auxiliary dataset

D containing pairs of (x,s) where s is the sensitive attribute. The embeddings h can be

generated by querying E, i.e., h=E(x),∀x∈D. All pairs of (h,s) will be used to train the

attack model AAI and later used to predict the values of s in the target model T .

AIAModel. Our AAI is a 3-layer MLP with 128 hidden neurons in each hidden layer. We

use cross-entropy as the loss function and SGD as the optimizer with a learning rate of 0.01.

The attack model is trained for 100 epochs. The dimension of each sample’s embedding

(i.e., second to the last layer’s output) is 512 for ResNet-18, 512 for ResNet-34, and 1024 for

MobileNet. To train the target model T , we use the label for the original classification (e.g.,

gender). To train AAI , we use the label from another field (e.g., race).

5.4.5 Defense Methods

Some defense methods have been proposed to reduce the success rate of privacy attacks, in

particular, MIA. We are interested in how they perform under curriculum learning and our

proposed attack. To this end, we select DP-SGD [13], MemGuard [118], MixupMMD [149]

and AdvReg [180]. DP-SGD and MemGuard represent two directions in privacy protection,

while MixupMMD and AdvReg are two more recent defense methods. Below, we explain

the four defense methods.

105

DP-SGD. Differentially-Private Stochastic Gradient Descent (DP-SGD) modifies the stochas-

tic gradient descent (SGD) algorithm and integrates (ϵ,δ)-DP [61] (see Definition 2.1) to

provide provable privacy guarantee.

After a per-sample gradient is computed, DP-SGD clips it to a fixed maximum norm C and

Gaussian noise is added to the aggregated parameter gradient with standard deviation δC.

The output of the trained model will satisfy (ϵ,δ)-DP.

MemGuard. Different from DP-SGD, MemGuard does not change the training process. At

a high level, it obfuscates the predictions of the target model by adding noises to its output.

It is designed to defend against MIA in particular, while DP-SGD deals with all sorts of

privacy risks. Assuming an attack model AMI has been trained with shadow training [207],

and AMI(T (x),y) outputs a confidence score ranging in [0,1], where T (x) is the prediction

of the target model and y is the label for x. A sample is considered a member if the score is

larger than 0.5 and a non-member if smaller than 0.5. MemGuard has two phases. In Phase

1, it crafts adversarial noise and adds it to T (x) to force AMI(T (x),y) to be 0.5 to confuse

the attacker, while the distance between the original prediction and the noisy prediction is

minimized. In phase II, the adversary adds the noise to the original prediction with a certain

probability of trade-off the utility and privacy.

MixupMMD. Li et al. [149] found a model vulnerability under MIA relates to the difference

between the training and testing accuracy, and they proposed MixupMMD to intentionally

reduce the training accuracy to validation accuracy. A new penalty, Maximum Mean Dis-

crepancy (MMD), is used by the regularizer.

AdvReg. Nasr et al. [180] proposed to mitigate MIA by formulating the defense as a min-

max optimization problem. Given a validation set that serves as “non-members”, AdvReg

introduces an adversarial classifier to infer the membership status using the posteriors gener-

ated from the target model. The optimization goal is to minimize the original classification

106

Dataset
Method

Normal Bootstrapping Anti-curriculum Baseline Transfer Learning

Tiny ImageNet 0.9193 0.9385 0.9116 0.9207 0.9439
CIFAR100 0.8577 0.8751 0.8376 0.8582 0.8718
Place100 0.9425 0.9549 0.9335 0.9416 0.9617
Place60 0.8773 0.8987 0.8625 0.8827 0.8902
SVHN 0.5570 0.5605 0.5514 0.5599 0.5580
Purchase 0.9524 0.9453 0.9118 0.9458 -
Texas 0.6749 0.7068 0.5950 0.7039 -
Location 0.9153 0.9194 0.8980 0.9169 -

Table 5.3: Accuracy of NN-based MIA on models trained on 8 datasets. Transfer learning
CL does not apply to non-image dataset Purchase, Texas and Location.

loss and maximize the loss of the adversarial classifier.

5.5 Evaluation Results

In this section, we present the evaluation results of MIA and AIA when CL is applied to

train the target model. We also attempt to explain the observations from the angle of data

memorization and show the impact of CL on the existing defenses. We highlight our insights

with text boxes.

Evaluationsetup. To evaluate MIA and AIA, we split each dataset described in Section 5.3

into three disjoint parts: one for training the target model, one for training a shadow model,

and one for testing both the target and shadow model.

To evaluate the defense methods, we split each dataset into five parts as some advanced

methods need reference datasets for training. More details about the defenses can be found

in Section 5.5.5. All experiments were repeated 5 times to minimize the fortuitous outcomes,

and the mean value and standard deviation were reported.

Evaluationmetrics. First, we compute the attack accuracy, measured by the correct predic-

tions (member/non-member) versus all predictions, to assess the effectiveness of MIA/AIA,

107

and the classification accuracy of the target model to assess the impact of curriculum learn-

ing and defenses. Second, to better understand the attack results, we retrieve the confidence

scores of members and non-members, respectively. Note that the confidence score indicates

the likelihood of a sample being classified as a member or non-member. Third, we compute

the true-positive rate (TPR) at the false-positive rate (FPR) of the attacks. As noted by

Carlini et al. [37], attacks should emphasize the member guesses over non-member guesses, so

they should be evaluated by considering TPR at low FPR. This cannot be precisely modeled

by the overall accuracy, precision, or recall.

5.5.1 Evaluation of Basic MIA

We start with the experiments on the 5 image datasets (CIFAR100, Tiny ImageNet, Place100,

Place60, and SVHN), using ResNet-18 as the target model architecture and later ResNet-34

and MobileNet for comparison. The evaluation of the tabular datasets (Purchase, Texas

hospital stays, and Locations) is presented at the end. The attack models are described

in Section 5.4.2.

MIAAccuracy. We found that models trained using meaningful CL methods (i.e., boot-

strapping and transfer learning) are slightly morevulnerable to MIA. Table 5.3 shows the

accuracy of NN-based black-box-top3 MIA [207] by datasets and CL methods. The biggest

attack accuracy improvement observed for image datasets is 2.46% (Tiny ImageNet with

transfer learning) while the biggest improvement for non-image datasets is 3.20% (Texas

with bootstrapping). Among different CL methods, bootstrapping and transfer learning are

the most vulnerable, with an average of 1.29% and 1.44% improvement in the attack accuracy

against the normal training, respectively. For baseline CL, the attack accuracy decreases for

Place100, whereas a slight increase is observed for the attack accuracy on other datasets. For

anti-curriculum CL, the attack accuracy decreases for all datasets. This result indicates both

the data repeating (reflected by the results of baseline) and ordering (reflected by the results

108

of bootstrapping and anti-curriculum) of CL (explained in Section 5.4.1) contribute to the

vulnerability under MIA. The consistent performance of bootstrapping and anti-curriculum

indicates that data ordering plays a bigger role.

Regarding the impact of datasets, we found more complex datasets (e.g., with more classes

of labels) tend to have higher attack accuracy in general. For example, the average MIA

accuracy is 94.39% for Tiny ImageNet (200 classes), 87.18% for CIFAR100 (100 classes),

96.17% for Place100 (100 classes), 89.02% for Place60 (60 classes), and 55.80% for SVHN

(10 classes), all under transfer learning. The same effects have also been observed in other

works like [207].

Regarding the metric-based and label-only attacks, the result is similar to the NN-based

attack, as suggested by the evaluation on CIFAR100, shown in Table 5.4. The only exception

is metric-corr, which performs worse than other attacks with bootstrapping. This result can

be explained by the assumption of metric-corr that the target model is trained to predict

correctly on its training data, which may not generalize well on the test data. In the rest of

the evaluation, we fix the attack model to black-box-top3, and the NN-based attack in the

rest of the paper primarily refers to black-box-top3, unless indicated otherwise.

0 2 4 6 8
Difficulty Level

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

Ac
cu

ra
cy

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

(a) CIFAR100

0 2 4 6 8
Difficulty Level

0.91

0.92

0.93

0.94

Ac
cu

ra
cy

(b) Tiny ImageNet

Figure 5.3: MIA accuracy on CIFAR-100, Tiny ImageNet. ResNet-18 is used for target
model training.

109

Attack
Method

Normal Bootstrapping Anti-CL Baseline Transfer Learning

NN-based [207] 0.8577 0.8751 0.8376 0.8582 0.8718
Metric-corr [213] 0.6920 0.6820 0.6905 0.6930 0.6855
Metric-conf [213] 0.8600 0.8810 0.8458 0.8553 0.8740
Metric-ent [213] 0.8490 0.8750 0.8320 0.8435 0.8685
Metric-ment [213] 0.8620 0.8820 0.8463 0.8568 0.8760
Label-only [225] 0.8200 0.8263 0.7963 0.8050 0.8088
Cali [238] 0.7889 0.8272 0.7532 0.7781 0.8148
Diff-Cali 0.8519 0.8670 0.8382 0.8438 0.8614

Table 5.4: Average accuracy of NN-based, metric-based, label-only and our Diff-Cali attacks
on models trained on CIFAR100 with ResNet-18.

Figure 5.3 shows the attack accuracy of samples from different difficulty levels. More specif-

ically, we construct the test dataset as half member samples and half non-member samples.

Member samples are divided into different difficulty levels while non-member samples across

each difficulty level are fixed. Figure 5.3 demonstrates that using a meaningful curriculum

(i.e., bootstrapping and transfer learning) makes the model more vulnerable, especially for

the difficult samples.

Confidence Score. Since the key contribution of CL is to factor in the samples’ difficulty

levels during the training procedure, here we evaluate how difficulty levels impact the sam-

ples’ vulnerability individually. Intuitively, the difficult samples should be harder to attack.

However, since CL forces the model to learn the samples in a repetitive manner, we want

to find out whether samples will be remembered by the model differently. To assess and

quantify the possible privacy risk discrepancy caused by CL, we first arrange samples ac-

cording to their difficulty level. Then, we use the confidence score and attack accuracy to

analyze individual samples. Note that we train a separate model and use the sample loss

given by this model as a guide to determine how difficult a sample is. This model is used

solely for getting the difficulty levels of all samples and is different from the target model in

our following evaluation.

110

0 2 4 6 8
Difficulty Level

0.70
0.72
0.74
0.76
0.78
0.80
0.82

Co
nf

id
en

ce
 S

co
re

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(a) Members of CIFAR100

0 2 4 6 8
Difficulty Level

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Co
nf

id
en

ce
 S

co
re

(b) Non-members of CIFAR100

0 2 4 6 8
Difficulty Level

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91

Co
nf

id
en

ce
 S

co
re

(c) Members of Tiny ImageNet

0 2 4 6 8
Difficulty Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
nf

id
en

ce
 S

co
re

(d) Non-members of Tiny ImageNet

Figure 5.4: Attack model’s confidence score for both member and non-member samples on
CIFAR-100 and Tiny ImageNet. ResNet-18 is used for target model training, and data
samples are arranged according to their difficulty scores from bootstrapping.

Figure 5.4 depicts the attack model’s confidence score by samples’ difficulty levels. Though

the difficult samples are not more vulnerable than the easy samples, the gap in confidence

scores ismuchnarrower (especially for the confidence score of members). Take the target

model in CIFAR100 as an example, our attack model can recognize the most difficult member

samples (scored as difficulty level 9) from this model with over 7.83% (absolute growth from

72.19% to 80.02%) more confidence, thanks to transfer learning (Figure 5.4a). Interestingly,

for the most difficult member samples, it is even possible for anti-curriculum to have a higher

confidence score compared to the normal training ((Figure 5.4c)). This observation indicates

111

that enforcing difficult samples to the training process first does not necessarily make the

model more likely to forget them. If we perceive feeding difficult samples first to a model as

negative, the repetition of a curriculum can possibly compensate for such a negative effect,

i.e., making the target model memorize the difficult samples better than a normal ML where

these samples are presented at random times throughout training.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(a) Linear scale NN-based MIA

10−4 10−3 10−2 10−1 100

False Positive Rate

10−4

10−3

10−2

10−1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(b) Log scale NN-based MIA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(c) Linear scale Diff-Cali

10−4 10−3 10−2 10−1 100

False Positive Rate

10−4

10−3

10−2

10−1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(d) Log scale Diff-Cali

Figure 5.5: TPR/FPR of NN-based MIA and Diff-Cali under different training method
trained with ResNet-18 on CIFAR100.

TPR at Low FPR. In addition to the attack accuracy, we measured the relation between

TPR at low FPR, as explained in “evaluation metrics” (Section 5.5). Following Carlini et

al. [37], we present the ROC curve for the attacks with both linear scaling and log scaling

to emphasize the low-FPR regime. Figure 5.5a and Figure 5.5b demonstrate the ROC curve

112

Method
Architecture

ResNet-18 ResNet-34 MobileNet

Normal 0.8572 ± 0.0011 0.8564 ± 0.0001 0.7979 ± 0.0001
Bootstrapping 0.8751 ± 0.0001 0.8746 ± 0.0003 0.8308 ± 0.0000
Anti-curriculum 0.8376 ± 0.0002 0.8481 ± 0.0002 0.7763 ± 0.0002
Baseline 0.8582 ± 0.0001 0.8559 ± 0.0002 0.8318 ± 0.0000
Transfer Learning 0.8718 ± 0.0001 0.8715 ± 0.0002 0.8430 ± 0.0001

Table 5.5: The average accuracy of NN-based attacks on models trained on different network
architectures with CIFAR100.

for NN-based attack. The results show that using curriculum increases ROC. The TPR of

transfer learning and bootstrapping are generally higher than the others except at extremely

low FPR (< 10−4). This indicates CL introduces disparate impact to members and non-

members for most samples. Moreover, the NN-based attack fails to achieve a TPR better

than random chance at any FPR below 0.045, indicating potential for further improvement.

Loss Distribution. The previous evaluation presents a macro-level understanding of CL’s

impact on MIA. Here we present a micro-level analysis by examining the loss distribution

between members and non-members in models trained with normal and CL methods. Due to

the space limitation, here we only show the results of ResNet-18 trained on Tiny ImageNet

in Figure 5.6 which shows a clearer discrepancy in terms of the loss distributions comparing

to other datasets. Note that the loss scores are normalized. As one can see, there is a clear

difference between their loss distributions, e.g., bootstrapping makes the overall members’

loss much lower and the members’ loss distribution less overlapped with non-members’,

especially for those members with higher difficulty levels. In Section 5.5.2, we also reason

this observation from the perspective of data memorization.

Target Model Architectures. To study the impact of the architecture of the target

model, we launched MIA against ResNet-34 and MobileNet and compare the results against

ResNet-18. Table 5.5 demonstrates the average attack accuracy of MIA when target models

are trained with ResNet-18, ResNet-34, and MobileNet, respectively. It shows that they

113

0.0 0.2 0.4 0.6 0.8 1.0
Loss

100

101

102

103

104
Fr

eq
ue

nc
y

Mem
Non-mem

(a) Normal training

0.0 0.2 0.4 0.6 0.8 1.0
Loss

100

101

102

103

104

(b) Bootstrapping

Figure 5.6: Loss distribution for models trained on Tiny ImageNet with ResNet-18.

all share a similar trend of how CL affects MIA. Though MobileNet turns out to be less

vulnerable (5.85% and 5.93% less attack accuracy compared to ResNet-34 and ResNet-18,

respectively), bootstrapping, transfer learning, and baseline all increase the overall attack

accuracy. Figure 5.7 demonstrates the results by difficulty levels on ResNet-34 and Mo-

bileNet when training with Tiny ImageNet, which can be viewed together with Figure 5.3b

about ResNet-18. Though MobileNet turns out to be less vulnerable (4% less attack accu-

racy compared to ResNet-34 and ResNet-18), bootstrapping, transfer learning, and baseline

all increase the overall attack accuracy and narrow down the gap between difficult and easy

samples. As such, the privacy concerns in CL cannot be addressed by changing the target

models’ architectures. This observation is consistent with other works [151, 99] about MIA

vs. architectures.

Non-imageDatasets. As shown in Table 5.3, most experiments remain to have the same

trend they are showing in image datasets. For Purchase, however, attack accuracy on normal

training is 0.71% higher than bootstrapping for example. This shows that CL does not

always empower MIA more. In Figure 5.8, we show the confidence score of members and

non-members on Purchase, and the result is similar to the image datasets, where difficult

samples are more vulnerable.

114

0 2 4 6 8
Difficulty Level

0.89

0.90

0.91

0.92

0.93

0.94

0.95
Ac

cu
ra

cy

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

(a) ResNet-34

0 2 4 6 8
Difficulty Level

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

(b) MobileNet

Figure 5.7: MIA accuracy for target model trained on Tiny ImageNet with ResNet-34 and
MobileNet, respectively.

0 2 4 6 8
Difficulty Level

0.75

0.80

0.85

0.90

0.95

Co
nf

id
en

ce
 S

co
re

Normal
Bootstrapping
Anti-curriculum
Baseline

(a) Purchase member

0 2 4 6 8
Difficulty Level

0.0

0.1

0.2

0.3

0.4

0.5
Co

nf
id

en
ce

 S
co

re

(b) Purchase non-member

Figure 5.8: Attack model’s confidence score for both member and non-member samples on
Purchase. MLP is used for target model training, and data samples are arranged according
to their difficulty scores from bootstrapping.

In the meantime, we found the changes caused by different CL methods are more drastic on

the non-image datasets, compared to the image datasets. For example, Texas has a more

prominent attack accuracy drop (8.0%) on anti-curriculum. The non-image datasets are

relatively simple, containing only binary features after pre-processing, hence they are more

likely to be impacted by CL. Table 5.1 also shows the target model accuracy varies more

for the non-image datasets under CL.

115

Finding 1: CL makes the target model more vulnerable to MIA, especially for difficult

samples .

Finding 2: Both data ordering and data repeating make a model more vulnerable under

MIA, while data ordering plays a bigger role in influencing the vulnerability of a model

under MIA.

5.5.2 Analysis with DataMemorization

The previous experiments show CL makes the difficult samples more vulnerable. Here, we

attempt to explain this observation with a more principled analysis. Recent works [70, 72]

suggest the effectiveness of MIA could be tied to how well the target model memorizes

individual data sample. The notion of memorization is formally defined as [70]:

mem(A,D,i) := Pr
T∼A(D)

[T (xi)=yi]− Pr
T∼A(D\i)

[T (xi)=yi] (5.5)

where A denotes the training algorithm, D denotes the training dataset, T is the trained

model, (xi,yi) denotes one sample with its ground-truth label, and D\i denotes D with i-

th sample removed. The model is likely to memorize the data sample if adding (xi,yi) to

training significantly changes the model’s prediction on yi. Though Equation 5.5 models the

memorization of a single data sample, we can easily extend it to quantify the memorization

of multiple samples at once.

Specifically, we evaluate ResNet-18 trained with CIFAR100. We first leave out 800 most

difficult data samples (4% of all samples) and train a model without these data via boot-

strapping (“not seen”). Then, we train the model under CL according to data memorization:

the curriculum makes the 800 data samples either be seen at the beginning (“first seen”),

end (“last seen”), or random places (“random”) of each training epoch. Figure 5.9 depicts

the prediction probability of the true labels of the 4 scenarios. Data memorization under

116

Not Seen First Seen Random Last Seen
Scenario

0.0

0.2

0.4

0.6

0.8

1.0
Pr

[T
(x

i)=
y i

]

Figure 5.9: Memorization: violin plots of prediction probability of 800 most difficult samples,
according to bootstrapping CL. The horizontal bars of each violin represent the minimum
and maximum of the prediction probability.

CL can be assessed by comparing “first seen”, “last seen”, and “random” to “not seen”,

following the idea of Equation 5.5. We observe that other than “not seen”, the other three

scenarios memorize the difficult samples fairly well (higher prediction probability of the true

class). It turns out that data ordering has a strong impact on data memorization, e.g., “last

seen” provides the strongest memorization compared to “first seen” and “random”. The

difficult samples are more vulnerable under CL because they are memorized better after

data ordering.

Here, we elaborate on the topic of data Shapley and study if our observation in this section

can be explained from the angle of data valuation. Specifically, we choose Shapley value [80]

as the metric, as it has the “strongest theoretical foundation” in data valuation research [91].

In essence, the data with high Shapley values are ones that on average contribute significantly

to a model’s prediction performance. We follow most of the experiment steps in this section

and only change how the samples are selected for “not seen” (i.e., selected based on their

Shapley values rather than difficulty levels).

KNN-Shapley. Calculating Shapley values is intractable for a DNN model that is trained

117

Not Seen First Seen Random Last Seen
Scenario

0.0

0.2

0.4

0.6

0.8

1.0
Pr

[T
(x

i)=
y i

]

Figure 5.10: Shapley: violin plots of prediction probability of 800 most valuable samples
according to KNN-Shapley.

Not Seen First Seen Random Last Seen
Scenario

0.0

0.2

0.4

0.6

0.8

1.0

Pr
[T

(x
i)=

y i
]

Figure 5.11: Reverse Shapley: violin plots of prediction probability of 800 least valuable
samples according to KNN-Shapley.

on a large dataset, as it requires a model to be retrained for 2n times, where n is the number

of data points, to assess the contribution of one data point versus all possible subsets of the

training set [91]. To address this scalability issue, Jia et al. [119] proposed KNN-Shapley,

which uses a lightweight KNN surrogate model to reduce the overhead of model retraining.

The time complexity is reduced to O(nlogn) and still, a good approximation of Shapley

values can be obtained. As such, we use KNN-Shapley to calculate the Data Shapley values.

118

Figure 5.10 and Figure 5.11 show the prediction probability of true label with 800 most

and least valuable data samples according to KNN-Shapley. From the results of ”not seen”,

we observe that the least valuable data have higher prediction accuracy on average (51%),

meaning that their absence in training has less impact compared to the more valuable data

as presented in Figure 5.10. Similarly, feeding the least valuable data first or at last to the

training does not affect the prediction much.

Then, we compare the impact of difficulty level and Shapley value on data memorization,

from Figure 5.9 and Figure 5.10. Though both show that the absence of the most difficult

or valuable data leads to poor prediction and seeing these data lastly benefits more than

seeing them first during training, these changes are much more drastic for difficult samples

(Figure 5.9) than the valuable samples (Figure 5.10). For example, the median prediction

probability of the “not seen” difficult samples and valuable samples are 39.19% and 56.01%.

As such, the data reordering of CL makes the difficult samples more vulnerable, but not so

for the valuable samples.

Finding 3: CL forces the model to memorize the difficult samples harder, which makes

them more vulnerable.

5.5.3 Evaluation of Diff-Cali

In order to fully utilize the information of difficulty levels exposed by CL, we propose Diff-

Cali as described in Section 5.4.3. Overall, the NN-based attack still has a slightly better

attack accuracy compared to Diff-Cali, but Diff-Cali has higher confidence scores for difficult

samples and has better TPR at the low FPR regime.

Attack Accuracy. Table 5.4 presents the accuracy of Diff-Cali, which is about 1% lower

compared to NN-based attack on all CL methods. Figure 5.12 depicts the attack accuracy

on CIFAR100 and Tiny ImageNet. ThoughDiff-Cali achieves slightly lower (less than 1.44%)

119

0 2 4 6 8
Difficulty Level

0.82
0.83
0.84
0.85
0.86
0.87

Ac
cu

ra
cy

Baseline
Bootstrapping

Tranfer Learning
Anti-curriculum

Normal

(a) CIFAR100

0 2 4 6 8
Difficulty Level

0.90

0.91

0.92

0.93

0.94

Ac
cu

ra
cy

Baseline
Bootstrapping

Tranfer Learning
Anti-curriculum

Normal

(b) Tiny ImageNet

Figure 5.12: Diff-Cali’s accuracy for models trained on CIFAR100 and Tiny ImageNet with
ResNet-18.

accuracy compared to NN-based attack, with adaptive calibration, we are able to make the

difficult samplesmore vulnerable: e.g., the attack accuracy of difficulty level at 9 and 0

are 86.47% and 86.32% for transfer learning under CIFAR100. The most difficult samples

now can be predicted 2.64% and 2.35% more accurately for normal and anti-curriculum ML,

respectively. Overall, Diff-Cali is able to overcome the privacy risk discrepancy of different

samples through calibration and results in better attack accuracy for difficult samples for

normal ML and anti-curriculum ML.

Confidence Score. Like the evaluation of basic MIA, we show the confidence scores of

samples according to their difficulty level in Figure 5.14 and Figure 5.13.

Overall, we are able to achieve confidence scores greater than 0.7807 (normal) for CIFAR100

and 0.8678 (normal) for Tiny ImageNet for all member samples, whereas the minimum mem-

ber confidence score from NN-based is 0.6889 for CIFAR100 and 0.8333 for Tiny ImageNet

(Figure 5.4). In short, we are able to improve the normal training confidence score for all

members by 3.29% for CIFAR100 and 3.45% for Tiny ImageNet. Similarly, we reduce the

confidence score of non-members (note that a lower confidence score means less chance to

be misclassified as non-members) by 0.0414 for CIFAR100 and 0.1751 for Tiny ImageNet.

120

0 2 4 6 8
Difficulty Level

0.84

0.86

0.88

0.90

0.92

0.94
Co

nf
id

en
ce

 S
co

re

(a) Member

0 2 4 6 8
Difficulty Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
nf

id
en

ce
 S

co
re

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

(b) Non-member

Figure 5.13: Diff-Cali’s member and non-member confidence score for models trained on
Tiny ImageNet with ResNet-18.

0 2 4 6 8
Difficulty Level

0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

Co
nf

id
en

ce
 S

co
re

(a) Member

0 2 4 6 8
Difficulty Level

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Co
nf

id
en

ce
 S

co
re

Normal
Bootstrapping
Anti-curriculum
Baseline
Tranfer Learning

(b) Non-member

Figure 5.14: Diff-Cali’s member and non-member confidence score for models trained on
CIFAR100 with ResNet-18.

Unlike previous NN-based attack, the accuracy of Diff-Cali does not share a similar trend

as the confidence score because the final prediction of the membership status of Diff-Cali is

not based on the confidence score solely.

TPRatLowFPR. In Figure 5.5, we show that Diff-Cali can achieve much higher TPR at

low FPR (<10−4). We present the ROC curve for the attacks with both linear scaling and

log scaling to emphasize the low-FPR regime. Figure 5.5c and Figure 5.5d demonstrate the

121

ROC curve for Diff-Cali. The results show that using curriculum increases ROC (Figure 5.5a,

Figure 5.5c). We observe that our proposed Diff-Cali performs better at low FPR. More

specifically, Figure 5.5b shows that NN-based attack fails to achieve a TPR better than

random chance at any FPR below 0.045 while Diff-Cali can be better than random guessing

at all times.

Finding 4: Diff-Cali improves MIA performance in terms of TPR at low FPR, making the

difficult samples more vulnerable.

5.5.4 Evaluation of AIA

Method
Dataset

Place100 Place60 UTKFace

Normal 0.107±0.003 0.173±0.002 0.528±0.005
Bootstrapping 0.092±0.003 0.168±0.004 0.515±0.006
Transfer Learning 0.104±0.001 0.150±0.005 0.512±0.006
Baseline Curriculum 0.079±0.004 0.143±0.001 0.506 ±0.008
Anti-Curriculum 0.033±0.001 0.128±0.005 0.517±0.007

Table 5.6: Average accuracy of AIA (± standard deviation (STD)) on model trained with
different methods. ResNet-18 is the target model architecture.

We evaluate the 4 CL methods and normal training under the AIA setting described in

Section 5.4.4 and Table 5.6 to demonstrate the overall attack accuracy. Generally, our

results indicate that CL does not make the target model more vulnerable. This somehow

contradicts a recent study [99] showing that a model is more vulnerable under AIA when

trained under special settings, i.e., contrastive learning. Interestingly, the normal training

yields the highest average attack accuracy (e.g., 0.107 for Place100), even compared to anti-

curriculum. UTKFace has a much higher attack accuracy because the baseline accuracy

(random guessing based on majority class labels) of UTKFace is already quite high (42.1%).

Our further investigation also shows that the attack accuracy is about the same for samples

in different groups of difficulty levels (see Figure 5.15). We speculate that this is because

122

0 2 4 6 8
Difficulty Level

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

Normal
Bootstrapping

Anti-curriculum
Baseline

Tranfer Learning

Figure 5.15: Attribute inference attack accuracy on UTKFace

the attributes of a sample themselves are already very complex and hard to learn. Besides,

the difficulty score (e.g., bootstrapping) is calculated based on the original ML task, which

emphasizes the specific attribute the original ML task tries to learn. That means the data

ranking is effective only for the attribute chosen for the classification task but does not

influence the sensitive attribute that one intends to infer.

Finding 5: The model trained under CL is less vulnerable under AIA compared to MIA.

5.5.5 Evaluation of Defense

We evaluate how the defenses including DP-SGD, MemGuard, MixupMMD, and AdvReg

perform under the impact of CL. Table 5.7 shows the attack accuracy on ResNet-18 which

is trained with CIFAR100. Because MixupMMD and AdvReg require reference datasets for

defense deployment, we equally divided CIFAR100 into 5 parts for fair comparison among

all the defense techniques. More specifically, all target models in Table 5.7 are trained with

only 12,000 data points, which also explains why the accuracies are lower. Regarding the

123

setup of the defense methods, bootstrapping and anti-curriculum with DP-SGD are trained

with the same curriculum as previous experiments. DP-SGD* uses a noisy curriculum for

bootstrapping and anti-curriculum, and the difficulty measurer is trained under DP-SGD.

For transfer learning, it is not impacted as we use a pre-trained model. ϵ and δ in our

evaluation are 124,496 and 1e− 5 for DP-SGD. We have a large ϵ because we have 200

epochs of training and ResNet-18 contains a large number of parameters. We did not change

these settings for a fair comparison with other defense techniques. Previous studies have

used large ϵ for DP-SGD in order to achieve good model accuracy [113, 143]. Based on

a recent work [33], we are able to make ϵ 10 times smaller after proper parameter tuning

while achieving similar target accuracy. The ϵ can be brought down even first with a large

batch size. Pulling tricks of DP-SGD based on the above recent work can further boost the

tradeoff, we do not discuss it here as that is a parallel line of research. Note that in this

section, we still use small batch size for DP-SGD evaluation though that results in large ϵ.

This is because we want to keep parameters across all target models the same for a fair MIA

evaluation, and we have limited computing resources for handling large batch numbers.

Normal Bootstrapping Transfer Learning Baseline Anti-CL

None
Target 48.0 51.4 48.9 50.0 49.3
MIA 90.3 91.4 ±0.03 91.3 ±0.03 91.5 ±0.02 89.5 ±0.02

DP-SGD*
Target 17.4 18.0 17.2 18.3 11.2
MIA 50.6 ±0.11 50.6 ±0.06 50.6 ±0.01 50.4 ±0.11 50.3 ±0.11

DP-SGD
Target 17.4 17.2 17.2 17.6 17.2
MIA 50.8 ±0.07 50.7 ±0.01 50.6 ±0.01 50.4 ±0.11 50.4 ±0.10

MemGuard
Target 48.0 51.4 48.9 50.0 49.3
MIA 50.0 50.0 50.0 50.0 50.0

Label-only 83.0 84.5 84.5 84.0 81.3

MixupMMD
Target 54.1 54.4 55.7 55.0 52.6
MIA 81.6 ±0.02 83.1 ±0.02 76.1 ±0.03 84.4 ±0.02 79.1 ±0.02

AdvReg
Target 51.2 54.2 50.4 53.0 52.1
MIA 89.2 ±0.01 91.6 ±0.02 92.8 ±0.04 91.6 ±0.01 87.3

Table 5.7: The average accuracy of MIA (± standard deviation (STD)) on target model
trained on CIFAR100 with ResNet-18 and different defense methods. All numbers are in
percentage, entry without ± STD means the STD is less than 0.01%.

Table 5.7 demonstrates that DP-SGD is able to curb the MIA accuracy from 90.8% to 50.5%

124

in average, which is close to random guess (i.e., member or non-member), though at the cost

of a significant drop in target model’s classification accuracy (from 49.52% to 16.42% in

average). This observation is consistent with previous works [149, 143]. We also found DP-

SGD is effective against Diff-Cali (e.g., attack accuracy for normal and bootstrapping are

dropped to 53.67% and 53.09%). For DP-SGD*, due to the introduced noise, the ranking

given by its curriculum is less accurate, but Table 5.7 shows that such change does not impact

the MIA accuracy, and the target model accuracy drops by only a small amount (i.e., 0.8%

for bootstrapping and 0.7% for baseline) except for anti-curriculum. Due to the noise in

ranking, the ranking for anti-curriculum is no longer strictly ordered from difficult to easy.

Instead, it becomes more random, thus target accuracy of anti-curriculum is even closer to

baseline or bootstrapping. In general, the result suggests using noisy ranking (DP-SGD*)

as a defense might not be effective.

For MemGuard, due to its design, NN-based MIA accuracy is fixed to 50% when the defender

knows what MIA method is performed by the attacker. In the meantime, the classification

task of the target model is not impacted by MemGuard. However, it is not very effective

towards label-only attack, as it does not change the label. Our evaluation shows that the

overall label-only attack accuracy can still reach up tp 86% even with MemGuard deployed.

MixupMMD decreases the MIA accuracy (e.g., 91.4% to 83.1% for bootstrapping), and inter-

estingly, it increases the target model accuracy (e.g., from 51.4% to 54.4% for bootstrapping),

which might be attributed to its new regularizer. AdvReg can also increase target accuracy

(e.g., 51.4% to 54.2% for bootstrapping) but is less effective in mitigating MIA (e.g., MIA

accuracy is even increased from 91.4% to 91.6% for bootstrapping). This observation concurs

with a previous work [213].

Given that CL introduces disparate impact on samples under different difficulty groups,

we further investigate the relation between difficulty groups and defenses, and we focus on

DP-SGD. Figure 5.16 shows that DP-SGD is able to eliminate the disparate impact by CL,

125

0 2 4 6 8
Difficulty Level

0.4990
0.4992
0.4994
0.4996
0.4998
0.5000
0.5002
0.5004

Co
nf

id
en

ce
 S

co
re

(a) Member of CIFAR100

0 2 4 6 8
Difficulty Level

0.49825

0.49850

0.49875

0.49900

0.49925

0.49950

0.49975

0.50000

Co
nf

id
en

ce
 S

co
re

Baseline
Bootstrapping
Tranfer Learning
Anti-curriculum
Normal

(b) Non-member of CIFAR100

Figure 5.16: Attack model’s confidence score for member and non-member samples of
CIFAR-100 trained on ResNet-18 with DP-SGD.

essentially making the difficult samples again hard to attack. We speculate the reason is

that DP-SGD adds noise to gradient, which adds randomness to the optimization phase.

CL, by introducing a teacher module, reinforces the learning by reducing the randomness.

Ultimately, DP-SGD and CL are built on two opposite foundations. Thus, DP-SGD can

eliminate the benefit from CL and achieve significant defense effect.

Overall, there is still room for improvement in defenses. Potential future work is to pre-

serve certain properties brought by an ML technique (e.g., fast convergence and higher final

performance by CL) and mitigate privacy risks generically.

Finding 6: None of the studied defenses can significantly drop the MIA accuracy while

maintaining the target model accuracy. DP-SGD can reverse the impact of CL on MIA.

5.6 Discussion

Limitations. 1) The research on ML privacy has been growing strong in recent years, and

numerous attacks, variations, and defenses have emerged. Admittedly, not all attack methods

(e.g., adaptive attack [213] and LiRA [37]) and defense techniques (e.g., PATE [189]) have

126

been examined. Though LiRA is considered state of the art, it requires multiple shadow

models while all other attacks on our paper need one. To fairly compare with LiRA, the

current datasets need to be divided into much smaller subsets, which will lead to worse

performance of all target models and shadow models. Thus, we didn’t investigate LiRA in

this work. However, we believe our key conclusions (e.g., the difficult samples become more

vulnerable when trained with CL) hold generically, due to the fundamental designs of the

curriculum. 2) We mainly evaluated the privacy attack on image and tabular datasets, with

widely used models like ResNet and MLP. Admittedly, not all data types (e.g., text [28] and

speech [252]) and models (e.g., VGG) are covered. 3) Not all ML privacy attacks are tested,

such as model inversion attacks [75, 249], as we suspect they are less likely to be impacted

by CL. In the end, we want to mention that our efforts are comparable to recent works that

study the privacy of special ML settings like contrastive learning [99].

Evaluation Metrics. For privacy attacks like MIA, whether and how it is effective is

determined by the evaluation metrics. Attack accuracy is the one adopted in the beginning

and is still widely used today, but recent studies have suggested metrics have to be carefully

selected to fully understand the results. Following Carlini et al. [37], we adopt TPR at low

FPR as another metric. We also view the results under confidence scores to shed light on

the divergent impacts of CL into samples, which reveal new insights that are not captured

by other metrics. Other metrics like precision/recall [37] and disparate vulnerability [244]

can be considered and we believe this research direction still needs new input.

5.7 RelatedWork

Curriculum Learning (CL). The idea of CL was first introduced by Bengio et. al [28].

Researchers have then developed many new designs such as predefined CL [121], self-paced

CL [120], CL by transfer learning [239] and other automated CL [84]. CL is proved to be

effective in the domain of reinforcement learning [165, 178, 74, 73], computer vision [28, 200,

127

59, 214], natural language processing [28, 216, 254, 87, 155], speech [252, 39, 160], etc. Note

that the concept of self-paced[140] learning can often be confused with CL bootstrapping.

They share a similar idea of using an iterative procedure to assign higher weights to training

examples that have lower costs with respect to their chosen hypothesis. Bootstrapping differs

in that the difficulty score is generated based on model accuracy rather than a hypothesis [89].

Membership Inference Attack (MIA). Section 5.4.2 has surveyed some representative

works about MIA. Here we describe other notable works. On top of the original MIA [207],

Salem et al. [203] proposed three more powerful attacks by relaxing the assumptions made

by Shokri et al. [207]. Nasr et al. [181] investigated privacy risks in centralized and feder-

ated learning scenarios under both black-box and white-box settings. Recent works show

that MIA can be further enhanced by adopting flexible thresholds [115], calibrated difficulty

level [238], and loss trajectory [158]. Besides the general ML settings, recent works ex-

amined special settings like contrastive learning [99, 154], Generative Adversarial Networks

(GAN) [103, 44, 46], and Graph Neural Networks (GNN) [96, 98, 240]. However, none of them

investigated curriculum learning, and we aim to fill this knowledge gap. To mitigate MIA,

researchers have proposed a few defensive mechanisms, like DP-SGD [13], MemGuard [118],

MixupMMD [149], and AdvReg [180], as described in Section 5.4.5. PATE [189] uses teacher

models to supervise the training of the student model and adds Laplacian noise to the teacher

models’ output. Salem et al. [203] leverage model stacking and dropout to reduce overfitting.

Attribute InferenceAttack (AIA). AIA presents another notable threat to ML privacy.

Section 5.4.4 surveyed the key works under AIA. In addition, He et al. [99] show that AIA

is more vulnerable to models trained by contrastive learning. Recently, Song et al. [211]

show that AIA is also effective against language models. Jayaraman et al. propose a new

white-box AIA method that achieves better accuracy [114]. We focus on the black-box

setting.

Other Attacks AgainstMLModels. MIA and AIA can be considered as attacks on the

128

data privacy of ML. Model privacy, integrity, and availability have also been investigated,

resulting in numerous studies. Model stealing aims to learn the parameters [224, 188, 138,

126, 206] or hyperparameters [232, 186] of a target model, and model inversion, whose goal

is to recover the training dataset [75, 249]. There also exists some works focus on protecting

a model’s ownership [150, 227, 15, 198, 117, 45, 54, 161] to defend against model stealing

attacks and other attacks like network pruning and fine-tuning.

129

Chapter 6

Conclusion

Summary. In this dissertation, we identify the major gap between differential privacy (DP)

theory and its practical applications. We expand DP application into non-standard settings

like DNS and resource allocation. Furthermore, we look into the extremely popular domain

of machine learning (ML) to explore if existing DP applications in ML domain apply to the

emerging ML techniques.

First, we studied the issue of user tracking on DNS data. Based on our observation of the

recent attackDSCorr [41], we designed our defense mechanism LDPResolve to make DNS

sessions indistinguishable, using a generalized version of ULDP [174] and new constructions

satisfying its requirements. We then evaluate the effectiveness of LDPResolve in different

settings to prove its capability to protect users’ privacy from tracking while preserving the

utility for legitimate applications based on DNS data. Our study suggests the threats coming

from DNS-based user tracking should be mitigated and it is feasible to protect users’ privacy

without damaging the utility of legitimate application.

Second, we studied the problem of privacy protection designated under resource allocation

and systematically modeled it through the lens of differential privacy. Specifically, we iden-

130

tified the key issues of a prior system AKR [19]and propose to consider negative noise and

mechanisms other than the standard Laplace noise. We designed four different mechanisms,

CST, UNI, GEO, and DGEO, proved they all satisfy ϵ-DP.

In both theoretical and empirical analysis, we found our mechanisms outperform AKR in

utility ranging from 11% to 65% given a privacy budget ϵ. Among the proposed mechanism,

we recommend GEO, which has a good privacy-utility tradeoff and performs especially well

when ϵ is small (e.g., less than 2). Ultimately, we hope to use this work to attract more

attention to the privacy issues of resource allocation and encourage new privacy-preserving

solutions to be designed.

Last, we performed the first quantitative study to understand how curriculum learning (CL),

a widely used technique that accelerates model training, affected the privacy of the trained

model. Specifically, we trained target models under 6 image datasets and 3 tabular datasets

and performed membership inference attacks (MIA) and attribute inference attacks (AIA)

against them to assess the privacy risk in CL. Our results showed that the target model

became slightly more vulnerable to MIA but not so under AIA. We also found MIA had a

significantly larger impact on samples with high difficulty levels. By exploiting the leakage

from difficulty levels, we designed a newMIA, termed Diff-Cali, which achieved similar overall

accuracy with much better TPR at low FPR and could infer difficulty samples from normal

ML more accurately. Moreover, we evaluated the existing defenses DP-SGD, MemGuard,

MixupMMD, and AdvReg in CL settings, and our results showed that they were still effective

against the basic MIA.

Future Directions. Data provenance, which documents the origins and lifecycle of data,

is critical across various fields including healthcare, finance, government, and academic re-

search. Provenance records a comprehensive history of data, from its creation to manipu-

lation and storage, essential for ensuring data integrity, conducting audits, and complying

with regulatory standards. System provenance focuses on monitoring dependencies within

131

computer systems [130, 157], analyzing system call logs to track operations across processes

on files and network sockets.

Recent advancements in machine learning (ML) have leveraged low-level system activities

captured in provenance graphs to develop ML-based security models, enhancing security

monitoring in sensitive networks [92, 93, 94, 170, 233]. However, as the detailed data within

provenance graphs traverses through complex ML systems, the systems can inadvertently

reveal sensitive information, which could lead to privacy challenges. Studies have shown that

provenance-based ML detectors are vulnerable to adversarial attacks [83, 173].

Integrating DP into provenance graphs addresses the critical challenge of maintaining the

utility of provenance data while protecting individual privacy. This integration is vital for

several reasons:

• Enhanced Security and Privacy of Provenance-based Applications: Applying

DP to provenance-based applications can prevent attackers from gleaning sensitive

information even if they gain access to the models.

• Regulatory Compliance: Implementing DP in provenance graphs helps organiza-

tions adhere to strict data protection regulations like GDPR and HIPAA by providing

a method to manage data that inherently safeguards privacy.

• Trust and Transparency: In settings like collaborative research or cross-sectoral

analysis where data sharing is essential, using DP-enriched provenance graphs enables

entities to share insights without exposing the underlying data, promoting a transpar-

ent operational model.

Thus, it is import keep embedding privacy features in provenance graphs as an important

future direction. More specifically, exploring this direction will require future research on

132

1) analyzing privacy aspects in provenance-based applications, 2) defining privacy for prove-

nance graph, and 3) developing techniques for generating private synthetic data.

6.1 Perspective

Within the context of our work on DP, we anticipate the following trends in the future:

Privacy in Artificial Intelligence (AI) . The rapid growth of AI applications, such as

GPT-4, has drawn significant attention to their privacy concerns. Recognizing their impor-

tance, the White House issued an Executive Order on October 30, 2023, to ensure the safe

and responsible development of AI, emphasizing the power of DP [105]. Existing defense

mechanisms, such as differentially private stochastic gradient descent (DP-SGD), show sig-

nificant promise but still have limitations. For instance, the accuracy of models trained with

DP-SGD often falls short of expectations. Although recent research suggests that it is feasi-

ble to train differentially private machine learning models with high accuracy, this typically

involves substantial computational overhead. This overhead can be particularly prohibitive

for users with limited resources, posing a significant barrier to the wider adoption of DP-

SGD. Therefore, we expect a trend of more research studies in the area of privacy-preserving

AI.

MachineLearningforPrivacy. The trend in using machine learning for enhancing privacy

focuses significantly on applications such as synthetic data generation, where ML algorithms

are employed to create anonymized datasets that mimic the statistical properties of original

data while ensuring individual privacy. This approach is particularly valuable for training

ML models where access to real, sensitive data might be restricted or ethically problem-

atic. Techniques like generative adversarial networks (GANs) have shown great promise

in generating high-quality synthetic data that can be used for a wide range of purposes,

including more secure data sharing and improving model accuracy without compromising

personal data. Moreover, machine learning models are also being developed to improve

133

privacy-preserving techniques such as encryption and differential privacy by optimizing their

parameters and making them more efficient and less resource-intensive. As the sophistication

of privacy attacks increases, the role of ML in privacy applications is becoming more crucial,

driving a substantial shift towards more secure and resilient privacy technologies.

134

Bibliography

[1] dnsdist overview. https://dnsdist.org/.

[2] Google Public DNS. https://developers.google.com/speed/public-dns/.

[3] How to enable dns over https in google chrome. https://www.howtogeek.com/6600
88/how-to-enable-dns-over-https-in-google-chrome/.

[4] Public suffix list. https://publicsuffix.org/.

[5] S.1578 - do not track act. https://www.congress.gov/bill/116th-congress/sena
te-bill/1578/text.

[6] Welcome to powerdns. https://www.powerdns.com/documentation.html.

[7] Learning with privacy at scale. https://machinelearning.apple.com/2017/12/06
/learning-with-privacy-at-scale.html, 2017.

[8] Alexa top sites. https://aws.amazon.com/alexa-top-sites/, 2019.

[9] Dns pai. http://www.dnspai.com/, 2019.

[10] Doh: (anti-)competitive and network neutrality aspects. https://blog.powerdns.co
m/2019/12/03/doh-anti-competitive-and-network-neutrality-aspects/, 2019.

[11] Security information exchange (sie) protects from cybercrime. https://www.farsig

htsecurity.com/solutions/security-information-exchange/, 2019.

[12] Easylist overview. https://easylist.to/, 2021.

[13] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 308–318, 2016.

[14] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. The web
never forgets: Persistent tracking mechanisms in the wild. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 674–689,
2014.

135

https://dnsdist.org/
https://developers.google.com/speed/public-dns/
https://www.howtogeek.com/660088/how-to-enable-dns-over-https-in-google-chrome/
https://www.howtogeek.com/660088/how-to-enable-dns-over-https-in-google-chrome/
https://publicsuffix.org/
https://www.congress.gov/bill/116th-congress/senate-bill/1578/text
https://www.congress.gov/bill/116th-congress/senate-bill/1578/text
https://www.powerdns.com/documentation.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://aws.amazon.com/alexa-top-sites/
http://www.dnspai.com/
https://blog.powerdns.com/2019/12/03/doh-anti-competitive-and-network-neutrality-aspects/
https://blog.powerdns.com/2019/12/03/doh-anti-competitive-and-network-neutrality-aspects/
https://www.farsightsecurity.com/solutions/security-information-exchange/
https://www.farsightsecurity.com/solutions/security-information-exchange/
https://easylist.to/

[15] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet. Turning Your Weakness Into a
Strength: Watermarking Deep Neural Networks by Backdooring. In USENIX Security
Symposium (USENIX Security), pages 1615–1631. USENIX, 2018.

[16] D. Agrawal and D. Kesdogan. Measuring anonymity: The disclosure attack. IEEE
Security & privacy, 1(6):27–34, 2003.

[17] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and M. Varvello. Dis-
secting dns stakeholders in mobile networks. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies, pages 28–34, 2017.

[18] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-to-end per-
formance isolation through virtual datacenters. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), pages 233–248, 2014.

[19] S. Angel, S. Kannan, and Z. Ratliff. Private resource allocators and their applications.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 372–391. IEEE, 2020.

[20] S. Angel, D. Lazar, and I. Tzialla. What’s a little leakage between friends? In
Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pages 104–108,
2018.

[21] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. Keeping
the smart home private with smart (er) iot traffic shaping. Proceedings on Privacy
Enhancing Technologies, 2019(3):128–148, 2019.

[22] M. D. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J. Hoofnagle. Flash
cookies and privacy ii: Now with html5 and etag respawning. Available at SSRN
1898390, 2011.

[23] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. Advances in Neural Information Processing
Systems, 31, 2018.

[24] B. Balle, J. Bell, A. Gascón, and K. Nissim. The privacy blanket of the shuffle model.
In Annual International Cryptology Conference, 2019.

[25] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers. Shrinkwrap: efficient
sql query processing in differentially private data federations. Proceedings of the VLDB
Endowment, 12(3):307–320, 2018.

[26] A. Beams, S. Kannan, and S. Angel. Packet scheduling with optional client privacy. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 3415–3430, 2021.

[27] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future generation
computer systems, 28(5):755–768, 2012.

136

[28] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Pro-
ceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[29] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious domains
using passive dns analysis. In Ndss, pages 1–17, 2011.

[30] J. Black. Learn How Trillions of DNS Requests Help Improve Security. https:

//blogs.akamai.com/2018/05/learn-how-trillions-of-dns-requests-help-i

mprove-security.html.

[31] K. Borgolte, T. Chattopadhyay, N. Feamster, M. Kshirsagar, J. Holland, A. Hounsel,
and P. Schmitt. How dns over https is reshaping privacy, performance, and policy in
the internet ecosystem. Performance, and Policy in the Internet Ecosystem (July 27,
2019), 2019.

[32] F. Brandt. How to obtain full privacy in auctions. International Journal of Information
Security, 5(4):201–216, 2006.

[33] Z. Bu, Y.-X. Wang, S. Zha, and G. Karypis. Automatic clipping: Differentially private
deep learning made easier and stronger. arXiv preprint arXiv:2206.07136, 2022.

[34] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros. Web tracking: Mech-
anisms, implications, and defenses. arXiv preprint arXiv:1507.07872, 2015.

[35] J. Bushart and C. Rossow. Padding ain’t enough: Assessing the privacy guarantees of
encrypted dns. arXiv preprint arXiv:1907.01317, 2019.

[36] C. L. Canonne, G. Kamath, and T. Steinke. The discrete gaussian for differential
privacy. Advances in Neural Information Processing Systems, 33:15676–15688, 2020.

[37] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership inference
attacks from first principles. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1897–1914. IEEE, 2022.

[38] S. Castillo-Perez and J. Garcia-Alfaro. Evaluation of two privacy-preserving protocols
for the dns. In 2009 Sixth International Conference on Information Technology: New
Generations, pages 411–416. IEEE, 2009.

[39] A. Caubrière, N. Tomashenko, A. Laurent, E. Morin, N. Camelin, and Y. Estève.
Curriculum-based transfer learning for an effective end-to-end spoken language under-
standing and domain portability. arXiv preprint arXiv:1906.07601, 2019.

[40] T. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi. Foundations of differentially
oblivious algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2448–2467. SIAM, 2019.

[41] D. Chang, J. Q. Chen, Z. Li, and X. Li. Hide and seek: Revisiting dns-based user
tracking. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P),
pages 188–205. IEEE, 2022.

137

https://blogs.akamai.com/2018/05/learn-how-trillions-of-dns-requests-help-improve-security.html
https://blogs.akamai.com/2018/05/learn-how-trillions-of-dns-requests-help-improve-security.html
https://blogs.akamai.com/2018/05/learn-how-trillions-of-dns-requests-help-improve-security.html

[42] H. Chang and R. Shokri. On the privacy risks of algorithmic fairness. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 292–303. IEEE, 2021.

[43] C.-Y. Chen, D. Sanyal, and S. Mohan. Indistinguishability prevents scheduler side
channels in real-time systems. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 666–684, 2021.

[44] D. Chen, N. Yu, Y. Zhang, and M. Fritz. GAN-Leaks: A Taxonomy of Membership In-
ference Attacks against Generative Models. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 343–362. ACM, 2020.

[45] J. Chen, J. Wang, T. Peng, Y. Sun, P. Cheng, S. Ji, X. Ma, B. Li, and D. Song. Copy,
Right? A Testing Framework for Copyright Protection of Deep Learning Models. In
IEEE Symposium on Security and Privacy (S&P). IEEE, 2022.

[46] J. Chen, W. H. Wang, H. Gao, and X. Shi. PAR-GAN: Improving the Generalization
of Generative Adversarial Networks Against Membership Inference Attacks. In ACM
Conference on Knowledge Discovery and Data Mining (KDD), pages 127–137. ACM,
2021.

[47] J. Q. Chen. Code of this project. https://github.com/dpra-dp/dpra, 2023.

[48] J. Q. Chen, X. He, Z. Li, Y. Zhang, and Z. Li. A comprehensive study of privacy risks
in curriculum learning. arXiv preprint arXiv:2310.10124, 2023.

[49] J. Q. Chen, T. Wang, Z. Zhang, Y. Zhang, S. Jha, and Z. Li. Differentially private
resource allocation. In Proceedings of the 39th Annual Computer Security Applications
Conference, pages 772–786, 2023.

[50] Y. Chen, M. Antonakakis, R. Perdisci, Y. Nadji, D. Dagon, and W. Lee. Dns noise:
Measuring the pervasiveness of disposable domains in modern dns traffic. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
pages 598–609. IEEE, 2014.

[51] H. Choi and H. Lee. Identifying botnets by capturing group activities in dns traffic.
Computer Networks, 56(1):20–33, 2012.

[52] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet detection by monitoring group activities
in dns traffic. In 7th IEEE International Conference on Computer and Information
Technology (CIT 2007), pages 715–720. IEEE, 2007.

[53] C. A. C. Choo, F. Tramèr, N. Carlini, and N. Papernot. Label-Only Membership
Inference Attacks. In International Conference on Machine Learning (ICML), pages
1964–1974. PMLR, 2021.

[54] T. Cong, X. He, and Y. Zhang. SSLGuard: AWatermarking Scheme for Self-supervised
Learning Pre-trained Encoders. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 579–593. ACM, 2022.

138

https://github.com/dpra-dp/dpra

[55] R. Cummings, M. Kearns, A. Roth, and Z. S. Wu. Privacy and truthful equilibrium
selection for aggregative games. In International Conference on Web and Internet
Economics, pages 286–299. Springer, 2015.

[56] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[57] D. Desfontaines. A bottom-up approach to making differential privacy ubiquitous.
https://desfontain.es/privacy/bottom-up-differential-privacy.html, 03
2022. Ted is writing things (personal blog), Accessed: Oct, 2023.

[58] D. Desfontaines and B. Pejó. Sok: differential privacies. Proceedings on privacy en-
hancing technologies, 2020(2):288–313, 2020.

[59] Y. Duan, H. Zhu, H. Wang, L. Yi, R. Nevatia, and L. J. Guibas. Curriculum deepsdf.
In European Conference on Computer Vision, pages 51–67. Springer, 2020.

[60] C. Dwork. Differential privacy: A survey of results. In International conference on
theory and applications of models of computation, pages 1–19. Springer, 2008.

[61] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pages 265–284. Springer,
2006.

[62] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under con-
tinual observation. In Proceedings of the forty-second ACM symposium on Theory of
computing, pages 715–724, 2010.

[63] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 51–60.
IEEE, 2010.

[64] P. Eckersley. How unique is your web browser? In International Symposium on Privacy
Enhancing Technologies Symposium, pages 1–18. Springer, 2010.

[65] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measurement
and analysis. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 1388–1401, 2016.

[66] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta.
Amplification by shuffling: From local to central differential privacy via anonymity.
arXiv preprint arXiv:1811.12469, 2018.

[67] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta.
Amplification by shuffling: From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2468–2479. SIAM, 2019.

139

https://desfontain.es/privacy/bottom-up-differential-privacy.html

[68] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-
preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014.

[69] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: randomized aggregatable privacy-
preserving ordinal response. In CCS, 2014.

[70] V. Feldman. Does learning require memorization? a short tale about a long tail. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 954–959, 2020.

[71] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by it-
eration. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 521–532. IEEE, 2018.

[72] V. Feldman and C. Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems,
33:2881–2891, 2020.

[73] F. Foglino, M. Leonetti, S. Sagratella, and R. Seccia. A gray-box approach for cur-
riculum learning. In World Congress on Global Optimization, pages 720–729. Springer,
2019.

[74] P. Fournier, C. Colas, M. Chetouani, and O. Sigaud. Clic: Curriculum learning and
imitation for object control in non-rewarding environments. IEEE Transactions on
Cognitive and Developmental Systems, 2019.

[75] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACMSIGSAC
conference on computer and communications security, pages 1322–1333, 2015.

[76] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov. Property Inference At-
tacks on Fully Connected Neural Networks using Permutation Invariant Representa-
tions. In ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 619–633. ACM, 2018.

[77] H. Gao, V. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and H. Duan. An
empirical reexamination of global dns behavior. In Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM, pages 267–278, 2013.

[78] P. Garraghan, P. Townend, and J. Xu. An analysis of the server characteristics and
resource utilization in google cloud. In 2013 IEEE International Conference on Cloud
Engineering (IC2E), pages 124–131. IEEE, 2013.

[79] Q. Geng and P. Viswanath. Optimal noise adding mechanisms for approximate differ-
ential privacy. IEEE Transactions on Information Theory, 62(2):952–969, 2015.

140

[80] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning, pages 2242–2251. PMLR,
2019.

[81] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing
privacy mechanisms. SIAM Journal on Computing, 41(6):1673–1693, 2012.

[82] S. Gopi, Y. T. Lee, and L. Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

[83] A. Goyal, X. Han, G. Wang, and A. Bates. Sometimes, you aren’t what you do:
Mimicry attacks against provenance graph host intrusion detection systems. In 30th
Network and Distributed System Security Symposium, 2023.

[84] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learn-
ing, pages 1311–1320. PMLR, 2017.

[85] B. Greschbach, T. Pulls, L. M. Roberts, P. Winter, and N. Feamster. The effect of dns
on tor’s anonymity. arXiv preprint arXiv:1609.08187, 2016.

[86] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,
P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, N. Provos, M. Z. Rafique, M. A.
Rajab, C. Rossow, K. Thomas, V. Paxson, S. Savage, and G. M. Voelker. Manufac-
turing compromise: the emergence of exploit-as-a-service. In Proceedings of the 2012
ACM conference on Computer and communications security, pages 821–832, 2012.

[87] J. Guo, X. Tan, L. Xu, T. Qin, E. Chen, and T.-Y. Liu. Fine-tuning by curriculum
learning for non-autoregressive neural machine translation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 7839–7846, 2020.

[88] G. Hacohen. https://github.com/GuyHacohen/curriculum_learning, 2019.

[89] G. Hacohen and D. Weinshall. On the power of curriculum learning in training deep
networks. In International Conference on Machine Learning, pages 2535–2544. PMLR,
2019.

[90] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej, P. Bal-
aji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu, et al. A survey and taxonomy
on energy efficient resource allocation techniques for cloud computing systems. Com-
puting, 98(7):751–774, 2016.

[91] Z. Hammoudeh and D. Lowd. Training data influence analysis and estimation: A
survey. arXiv preprint arXiv:2212.04612, 2022.

[92] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer. Unicorn: Run-
time provenance-based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525, 2020.

141

https://github.com/GuyHacohen/curriculum_learning

[93] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer, and H. Chen.
{SIGL}: Securing software installations through deep graph learning. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2345–2362, 2021.

[94] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates. Nodoze: Combatting
threat alert fatigue with automated provenance triage. In network and distributed
systems security symposium, 2019.

[95] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–
778. IEEE, 2016.

[96] X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang. Stealing Links from Graph
Neural Networks. In USENIX Security Symposium (USENIX Security), pages 2669–
2686. USENIX, 2021.

[97] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava. Composing differential
privacy and secure computation: A case study on scaling private record linkage. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1389–1406. ACM, 2017.

[98] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, and Y. Zhang. Node-Level Membership
Inference Attacks Against Graph Neural Networks. CoRR abs/2102.05429, 2021.

[99] X. He and Y. Zhang. Quantifying and Mitigating Privacy Risks of Contrastive Learn-
ing. In ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 845–863. ACM, 2021.

[100] D. Herrmann, C. Banse, and H. Federrath. Behavior-based tracking: Exploiting char-
acteristic patterns in dns traffic. Computers & Security, 39:17–33, 2013.

[101] D. Herrmann, C. Gerber, C. Banse, and H. Federrath. Analyzing characteristic host
access patterns for re-identification of web user sessions. In Nordic Conference on
Secure IT Systems, pages 136–154. Springer, 2010.

[102] D. Herrmann, M. Kirchler, J. Lindemann, and M. Kloft. Behavior-based tracking
of internet users with semi-supervised learning. In 2016 14th Annual Conference on
Privacy, Security and Trust (PST), pages 596–599. IEEE, 2016.

[103] B. Hilprecht, M. Härterich, and D. Bernau. Monte Carlo and Reconstruction Mem-
bership Inference Attacks against Generative Models. Privacy Enhancing Technologies
Symposium, 2019.

[104] N. P. Hoang, I. Lin, S. Ghavamnia, and M. Polychronakis. K-resolver: Towards de-
centralizing encrypted dns resolution. arXiv preprint arXiv:2001.08901, 2020.

[105] W. House. Executive order on the safe, secure, and trustworthy development and use
of artificial intelligence, 2023. Accessed: Oct 31, 2023.

142

[106] R. Houser, Z. Li, C. Cotton, and H. Wang. An investigation on information leak-
age of dns over tls. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 123–137, 2019.

[107] J. Hsu, Z. Huang, A. Roth, T. Roughgarden, and Z. S. Wu. Private matchings and
allocations. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 21–30, 2014.

[108] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification
for DNS over transport layer security (TLS). Technical report, 2016.

[109] B. Hubert. Centralised doh is bad for privacy, in 2019 and beyond. https://labs.r
ipe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-201

9-and-beyond, 2019.

[110] P. Huffman and P. McManus. Dns queries over https (doh). Technical report, 2018.

[111] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah, M. B.
Qureshi, L. Zhang, W. Yongji, N. Ghani, et al. A survey on resource allocation in
high performance distributed computing systems. Parallel Computing, 39(11):709–736,
2013.

[112] B. Imana, A. Korolova, and J. Heidemann. Institutional privacy risks in sharing dns
data. In Proceedings of the Applied Networking Research Workshop, ANRW ’21, page
69–75, New York, NY, USA, 2021. Association for Computing Machinery.

[113] B. Jayaraman and D. Evans. Evaluating differentially private machine learning in
practice. In 28th USENIX Security Symposium (USENIX Security 19), pages 1895–
1912, 2019.

[114] B. Jayaraman and D. Evans. Are attribute inference attacks just imputation? In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 1569–1582, 2022.

[115] B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans. Revisiting membership
inference under realistic assumptions. arXiv preprint arXiv:2005.10881, 2020.

[116] B. Jia, H. Hu, Y. Zeng, T. Xu, and Y. Yang. Double-matching resource allocation
strategy in fog computing networks based on cost efficiency. Journal of Communications
and Networks, 20(3):237–246, 2018.

[117] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot. Entangled Wa-
termarks as a Defense against Model Extraction. In USENIX Security Symposium
(USENIX Security), pages 1937–1954. USENIX, 2021.

[118] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong. MemGuard: Defending against
Black-Box Membership Inference Attacks via Adversarial Examples. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 259–274. ACM,
2019.

143

https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond
https://labs.ripe.net/Members/bert_hubert/centralised-doh-is-bad-for-privacy-in-2019-and-beyond

[119] R. Jia, F. Wu, X. Sun, J. Xu, D. Dao, B. Kailkhura, C. Zhang, B. Li, and D. Song.
Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8239–8247, 2021.

[120] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-paced curriculum
learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[121] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In International
Conference on Machine Learning, pages 2304–2313. PMLR, 2018.

[122] J. Jin, E. McMurtry, B. I. Rubinstein, and O. Ohrimenko. Are we there yet? timing
and floating-point attacks on differential privacy systems. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 473–488. IEEE, 2022.

[123] R. Johari and J. N. Tsitsiklis. Efficiency loss in a network resource allocation game.
Mathematics of Operations Research, 29(3):407–435, 2004.

[124] L. Kang and D. C. Parkes. Passive verification of the strategyproofness of mechanisms
in open environments. In Proceedings of the 8th international conference on Electronic
commerce: The new e-commerce: innovations for conquering current barriers, obstacles
and limitations to conducting successful business on the internet, pages 19–30, 2006.

[125] S. Kannan, J. Morgenstern, A. Roth, and Z. S. Wu. Approximately stable, school
optimal, and student-truthful many-to-one matchings (via differential privacy). In
Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,
pages 1890–1903. SIAM, 2014.

[126] S. Kariyappa, A. Prakash, and M. K. Qureshi. MAZE: Data-Free Model Stealing
Attack Using Zeroth-Order Gradient Estimation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 13814–13823. IEEE, 2021.

[127] M. Kearns, M. Pai, A. Roth, and J. Ullman. Mechanism design in large games: In-
centives and privacy. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 403–410, 2014.

[128] D. W. Kim and J. Zhang. You are how you query: Deriving behavioral fingerprints
from dns traffic. In International Conference on Security and Privacy in Communication
Systems, pages 348–366. Springer, 2015.

[129] D. W. Kim and J. Zhang. Deriving and measuring dns-based fingerprints. Journal of
Information Security and Applications, 36:32–42, 2017.

[130] S. T. King and P. M. Chen. Backtracking intrusions. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 223–236, 2003.

[131] E. Kinnear, T. Pauly, and C. Wood. Adaptive dns: Improving privacy of name reso-
lution. Technical report, Technical report, 2019.

144

[132] M. Kirchler, D. Herrmann, J. Lindemann, and M. Kloft. Tracked without a trace:
linking sessions of users by unsupervised learning of patterns in their dns traffic. In
Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security, pages
23–34, 2016.

[133] A. Klein and B. Pinkas. Dns cache-based user tracking. In Network and Distributed
System Security Symposium (NDSS’19). San Diego, CA, USA (Feb 2019), 2019.

[134] K. C. Knowlton. A fast storage allocator. Communications of the ACM, 8(10), 1965.

[135] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2(2):93–108, 2005.

[136] I. Komargodski and E. Shi. Differentially oblivious turing machines. In 12th Inno-
vations in Theoretical Computer Science Conference (ITCS 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

[137] J. K. Konjaang, J. Maipan-uku, and K. K. Kubuga. An efficient max-min resource al-
locator and task scheduling algorithm in cloud computing environment. arXiv preprint
arXiv:1611.08864, 2016.

[138] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer. Thieves on
Sesame Street! Model Extraction of BERT-based APIs. In International Conference
on Learning Representations (ICLR), 2020.

[139] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[140] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models.
In NIPS, volume 1, page 2, 2010.

[141] M. Kumpošt and V. Matyáš. User profiling and re-identification: case of university-
wide network analysis. In International Conference on Trust, Privacy and Security in
Digital Business, pages 1–10. Springer, 2009.

[142] Y.-H. Kuo, C.-C. Chiu, D. Kifer, M. Hay, and A. Machanavajjhala. Differentially pri-
vate hierarchical count-of-counts histograms. arXiv preprint arXiv:1804.00370, 2018.

[143] A. Kurakin, S. Chien, S. Song, R. Geambasu, A. Terzis, and A. Thakurta. Toward
training at imagenet scale with differential privacy. arXiv preprint arXiv:2201.12328,
2022.

[144] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Distributed private messaging immune
to passive traffic analysis. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 711–725, 2018.

[145] D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping secure communication without
leaking metadata. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 571–586, 2016.

145

[146] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[147] J. Lee, J. Kwon, H.-J. Shin, and H. Lee. Tracking multiple c&c botnets by analyzing
dns traffic. In 2010 6th IEEE Workshop on Secure Network Protocols, pages 67–72.
IEEE, 2010.

[148] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell, and
S. W. Redder. Priority-based cache allocation in throughput processors. In 2015 IEEE
21st International Symposium on High Performance Computer Architecture (HPCA),
pages 89–100. IEEE, 2015.

[149] J. Li, N. Li, and B. Ribeiro. Membership inference attacks and defenses in classifica-
tion models. In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy, pages 5–16, 2021.

[150] Z. Li, C. Hu, Y. Zhang, and S. Guo. How to Prove Your Model Belongs to You:
A Blind-Watermark based Framework to Protect Intellectual Property of DNN. In
Annual Computer Security Applications Conference (ACSAC), pages 126–137. ACM,
2019.

[151] Z. Li and Y. Zhang. Membership Leakage in Label-Only Exposures. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 880–895. ACM,
2021.

[152] B. Liu, Z. Li, P. Zong, C. Lu, H. Duan, Y. Liu, S. Alrwais, X. Wang, S. Hao, Y. Jia,
Y. Zhang, K. Chen, and Z. Zhang. Traffickstop: Detecting and measuring illicit traffic
monetization through large-scale dns analysis. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 560–575. IEEE, 2019.

[153] D. Liu, Z. Li, K. Du, H. Wang, B. Liu, and H. Duan. Don’t let one rotten apple spoil
the whole barrel: Towards automated detection of shadowed domains. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
537–552, 2017.

[154] H. Liu, J. Jia, W. Qu, and N. Z. Gong. EncoderMI: Membership Inference against Pre-
trained Encoders in Contrastive Learning. In ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2021.

[155] J. Liu, Y. Ren, X. Tan, C. Zhang, T. Qin, Z. Zhao, and T.-Y. Liu. Task-level cur-
riculum learning for non-autoregressive neural machine translation. arXiv preprint
arXiv:2007.08772, 2020.

[156] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang. Self-supervised
learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engi-
neering, 35(1):857–876, 2021.

[157] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal. Towards a
timely causality analysis for enterprise security. In NDSS, 2018.

146

[158] Y. Liu, Z. Zhao, M. Backes, and Y. Zhang. Membership Inference Attacks by Exploit-
ing Loss Trajectory. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 2085–2098. ACM, 2022.

[159] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A. Gunter, and
K. Chen. Understanding Membership Inferences on Well-Generalized Learning Models.
CoRR abs/1802.04889, 2018.

[160] R. Lotfian and C. Busso. Curriculum learning for speech emotion recognition from
crowdsourced labels. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 27(4):815–826, 2019.

[161] N. Lukas, E. Jiang, X. Li, and F. Kerschbaum. SoK: How Robust is Image Classification
Deep Neural Network Watermarking? In IEEE Symposium on Security and Privacy
(S&P). IEEE, 2022.

[162] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. Con-
trolling high bandwidth aggregates in the network. ACM SIGCOMM Computer Com-
munication Review, 32(3):62–73, 2002.

[163] N. Mallesh and M. Wright. The reverse statistical disclosure attack. In International
Workshop on Information Hiding, pages 221–234. Springer, 2010.

[164] C. Mastroianni, M. Meo, and G. Papuzzo. Self-economy in cloud data centers: Statisti-
cal assignment and migration of virtual machines. In European Conference on Parallel
Processing, pages 407–418. Springer, 2011.

[165] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher–student curriculum learn-
ing. IEEE transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

[166] S. Mazloom and S. D. Gordon. Secure computation with differentially private ac-
cess patterns. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 490–507, 2018.

[167] K. McCarthy. Internet overseer icann loses a third time in whois gdpr legal war.
https://www.theregister.co.uk/2018/08/07/icann_whois_gdpr/, 2018.

[168] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov. Exploiting Unintended Feature
Leakage in Collaborative Learning. In IEEE Symposium on Security and Privacy (S&P),
pages 497–512. IEEE, 2019.

[169] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[170] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan. Holmes:
real-time apt detection through correlation of suspicious information flows. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1137–1152. IEEE, 2019.

147

https://www.theregister.co.uk/2018/08/07/icann_whois_gdpr/

[171] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, and H. Es-
maeilzadeh. Privacy in deep learning: A survey. arXiv preprint arXiv:2004.12254,
2020.

[172] I. Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF), pages 263–275. IEEE, 2017.

[173] K. Mukherjee, J. Wiedemeier, T. Wang, J. Wei, F. Chen, M. Kim, M. Kantarcioglu,
and K. Jee. Evading {Provenance-Based}{ML} detectors with adversarial system
actions. In 32nd USENIX Security Symposium (USENIX Security 23), pages 1199–
1216, 2023.

[174] T. Murakami and Y. Kawamoto. Utility-optimized local differential privacy mecha-
nisms for distribution estimation. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 1877–1894, 2019.

[175] A. Nahir, A. Orda, and D. Raz. Resource allocation and management in cloud comput-
ing. In 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1078–1084. IEEE, 2015.

[176] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM Conference on Electronic Commerce, pages 129–
139, 1999.

[177] A. Narayan and A. Haeberlen. Djoin: Differentially private join queries over dis-
tributed databases. In 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), pages 149–162, 2012.

[178] S. Narvekar and P. Stone. Learning curriculum policies for reinforcement learning.
arXiv preprint arXiv:1812.00285, 2018.

[179] M. Nasr, A. Bahramali, and A. Houmansadr. Deepcorr: Strong flow correlation attacks
on tor using deep learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1962–1976, 2018.

[180] M. Nasr, R. Shokri, and A. Houmansadr. Machine Learning with Membership Pri-
vacy using Adversarial Regularization. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 634–646. ACM, 2018.

[181] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive Privacy Analysis of Deep
Learning: Passive and Active White-box Inference Attacks against Centralized and
Federated Learning. In IEEE Symposium on Security and Privacy (S&P), pages 1021–
1035. IEEE, 2019.

[182] M. Nasr, S. Songi, A. Thakurta, N. Papernot, and N. Carlin. Adversary instantiation:
Lower bounds for differentially private machine learning. In 2021 IEEE Symposium on
security and privacy (SP). IEEE, 2021.

148

[183] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. 2011.

[184] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. Collecting and
analyzing data from smart device users with local differential privacy. arXiv preprint
arXiv:1606.05053, 2016.

[185] J. Oberheide, M. Karir, and Z. M. Mao. Characterizing dark dns behavior. In Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, pages 140–156. Springer, 2007.

[186] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz. Towards Reverse-Engineering
Black-Box Neural Networks. In International Conference on Learning Representations
(ICLR), 2018.

[187] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais. Detection of early-stage
enterprise infection by mining large-scale log data. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 45–56. IEEE,
2015.

[188] T. Orekondy, B. Schiele, and M. Fritz. Knockoff Nets: Stealing Functionality of
Black-Box Models. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4954–4963. IEEE, 2019.

[189] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson.
Scalable Private Learning with PATE. In International Conference on Learning Rep-
resentations (ICLR), 2018.

[190] V. Paxson, M. Christodorescu, M. Javed, J. Rao, R. Sailer, D. L. Schales, M. Stoeck-
lin, K. Thomas, W. Venema, and N. Weaver. Practical comprehensive bounds on
surreptitious communication over {DNS}. In 22nd {USENIX} Security Symposium
({USENIX} Security 13), pages 17–32, 2013.

[191] Pytorch. Opacus RDP. https://github.com/pytorch/opacus/blob/main/opacus

/accountants/rdp.py, 2022.

[192] L. Qin, R. Jayaram, E. Shi, Z. Song, D. Zhuo, and S. Chu. Adore: Differentially oblivi-
ous relational database operators. Proceedings of the VLDBEndowment, 16(4):842–855,
2022.

[193] R. Radu and M. Hausding. Consolidation in the dns resolver market – how much, how
fast, how dangerous? Journal of Cyber Policy, 5(1):46–64, 2020.

[194] B. Rahbarinia, R. Perdisci, and M. Antonakakis. Segugio: Efficient behavior-based
tracking of malware-control domains in large isp networks. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages 403–
414. IEEE, 2015.

149

https://github.com/pytorch/opacus/blob/main/opacus/accountants/rdp.py
https://github.com/pytorch/opacus/blob/main/opacus/accountants/rdp.py

[195] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-party
tracking on the web. In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 155–168, 2012.

[196] R. M. Rogers and A. Roth. Asymptotically truthful equilibrium selection in large
congestion games. In Proceedings of the fifteenth ACM conference on Economics and
computation, pages 771–782, 2014.

[197] A. Roth. Differential privacy, equilibrium, and efficient allocation of resources. In
2013 51st Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1593–1597. IEEE, 2013.

[198] B. D. Rouhani, H. Chen, and F. Koushanfar. DeepSigns: A Generic Watermarking
Framework for IP Protection of Deep Learning Models. CoRR abs/1804.00750, 2018.

[199] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[200] C. Sakaridis, D. Dai, and L. V. Gool. Guided curriculum model adaptation and
uncertainty-aware evaluation for semantic nighttime image segmentation. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 7374–7383,
2019.

[201] N. Saleheen, S. Chakraborty, N. Ali, M. M. Rahman, S. M. Hossain, R. Bari, E. Buder,
M. Srivastava, and S. Kumar. msieve: differential behavioral privacy in time series of
mobile sensor data. In Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 706–717, 2016.

[202] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang. Updates-Leak: Data
Set Inference and Reconstruction Attacks in Online Learning. In USENIX Security
Symposium (USENIX Security), pages 1291–1308. USENIX, 2020.

[203] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. ML-Leaks:
Model and Data Independent Membership Inference Attacks and Defenses on Machine
Learning Models. In Network and Distributed System Security Symposium (NDSS).
Internet Society, 2019.

[204] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4510–4520. IEEE, 2018.

[205] P. Schmitt, A. Edmundson, A. Mankin, and N. Feamster. Oblivious dns: Practical
privacy for dns queries. Proceedings on Privacy Enhancing Technologies, 2019(2):228–
244, 2019.

[206] Y. Shen, X. He, Y. Han, and Y. Zhang. Model Stealing Attacks Against Inductive
Graph Neural Networks. In IEEE Symposium on Security and Privacy (S&P), pages
1175–1192. IEEE, 2022.

150

[207] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership Inference Attacks
Against Machine Learning Models. In IEEE Symposium on Security and Privacy (S&P),
pages 3–18. IEEE, 2017.

[208] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A. Erdogdu, and
R. J. Anderson. Manipulating sgd with data ordering attacks. Advances in Neural
Information Processing Systems, 34:18021–18032, 2021.

[209] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso. Encrypted dns–¿
privacy? a traffic analysis perspective. arXiv preprint arXiv:1906.09682, 2019.

[210] R. Singel. Netflix cancels recommendation contest after privacy lawsuit. Retrieved
March, 29:2018, 2010.

[211] C. Song and A. Raghunathan. Information Leakage in Embedding Models. In ACM
SIGSACConference on Computer and Communications Security (CCS), pages 377–390.
ACM, 2020.

[212] C. Song and V. Shmatikov. Overlearning Reveals Sensitive Attributes. In International
Conference on Learning Representations (ICLR), 2020.

[213] L. Song and P. Mittal. Systematic Evaluation of Privacy Risks of Machine Learning
Models. In USENIX Security Symposium (USENIX Security). USENIX, 2021.

[214] P. Soviany, C. Ardei, R. T. Ionescu, and M. Leordeanu. Image difficulty curriculum
for generative adversarial networks (cugan). In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3463–3472, 2020.

[215] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe. Curriculum learning: A survey. arXiv
preprint arXiv:2101.10382, 2021.

[216] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Baby steps: How “less is more” in
unsupervised dependency parsing. 2009.

[217] J. M. Spring and C. L. Huth. The impact of passive dns collection on end-user privacy.
2012.

[218] T. Steinke and J. Ullman. Open problem - avoiding the union bound for multiple
queries. https://differentialprivacy.org/open-problem-avoid-union/, 2021.

[219] M. Sun, G. Xu, J. Zhang, and D. W. Kim. Tracking you through dns traffic: Linking
user sessions by clustering with dirichlet mixture model. In Proceedings of the 20th
ACM International Conference on Modelling, Analysis and Simulation of Wireless and
Mobile Systems, pages 303–310, 2017.

[220] Y. Sun, K. Jee, S. Sivakorn, Z. Li, C. Lumezanu, L. Korts-Parn, Z. Wu, J. Rhee,
C. H. Kim, M. Chiang, and P. Mittal. Detecting malware injection with program-dns
behavior. In 2020 IEEE European Symposium on Security and Privacy (EuroS P), pages
552–568, 2020.

151

https://differentialprivacy.org/open-problem-avoid-union/

[221] R. Sundar. https://github.com/rsundar96/curriculum-learning-acceleration,
2020.

[222] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

[223] P. Thaker, M. Budiu, P. Gopalan, U. Wieder, and M. Zaharia. Overlook: Differentially
private exploratory visualization for big data. arXiv preprint arXiv:2006.12018, 2020.

[224] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing Machine
Learning Models via Prediction APIs. In USENIX Security Symposium (USENIX
Security), pages 601–618. USENIX, 2016.

[225] Trusted-AI. https://github.com/Trusted-AI/adversarial-robustness-toolbox,
2023.

[226] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of the 26th Symposium onOperating
Systems Principles, pages 423–440, 2017.

[227] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Embedding Watermarks into Deep
Neural Networks. In International Conference on Multimedia Retrieval (ICMR), pages
269–277. ACM, 2017.

[228] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela: Scalable pri-
vate messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 137–152, 2015.

[229] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and A. Spognardi. No nat’d
user left behind: Fingerprinting users behind nat from netflow records alone. In 2014
IEEE 34th International Conference on Distributed Computing Systems, pages 218–227.
IEEE, 2014.

[230] VMware. Managing resource pools. https://docs.vmware.com/en/VMware-vSphere
/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703E

D7601.html, 2019.

[231] S. Wagh, P. Cuff, and P. Mittal. Differentially private oblivious ram. Proceedings on
Privacy Enhancing Technologies, 4:64–84, 2018.

[232] B. Wang and N. Z. Gong. Stealing Hyperparameters in Machine Learning. In IEEE
Symposium on Security and Privacy (S&P), pages 36–52. IEEE, 2018.

[233] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen, W. Cheng,
C. A. Gunter, et al. You are what you do: Hunting stealthy malware via data prove-
nance analysis. In NDSS, 2020.

152

https://github.com/rsundar96/curriculum-learning-acceleration
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703ED7601.html
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703ED7601.html
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-resource-management/GUID-60077B40-66FF-4625-934A-641703ED7601.html

[234] T. Wang. High precision open-world website fingerprinting. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 152–167. IEEE, 2020.

[235] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for
frequency estimation. In 26th USENIX Security Symposium (USENIX Security 17),
pages 729–745, 2017.

[236] X. Wang, Y. Chen, and W. Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[237] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[238] L. Watson, C. Guo, G. Cormode, and A. Sablayrolles. On the importance of difficulty
calibration in membership inference attacks. In International Conference on Learning
Representations (ICLR), 2022.

[239] D. Weinshall, G. Cohen, and D. Amir. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In International Conference on Machine
Learning, pages 5238–5246. PMLR, 2018.

[240] F. Wu, Y. Long, C. Zhang, and B. Li. LinkTeller: Recovering Private Edges from
Graph Neural Networks via Influence Analysis. In IEEE Symposium on Security and
Privacy (S&P), pages 2005–2024. IEEE, 2022.

[241] X. Wu, E. Dyer, and B. Neyshabur. When do curricula work? In International
Conference on Learning Representations, 2021.

[242] Q. Xiao, M. K. Reiter, and Y. Zhang. Mitigating storage side channels using statistical
privacy mechanisms. In Proceedings of the 22nd ACM SIGSACConference on Computer
and Communications Security, pages 1582–1594, 2015.

[243] M. Xu, A. Papadimitriou, A. Feldman, and A. Haeberlen. Using differential privacy
to efficiently mitigate side channels in distributed analytics. In Proceedings of the 11th
European Workshop on Systems Security, pages 1–6, 2018.

[244] M. Yaghini, B. Kulynych, and C. Troncoso. Disparate Vulnerability: on the Unfairness
of Privacy Attacks Against Machine Learning. CoRR abs/1906.00389, 2019.

[245] D. Yang, D. Zhang, and B. Qu. Participatory cultural mapping based on collective
behavior data in location-based social networks. ACM Transactions on Intelligent
Systems and Technology (TIST), 7(3):1–23, 2016.

[246] Y. Yarom and K. Falkner. Flush+ reload: A high resolution, low noise, l3 cache
side-channel attack. In USENIX Security Symposium 2014, 2014.

[247] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and E. Kirda.
Beehive: Large-scale log analysis for detecting suspicious activity in enterprise net-
works. In Proceedings of the 29th Annual Computer Security Applications Conference,
pages 199–208, 2013.

153

[248] X. Zhang, J. Hamm, M. K. Reiter, and Y. Zhang. Statistical privacy for streaming
traffic. In Proceedings of the 26th ISOC Symposium on Network and Distributed System
Security, 2019.

[249] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song. The secret revealer: Generative
model-inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 253–261, 2020.

[250] Z. Zhang, Y. Song, and H. Qi. Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5810–5818, 2017.

[251] Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier. A survey on malicious domains
detection through dns data analysis. ACM Computing Surveys (CSUR), 51(4):1–36,
2018.

[252] S. Zheng, G. Liu, H. Suo, and Y. Lei. Autoencoder-based semi-supervised curriculum
learning for out-of-domain speaker verification. System, 3:98, 2019.

[253] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million im-
age database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

[254] Y. Zhou, B. Yang, D. F. Wong, Y. Wan, and L. S. Chao. Uncertainty-aware curriculum
learning for neural machine translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 6934–6944, 2020.

[255] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and T. Jebara. A privacy analysis of
cross-device tracking. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1391–1408, 2017.

154

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Contributions
	LDPResolve: Local Differentially Private DNS Resolution
	DPRA: Differentially Private Resource Allocation
	Privacy Risks in Curriculum Learning

	Background
	Differential Privacy
	A Primer on Differential Privacy
	Properties

	LDPResolve: Local Differentially Private DNS Resolution
	Introducation
	Background
	DNS Communications and Dataset
	DNS-based User Tracking
	DSCorr: DNS Session Correlation with Domain Embedding
	Domain importance
	Differential Privacy

	Domain Resolution under LDP
	Overview of LDPResolve
	Perturb for LDPResolve

	Evaluation of LDPResolve
	Impact on User Tracking
	Impact of Parameters
	Sensitive Set with SLDs
	Noisy SL
	Adaptive Tracking against LDPResolve
	Comparison with K-resolver
	Prototype

	Discussion

	DPRA: Differentially Private Resource Allocation
	Introduction
	Background
	Problem Definition
	Differential Privacy
	Differentially Private Allocation in AKR

	Modeling Resource Allocation
	Privacy Amplification from Allocation
	Design Space
	Privacy Modeling

	Noisy Mechanisms
	Constant Noise (CST)
	Uniform Mechanism (UNI)
	One-sided Geometric Mechanism (GEO)
	Double Geometric Mechanism (DGEO)

	Evaluation
	Evaluation Setup
	Evaluation Results
	Impact of Parameters

	Discussion
	Related Work
	Privacy Consumption over Multiple Rounds
	Other Settings
	Real-world Examples and Utility Analysis
	Limitations

	Privacy Risks in Curriculum Learning and DP Defenses
	Introduction
	Preliminary
	Curriculum Learning
	Privacy Risks in Machine Learning

	Datasets and Target Models
	Methodology
	Curriculum Designs
	Basic MIA
	Our Proposed MIA
	Basic AIA
	Defense Methods

	Evaluation Results
	Evaluation of Basic MIA
	Analysis with Data Memorization
	Evaluation of Diff-Cali
	Evaluation of AIA
	Evaluation of Defense

	Discussion
	Related Work

	Conclusion
	Perspective

	Bibliography

