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DISCONTINUITY FORMULAS FOR MULTIPARTICLE AMPLITUDES*
Henry P. Stapp
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
0. INTRODUCTION
The aim of these lectures is to show how discontinuity formulas for multiparticle
scattering amplitudes are derived from unitarity and analyticity. The assumed
anzlyticity property is the normal analytic structure, which was shown in the
previous lecture series to be equivalent to the space-time macrocausality condi-
tion. The discontinuity formulas to be derived are the basis of the multi-
particle fixed~t dispersion relations, upon which the subsequent lecture series on
Regge theéry is based.
_ o I. PROPERTIES OF LANDAU SURFACES

This section contains a brief review of the properties of Landau surfaces that

are needed in the work that follows.

"l. Landau Diagrams D

‘Example

A Landau diagram is a diagram formed from lines Li and vertices Vr' Each line
is directed from left to right. The topological structure of D is defined by

the incidence matrix ¢

ir’
€ = -1 if L, originates on V
ir i r
€, = +1 if L, terminates on V (1.1)
Tir i r
€, = 0 otherwise
ir ;

Each line L is associated with a momentum-energy vector r,, with a particle-

i i
type label 'ti’ and with a mass m, characteristic of particles of type ti.
These masses m, are assumed to be positive: m, > 0. Eacn internal line Li
of D either carries a sign ci, plus or minus, or carries no sign.

2. Landau Equations Associated with D

For each Landau diagram D there is an associated set of Landau equations. These
are

(1) The mass-shell constraints: for each line Li of D
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Py = m, Py >0 . (2.1.1)
(2) The momentum-energy conservation-law constraints: for each vertex
V. of D ',6
r
= . ' 2.1.2
E:pi ir 0 ( : )
i

(3) The Landau loop equations: for each directed closed loop & that
can be drawn on the internal lines of D : ’
Z ap, N, = O . (2.1.3)
i .
Each a is a scalar, and n

i iL
line Li moving in the direction of Li minus the number of times it passes

is the number of times loop £ passes along

along Li moving against the direction of Li'

Example
| 4 .
71 T
. g1 ~ 1
n = -
2 ~ (‘Ili’ 5 ot
5 / 5 \ other N, = o .

(4) The nontriviality condition:  for some internal line L

i
ay # 0 . (2.1.4)
(5) The sign conditions: for every signed line Li
o,ay > o . (2.1.5)

All variables are real unless otherwise stated.

3. Space-time Representations of D

For each solution {pi,ai} of the Landau equations associated with D

there is a space-time representation of D. This representation is a space-time

diagram that has the topological structure of D. The vertex Vr of the repre-
sentation lies at the space-time position Vo and the vector from the origin of

line L to its terminus, namely

i .
- -
Ai = }: €ir Yy , (3.1)
r
satisfies
Ai = Py - : (3.2)

The Landau loop equations entail the existence of a set of space-time vectors W

such that (3.1) and (3.2) hold. Conversely, 6 these two equations entail the
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‘Landau loop equations.

The space-time representation can be interpreted as a classical multiple~scatter-
ing diagram for point particles. The conditions (3.1) and (3.2) are the classical
condition pi'= m.v., where vy is the four-vector velocity of particle i:

vy = dxi/dr. The sign condition osa, >0 specifies that particle 1 move
forward or backward in time according to whether o is plus or minus.

4. Internal and External Variables

E {i: Li is an external line of D}

D

ID = {i: Li is an internal line of D}
? = {pi: ice ED}

p = {pi: ie ID}

o =

N -{ai: ie ID}
5. Landau Surfaces L(D)

£(D) is the set of points (p,ﬁ,a) such that the Landau equations associated
with D are satisfied. The Landau surface L(D) is the projection of i(D) onto p
space: _
L(D) é {p: (p,p,a) satisfies the Landau equations associated with
- D for some (p,a)l}. . _ (5.1)

6. Representations D(p)

A representation of D whose external lines are associated with the set
(pl,---,pn) S p of momentum-energy vectors is denoted by D(p). Each D(p)
generates the point p on L(D), in the sense that represents a solution
{p,ﬁ,a} of the Landau equations associated with the Landau diagram D. The
Landau surface -L(D) is the set of p such that some D(p) exists:

L(D) = {p: some D(p) exists}. - . (6.1)

Given any ' D(p) there is a five-fold continuum of others obtained from it by
dilations (positive scale changes ai -> Xai,k > 0) and overall space-time
translations.. These transformations are called the trivial transformations.

7. Simple points of L(D)

AA simple point p of L(D) 1is a point p such that D(p) ‘'is unique, modulo

the trivial transformations: only one representation of D, modulo these trivial

. transformations, generates the point p.

8. Basic Surfaces LO(D)

{p: p 1is simple point of L(D)}

{p: p 1is generated by only one representation of D, modulo the

" trivial transformations}.

9. Positive-a Diagrams and Surfaces

A Landau diagram D {is called a positive-a diagram if and caly 4f each internal
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line of D carries a positive sign Ui = +. A superscript plus on D indi-
cates that this diagram is a positive-a diagram. Landau surfaces L(D ) corres-

ponding to positive-a diagrams are called positive-a Landau surfaces.

10. The Restricted Mass Shell ’}’Vz,r .

Let p = (pl',--',pn) be the set of momentum-energy vectors associated with the
full set of initial and final particles of some scattering process. The corres-
ponding restricted mass shell is n

'mr = {p: pi2 = miz, pio > 0, Zeipi = 0, and at least one pair of
i=1

p, are nonparallel} . (10.1)

"The sign € is plus for final Li and minus for initial Li'

. r ; L
The complex restricted mass shell (mc is defined in the same way except that

P 1s complex and the positivity condition pio > 0 1is dropped.

11. The Space ’mf‘jp)
The set o'f_ vectors normal to the mass shell ’}’rLr at point p 1is called ’)”Z+(p):

1
m (p) = {u: u-6(ep) = 0 for all ©&(ep) 1in the tangent space to
f)«ylr at p} o (11.1)
= {u = (ul,-'-,un): u, = Xipi +d, d 1is any four-vector,
A, 1is any scalar} . (11.2)
1L i
For any u in M (p) one has
n
u-8(ep) = Z ui'6(€iPi)
i=1
n ' :
= 3, Oupy+dee S o= 0, S (11.3)
i=1 o
since t:he §pi are subject to the constraints tS(pi2 - miz) = 0, and
’G(Zt:ipi) = 0. For any two four-vectors a and b
' ab = a%Y-3.3 .. : , (11.4)
12. The Sets ')’Ylo and ‘M’
’)'Y)O is the subset of ‘7’r]r such that two or more initial p; are parallel or -

two or more final pi are parallel. The set 777 ' is ‘mr minus ‘7720;
r .
/yy-l' = M - ‘)’7{0 . o (12.1)

13. Theorem 1 v Each nonempty set LO(D+)n 9n' 1is a codimension-one analytic
submanifold of 97'. o

Meaning: For any p in LO(D+) N 9n' there is real function ¢(p)
such that (i) ¢(p) is analytic at p, (ii) the gradient V¢(p) at p lies
outside ‘"ll(s); -and  (iii) LO(D+)n MM’ coincides with {¢(p) =0}/ P in
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some sufficiently small neighborhood of p.

‘L+ U L(D+)‘ - Q LO(D+) ;
D _

14, Theorem 2

+
D

15. Theorem 3
Only a finite number of D+ give surfaces LO(D+) that intersect any bounded

portion of ﬁvzr.

~ o +
These three theorems, taken together, say that L /7 "'  consists of a locally
X . . . . R + .
finite union of codimension-one analytic submanifolds. "Thus L /1 ™' is the
union of a set of smooth surfaces: it has no cusps, acnodes or other irregu-

larities.

References for the proofs of these and other theorems are given in a section at

the end of the lectures.

16. The 4n-Vector u(D(p))

Let ‘D(p) be a space-time representation with N external lines. Then
u(b(p)) =y = (ul,---,un) is aset of n four-vectors ui such that ui is the
vector from some arbitrary origin O to some arbitrary poirt on the space-time

line that contains the trajectory of external particle 1i.

Example
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Given any D(p) there are others obtained from it by the trivial transformations
Also, the lofation of the end poiﬁt of u; on the line containing Li can be

changed. These changes alter the scale of u and add increments of the form

uo(p) = (A +d,---,xnpn+d) s _ ) (15.1.1)

1P
where the p, are the momgntum-energy vectors of the external lines of D(p).

The set of vectors uo(p) is just the set of vectors
uy(P) €M) . : (15.1.2

17. The Functions ¢(p; D(p))

For any space-time representation D(E) define

¢(s DB) = (ep - )W)

Z (egpy - eiBi)'wr(i) (D(E)) ' (17.1)
ie ED
where Vr(i)v is the vertex of D connected to external line i, and wr(b(ﬁi)
is the location of Vr in the representation D(B). The function ¢(§; D(Bi) is

a linear function of .p that vanishes at p = p and has atr. p the gradient
V(s D(P) = u@®) +uye) ' (17.2)
. 2-
yhere uo(p) lies in 7”7 (p).

18. The Physical Region (P(D)

P (D) 1is the set of points p such that for some (p,s) the mass-shell and
conservation-law conditions (2.1.1) and (2.1.2) in the Landau équations associ-
ated with D can be satisfied. The surface L(D) clearly lies in  (D):

Loy C ¢ . (18.1)

19. Pham's Theorem

For any representation D+(B) of D+

+ + - : :
oD — o ¢(; D () 200 . : (19.1)
‘Proof For brevity write wr<b+(5)> = Gr, and identify also any other quantities
pertaining to the representation D+(5) by a bar. Then for any p in 63(D+)

.- , _ .
¢G; D () Z (py = Py) €4 ¥ o4y

L

1}
™~
J
-~
o
-
|
ot
o
~
m
[
]
toll}
(a1

b T (Equation continued next page)
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V(Equétion contin&ed)

1]
~
o

[N
[}
ot
o
~
=2
o

(19.2)

it
~~
o
e
1
oI
-
Qi
oI
v
o

Th: final step in (19;2) f;llOWS from the fact that for any two positive-energy
ma;s—shell véctors Py and Bi '

PP, 2 PPy = mi2 . _ S 19.3)
Remark 1 The last line of (19.2) expresses ¢<§; D+(Si> in terms of the
internal variables associated with the solution of the Landau equation at P.
The pi in this expression can be any set of internal Py that satisfy the

. + -
mass-shell and conservation law constraints. The fact that ¢<§; D (p)) does

~not depend on the particular choice of these internal pi -is a consequence of

the Landau loop equations.

20. Theorem 4 Consider any point p on LO(D+)/7 m'. Let ¢(p) be as in
Theorem 1. Then the sign of ¢(p) can be chosen so that

) = u@ G | (20.1)
where = means equal modulo positive scale changes and additions of vectors
uy(B) & M.
Proof The set L(D')/) 77' lies in P M '. Thus {(e(p) = 0} MM
lies in {¢<b; D+(E)> > 0}/) Y11'. The gradient Vé(p) lies outside ﬁﬁlilﬁ),
by virtue of Theorem 1, and the gradient V¢<;; D+(B)) lies outside inzi(ﬁ)
by virtue of the positive-a conditions, the sﬁability conditions, and the condi-
tion that p 1lie outside ?7(3. For these conditions entail that the (approp-

riately extended) external trajectories cannot pass through-a‘common point, which
they would if V¢<§; D+(E)>, and hence u<®+(5)); lay in - 977‘(5). But if both

these gradients lie outside ﬁhzi(ﬁ) then they must be the same, modulo scale

changes, sign changes, and vectors of 9%115), in order to accomodate the inclu-
+ - ' '

sion of {¢(p) = 0}]7 ' in {¢<b; D (p)) > 0}/ 9m'. This result entails

(20.1). ' : '

Remark Two functions ¢(p) that are analytic at E, that have gradients lying

-outside 97‘(5), and that give the same regions {¢(p) z N} /] 777' near p are

equivalent -insofar as the defining properties of ¢(p) are concerned. Thus if
¢(p) is accep;able, and ¢(p) 1is analytic at p and vénishes on '€K7 T then
A¢(p) + Y(p) 1is also acceptable, provided X is positive. ' The gradient

Vw(B) lies'in'énzi(ﬁ), hence V¢(E) ~ V(}¢(B) + w(ﬁ). Thus the significant part

of . V¢(B) is defined only modulo positive scale changes a~d additions of vectors
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uy(®) € ().
The result V¢(p) ;'U<b+(ﬁx) is the origin of much of the impoftance of the

space-time diagrams. It says that the normal to the Landau surface LO(Df)ﬂ m' ' ~
at 5 is essentially determined by the locations of the external space-timeA-

trajectories of any space-time representation D+(B) of D+ that generates B.

This fact eliminates, in many situations, the need to actually calculate the

Landau surface: the essential information can be extracted directly from the

s ace-time representation.

2_. Theorem 5 If two basic surfaces LO(DI) and LO(D;) coincide near
p €m', then

+ - ‘ + -\ . ‘
w@ ) z w@®) - (21.1)
(The equality of signs entailed by (21.1) rules out a ciash of 1ie rules for
+ + ' :
coincident surfaces LO(Dl) and LO(DZ)')

22. Analytic Submanifo1ds and Local Coordinates

The restricted complex mass-~shell 007cr is a 3n-4 dimensional analytic sub-
manifold of the space Gan of the n complex four-vectors ;- This means

that for eéch point p of ‘Tﬂcr one can introduce a sét of 4n functions
zl(p),---,z4n(p) that are analytic and functionally independent at p (i.e.,
the 4n gradient vectors exist and are linearly independent at p) such that the
image under the mapping z(p) of any sufficiently small complex mass-shell

neighborhood of 5 is an open set in the space m3“*4 defined by

Zin-4+i 0
for i =1,.--,nt4. The analyticity and functional independence of the zi(p)
at p entails that the inverse mapping p(z) is uniquely defined and analytic
near the image z of B. Thus sufficiently small neighborhoods of p and z

are one-to-one analytic images of each other, with mass-shell neighborhoods

mapping ontO'neighborhoods in m3“'4.

" The functions z3n_ +i(p) for i =1,---,n+4 can be taken to be the n

~ functions p,” ~m, and ;he four functions I eipiu =0, u=0,---,3. The
gradients of these n + 4 functions can easily be shown to be linearly indepen-
dent for all points p in i”?cr.A This fact ensures that the remaininé set of

- 3n - 4 functions zi(p) can be found. These latter coordinates (zl,--f,zan_a)
are called local coordinates of the mass shell at I-

The surface LO(D+)/7 97' 1is a codimension-one analytic submanifold of €U7'.
It coincides locally with the set {¢(p) = 0} (] 99", where V6 (p) lies outside
90[115). This last condition ensures that the functicn z,(p) can be taken to
be ¢(p), since its gradient at B is linearly independen; of the n + 4

gradients Vz3n_4+i(5). In this local coordinate system the singularity surface
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'LO(D)/7 ' is just the surf

local coordinates. The physic
3n-4

ace z, = 0, restricted to the space

1

Sec. II

of

al region 6’(D+) near p -is mapped into the

intersection of (¢ with tﬁé ray

Re z

1 02 0,

1I.

BUBBLE DIAGRAM FUNCTIONS

(22.1)

poological considerations arising from the cluster decomposition of the S-

m~trix play a central role in the derivation of discontinuity formulas.

Conse-

q..ently it is helpful to represent certain important functions by diagrams,

rather than by letters.

conjugate is”represented by a minus box:

S(Pys>* " Pps Prygs " P

t ceeD D aees
s (Pl) pm’ Pm+la pn

The unit operator is represented by an I-box:

I(pl,--jpm; Pre1’ Py

The unitarity equation

is(pl,---pm; Pyt Py)

, = I(pl,..

is writtgn

| — m ¢+ |
2 —— m+ 2
) = o+ e
. L4
m — n
| | m+ |
- 27
) = :__:
PY ®
m — n
| — m+|
y = 2 -] .
HIENE
m — n

to v, ;
S (pl Pys pm+1,~--pn)

.pm; pnﬁ'l" ..pn)

1. Box Diagrams The S-matrix is represented by a plus box, and its hermitian

(1.1.1)

(1.1.2)

(1.1.3)
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4+ [mmg - | s

L ]
m —s L:— n

(1.1.4)

'-—-—— . ._._m+|
.
L)
[

The shaded strip between the plus and minus boxes stands for a sum consisting of
all possible numbers N of intermediate lines, and theré is an implied summa-
tion over all distinct sets of variables associated with these lines:

4

' N N4 p! :
. Z Z Lom st -nd @ . (1.1.5)
en® i1
i=1 ti 1=1

Here @ 1is a normal-ordering theta function that excludes from the region of

integration all points p' = (pi,---pﬁ) that differ only-by the ordering of the
variables pi f;om points already included in the regign of integration.
Alternatively, @ can be taken to be the inverse of the symmetry number of the
diagram. This number is the number of symmetry operationsvthat take the diagram
into itself. In particular, for the term on the left-hand side of (1.1.4) having
N intermediate lines the symmetry number is N!, provided the particle types ti
associated with the intermediate lines are not predetermined, and hence the sum
includes for each internal line i a sum over all_par;iclé types ti' The

external lines of a diagram are considered to be distingnishable.

2. The Cluster Decomposition

Each box is written as a sum over all topologically different ways of connecting

the fixed external lines to a set of bubbles. For example

4 = -—8 (16) —o0—
£y ma ) =B » =)=
O
(72) O (36) =L+
+ > o

(2.1)
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This is the cluster decomposition of S. The order (from top to bottom) in
which the lines are connected to a bubble is not a topological distinction, nor
is the -(vertical) order in which the bubbles are placed on the paper. The

number of diagrams in each partial sum in (2.1) is given below the summation sign

Within the bubbles occurring in thé”cluster decomposition of the plus (resp.
minus) box is placed a plus (resp. minus) sign,.except that no sign is placed.
inside the trivial bubbles, which are those with ekactly one incoming line and
¢ :actly one outgoing line. The nontrivial bubbles with 6ne.or zero incoming

1 nes or with one or zero outgoing lines are omitted, because of stability

requirements.

The clustér decomposition of the I-box is similar, exéept that only trivial
bubbles are allowed. Thus if the box on the left-hand side of (2.1) were an
I-box then the right-hand side would be reduced to the fimnal sum of 4! terms.

The plﬁs and minus bubbles répresent the connected parts of S and S+,

respectively:
] - >—m¢+| +
il +] o = F (p)
= Sc(Pl,"’,Pm; Pm+ls"',Pn)_ (2.2)
and .

:"ﬁa:"m’l F—(p)

t _ ;
S (Pl;"':Pm: Pm+1,"°,Pn) . (2-3)

Sometimes (see below) the minus bubble is defined to be minus the function
defined above. Then in each term of the cluster decomposition of the minus box

there is an extra factor (—1)_N , where N~  is the number of minus bubbles in

that term, and (2.3) is replaced by

ST - e

—.f- * e 0 . . e . \ '
Sc(Pl, »Pm’ pm+lf :p,) © . (2.3")

1

The trivial bubble represents the samé function in the decompositon of the plus,

minus, and I boxes:

1 —0— j = (@mn° 2pi0 §38. - 5.) 8 (2.4)

Each term in the cluster decomposition represents the product of the functions

represented by the individual bubbles in that term. Thus each of the 4! terms
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tn the final sum in (2.1) is a product of four factors of the type (2.4).

Particles with spin can be included by regarding particles with different =z
components -of spin as different types of particles. Fermions can be included by

introducing a minus sign for each crossing of fermion lines in a diagram.

3
: + - . .
The connected parts F and F  each contain a conservation-law delta function.

The functions f+ and f  are defined by
* 4 +
) = en® s ep () | (2.5)
These functions f+(p) and f—(p) -are called the scattering function and the
hermitian conjugate scattering function, respectively.
3. Bubble Diagrams B
Example

Generally a bubble diagram B is a diagramrconsisting of signed bubbles connected
by directed lines. Each bubble has two or more lines entering on its left side
and two or more lines leaving from its right side. Each line runs always from

- left to right. This last condition excludes, for example, -

v € mman € m

o

. from the class of bubble diagrams.

4, Bubble Diagram Fuhctions FB and fB

Each bubble diégram B represents a function FB, which is the product of the
functions F+ or T corresponding to the bubbles of B, integrated over all
distinct values of the variables corresponding to the internal lines of B.

This integration has the same form and normalization as (1.1.5), where @ can
now be taken to be the inverse of the symmetry number N.. This number N_ is

B B
the number of symmetrrv operations that take B into itself.

T
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Example ‘If B is

then NB‘ is"3f3!4!4!2!. The 2! comes from the symmetry under interchange of
the two minus bubbles. The other four factors come from the symmetries under
interchanges of the internal lines within each of the f@ui sets of internal
iines. In calcuiating the symmetry number of a diagram the external lines are

considered distinguishable.

With this normalization the bubble diagram functions occurring in the equations

we consider will always occur with coefficients plus or minus one.
FB contains an overall conservation-law delta function, and fB is defined by

P an® 5f(zeipi)f3 ) o %)

5. Products of §-Functions

A bubble diagram function FB will generally contain a product f of scattering
functions f+ ‘and £ times a product of mass-shell and conservation-law

delta functions. A product of delta functions is generally defined by transform-
ing to a set of integration variables that includes the arguments of the delta

functions:

m
’ Jf-f‘l I-S(gi(x)) dxl,--~dxn
] i=1 .

4

m
'f'l | 6(g, (x) dg,---dg_ gt
J =1

. o ‘
., jf dgm+1.”dgn J ’ ‘ (5.1)

where J = |dg/dv| is the Jacobian of the transformation. This procedure is

"legitimate provided J 1is nonzero throughout the domain of integration.

6. Condition for J # 0

Near any point x in the domain of integration one can find-a set of functions
(x),--f,gn(k) such that J # 0 unless the m gradient vectors
Vgl,---,ng‘_are linearly dopendent at x. To find the J # 0 conditions for

: ; . B . - .
a bubble diagram funcrion F first eliminate the conservation-law delta
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‘functions by expressing the Py in terms of the ioop-ﬁnmenta k;:

ex : , » .
Py = E: Nigkg ¥ Py - (6.1)
where piex is a function of the external momenta. Then the arguments of the

remaining delta functions are the functions

ex, _ 2. ex 2 - v
» g;(kspy ) = pyGpy ) -m (6.2)
The gradients 'ngi of these functions are linearly'dependent if and only if
for some set of ai’ not all zero, » '
:E: ay ngi = 0 . v (6.3)
1 ' .

The insertion of (6.2) and (6.1) in (6.3) gives for each loop & the equation

ay Py N4y o . ' o (6.4)
These equations (6.4) are just the Landau loop equations for the Landau diagram

" D(B) constructed by shrinking each bubble of B to a point. Thus the product
of the mass;shell and conservation-law delta functions occurring in FB " is

well defined away from the Landau surface L(b(B)). The function FB is
expected to be singular at L<p(B)). It will also have other singularities
arising from the singularities of the functions f and f  themselves. _The
structure theorem to be described in Section III specifies the possible locations

of singularities of bubble diagram functions.

7. Singularities Required by Unitarity

Consider 3 > 3 wunitarity:

RO

™M

+

™

=
R

f
i
i,f (7.1)

(Convention (2.3") is used here.)
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Can we assume that all scattering functions f¥ "and £~  are éverywhéfe-analytic?
Nd, this is not compatible with unitarity. For the bubbie diagram functions on
the right-hand side of (7.1) would then contain singularities that could not

+
cancel among themselves (provided the relevant f 's are not identically zero,

- in which case other unitary equations could be considered). Thus unitarity

» * ; . - . s .
requires some of the functions £ to have singularities (since we know they are

not all identically zero).

The normal analytic structures (NAS) described in Profeésor Iagolnitéer's
lectures does not require scattering functions to have any singularities: it
says only that the allowed singularities lie on L+. Thus we have -

(1) Unitarity requires some singularities;

(i1) NAS allows only certain singularities.

Questions

(1) Is NAS consistent with unitarity? ,

(2) If so, which of the singularities allowed‘byiNAS are forced to be
present by uniparity? ' -

(3) Can one derive the discontinuity formulas juét'from unitarity and

'NAS?

(4) If so, what are these formulas?
The present work is addressed to these questions.

ITI. THE STRUCTURE THEOREM
The structure theorem describes certain analyticity properties of bubble diagram
functions that follow from the normal analytic structure of scattering functions.
This theorem piays a fundamental role in the derivation'éf discontinuity

formulas.

1. The Normal Analytic Structure

(a) f+(p) is analytic in 1T - ot ,
(b) ’f+(p) ‘at pem N ¥ is the boundary value of an-analytic function

from any direction in the tangent space to 5”7Cr .at p .that lies in the cone
o - -
c (p) = ﬂ {p +iq: Im ¢<§+1q; D (p)>0} . (1.1)
+ - C o
b (p)

The cone Cf(E) is the intersection of the "upper-half pianes" associated with

. + - _
all the positive-a diagrams D (p) that generate p. Properties (a) and (b)

~also hold if f+ is- replaced by £, provided the sign of ¢ in (1.1) is

reversed.

The precise meaning of properties (a) and (b) is defined by introducing a set
} o . - ) r _
z = (zl, ,z3nf4) of local coordinates of 972C at p. Prqperty (a) says

that if the mdpping'_z(p) is restricted to some sufficiently small neighborhood
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of E then f+(?(z)> is analytic in the z-space image z@n1r -t of ot -t
This property is independent of the particular choice of local coordinates

2, (P)svvszq 4 (P). . , .

Property (b) is expressed in terms of the vectors

+ - + - -~
OO AR YCTI M ¢) I
P =
pP=p
+ (1.2)
= Volp; D (M)
of: more precisely, their z-space images
X B R
W@ G) = v sG@s D @) | -
z=z(p)=z
_ v (1.3)
- + -
= v 6(p(2); D ()
The components of u' are related to those of u by
' op. ' ' :
v = : - .
u Z u -lazi s | (1.4)
' i z=z(p)=z '

The cone of vectors u'<b+(5)) has in y = Im z space a dual cone

ct@ = ﬂ fy: yu' @*®) > 0} . (1.5)

+ - .

D (p)
Let C be any nonempty open cone (with apex at y = 0) that is contained
with its boundary in C+(§) U/ {y = 0}. Then property (b) asserts that there
is a complex neighborhood ‘h of z and a function f+(z)' that (1) is analytic
in .37 {1 {Im z € C}, and (2) coincides in the limit Im z > 0 with the distri-
bution f+<?(x)) in 77 /) {Im z = 0}, in the sense that for any test function

x(x) with support in 67 /1 {Im z = 0}
- ff+<p(x)) x(x) dx = 1iva'f+(x +1y) x(x) dx . - (1.6)
. y-»0 .

. _ + - . .
Moreover, any decompositon of the set of vectors u'<p (p)} _into closed convex
cones 2:1 (with apex at the origin) induces a corresponding decomposition of

f near p into distributions. £ 'such that each fi<§(x1>  near x = x is

v , i, v .
the boundary value of a function fi(z) from almost all directions in the dual o=
cone v : .

+.- = . 1! + - )
C;(z) = //’7 {y: y-u <b (») >0} .,
+ - B
D(mezi

in the manner anologous to that described above.
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Claim (b) depends on the function ¢(b; D+(p)> only via the diféction of the
4 - + - - X

z-space image u'(b (p)) of u(b (p)). Any u € 7ﬁ“ip) has an image u' = 0,

since the vectors 8p/32i occurring in (1.4) lie in the tangent space to 972r

at p.

The expression'(l.l) for C+(B) can be simplified by using the following

theorem:

. + - ¥ - :
Th.orem 6 For any representation D (p) the vector |16)(p)) can be expressed

as the finite sum

-u(ﬁ+(§)) = Z Xi u(D’;(S)) , o (1.7)

i
where the - Ai are nonnegative scalars and the DI are the diagrams that
1 - R .
are contained in D' and satisfy p € LO(DI)' A diagram D, is contained in
D; if and only if D; contracts to D, -

This result is closely connected to Theorem 2. To prove it one may first use
the argumentatidn in Pham's theorem to conclude that all representations D+(5)
of D+ _that.generate 5 must have the same set of internal momenta p, and
‘then, by éonsidering the range of the o's, identify thé diagrams DI as the

: . . + - :
various contractions of D at p that cannot be further contracted.

This result.allows, in Eq. (1.1), the sum over all D+(5) to be reduced to a
sum over all D+(§) such that 5 € LO(D+).

2. Landau Diagrams That Fit into Bubble Diagrams

Example
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D. fits into B.

Generally a Landau diagram D 1is said to fit into bubble diagram B if and only

if D can be constructed.by inserting'into each bubble b of B either a connected

p ©OF a point vertex Db' The initial and final lines of Db

must coincide with the incoming and outgoing lines of b, in the natural one-to-

Landau diagrém D

one fashion indicated in the example, and each internal line Li of ‘Db must
carry a sign o that coincides with the sign of b. The external lines of the

va—ious Db’ which are all explicit lines of B, are left unsigned. .
A ..uperscript B on DB means that this Landau diagram ‘D fits into B.

3. The Structure Theorem
Theorem If the NAS holds then
(a) fB(p)' is analytic in 77zr - LB, where

R U L®) | T (3.1)
> ' . '

and R
(b) fB(p) at B e‘m1r11 LB is the boundary value of an analytic function.

from any direction in the tangent space to 7?lcr at E- that lies in the cone

B, - _ = . - B - :
C(p) = //) {p +iq: Im ¢<§ + iq; D (p)) >. 0} . (3.2)
. 5 - v
D" (p)
This result for the bubble diagram function fB is completely analogous to the

NAS: the superscript + is merely replaced throughout by the superscript B.

Claim (b) is void if CB(p) is empty or fails to intersect the tangent space to
77c. at p.

4, The Physical Region of B

The physical region of B, called 03(B), is the region outside which FB = 0 due

to the mass-shell and conservation-law constraints occurring in its definition.
These constraints are the same as those associated with the bubble diagram D(B)

obtained by shrinking the bubbles of B to points. Hence

@ (3) ¢ (o) (4.1)

and

FB(p) 0 for p outside (P(B) . . (4.2)

The function vFB(p) is generally nonzero inside (P(B). Thus it cannot generally
be the limit of a,single.analyﬁic function in any real neighborhood of a point

p e L(b(Bl). Hence claim (b) of the structure theorem must be void for

p e L) '

This is indeed the case. Since every bubble of DB = D(B) 1is contracted

.y
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to a point, no line of DB carries a sign. Thus for any representation DB (p)
another can be constructed by revers1ng the 51gns of all al The signs of the
vectors u(p) and w(p) are also reversed hence so is the sign of ¢<?, D (p))

Thus if p 1lies on L(@(BX) the cone CP (p) is empty, and claim (b) is void.

5. u=0_ points
Suppose there is a DB(E) such that

« 05 )
or equivalently such that

W @P@) = o. S (5.1)
Then CB(E). does not intersect the tangent space to ?vcf at p, and claim (b)

- is wvoid.

A point E .such that (5.1) holds is called a u =0 point. Such points some-
times cover open sets. However, in the many cases studied so far the function
'fB is not actually singular on these open sets. Thus the structure tﬁeorem, in
its present form is inadequate at u = 0 points: it péfmité singularipiesithat-

are not actually present.

This inadequacy of the present version of the structure theorem is circumvented
in the present work by introducing a perhaps needless assumption, as will be

discussed later.
IV. THE DISCONTINUITY OF f+ AROUND LO(D+)

Let D+ be a positive-a diagram, and let ; € 7n' bé a point that lies on

L (D;), if and only if D; is D'. To define the discontinuity of

f  around _LO(D+) near p it is convenient to 1ntroduce the local coordinates
described at the end of Section II. The Landau surface L (D ) near p is then
mapped into {zi = 0}, and the physical region 09(D+) near_'E is mapped into

the positive téal axis in z, space.

The domain of. analyt1c1ty of f <?(z)> near = z2(p) =z =0 1is; according to
.Lhe NAS, controlled by the vectors u <b (p)) In our case there is, modulo

dllatlons, just one such vector,

ul

G2 T ()

= Vz,
i

(i,o,"',O)

+ ,
Thus f <?(x)) at any real point sufficiently near 2z = 0 1is the limit of the

[H]

analytic function f+(z) f+<§(z)) from any direction in y = Im z space that

satisfics y-.u' > 0; i.e., f+(b(x)> near  x = 0 is essentially the limit of

f+<%(z)) from the upper-half 7.

1 plane.
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+
The discontinuity of f

. + ’
around Ly(D") is defined to be al
f'

minus the function
obtained by analytically continuing £*

from the region x., < 0 into the

1
region Xy > 0 by a path that passes around z

1= 0. via a detour into the lower -
half 2y blane,_as indicated in the figure below: o .
1
f+
—_—— N
——
§/
This discontinuity is evidently zero at points X < 0.

The genefél fdrmula for this discontinuity is illustrated by the following
example: if
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The letters a, B, and Yy 1label certain specified sets of particles, and the
corresponding dotted lines cut sets of internal lines that correspond to these

sets of particles. The -~a box represents the function Sc‘-l defined by

sl -1 .
a a a

where Sa and IOl are the restrictions of 'S and I to the space corresponding

to the set of particles a.

The formula in any other case is comstructed analogously: each vertex of D
is replaced by a plus bubble, and on each set of lines .a connecting a pair

. + A :
of vertices of D there is inserted a -o box.

This formuia'holds in some small neighborhood of the specified point E; Later
wé shall obtain some discontinuities formulas that hold globally (i.e., at all
real points vpke'7ﬂf). These globél formulas are tﬁe ones that control the
principal éontributions to the dispersion relations, but the local ones des-
cribed above are also important. For example, they are ﬂeeded in the derivation

of the Reggeon discontinuity formulas.
. V. DERIVATION OF THE FORMULA FOR THE DISCONTINUITY
OF ' AROUND L,(d")
In this section it is shown how the formula for the discontinuity of f+ around

LO(D+) is derived. First the general method is outlined, and then some examples

are given.

1. Generai Method

Consider a diagram D+ and a point p € 970" that lies on LO(D+) if and only if
Dl is D+.

Step 1 ‘Use unitarity and the cluster decomposition properties of S and S+ to

effect a decomposition

Fo= 10 +ROD o @.1)
such that ) )

oY = BeI,0h o (1.2)
and . .

r0YH = B@r,0YH . (1.3)

The B(T,D+) “and B(R,D+) are sums of bubble diagrams, each multipled by a
nonzéro scalar éoefficient. These coefficients are generally plus or minus one,
and the sums represent the sums of thelcorresponding bubble diagram functions,
each multiplied by the corresponding scalar coefficient.” The following two
demands are made: ) _
(a) For each B in B(T,D+), D(B) contains D+.. (1.4)
() No B in B(R,D') supports D'. . 1.5)
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B supports T if and only if some D' that fits into B contains D. A
diagram D' contains a diagram D if and only if the lines of D can be placed

v in one-to-one correspondence with a subset of the lines of vD', and the contrac- o~
tion to points of the remaining lines of D', all of which must be internal,
reduces D' to D. A signed line of D can be placed in correspondence with
a line of D' having either the same sign, or having no sign, but not with any
line of . D'  having the opposite sign. The main ﬁroblem in caléulating the

discontinuity formula is to find a decompdsition satisfying (1.1)-(1.5).

Step 2 Consider first only those singularities that correspond to solutions of
the Landau equations in which all a's are positive or zero, or all a's are
negative or zero;»i.e., temporarily ignore all mixed-a singularities, which are
singularities'correspbnding to solutions of the Landau eqhations in which some

a's are positive and others are negative.

- +
Because p lies on LO(D.)’ but on no other basic positive-a surface, all
vectors u(b'(ﬁ))' éorresponding to positive-a solutions are positive multiples
;- _ )
of u<b (p));_by virtue of Theorem 6, and all vectors u(p'(p)) corresponding

. + -
to negative-a solutions are negative multiples of u(b (p));

The functions f+,'t(D+), and r(D+) represent the functiops F+, T(D+);-and
R(D+), with thé factor :(27r)4 6(Zeip.) removed. The NAS safé that f+<}(x1),
near E, is the boundary value of f <§(z)> from within thé cone dual to
u'<p+(5)>, i.e., essentially from the upper-half z; plane.

The analytic structure of r(D+) is givén By the structure theorem. The
requirement (b) on B(R,D+) ensures that none of the singularities of r(D+)
correspond to diagrams that contain D+. If mixed-o singhlarities are ignored
this leaves only the singularities corresponding to the negative-a solutions.
All the vectors u'<b(§)) corresponding to these negative-a solutions are
- negative mulfiples of u'<®+(52>. Consequently, r(D+) is the limit from the

lower-half zy plane.

Property (a) of B(T,D+) ensures that T(D+) vanishes outside 67(D+), i.e.,
in Xy < 0. TRus in this region the functiqn f+ co?ﬁcides'with r(D+).
Therefore r(D ) is a function that coincides with £ in the region
X, <0 (i.e., below the threshold X = 0) and that iontinues around x = 0 . ..
by a detour into the lower-half 2y plane. Thus r(D ) is the function f' .
of the preceeding Section, and the difference f+ - r(Df) =_t(D+) is the

discontinuity.

Step 3 Use the discontinuity formulas obtained, neglecting mixed-a singulari-
ties, in steps L.and 2 to show that all mixed-a singularities in r(Df) cancel

among themselves.

. y
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This procedure leads (at least in the formal framework qescribed below) to the
unique.diseontinuity formulas described at the end of the preceding section.
.However,:it is based on the ansatz that the mixed-¢ singularities cancel among
themselves. Hence the p0531b111ty of some other solution, in which the mixed-a

81ngular1t1es do-not cancel among themselves, is not ru]ed out.

Derivations not based on the mlxed -a cancellation ansatz are blocked, at the
present time, by the inadequacy of the structure theorem at- u =0 points. If
one uses a recently proposed, but still unproved, new version of the structure
theorem that does adequately cover u = 0 points then it is possible to derive
without using ;he mixed-a cancellation ansatz, and alse:fo pfove ﬁnique, the
discontinuit& formula described above at least in the simplest of all cases,
which is the pole-factorization theorem below the four-particle threshold in
the equal-mass case. However, this new theorem is stili unproved and has not
been applied to any other cases. Thus we shall use, in the present work, the
mixed-a cancellation ansatz, and leave aside the question of'uniqueness, except
to express the opinion that a consistent solution of the>unitarity and analyti-
city conditions in which the mixed-a do not cancel among themselves is surely

impossible

The third step listed above, namely the verification that all mixed-a singulari-
+
ties do indeed cancel out among themselves in R(D ) has been carried out in

many special cases, but has not been proved in general.

2. Pole-Factorization Theorem Below 4-Particle Threshold

In this special case the diagram D+ in question is the ﬁole diagram

(2.1)

Unitarity and clvster decomposition give
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- TE- XOCE L OB

(3)

(2.2)

where, merely’to shorten the formulas, the_two—parcicle'intermediéte states have
been omitted. Postmultiplying‘(Z.Z) by .

2
i
®

3
-
W

~
~

-

w0

(2.3)
rearranging terms, and usiﬂg two-particle unitarity,
=Q=0)n (2.4)
one obtains
- Fr= 1 (0" -r(DH
N e
where

(2.5)

P EG} o ' . (2.6)



CU GO 45U 9435

DISCONTINUITY FORMULAS

and

2.7)

+ ‘° + % .
, (3) _ ‘H’ g;

4 2:

(8)

NEe=0-02

( ¥ == +5 - C) =

—O—
(30 | (9) —O0—

Properties (a) and (b).are easily checked:

(a) B(T,D’) 1is the right-hand side of (2.7}.
diagram B, and D(B) clearly contains D+.

(b) B(R,D") 1is the right-hand side of (2.8).
no B in B(R,D+) supports D+. ,

The following two observations suffice:

:)"

(2.8)

It consists of a single

it is easy to see -that
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(i) Stability conditions entail that each vertex of.a Laﬁdau diagram
have at least two initial lines and at least two final lines. (The othersl
correspond to empty sets L(D), and are to be omitted.) Thus the two lines
coming into a two-to-two bubble must meet at a vertex. This fact, together with
the fact that the diagram Db inserted into each bubble b must be a connected
diagram, ﬁ{ecludes the possibility of fitting D+ in;o any bubble diagram in
the first tﬂrée sums in R(D+). )

(ii)"in considering whether a D+ fits - into a iB ~one may consider
ea  h minus bqbble of B to be a point vertex, since all lines coming from
ingide such a bubble cérry minus signs, and hence must be éontfaéted té points

: . . + . ' . .
in the contraction that yields D . But the contraction of the big minus

-+ v +
bubbles in the remaining term in -R(D ) renders it unable-to support D .

Decomposition of Singularities This formula for the discontinuity near E,

F*-R(D" -

together with the NAS, implies that near 5

+
F':
and
R(DY =- Y
‘Here =~ means equal in the sense of microfunction ( aﬁd locally modulo

analyfic funétions), and a plus (or minus) sign on a line Li of a bubble
diagram B means that only those parts of the singulacities of FB that
correspond to vectors u"b'(ﬁ)) associated with solutions of the Landau

equations with ay >0 (or a; < 0) are accepted. Similarly a zero on a
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line Li of a bubble diagram B means that only those parts of the singulari-
ties of FB that correspond to solutions of Landau equations with ai = 0 are
accepted. The notion of a decomposition of singularities into parts associated
with different directions u(?(ﬁ?) is the heart of the theéry of essential
support,-and'bf the theory of microfunctions. It is closely connected w1th the
local decomp051t10n of 2w é(p 2. miz) into is/p - m12.+ ie and

_ie/p - mizx— ie. '

Egncellation:of Mixed-a Singularities Consider the Landau diagram

where a zero on a line Li of a Landau diagram indicates that the corresponding

@y is zero. The associated Landau surface L(D') is confined to L(D;ole),

. . : +
and may coincide with L(Dpole)

singularity were present in R(D

" in some neighborhood of - ﬁ. If such a mixed-o

le) it would disrupt the derivation of the

+
formula for the dlscontlnuity around L (Dpole)'
However, the various contributions to R(D;Ole) associated with this diagram

D' exactly .cancel:
W
(g -
/=) * Q

The three bubble diagrams on the left are the only onec ia B(r,D:ole)

support D'. . Their contributions to the singularity corresponding to D' are

that

indicated on'the right. These contributions sum to zero, by virtue of two=-

particle unitarity.

3. Triangle Diagram Singularity

(Below the 4~particle threshold). Define
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o 4
D = ZAS
A 3~ 6

. . .
Co‘.sider the expansion F = T-"(Dp 1 ) + R(D+° ) used in the precedlng sub-

section. - The only B's in B(T,D ) -+ B(R,D ) that support DA are

q
;3

@
(CF RO O
% * & (gecr

P
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o + . . . ) .

Only the last term supports DA' And the D(B) corresponding to this last term
+ )

At

‘Thus if this last term is identified as T(DZ) then the required
o + )
conditions (a) and (b) on T(DA) and R(DZ) are satisfied.

contains D

4. The Indented Box

Theorem 7 Unitarity and cluster decomposition entail that

a ] ) Q - . ;
E]. @Yy = Lﬂ+1m7 ? Y

(4.1)
where the indented box represents the sum
amumuuumuu.mmummuuum@ 7,
(00) _ am : - ’
S Samd, 1 e
nﬂo Qi')’i G|mm_+—+"' C
g I+
(4.2)

Only a finite number of terms contribute to this sum at any (finite) point p.
There is a sum over all ways of decomposing the set o« into parts Opates® g9

a sum over all ways of decomposing <y into parts Y1 and Yo» and

The sum of all terms in the cluster

a decomposition of the box in which each

+
I
~

ﬁ ) . line of o is connected by a bubble to

some line of B.
' (4.3)

Examination of (4.2) shows that the indented box is a sum cf bubble diagrams

B with the fqliowing property: no B in this sum supports any D having a
set a' # a .of positively signed lines which if cut segarate the diagram into
two parts A. and B such that A has incoming lines o and outgoing 1ines
a' and B has incoming lines a' and B and outgoing lines vy. That is, no

D that fits into any B 1in the indented box can be decom,o2sed into a structure

of the form
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4.4)
= o (i.e., unless A contains only trivial bubbles). The A and

B are allowed to be either,connected or not connected.

unless a'

Theorem 7 combined with unitarity gives

4.5)

These results play a central role in the derivation of general discontinuity

formulas, and they will be used in the following subsection.

5. Leading Normal-Threshold Formula

Theorem 8

(5.1)

where the arrow box represents
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. L] + 2 || Anm |||
Z Z(-n"-u M .

v""‘° B|¢¢, B + _r *- mmmmmn ul ,', L

) BZ_B B ‘ I ’ v 4+ B ;"

o b | o -
B,C
(5.2)

The arrow box | is a sum of bubble diagrams B with the fo'llowing' property:
avery D that fits into any B. in this sum has a path that begins in B and
ends in- a - and. consists of segments L all of which are directed along the

i
path, Thus no B in this sum supports any diagram D of the form

(5.3)

where the A and B are allowed to be either eon‘nected or disconneoted.

Defining

[__EHE&H; : o - (5.4)

one can write
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. - L
m + _ mdﬂ’mu
| .ﬂ,,, = T D
| .

=
=

(5.5)

The second and third terms in the last line of this equation support no normal
threshold dlagram D , which is a diagram D of the form (5.3) with point
vertices A and B. The last term does support D in general, but not at
poiﬁts 5 that lie on no basic surface except L (D ). For the disconnected
nature of the boxes on the ends of this terulentalls that tﬁe corresponding
function vanish unless the conservation-laws corresponding to the disconnected
parts are satisfie?, and this entails that E lie on Lo(D'+) for a corres-~
ponding diagram D + # D+. Thus at points E that lie on no basic surface
except L (D ) we can identify the first term in (5.5) as_ T(D:): then '
conditlons (a) and (b) are satisfied, and T(D ) 1is the dlscontindity around

: D .

VI. FORMAL METHOD

The procedures used in the'preceding section allow.thevdiscontinuity
formula stated at the end of Section IV to be derived iﬁ many cases. However,
the question arises whether functions T(D+) and R(D+) satisfying the required
properties exist for all D+ with nonempty Lb(D+), whether these functions are
unique (within the framework based on the mixed-a cancella;ion‘ansatz); and
whether the 'stated formula holds in all cases. The aim f the present section
is to explore these questions, and in particular to:

+ +
(a) Prove the existence of T(D ) and R(D )
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) _ . . o
(b) Prove the uniqueness of T(D+) and R(D)

..*
(c)-~Dexjve the general formula for T(D')s

- The work in this section is baéed on infinite series exﬁansions for the quanti-
ties of interest. The method is formal in the sense that the question of the
convergence of theseseries is not considered: two functions having the same
expansion are.called equivalent, -and are cohsidered to be.eqﬁal, and analytic
properties that hold for every term of an expansion areAassumed to hold also
fo- the sum. Also, the mixed-a cancellation ansatz is accepted. Within these

liaitations the formal method used in this section is neat and powerful.

1. The Minus-Bubble Expansion of §

Write .

s = st = @a+rhH - @.1)
and -

st = s = a-r). _ @)
Then unitarity, ' _ ‘

ststo= 1, _ (1.3)
can be written » o _ ’

®Y = Ra+rhH . | . s
Iteration gives, formally,

RV = Z EH" . v (1.5)

n=1

Theorem 9 .

s =y B . S s

. i
bubble, and the convention in which the minus bubble represents --SC is used.

The sum runs over every bubble diagram B, each bubble of which is a minus

Theorem 9 follows from (1.5) after some cancellations. ‘For'example, the bubble

diagram

So=
—o=

occurs in three terms of (1.5):
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. ; -2 ' -
Tta2 first two terms come from (R )~, whereas the last ¢omes from R . The
minus sign in the last term comes from the one minus sign in (1.2) &nd two

minus signs from the minus bubble convention.

Corollary '_  '

where Sé is the connected part of S, and the sum runs over the connected Bi'

2. Formal Framework

Any B can be expressed in a unique way as a linear combination of the.various
minus bubble diégrams B;: one simply replaces each plus‘bubble b+ of B by

its expansion (1.7) and collects terms. This gives

B = Zni(B) B, : o ©(2.1)
i

where the sum runs over the set of all bubble diagrams B; having only minus
bubbles. The infinite set of numbers ni(B) is regarded as an infinite dimen-
sional vector n(B), and all B having the same n(B) are said to be equiva-
lent. Sums B = ZciBi of bubble diagrams Bi with  scalar coefficients ¢
can also be considered, and the corresponding vector n(B) ' is defined to be
Zcin(Bi). By this proéedure the B; become thé basis vectors of a linear space

. of (generalized) bubble diagrams B.
'

Theorem 10. If B1 can be transformed into B2 by an application of } ~
unitarity and cluster decombosition then. Bl is equivalent to B2. '
Outline of Proof The unitarity equations, . . .
y .o . . 3
8§88 -1 = 0 , (2.2)

are equivalent to zero:

[ o e
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+

obb
= - O =5 )

(2.4)

and

Fr- o=

(2.5)

Multiplying (2.4) by (2.5) and collecting terms one ffnds that every term but
I drops oﬁt; Thus (2.3) holds in this case. In fact, it holds in general:
i.e., in the expansion of (2.2) in terms of minus bubble diagrams B;, each

Bi occurs with net coefficient zero.

In any application of unitarity and cluster decomposition one replaces some Bl

" .by B where B and B differ by parts "B and: B). that are equal by

2 1 2 1 2
virtue of unitarity and cluster decomposition. These two parts are therefore

1

is identical to the expansion of Bé. But then the réplacement of Bi by

Bé in B will not alter the minus bubble expansion of the larger diagram:
B1 2"

Theorem 10 is the basis of the usefulness of the représentation n(B) of B:

equivalent, by virtue of (2.3): the expansion of B in terms of minus bubbles

will be equivalent to B

this representation is invariant under the operations of applying unitarity
and clustgr decomposition. Any two B that are equal.by'Qirtue of unitarity
and cluster decomposition, are represented by the same'vector n(B), and
conversely, any two B's that are equivalent can be formally converted to the

same infinite series by using unitarity and cluster decomposition, and this

. infinite series, which is specified by n(B), is moreover unique.

3. Existence of T(D+) and R(D+)

i} Y _ . _
Let B (T,D ) be the sum of all connected B that support D+. Let B (R,D+)

i
be the sum of all connected Bi that do not support D+.' Let B-(Ff) be the

sum of all connected B;. Then
RS -+ -+ ' : . -
B(F) = B(T,D) +B (R,D) . Co (3.1)
The corollary of Theorem 9 says that B-(F+) .is equivalent to F+:

BT (F) = Ft . (3.2)
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The sum Bf(R,D+) satisfies the defining propefty of B(R;D+). ‘Moreovér, the
.sum B—(T,D+) - satisfies the defining property of B(T;D+), by virtue of the
following eduivalence: for any bubble diagram B  each bubble of which is a .
minus bubble _
B supports D+ if and only if D(B )’ contains D+ . (3.3)
This is true because every positively -signed line in any ' D that fits into B~

is a line of D(B), and conversely D(B") fits into B .

Since the requirements on the various terms are all satisfied (3.1) is a formal
solution of the equation

F o= toh + r0H . . (3.4)

The general formula. for T(D+) given in Section IV is the result of reassemb-
ling the infinite set of terms in B_(T,D+) into an equivalent finite expression

B(T,D+), as will be shown later.

4. Uniqueness of the T(D+) and R(D+)
Theorem 11 Let . '

F = B(T,D') + B(R,D}) : ' ' (4.1)

be any decomposition of F+ that is derived soley from unitarity and cluster
+
decomposition and that satisfies the defining conditions for B(T,D ) and

+
B(R,D ). Then the following equivalences hold:

B(T,D+) B'(T,D+) : | (4.2)

and

B-(R,D+)

+ .
B(R,D") : | | (4.3)
A + : +
Proof Suppose B is in B(T,D ). Then D(B) must contain D . But the
procedure that converts B into its image B' 1in the space of B; leaves
unchanged every line of D(B): i.e., D(B') contains D(B), and hence D+.

Thus every B; in B'(T,D+) contains D+, and hence belongs to B—(T,D+):
+ - +
{n,B(T,0)) # 0} => {n B (T.0)) = 1}. (4.4)

. + » _ .
Suppose B is in B(R,D ). Then, by definition, no D that fits into B -

+ .
contains D . But the procedure that converts B to its image B' in .the

space of B; introduces no plus lines that are notrpreseﬁt in some D that -
fits into B. Thus no B; in B'(R,D+) can support D+: -
' -+
‘ {ni(ﬁ(k,nﬁp # 0}=> {n, @ (R,D)) = 1} . ©(4.5)

On the other -hand, Eq. (4.1) is derived soley from unitarity and cluster decom-
position. Thus the two sides are equivalent, and hence for every i

a, ®T,0) + 0 GERODY) = 1 . | L (4.6

Since the sets .
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(a0 BTr,0N) = 1)

and'

o fmee mhY
ti: n (B"(R,D)) 1}
are disjoint, by construction, the conditions (4.4), (4.5), and (4.6) imply that

for all i

ni(B(T,D+)) ni<B_(T,D+)> ' o (4;7)

and

>ni<B(R,D+)> ni@'(T,D+)) . P (4.8)

These are the desired conditions (4.2) and (4.3).

The decompésition (4.1) therefore exists and is unique, within the formal frame-
work. The remaihing problem is to show that the discontinuity formula given at
the end of Section IV is equivalent to B—(T,D+), near points p 1lying on

+. : . + +
LO(Dl) if and only if Dl is D .

‘ 5. The Indented Box Revisited

To introduce some ideas needed for the derivation of the general discontinuity

formula we consider again the formula

@ 1 - L +II]J7l=a
B B =Y

(5.1)

Definition A bubble whose initial lines comsist exclusiveiy'of lines from the
set @ is called an © bubble.

Definition

| o |
s'(a,B;7)= B%m)’ - s

is the sum of all B; that have incoming lines o and B, outgoing lines Y,

but have no a bubble. It is called S(a,B; Y) truncated on a.

Remark Each tefﬁ of S'(a,B; Y) satisfies the characteristic property of the
indented box, which is that no o' # o effects a separation of the form of
(4.4) of Section V. And every B; not in S'(a,B; y) fails to satisfy this

characteristic property.
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Theoreﬁ 12

o / . - -
a mnam Y = aﬂ Y : . .
A A o (5.3) |

Proof Map the left-hand side into B; spacé By inserting the expansion S' of

'S given in (1.6): ‘ - . ‘
QHBZI+ . ¥y a Hm / y . .
B mz = ......"' | (5.4a)
/

(5.4b)

whe;e v . . _

Consider a B; with exactly one o bubble. It occurs exactly once in the first
term of (5.4b) (i.e., in S'), and with a plus sign. It also occurs exactly once
in the second term, in the diagram obtained by shifting this one -a bubble into
the slaShed minus box. In this term it occurs with a minus sign (we are using
the convention where the minus bubble represents —Sc). "Thus the two terms. can-
cel. If B; "has n o bubbles then there are, in an exactly similar way, 2"
terms in (5.4b) that exactly cancel out. . But if Bi has no a bubble then Bi
occurs in> S$' but not in the second term, and there is no cancellation. This
gives (5.3). .

6. Flowl&nes and Schnitts

To prove general discontinuity formulas the.concepts of flow lines and schnitts
are useful. A flowline is a path in a Landau diagram D that runs from the ex- a
treme left of the diagram to_the'extreme right. It consists of an ordered se-
quence of line segments 'Li of D all of which point in the direction of the
path. A schnitt o 1is a cutting of a set of lines Li of a diagram. It is ) -
allowed to cut no flow line more than once. The set fa' is the set of flow lines

cut by a. Equivalent schnitts o are schnitts that cut the same set of flow

lines. A line Ll lies right (resp. left) of line L if and only if L, lies

2 1
right (resp. left) of L2 on some flow line. A schnitt al ‘lies right (resp.
left) of a schnitt @, if and only if oy is equivalent to a, and some line

Li cut by dl lies right (resp. left) of some line Lj 'cpt by s and no line

Li cut by‘ ay lies left (resp. right) of any line Lj cut ﬁy ay. A rightmost
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1

(resp. leftmost) schnitt o is a schnitt such that no schnitt o' lies right ~
(resp. left) of it. The rightmost (resp. leftmost) schnitt equivalent to any

given schnitt is well defined.

A schnitt in‘a bubble diagram B is a schnitt in D(B).

Consider now the set of B; that have initial lines a - and B and final lines
Y. The sets o and B define leftmost schnitts, and Y xdefines a rightmost
schnitt. Let o' be the rightmost schnitt equivalent to o. The sum of all

these diagrams is represented by

dm_‘m» a +

X L B 6.1)

where the_prihed boxes represent the expansions of the unprimed boxes in terms of
the B;.' The identity (6.1) follows from the fact that the schnitt ‘a' has a
well-defined location in each B;, and hence one gets each term on the left-hand

sidé.once and only once by combining independently the sum of all B; that can
occur on the right of @', which is the sum that represents S(a,B; y) truncated
on ¢, with the sum of all possible/ B; that can occur on the left of o', which
is the sum of all Bi that represent S(@; @'). This argument will be used
several times in what follows.

Applicétion of unitarity to (6.1) gives (5.1).

Consider next the set of all. B; that have incoming sets ©® and B and outgoing
sets a' and B'. Separate these B, into two sets. The first set consists of
those that- have-a schnitt Yy such that (1) all flow lines in fY start in a

and end in B', and (2) the schnitt y cuts B

i
containing y and Y' the other containing B and. B'. The second set is the

into two disjoint parts one

remainder - R.

‘Let y' ‘be the rightmost schnitt equivalent to y. Then the sum of these dia-

L
gram Bi can be collected into the expression

a m o LY

B’ + R

B - [m l;’zz B

(6.3)
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This result combined with (5.3) gives,

B e ] + [m A" +R,

(6.4)

from which‘the normal-threshold discontinuity formula can be derived as before.

7. Strongly Equlvalent Schnitts

The mass of a schnitt is the sum of the masses of the lines cut by the schnitt.

Two schnltts are strongly equlvalent if and only if they are equivalent and

have the same mass.
The concept of the rightmost (or leftmost) schnitt‘strongly equivalent to given

schnitt is not always well defined. For example, if the masses ml' and m,

satisfy m. > m, then in

1

L

the two schnitts a and a" are both strongly equivalent to o, but there
is no unique leftmost schnitt strongly equivalent to «a. However, a simple
argument shows that there will always be a unique leftmost (and rightmost) -

schnitt a' strongly equivalent to any given schnitt o if there is no

schnitt a"'  ecuivalent to o but with larger mass.

Consider.the set of all B; with incoming lines o and B8, and outgoing lines
vy. Let BE‘VQr be a point such that all of the Sj in a are parallel. Let
X(E) be the subsrze generated by the set of all B; such that. B lies out-
side (P(B)). Then
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' I a }
Q 1 a + (i o
+mmy = "1, Py mod X(p).

- - | ' ' ; .1

The condition - mod X(B) means modulo contributions corresponding to B; iﬁ

X(p). All contributions B; in which there is schnitt  a'"' that is equivalent

to a but with larger mass fall into this class. When these B

{ are excluded

the rightmost schnitt a' strongly equivalent a is well defined. Every

term of'the remaining sum of B

4 appears exactly once in the box expression

on the right-hand side of (7.1)

8. Nonleading Normal Threshold

A slight modification of the argument leading to (6.3) gives this same formula
with ' now the rightmost schnitt strongly equivalent.to a schnitt v .of
some definite mass M,, and R expanded to include terms B; that have
schnitts equivalent to Y but with larger mass. Then from (7.1) one obtains

B a/ am + +R/
m B/ = q4imB |
, B (8.1)

where the’ =Y box represents the inverse SY_l of the restriction S of
S to Y space, which is the sum of the spaces corresponding to all sets of
particleé the sum of whose masses is the same as that of the set Y. F;om
this formula (8.1) one derives the discontinuity atound.a>nbnleading.normal

threshold by the'érocedure of Section V.6.

9. Truncated Scattering Functions

Let oo and B represent the initial and final‘variablés_bf a scattering

function:

o = (Pl"",Pm)
9.1

g = (Pm+1,“';Pn)
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Let some subset of the set a be separated into a set of disjoint sets
ayse,a . Recall that Sc(a; E) z F+(G;B) is equivalent to the sum of all
connected Bi' The function F truncated on a, is defined to be the sum of
all connected B; that have no @, bubble, i.e}, that have no bubble each
initial 11ne 6f which corresponds to a varlable in a,- Similarly, the function
Ff truncated on several sets - a is the sum of all connected B having no

i
ay bubble for any o in this set. .The function F _ truncated on the set

a LN of sets a, is represented by

S
Hr& I
1

i=1

O

Lemma 1 Let al,---,as be'a decomposition of a subset of the set of variables
a. Let pA-be a point such that for each 1 = 1,-+-,s all the. p, in e
are parallel,_ Then p will lie on various Landau surfaces corresponding to
diagrams in which there is for each s considered as a SChnitt, a rightmost"
schnitt ai strongly equivalent to it, and all of the lines cut by all of
these schnitts. ai terminate on one single vertex. Suppose B lies on no
positive-a Landau surface corresponding to a diagram in which these lines

terminate on more than one vertex. Then

F (a3 B) ‘/—‘ | S(a ; a ) da r ] F+(ai,---,a;,at; B) mod X(p) . (9.2)

where the integral over ai

is over all sets of variables the sum of whose
masses is the same as that of ars and X(S) is the linear space generated by

those B; that satlsfy pt f(B)

Proof The left hand side of (9.2) is equivalent to the sum over all connected
Bi' The mod X(p) condition allows us to ignore, as above, all contributions
B; in which'any ai (considered as a schnitt) is equivalent'to a schnitt of
greater mass. Then for any one of the remaining Bi one can consider, for
_each ai’ the rigntmost schnitt ai strongly equivalent to ai' Consider next
the part P'e of this B, that lies to the right of all of the rightmost

- schnitts &g. This part P' is either connected or is not comnected. If it-
is not connected then B; lies in X(p). For if p 1lies in GD(B;) then

the conservation-law constraints corresponding to the various disconnected.
parts of P' must b: satisfied, and E must consequently lie on one of the
Landau surfaces excluded by the hypothesis of the lemma, namely the one in which
the lines cut by the rightmost schnitts ai terminate, not on one single
vertex, but rather on the several vertices corresponding to the several dis-
connected parts of P'. These B; with disconnected P'. may, therefore, elso
be ignored, due to the mod X(p) condition, and one is 1e£t with the B;
such that :P' is connected. T
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The remaining set of B; is generated by summing indepehdentlymover all possibié
parts lying on the various sides of the rightmbst schnitts ai. The part P'

lying to the right of all these schnitts ai

will be just the truncated function
occurring in,(9.2); i.e., it is the sum of all connected ‘B; that have no

oy bubble for any a,. And the part lying to the 1g§plof_;he rightmost

schnitt a{ -is just the expansion of S(ai,ai). Any 'Bi .pohstructed in this
way is-one‘of the remaining B;. defined above, and each su;h' B; is different
because the location of each schnitt ui is uniquely defined in each of these
remaining B;;.'Finally, every one‘of the remaining B; is obtained at least
once because every possible combination of parts on the yarious sides of the var-

ious schnitts ai is included. Thus the lemma is proved.

The B; thatlwere ignored during proof because they belong to X(p) satisfy
a certain finite set of mass-shell or conservation-law conditions that force
5 to lie outside OD(B;). Thus Eq. (9.2) holds mod X(p) - for all p in some

finite neigﬁbqrhood of bp.
From (9.2) one obtains by inversion, near p,

s s _ . . 7
- -1 +
‘/rrsa' Fo= ( r,F | (9.3)
i i ‘

i=1

-1 ) )
where Sa is the inverse of the restriction Sa "of .S to the space als which

is the sufi of the spaces associated with the sets’of variables ai having
sums of rest masses equal to that of a -
The function S;l " is defined formally by

S“i = I, 0+ % -R, ) _ (9.4)

i == i
where Ia is the restriction of unity to the space @, - and
i .
Ra, = Sa, - Ia . ‘ v (9.5)
i i i

10. The General Formula

. . + : ' .
Theorem 13 For any ‘D - let ‘A(D+) be the discontinuity formula defined
- : R 1
at the end of Section IV. Let pe9»,p' be a point that liés on LO(D +) if
A}
and only if D + is 'Df. Then ’

A(") = B (T,0') mod X(p) : ' (10.1)

where B—(T,D+) is the sum of all B; that support Df,»aﬁd X(;) is the
subspace .generated %y the set of B, such that p lies outside 69(3;)J 1f
for some of the sets of lines of D  that run between pairs‘of vertices of

D+ there are other sets with the same sum of rest masses; so that the theorem

. + ‘
as stated above is empty, then D can be interpreted in an expanded sense, in
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which each of these sets of intermediate lines i§ intérpreted as a sum 6ver all
sets having the same sum of rest masses. The formulas for A(D+) and B-(T,D+)
should then also be interpreted in this extended sense: the intermediate sets
ai should‘be allowed to run over thé other sets with the same. sum of rest

masses.

Proof TLet B; be any diagram in B-(T,D+). This diagrgm suppqits D+. That
means that there is a set ef of schnitts a, of B; whose elements are in
one-to-one correspondence with the sets of iniermediate:lines of D+. If for
any one of these schnitts there is an equivalent schnitt of greater mass, then
B lies outside GD(B;) and this B; lies in X(p), and hence does not con-
tribute to (10.1). For each remaining B; there is for any schnitt in égf a

unique rightmost schnitt strongly equivalent to it.

Consider any one of the remaining B;. Let each schnitt a, in o be shifted

to its rightmost strongly equivalent position a!. Let P be the part of Bi
L + S .
corresponding to some vertex of D ; it lies to the right of certain schnitts and
to the left of others. Consider what happens to. P, and_to its boundary" '
schnitts, when each a, is shifted to its rightmost strongly equivalent position
]

a'.
i

- One of several things can happen. The first possibility is that the topology
" is unaffected: 1i.e., that the new schnitts ai lie in‘théAsame positions
relative to each other as the original schnitts ai, and that the new part P'
is connected. The second possibility is that the new schnitts o' 1lie in the
" same positions relative to each other as the qriginal schnitts, but that P'
is disconnected. In this second case B; belongs to X(E). For if 5 lies

1 . 1 + +
) for some D # D ; contrary to

in oj(B;) ‘then it must also lie on LO(D 2
hypothesis. 1In particular, it lies on the Landau'surface L(D ), where» D:

is the diagram constructed from D+ by replacing the schnitts bounding P by
the schnitts bounding P', and then joining the lines cut by these new schnitts -
ﬁo vertices corresponding to the various disconnected parts of P' to which
" they are attached. This surface L(D"+) is defined by essentially the same
conditioné that define L(D+), plus the extra conservation-law conditions .
entailed by the break-up_éf the connected part P into the\disconnected part
P'. But if Bv lies in -GJ(B;) then these extra conservation-law conditions

— l'+ . ||+
must be satisfied, and hence p must lie in L(D ). However, L(D ) is

the union of LO(D"+) wit&+the various surfaces LO(D;+),’where the D;+ 'are
certain contractiors of D . Hence p must lie on LO(D ) for some D
different from Df, contrary to the hypothesis of the theorem. This is not
allowed. Thus we conclude that 6 does not lie in éD(B;); i.e., that B;

lies in X(B), and hence does not contribute to (10.1)
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The chird and final possibility is that the rightmost schnitts ai do not lie 
in the same position relative to each other as the original schnitts ai. Then

. . . , +
for some schnitt @, standing to the left of some aj in the original D the

- rightmost a; strongly equivalent to ay lies partly on the right of ag.

Then some set of flow lines f has a part Q that starts on a subset Qj of

ai and ends on a subset Qi of ai. The sum of the masses of Qi cannot be

equal to the sum of the masses of Qj’ for if these sums were equal then a3

could be moved further right. On the other hand, if the  first sum were greater

than the second sum then there would be a schaitt aj equivalent to ai,-but
having greateér mass. If the first sum were less than the second sum then the
analogous result is true with @, replacing aj. In gither case - B; lies in
X(p), and does not contribute to (10.1). Thus we are left with the first case;
i.e., with tHe sum of all B; having the following propefties: (1) there is a
set Af of schnitts a, that separate B;_ in the manner described by D+,

i
mass, and (3) when the ai are pushed to their rightmost strongly equivalent

(2) for each ay in _gf there is no o' equivalent to cay and having greater

L}
i
\ ]

Since the locations of the rightmost schnitts ai in each of the remainihg

positions «a the new parts P' are well defined and connected.

Bi are well defingd the full sum can be constructed by adding independently
all possible contributions corresponding to each of the connected parts P'.
The sum of all possible contributions corresponding to-any P' is precisely
the corresponding function F+ truncated on those sets of initial variables
a, that belong to 44 . Use of (9.3) converts this form to A(D+);

The formula (10.1) converts the expressioﬁ B—(T,D+) for the discontinuity
T(D+) obtaiﬁéd in subsections 3 and 4 to the formula quoted at the end of
Sgction IV. The contributions B; € X(B) that were ignored in the course of

the proof all vanish in some finite neighborhood of p.

VII. BASIC DISCONTINUITfES FOR 6-PARTICLE PROCESSES
The discontinuity formulas derived above are local formulas; they give the
~difference f+ - f' in some small neighborhood of the point p on LO(D+).
Moreover, this point p must lie in an’ = 9nF - 970. )

For dispersion relations one need§:global formulas; i.e., formulas that hold
at -all real'boints p. And the needed discontinuities are around the leading
normal threshold cuts, which always extend to points p"lying in ?h7 0
Furthermore, one needs not only single discontinuities, but also multiple

discontinuities.

Multiple discontinuities across sets of leading normal threshold cuts play a
basic role in S-matrix theory and are called basic discontinuities.

Clobal formulas for all basic discontinuities of six~particlé pfocesses have
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been derived, and will noﬁ be discussed;- The derivaﬁionihas three pafﬁé; " The
first part. which is described in this section, specifieé the relevant functions
and describes ﬁhe discontinuities and multiple discontinuities formed from them.
The second part, which is described in the next sec;ion, proves the analytic

structure of these functions at real points p e . The third, which is

described in Section IX, shows that these functions are the éppropriate boundary-

values of a single analytic function; i.e., that there are paths of continuation
in the compléx mass shell’ that connect these functions to each other,_and that

these functions are the boundary values needed for dispersion relations.

Anticipating the later results we shall already in this éection refer to certain
functions as boundary values from specified sides of various normal threshold
cuts. The discontinuities in the three-to-three physical ;egion are discussed
first; those. in the two-to-four and four-to-two physical tégions'wiil be

discussed later.

1. The Sixteen Channels g

A channel is defined by a separation of the initial and_final_lines of a bubble
diagram into two disjoint parts, each containing at least two initial lineés or
at least two final lines. For a three-to-three process the sixteen channels

are indicated below

I —
ood
oQ
¥
"
=
)

{4,5,6}

\ - . b. ‘
ﬁE g=1=1,2, 0r3 J =1{4,5,6,8)
i

f=4,5, or 6

-
09
]

[
|

= {4’5’6} - {f}

(if) = {4,5,6,i} - {f}

Jin

i

2. The Sixteen Basic Cuts Cg

Define the invariantg’

s = s(Jg) z :E: pj;> ' ‘_ : (2.1)

8
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and the cuts

il

R . . o R .
<G {p+iq: Ims_ =0, R 2s '} Yy 2.2
g PT M g © % = g 2.2

'wherelfsgo =0 is the leading normal threshold singularity in channel g3
_i.e R sg-G is the square of the smallest sum of rest masses of sets of particles

that communicate with particles of channel g.

3. The 216, Functions vMG

'Le;'_G -be any subset of the complete set E of sixteen channel labels g.
There are 2;65 different G's. For each one we define a fuﬁction MG which
will be called the boundary value from beneath évery cu‘t"Cg 'with g eG

and from above each of the remaining cuts.

The sixteen variable .Sg are not all independent.. Consequently there are sets
G such that there is no mass shell point '(p + iq) that lies simultaneously »
in the lower-half plane Im sg < 0 for all geG and in the upper—half plane

Im sg >0 for all g e G = E - G. For'example, if s, +.sb'= S, + real const.
then it is not possible to have 1Im s, >0, Im sy >0 énd:'Im S. < 0.
Imsg=0
Imsq=0
1 = '
me 0 Im Sb.=0
vasc.-.-O Ims.=¢

vHowever,_tHe cut Im s. = 0 can in general be pﬁshéd back to expose a region
“of analyticity that lies on top of the cuts -Imfsa =0 and Im Sy = 0 but
lies below the dispiaced cut Im s. = € Boundaries.that can be reached only

by pushing back some cut in this way are called inaccessiblée boundaries. The

'boundary values at both acce531b1e and 1nacce551ble boundarles w111 be used in

the dispersion relations.

4. " The 217 Functions TG and TG

Thevfunctibhs MG are defined in terms of some.closely related functions TG
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and. TG. These later functions, and also the MG's, are defined without reference

to the infinite series expsnsion used in the formal method. And the proofs of
the analyticity properties of these functions can be carried out by finite methods.
However, it is useful to present first the infinite series'representations of

G

the functions -TG ‘and T .

. + .
Let Dg be the connected positive-a diagram that has precisely two vertices, each

connected to one of the two sets of lines that define channel g. Then

T=T=F+=Z B,

9 B; connected
= L By +
g Bi connected and supports: Dg
Toh = Z By o+ +
Bi connected and supports Dg and_'Dh
1, = .. B ' - ’ ,
Bi connected and supports Dg for all g in G. (4.1)
T0 = T
™ = t-1
: g
- o8h _ -
.‘T T Tg Th + Tgh
© - ) cr® T, | (4.2)

HeG .

where n(H) is the number of elements of H.

These definitions entail also

™ = ) B

. +
Bi confiected and does not support Dg

gh _ Y -

T = ):_: B ' + +
Bi_connected and supports neither - Dg nor Dh

° = Z B IR ‘ ,
Bi connected and =apports no Dg.“geG. (4.3)

These propérties (4.3) and the structure theorem entail that. TG has no
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"singularity éséociated with any diagram that contains D;' for any g in G.
Thus it should continue underneath the normal threshold singularities in each

channel g £ G. On the dther'hand, (4.2) can be inverted to give
Ty - PIREIRCIPCIN . (4.4)
G H ‘ '

which is the formula for the multiple discontinuity across the set of cuts H.

Fc - example,

T = T-T10- 7184 80

T -1 - (18 - 8%

‘etc.

H
should, at any real p such that sh(p) < sho for some heH.

Properties (4.1) ensure that the multiple discontinuity T,  vanishes, as it

The general defining properties of the TG and T are:

G
Propertx 1 :
Each TG can be written as
© - }j (-1*® T, o : (4.5)
with

(]

o= ) b ) “.6)

€
B d?H

where for each Be 5;, and each heH, D(B) contains D:.
Property 2

Each TG can be converted soley by means of unitarity and cluster decomposition

properties to a form .
© - Z B ' 4.7)

where no B in d?G supports D; for any geG.

Property 3.
. . " +
= = = F .
vTﬂ T T
Property 1 ensures that the multiple discontinuities Fﬁ, have the correct

support property: they vanish at real p in s < ©, heH. Property 2

s
h h ’

ensures that TG continues underneath all normal threshold singularities in
channels -~ geG. Property 3 ensures that T0 is the physical scattering function

+
F ..
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A set of functions satisfying these properties 1, 2, and 3 has been constructed
by finite»meﬁhods. The infinite series representations defined in (4.1)-(4.4)
formally satisfy these properties, and this“golucion can be shown to be unique,
in the formal framework. - '

5. The 217 Functions TG and TG

Property,Z'makésf'TG -continue underneath the normal-threshold singuldrities
in channels geG. However, we also want 'TG to continue ‘above the normal-
th:eshold singularities in channels gea = E - G. Consider, therefore, the

H

functions TG and T defined by the same properties 1; 2,.and. 3 except that
the plus signs in D; and F+ are replaced by minus siéns. A solution is

given by

* = -t

T
H

. | B ‘ . v
(TH) , . ) L (5.1)
and this solution is used.

6. The Good and Bad MG's

For certain G's, called good G's, the relation TG = TG' holds. In this case
M® is defined by '
o= 1% = T . (6.1)

This function continues underneath the normal threshold singularities for

geG and continues above the normal threshold singularities for gea.

In general, the relation TG - DG = TG - ﬁG_ holds, and MG is defined by

M = ®-p% = -3¢ o . (6.2)
where

o = 0 if teG, . (6.3)
and

¢ = j{: B if  teG (6.4)

if ’ :
(1f)eXG

and D-G = —(BT)T. Here

X, = {(if); 1£cG, ick, feG) | (6.5
and i

., =

(6.6) -
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Among.thel 216 = 65,536 G's there are 26,018 good G's. These are those
such that the;ezisiho‘ﬁ(ifj 'éuéh'ﬁhat_either {(if)eG, teG, ieG, feGl or .
.K;f)ga,;eéf‘iéG, fsG} . belgood G's 'DG = 59 = 0, and hence (6.2) reduces to
"'"v_'.(:6'.-1') - - - T :
The good Mc's are those with good‘ G's. Thé bad MG;S are the rest. -The
good 'MG's have nice analyticity properties, the bad MGfs do not. However,

the bad MC's will be useful ‘nevertheless.

7. Formula for Multiple Discontinuities

Th': multiple:disctdhtinqity'across the set of cuts H -evaluated underneath the

set of cuts . G (saﬁisfying GNH = @) 1is,by definition,

. ' ' : )
MHG = Z (-1)R(ED) \CH ) o (7.1)
H' H ’ : '
This set of formulas is equivalent to the set of formulas - (for GMAH = 9)

G _. ' v n(G') o o

M.H = Z (-1) v M'HG' . - (7.2)
- G' G o : _

This second form is convenient because most of the MH are zero. '’ Indeed all

MH with n(H) > 3 vanish, and many of the rest do also. The nonzero MH

are now listed.

)

M” = M 1is the connected part of the physical scattering

The function 'Mo

amplitude:
- t 4 : . : .
SR = O = F B -3

The sixteen single discontinuities M, are

- i QXO | : (7'1“")."

(7.40)

;
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and

e SO=CECE. (7.40)

It is convenient to introduce special symbols to represent the sum of terms of
S (or of 'ST) that have special connectedness properties. The symbol defined

by
e = i - =R (7.5)
can be shown to represent the sum of the terms of § (or Sf) in which the
initial line i 1is connected to some nontrivial bubble; i.e., it represents

the sum of terms in which the line 1 does not go straight through. Similarly,

the symbol

= = ofE - | (7.6)

represents the sum of.terms of S (or ST) in which the fin&l line £ does

not go straight through. Finally, the symbol

';4

'=.ﬂ";f o an



<o
o
-
arine,
v
B
R
L5
L
Py
w3
o
H
[
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‘represents the sum of terms of § (or S+) in which neither i nor f go

‘ stralght through .Two frequently used identities, which follow from (7.8), (7.9),

and un,ltaflty , are

, D o
s _ ' (7.8)

and

(7.9)

In terms of these symbols the nonvanishing Mgh are given by

a A o (1a0)
| S (7.10b)
My = °n.“‘=m‘=m° |

- _ : _— | (7.10¢)
-M) - - . .
"; o -  (.10)

: :_Mu‘m E .
- ’Bm : " ) - (7.10e)

The nonvanl_shlng.f'l‘nctions Mghk are
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Mg = q"""‘alluwl=||;lnﬁn‘=-é’ .

| (112

and

MiGif)e = "H"E-g..n t
AN} - uﬂ-,

: . - (7.11p)

The first form given for each of these functions MH’ although longer than the
succeeding ones, exhibits a systematic rule: There is a minus box for each
h in H, and these minus boxes occur between the parts of plus boxes that

contain nontrivial bubbles on which the appropriate external lines terminate.

8. The Inclusive Optical Theorem

To show how these formulas work we calculate Miif)’ which is the discontinqity
across the cut (if) evaluated below the cut £, but above all the other cuts.

. Using in order equations (7.2), (7.6), (7.8), (7.18), ahd (7.8), one obtains

M un=Mun=Mans

’ L]
' . f f
+

- CEETG
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‘In a similar way one obtains

e , o ) . f . S ’ '
’ - M(lf) .% . : o (8-lb)

These formulas (8.1) yield the inclusive optical theorem for the three-to-three

case.

9. Results for Two- to—Four and Four-to-Two: Processes

The results for ‘two- to—four and four- to-two processes are very similar to those
for three—to three processes Only the definitions of theé channels and the

-formulas for the MH differ. The nonzero MH are as. follows:

Mg = :@ . (9.2)
M = 1@@6} ﬂ@ - (o)
] — (g f g
f’* 1@@' R
o (9.2¢)
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- f
Mf(f") = emu=mnm = e f’
- :G)m@;@: :’ o o (9.32)

- 9,...&"'“0 | (9.30)

B ¢
B o =i+ JEGE ¢
My ¢y = 0 -l H f

I +) ;I,/ . v '
il : : _ i ( 9.3¢ )

f

M{

i

" s 'nmﬂnme !
M ee g 7500 °.m=m° f;j’,,
. f . )
£ _ (9-3a)

" \
ff I

;

. - f
MUFE/) (74 = °m=wﬁlﬂ=le ;'I”
. m‘nc f”'

= (-XT ‘ (9.3e)

5]
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,‘ f,‘ .
o ‘muﬂumcy ¢
Mtf.(f’f”)_:" 8 f
O ! o
. LT bil ;2
SRSaN I ‘ f )
= ot ok f (9.1)

The good _C‘s'_for the two-to-four case are those such tha; there is no pair
(££') ‘such that either {(ff')eG, teG, £"eG, f"'eG} or {(ff')eG, teG, f"eG,
£"'¢G} . For the good G ' . '

M = T = T . - (9'5)

G G =G
For all G _
R LA L L | (9.6)
where ;
G
D = 0 1if teG
| . (9.7)
° = Z B if teG '
: ££! :
(ff')sXG
Here
Xo = {(£f'): (££')eG, £'¢G, £"'eG) . (9.8)

"and

v = (9.9)

The results for the four-to-two case are mirror images of the two-to-four

results with i's in place of f's.

10. Generalized Steinmann Relations

.

A pair of channels g and h 1is said to be overlapping if each of the sets

that define .g intersect both of the sets that define h. “Note that
.MH = 0 B o (10.1)
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if H containé any paii of overlapping channels. Then (7.2) impliesithat the
same is true for MHG. These results are a generalizatioﬁ of the Stginmann
relations found in field theory: these latter relations give aqalogous results
for the discontinuities formed from 2282 of our 65,536 functions MG.

VIII. ANALYTIC PROPERTIES OF THE GOOD MG'S

The good MG's defined in the preceding section have nice‘physical—region
analyticity properties. In particular, they continue iﬁcd themselves around
every singulariﬁy surface except for certain exceptional ones. This property
is the result of systematic cancellations. For each Mg is constructed,
according to properties 1 and 2, as a sum of terms only one of which, namely
M itself, enjoys this property. All of the remaining terms are represented’
by bubble diagrams with several bubbles, summed over all'possible intermediate
lines connnecting these bubbles. Each of these remainihg terms changes its
analytic form at each threshold where a new term, forherly zero, starts to.
contribute. However, in the sum there is a cancellation qf either the plus

ie or minus 4ie part of every threshold singularity; and the function MG in
some neighbofhood of the singularity is é limit of an analytic function from
some cone of‘directions in q = Im(p + iq) space. This result holds, in

fact, near all singularity surfaces except the exceptional ones.

Continuation through tﬁe physical region is blocked by the exceptional surfaces.
However, the functions on the two sides of these exceptional surfaces should be
regarded as parts of a single analytic function, in the context of dispersion
relations. This will be discussed in the next section. In the present section
the continuation of the good MG around the nonexceptional surfaces is
discussed.

1. 'Schnittslru
N -1

A schnitt o is a schnitt that separates a diagram D into two pafts each
of which is connected and contains one of the two sets of external lines that
define channei g. All lines cut by a schnitt ag are required to cross the
cut in the dirgction of the posifive energy flow in channel g. A schnitt

a; ié séhﬁitt ag eaéh line of which is either a plus iine of D or a line
of D wiFh no sign. A schnitt aj< is defined analogously, with either minus
lines or unsigned lines of D. A diagram D contains a schnitt a; (resp.

a;) if and only if it contains a normal threshold diagram D; (resp. D;){

2. Signs of Lines V_ -+ V
r s

A line Vr'» Vs in D 1is a portion of aflow line in D that runs from Vr
-n

“to V.. A sign n 1is ascribed to V. >V, if and only if no schnitt o

in D cuts V_-+>V .
r s
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3. Theorem 14
Consider any B,.any D that fi;s into B, and any line V; -+ VS in D that
has sign n. In any representation of D

W o~ w eV ., R (3.1)

- s, r F :
where V+ and V™ are the open forward and backward light-cones, and 'wr
 and. ws are’veéFors to the space-time location of Vr and Vs’ respectively.
gzgggv Suppose. .n is plus. If Vr and Vs both 1lie inside a plus bubble
then each segment on the path between them has a plus sign, hence points into
the forward light—cone, and (3.1) follows.b If Vr and VS do not lie inside
the same plus bubble then shrink all plus bubble to points. Then almost any
vertical line thét_passes between Vr and Vs define; a schnitt a; .that
cuts Vr -> Vs,vcontrary to hypothesis. An analogous argument holds if n

is minus.

4. Skeleton Diagrams

Each Landau diagram D contains a set G(D) of schnitts 'aga A skeleton
diagram Ds ‘of. D 1is a minimal subset of the flow lines of D such that
G(D) = G(DS).v'For three-to~-three diagrams there are 76 types of skeleton

diagfams:

f
I

@) 1] () (3]

FIG. The
76 skeleton dia-
grams for 3—3
processes, The
" indices ¢ and f
run over
1,2,3), and
4,5,6), re-
RO (o] | pectively: The
f number in .
square brackets
below each fig-
- ure is the num-
LY [3] . ) fo] . . © ber of skeleton
diagrams repre-
sented by that
figure,

— -\
(7]
—

f‘
) -
a
- s
-~ -
—_— -
©
o

(e}

<

u') [9] th {9]

i

(u)fts] P
£ [9
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5. Theorem 15 .
Let Vr +:Vs_-be a line of a skeleton diagram Ds' Let C(Vr > Vs) be the set
of g such that some schnitt ag cuts Vr -+ Vs' Then for every G that
.contains G(Vr - VS), for every D with skeleton DS ‘that fits into a B
in 8 G,-and.for every representation of such a D

W, - W€ v . . : ' (5.1)
Proof Consider any D with skeleton D_ that fits into a ‘B in é?c;
wh re G contains G(V._ - VS). This D contains no_-D; with g in G,
an¢ hence no schnitt ag with g 1in G(Vr -> Vs). Ihus Vr -»> Vs has a minus-
sign n, and (5.1) follows from (3.1). 3

Theorem -15' Theorem 15 holds if é?G is replaced.ﬁy é?c and V - is

replaced by - V+; where d?c is the set of B = -B' for B 1in Q?G.

6. Continuation of Good MC's

Around Nonexceptional L(D)

Consider any good G. Then

¢ = 18 - Z B. o ‘ (6.1)

and

M6 = ¢ - Z B . ' ' : (6.2)

BeéG

i

In considering the singularities of MG all Landau surfaces L(D) corresponding

to diagrams D, having the same type.of skeleton DS will be treated. together.

Suppose st iSva_tree diagram. Let Vr -+ Vs be any minimal line of Ds.
Then G(Vr + Vs) will consist of a single element g, which will belong either
to G or to G.

Suppose G(Vr +> VS) ¢ G. In this case consider the exp:eséion (6.1) for MG.

G
The structure theorem says that this expression for M  is singular only on
“those L(D) corresponding to D that fit into a B in @& G. 1f E lies
only on a subset of these L(D) that all correspond to ‘D's having skeleton

Ds, then Theoremils says that for all representations of these D (5.1) holds.

Equation (5.1) precludes the possibility that two D(p)'s related to each other
by a negative'scale change both contribute at p = B. ‘i is the clash of the
ie prescriptions corresponding to two representations tonneqted by a negative
scale change that signals the presence of a threshold, and that is the normal

cause for the structure theorem to yield no cone of analyticity near ;.

. The other cases are similar. If Ds is a tree graph and ‘G(Vr -+ Vs)<: G

then use of- (6.2) and Theorem 15' leads to essentially the same result as
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. . _ : .
above, with V. replacing V . If DS is a box diagram then for any good G

at least two of the four minimal lines Vr - VS satisfy either G(Vr - Vs) <G
or G(Vr - Vs) e 6, and (3.1) holds for them. Thus negative scale changes are

again ruled out.

The above argument rules out, fqr good MG,~threshold—type singularities
generated by a pair of D(E) rélated by a negative séalé_change; However,

the continuation might be blocked by some other conspiracy of singularities.

Ora can.show, however, by dimensional considerations, that the only conspiracieé
that can block the continuation near p are those involving two diagrams .Di(p)
and Dz(p) whose external trajectories are transformed into each other by a
negative scale change for each p in some codimension-one neighborhood of p.
Og the other hand, the Dl and D2 must conform to the signvconditions (3.1)
derived above. Surfaces generated _Dl(p) and Dz(p) satisfying these conditions
are called exqeptional. The occurrence of such exceptional surfaces appears

to be essentially accidenﬁal and of.no great significance fbr dispersion

relations.  This will be discussed in the next section.

' IX. ANALYTICITY IN THE COMPLEX MASS SHELL
.The physical-region analyticity properties discussed above flow from unitarity
fadd-ﬁadtocéusality. To obtain analyticity properties at'dénréal poinﬁs an
Aédditional.assumption is needed. 'In S-matrix theory this extra assumption is
maximal analyticity, which says that the only singularitiesvof the scattering
amplitudg are those required for consistency with thg other S-matrix principles
of unitarity, macrocausality, and Lorentz invariance. This assumption, and

several of its consequences, are discussed in this sectionm.

1. Maximal Analyticity

Unitarity and macrocausality yield the physical-region analyticity properties
described in the preceding sections;- Maximal analyticity sayé that there are
no singularities in the complex mass shell not required for comsistency with
these physicai-region analyticity properties and Lorentz_invariance; This
assumption has two 1évels. On the deépef "bootstrap" level it refers to a
complete solution to the unitarity, analyticity, and Loreﬁﬁz invariant require-
mehts that may in principle determine all the parameters of the S-matrix, i.e.,
the masses; and coupling constants etc. But on the‘imme?iafeﬁpractical level
it refers to the analyticity properties associated wita given values of the
masses. On this latter level it means, in practice, an iterative ‘procedure
whereby the singularity structure in the complex mass shell is built up starting
from the basic normal threshold cuts. TIn this procedure one first neglects
all cuts but-the’normal threshold cuts, and then derives further cuts and
singularities'by.introducjng these normal threshold cuts into the unitarity

- equations. These'néw singularities are then themselves introduced into unitarity
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and further singularities are derived, etc. At each stage one considers only
those singularities that have arisen in the previous stages, and expects to

generate in the end the complete analytic structure.

This iterative procedure has two parts. In the first part one considers only
stable particles (in an approximation where massless particles, and hence
electromagnetic, weak, and gravitational interactions are ignored) and seeks to
generate only the physical-sheet analytic structure. This‘is the sheet in
which dispersion relations operate, and hence the sheet of principal interest
he: e. In the second part one allows unstable particle poléé, and seeks to

generate the analytic structure on all sheets.

The initial stages of this iterative procedure are described in the followiﬁg
subsections, and are used to obtain hermitian analyticity, crossing, and certain

other properties needed for dispersion relations.

At the first stage‘of the iterative procedure one consideis only the normal
threshold singularities and cuts, which include the pole singularities associated
with one-particle exchange diagrams. The pole-factorization theorem is used
extensively,'énd it is assumed that no singularities associated with other
types of diagrams mask or simulate these one-particle exchange pole singulari—
ties. That is, it is assumed that the only singularities of bubble diagram
-functions that contribute to residues of poles at the particle masses pa2 = ma2
are singularities associated with the corresponding one-particle exchange dia-
grams. If at some stage of the construction of the singularity structure a
singularity is found thzt disrupts this property then it should be taken into
account at the subsequent stages, but not before. Howevever, no such singularity‘

has ever been found.

2. Hermitian Analyticity

This property says that the functions represented by the‘plus_and'minus bubbles
are analytic'continuations of each other. To show.this.for a two—-to-two
process consider a larger process whose amplitude containé the two-to-two
amplitude as a factor of a four-fold multiple-pole residue: The scattering
amplitudé for the larger process is represented by the bubble oﬁ the left-hand

side of

(2.1) .
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The original two-to-two processes is represented by the. central bubble on the-
right-hand side.

. Consider now the unitarity equation

‘ﬁn_nﬁ

(2.2)

where the subscript c¢ denotes connected part. It can be separated into four

terms

i)

where R. is the sum of contributions to (2.2) not appearing in any of the

first three terms. For brevity this equation is written

A+—A_—A0+R=0 . » (2.3)

The term - R " gives no contribution to the four-fold multiple-pole at P, =m, .

The contributions of the first three terms are displayed in the equations

Equation (2.4) continued next page
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Equation (2.4) continued

(2.4)

A plus Or'minus sign di on a line Li of a bubble diagram signifies

the restriction of essential support of the displayed function to the part
generated by the Landau equations with the restriction a0, > Q. This means
that the mass-shell delta function associated with .this line is replaced by a

pole, according to the rules

+ = i/p.° -m %+ ie

(2.5)

- 2 2 .
il —i/pa_ -m - ie .

in the sense that the displayed function in a neighborhood of one of these
singularities is represented by a function having a pole factor of the indicated
type (2.5) and having the indicated residue. This residue is the product of

the displayed'bubble functions, times a factor of plus 1 for each plus line
and a factor of minus i for each minus line. These factors of i come from

the residues_of.the pole factors (2.5).

The remaining terms R,, R, and R
+ - 0

contribution at pa2 = m, a=1,...,4.

in (2.4) have no four-fold multiple-pole

The momentum-energy variable P, is the momentum-energy variable associated

with internal line a:
p, = Z e,y - (2.6)
i€E .
o _ .
where Ea is -the set of labels i of the external lines of the outer bubble
connected to line a.

" Multiplication of (2.3) by the factor

4 -
. a=1 »

gives
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A=Al - A ER = 0 . . (2.8)

v '
where A+v l I A+ etc.

Each of ﬁﬁe.th:ee central functions in (2.4) has certain singularities in the
complex mass~-shell of_the four particleé o = i,--r,&. When variable

p = (pl,}..,p16)> goes to the .pole positipn 'pa2_$ m;Z, o= 1,2;3,A, the
singularities of these central functions in (2.4) will produce singularities

in the corfesponding'pfimed functions in (2.8). These 1atter 51ngu1ar1ties
cannot be present at pa2 = ma2 but absent at nearby p01nts # m, : there
is a general theorem of functions of several complex varlables (Bremermann's

special contlnuity theorem) that rules thlS out.

These neighboring singularities of the primed functions are associated with the
Landau diagrams of the larger process in which the four intermediate pole lines '’
in (2.4) are contracted to points. These contributions;to the singularities of

the primed functions are represented by the first terms in the equations

(2.9)

>
*\
1}
0>
()
+
p o]
'\

I 0°° + r. o (2.10)

o (2.11)
Each first term repreeents a function that becomes equalto the displayed
product of bubble functions at the mass-~shell p01nts pa2 = mu2 a=1,""",4,

and that oqt51de these mass~shell points has only singularities corresponding to
. the Landau diagrams that fit into thése bubble diagrams. - The remaining terms

R;» R!, and 'Rén have no singularities corresponding to diagrams that fit into :
’ 2

AnhEse bubblé'diagrams, and they vanish at the mass shell points pa2 =m,
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a=1,...,4, along with their discontinuities. The equations (2.9), (2.10),
and (2.11) represent essentially decompositions of the singularities of A;, A',
and A' into those that have discontinuities having'nonzero multiple-residue

9 2

at P, - m, = 0, a=1,---,4, are those that do not.

Consider now a path in the'variables of the larger process

AN

-5

4p2 4m2

The variable s is the square of the center-of-mass energy of the central

process. The variable’ p2 is the common value of the variables paz, and m2

is the (assumed common) value of the maz. The t wvariable of the central
process can be fixed at zero, and the other variables of the larger process
changed in some minimal way that keeps all momentum-energy vectors Py real,

except near infinitesimal i€ distortions around singularity surfaces.

Let P+ be a mass-shell (pu2 = maz, a=1,...,4) point lying above the
physical threshold at s = 4m”. Let A; be continued first at constant s
from p2 = m2 to p2 = 0, and then at constant p2 =0 to p2 =g = 0. This

path will follow a plus it (physical) continuation around the singularities
"associated with the plus bubbles of (2.9) and a minus ie (antiphysical)
continuation aroﬁnd the singularities associated with the minus bubbles of
(2.9). Thé'path is allowed, however, to pass through cuts corresponding to
singularities of the function R; of (2.9). In crossing such a cut the
function A; changes by just the discontinuity of R; across this cut. 1In

this way the function on the path remains always the function A; defined above.

At the point p2 =s =0 the term Ab vanishes, because this point lies below

the lowest threshold s = &uz in the s channel. Thus by adding R', which
can be considered to be the discontinuity across a cut, .one obtains the
function’ A', which isthen continued at p2 =0 back to s > 4m2, and then at

constant - s to the mass shell point P_. Thus one has a path that follows
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well;defihed ie fules for singularities corresponding to‘diagrams having the
four verticées a, but that jumps across cuts assodiated with the functions

R/, R, and R!.

Let this path of continuation now be shifted into the‘mass shell p2 = mz.

In this shift of the path of continuation one keeps track of the various cuts
of the functions R;, R', and R', that the path jumps across, but does nét
seek to ‘avoid them: instead one adds the discontinuities across these cuts.
Howéver; one does try to distort the path away from éingularities corresponding

to diagrams that have the four vertices «a.

In tracing out the distortion of the path one may consider the five parts

separately; one traces out the motion of the singularity surfaces of the

individual bubbles of (2.9), (2.10), and (2.11) as the "mass variable" paz
corresponding to the vertices a increase from zero to md
Consider first the path in the variables of the central bubble. For p2 =0

this path starts at a point s = 4m2 + ¢ above thréshold,continues down to

s =0, crosses the line Im s = 0, and continues bagk. As one shifts p

from zero to m2 certain singularities may cut across this original path in

the s plane and force a distortion. However, in the first stage of the

iterativé procedure one considers only normal threshold singularities. These

stay fixed in the s plane and hence cause no distortion of the path. Normall
2 .

. 2 . 2 : .
thresholds in p must lie at p~ > m , and hence are not encountered in the

continuation.

Consider ﬁext the paths in the variables of the outer bubbles. These can be
made to tface exactly the same paths along the original and return portions of
the'part‘between p2 = m2 and p2 =0 at fixed s > 4m2. Moreover, since the
invariant variables of the outer‘parts are independent of s one can keep the

o
same path in the space of invariants for all s.

After the path is shifted into the mass shell, which is certainly possible at
the first Stage'ofvthe iteration procedure, one has a mass-shell path of

' cbﬁfiﬁuatiqn that connects the residue at P+ to the residue at P_. This
path . jumps across various cuts of the functions R;, R', and R', but the
discontinuities across thése cuts vanish on the mass shell pa2 = ma2

a =1,++.,4, Thus the analytic continuation of the residue at P+ along the

mass-shell.path to the point P_ yields the residue at P_.

The residue at P+ is, by virtue of the pole-factorization theorem, the product
of the five functions represented by the first term of (2.9). Similarly the
residue at P_ is the product of the five functions represented by the first

term of (2.10).
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&

The five functions in the residue at P+ continue ‘independently. The variables
of the outer processes remain always at the same boint in the space of the
invafiants, and trace out only a trivial path in p -'space. Thus in the continua-
tion from P+ to P_  the outer functions continue into themselves, and hence
into thexouter functions occurring in the residue at .P_. Therefore the inner
function must continue from its value in the residue at P+ to its value in the
residue at P_. That is, the function represented by the plus bubble must con-
tinue into the function represented by the minus bubble. The path of coﬁtinuation
in the variables of the central process, is, at the;first stage of the construc-
tion of the singularity structure in the complex ﬁéss shell, a path that starts

at a physical point above the physical threshold S'=-4m2, moves in the upper

half plane.(i.e. via the plus ie rule) to s = 0; where it moves into the
lower half plane and returns via the minus 1ie rule to the region s > 4m2.

This relation between the plus and minus bubbles is called hermitian analyticity.

At a iater stage of the construction of the singularity structure some singularity
may mové across the original s-plane path of continUation during the shift from

p2 =0 to p2 = m2, and cause a distortion of the path away from its original
position. ~An example will be given later. But at the initial stage, where only
normal threshold cuts are considered, the plus and,minus bubbles represent two

different boundary values of the same analytic function.

The same argument works for multiparticle amplitudes, and shows that our good
functions MG are the boundary values indicated by G of a single analytic
functioh,‘ét least at the first stage of the construction of the complex singu-
larity structure. To obtain this result the larger space is constructed by
replﬁéing each line of the 6-particle process by four lines, as in (2.1). The
needed equation in this larger séace can be constructed, in the formal framework,~
by défiﬁing the functions TH by. the same equations in terms of B; as before,
but with the T's now functions in this larger spacé, and the D+'s now the
natural images of the original D;'s in this larger space. The grgument then

. proceeds as just before.

As an example consider the case where g = 1 =1 designates an initial subenergy
channel.. It is sufficient to enlarge the process only with respect to the two

initial lines 2 and 3. As before, the T of the enlarged process is continued

first from P to p 2 =p 2 0, at fixed s = (p, + P )2 and then to
2 +2 -T2 3 : ‘ 23 2 3

Sp3 =P, TPy = 0. At this point the discontinuity function Tg = Tl

vanishes, and T can be replaced by T - Tg = Tg, modulo R-type functions,

which are functions that lack the double pole at p22 = m22, p32 = m32. Then

™ =1- Tg is continued back to P_, following the ie prescription approp-
riate to iﬁ, and jumping across R cuts, and also across the cuts attached to

exceptional surfaces, by adding the appropriate discontinuities. Finally the
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path is ‘distorted into the mass shell p22 = m22, p32 = m32, and the residues
the double pole in T and T - Tg considered. These two functions are
analytically connected by the mass-shell path obtained by distorting into the
mass shell the original pl2 = pz2 = 0 path in the - Sy3 plane. That origiﬁal

= 0 following the

path starts in s > (m2 + m3) , then runs down to

23 $23
plus ie ‘rule for singularities not of R type, and then runs back to

s o (m2 +'m3)2 following the ie rules appropraite to T8 = M8, Again the

23 ,
two .uter factors can be factored out, leaving the analytic connection between
Tand T - T in the space of the six original particles. This path jumps

across cuts attached to exceptional surfaces. The placement of such cuts will

be discussed later.

By similar arguments one can derive

(2.12)

where the left-hand side represents thé continuation of _Sc(a,B; Y) to below the

complete set of cuts that start at the threshold point

s°=(zm>2. | (2.13)
a i

iea :
The -o box is, as before, an operator in o« space, which is the space of
sets of particles the sum of whose masses is sao, and is the inverse of the
restriction of the S-matrix to this space. In deriving (2.12) the original

path in the variables of the larger process can be taken to lie at pa2 =m 2 _ €,

o
with € arbitrarily small, instead of at pa2 = 0, and to describe an infinitesi-
mal contour in the space of variables of the central process, since this small
contour is enough to take it into the region S, < suo, where the threshold
term vanishes. Thus the continuation that connects Sc(a,B; Y) to the function
represented on the left-hand side of (2.12) is nondisturted; it is an infinitesi-
mal circle around the threshold point that is the‘contiﬁuatién into the mass-~

2 2

shell of a infinitesimal circle originally defined for P, =M™, ~ & for

e > 0.

3. Crossing

Crossing is the property whereby the analytic continuation of the scattering
function for any given process describes also the various p-ocesses related to
it by changing various sets initial particles into final antiparticles, and

vice versa. It is derived by methods very similar to those just described, so a
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very brief description will suffice.

Consider, for example, a pole in a four-to-four amplitude

This pole lies at baz = maz, where

(3.1)

ieE
o

is the exchanged momentum-energy. If the exchanged particle has an antiparticle

then this same four-to-four amplitude will have, in another portion of its
a - .

TE -

The first pole lies in the region pao > m whereas the second lies in

physical region, another pole at pa2 =m

(3.2)

pao < m, - The intervening region along pa2 = ma2 lies outside the physical

region.
Let £5 be the four-to-four scattering amplitude, and consider the continuation
of the residue function (pa2 - maz)f+ along the path indicated below:

’

2
ﬁa P
P * 2
\ Wiaap
A Y
» n®
> P,

(3.3)
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This continuation starts a mass-shell point P+, at which the residue function

is 1 times

(3;4)

4+ '
and moves, staying always in the physical region of £ , to a mass-shell point

P_, at which the residue function is i- times

(3.5)

Let this path now be shifted into the mass shell pa2 = maz, jumping across all
cuts of the R-type, which are cuts corresponding to diagrams that are not
separated into parts in the manner indicated in (3.4) and (3.5). As bgfore,

the discontinuities of the residue function across these R-type cuts will

vanish at pa2 = maz, because they do not correspopd to one-particle exchange
diagrams, and hence lack the pole singularity. However, the discontinuity across
the singularities corresponding to diagrams that fit into the bubbles (3.4) and

(3.5) will be nonzero, in general, and should be avoided, if possible.

At the first stage of the procedure for Bﬁilding up the singularity structure
the path of continuation can certainly be shifted into the mass shell, for the
only normal threshold singularit§ that could block tﬁe shift would be one in

the variable paz; whereas the point pa2 = ﬁaz 1iés below the lowest communi-~
cating normal threshold in this channel, by virtue of the stability of particle

Q.

"If the path can be shifted into the mass shell then the product represented by
. (3.4) continues ‘into the product represented by (3.5). The individual factors
are functions of different variables and hence they also confinue into each

other, modulo constant factors ¢ and c_l.

These factors ¢ and c_1 can be taken to be unity. To see this let ¢ = ¢,

i
be defined by

O S BT A CRTE-JL IR B ‘ (3.6)

and
S -1 + -
f(pic...; ey = Tl Y _pic"ﬂ) , - (3.7)

where the functions on the left-hand sides represent the continutions of
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f+(---; ---pi) and f+(pi---; cee), fespectively,'from their original physical
regions along an on-mass-shell crossing path to the real point pic, which has
negative energy component, and the bar over -Eic indicates that the associated
suppressed type-variable is ti = —ti, which designates the antiparticle of the
particle of type ty- Continuation of (3.6) alongv;he'path of hermitian

conjugation of the function on the right gives

-ch
f(...; -..pCh) = Cf("'—pc H .-o‘)

= cf'(..._BCh; cee)

= (£ T (3.8)

On the other hand, the continuation of f+(-¥'; -a~pi)- along its path of

hermitian conjugation gives

f(oee; ...pih) = f (ee-3 ...pih)A

_(f+(...pih; .:.))* . . (3.9)

Continuation of (3.9) along the path of crossing of the function on the right-

hand side gives, by virtue of (3.7) (and bose statistics),

£(een; ...p,hc) = -(c'l f+(...; ...-gihc))* . (3.10)

The paths ch and hec are homotopically equivalent, at least at the first
stage‘of the iterative procedure. Hence the points_ pCh and phC represent
the same pbints on the Riemann surface. Thus comparison of (3.8) and (3.10)
yields

«hHr o,

(¢}
]

which says that ¢ c is a phase factor: c; = exé i¢i.

i
Because of the factorized form of (3.4) and (3.5) this phase factor
c; depends only on the type ti of the particle exchanged. This factor may

" be removed éompletely by redefining the phase of the S-matrix:

e s * e ' LRI Y M ‘ i . e
S(Pys= Py Pryys  P) > ST(PysePii PpygscteP)

= S(pl.'--pm; pm+l,---,pn)c

where
: m
¢ = Jew (<15
PA\"t3 /2, 5%
i=1 ’ i
and '
e, = -1 for i=1,---,m
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g, = +1 for 1i =ml,...,n

The phases will always be chosen so that the c; are unity.

The aone arguments yield hermitian analyticity and crossing only at the first
stage of the iterative procedure for building up the singularity structure in the
complex mass shell, but this is all that is needed to start the procedure going.
At latef,stages certain cuts‘generated by the iterative procedure may block the
contiﬁuations, but these cuts, since they are generated by unitarity should,

in principle, have their discontinuities determined by unitarity. If they do
then it is not important whether they block or do not block the paths of

crossing and hermitian analyticity.

4. Triangle Diagram Cuts

The second stage of the iterative procedure generates cuts associated with

triangle diagram singularities.

Consider, for example, the six-particle function f -as a function of one initial
subenergy o, withseven other variables sg held fixed and monreal. At the first
stage of the iterative procedure the function f nedr the ¢ normal threshold

can be represented by the Cauchy formula with a principal contribution

® o+ Discg £(0") .
2ti (o' - o) 4.1

4m

The discontinuity is given by

gy

Disc  £(o') = ZZX::HH@(f:j:::l' SR (4.2

Let A represent some triangle diagram

A = -."'llllllll'lllllu-’; "
= 5

(4.3)

and consider the discontinuity of (4.2) around L(A). The discontinuity of a
bubble diagram function FB around a singularity surface L(D) 1is obtained by

summing, over all ways that D fits into B, the discontinuity associated with
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this particular way. This latter discontinuity is obtained by replacing each
bubble b -of B by the discontinuity function associated with the part Db of

D that fits into b.

In our case the diagram A fits into (4.2) in two ways. In the first way the
initial vertex fits into the minus bubble and the other'ﬁwo vertices fit into

the plus bubble. In tne second way the leading vertex is considered to be a
contraction of several vertices, one of which fits in the minus bubble, and the
rest of whiéh fit into the plus bubble. <0n1y unsiéﬁed.lines can be contracted.)
Actually these latter diagrams D are different frpm» A but, because of the
contraction of vertices, the surfaces coincide, and they should be considered

together.

The sum of contributions corresponding to these various ways of fitting 4 into

(4.2) is

. a a

mmn:;e

= Disc, Disc_ f . (4.4)
A [of
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Note that--

DlscA Disc0 f = D1scA f : . (4.5)

This relafion (4.5) meéns that the surface L(A) need not be singular on all
sheets of the o cut: the A singularity can be "shielded” by the o éut,
and ndt appear on all sheets. ’

Consider,: for simplicity, a theory with all masses equal. Then the physical

region in the real 0 - s  plane consists of'the two shaded regidns‘in

3 —3

© (4.6)

The little oval in the 4-by-4 box represents the location of the triangle
diagram singularity for the case in which each set 6f_1ines a, B, and ¥

of A consists of‘one line. A condition on the siﬁgulérity structure entéiled'
by the arguments of the preceding subsections is that if'the singularity ‘
structure is formally continued off-mass-shell to a néighborhood of the origin
p=0, then:that qeighborhood should be free of singularities. This condition
entails that the dotted portion of the triangle singularity not be present on

the physical sheet: it must lie on an unphysical sheet of the o0 cut.

Tracing the motion of the A singularities in the ¢ plane as s increases
from a'value slightly less than three, and moves on a path infinitesimally

above the real axis, one finds
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4.7)

where the solid line represents the physica1~sheef-part-of the trajectory.
This path is also traced out in (4.6). The two singularities of the discon-

tinuity function (4.4) at each value of s are connected by a cut, which is

here pictured for s = 10:

33 2—4
E//zca 3 [

-

O=4

(4.8)

This cut separates the real o¢ axis into two parts, in which lie the 3 -+ 3

and 2 - 4  physical regions. The discontinuity formula in the 3 - 3 physical
‘region is represented by '

(4.9)
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whereas that in the 2 + 4 physical region is represented by

~Om(+E

(4.10)

This cut that separates the two physical regions of the discontinuity function
does not separate the two physical regions of the scattering function itself:
they are connected by a direct path that remains always near the real o¢ axis.
This is because the part of the cut in the discontinuity that lies in the
upper-half o plane lies on the unphysical sheet of the scattering function.
On the othér hand, the part of this cut that lies in the lower-half o plane
extends into the physical sheet of the scattering functions, and hence gives an

extra cortribution to the dispersion (i.e., Cauchy) formula.

As one formally increases the mass mY bf line Yy in A the tip of the cut
curls around and at mY = 2 it touches the underside of the 3 - 3 physical

region:

(4.11)

This singularity sits inthe region associated with the function Mg, where g

identifies the o cut that we have been discussing. The continuation of M8
is blocked by this singularity surface, which is one of the exceptional surfaces

mentioned in earl.ier sections.

This'surface does nov cause any serious difficulty for dispersion relations.

In the principal coﬁtribution to the Cauchy formula, i.e., in the contribution
from the normal thresliold cut, one uses the normal threshold discontinuity
formula (4.8) or (4.10) at all points along the cut. However, there is also

the contribution corresponding to the loop in the lower-half plane of (4.11).

The discontinuity acro:s this latter cut is given by (4.5).
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This relatively simple situation can be contrasted to conceivable ones in which
the'singularity lies at the end of a cut that bounds the physical sheet and
extends to infinity, and for which no discontinuity formula is known. Such a

cut would add an uncontrolled contribution to the dispersion relation.

As the mass m increases above 2, with a small negative imaginary part, the .

A diagram cut passes through the sequence of positions shown below (s = 10)

Patninge. . ’
2777
——e
.
Ve
/
\ 2R 777
\ .
AN : .
~
e

That is, it rapidly retreats from the physical sheet, and then moves, in the

unphysical sheet, away from the real axis.

The situation indicated in (4.11) occurs when mY = mp + 1, and o and s are

large enough so that the process represented by the triangle diagram (4.3) is

physical. Thus as the masses m, s mB, and mY increase these singularities

move to larger values of s and o. The physical-sheet parts of the A cuts
>are confined to a neighborhood of the gap between the two physical regions

that grows only as \[3‘(or \[;). Hence these singularities become increasingly

localized on rays that run almost parallel to the line o = s: they do not

go into the region where o3> s or s >> o. This is true both for the case

above, where mY > m; and the cut curls into the 3 - 3  region, and also

for the case ma > mY where the cut curls into the 2 + 4 region. This

localization of these complex cuts will be used in the discussion of the

generalized fixed-it Zispersion relations.

5. Higher Cuts

Box diagram cuts and higher-order cuts are generated by the same procedure. Box
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diagram cuts sometimes protrude from triaﬁgle diagram cuts, etc. In the
examples studied so far nothing happens that is significantly different from
what happened in the A case, and all the new physical-region c¢uts appear to

be localized in the neighborhood of the gap.

REFERENCES TO PROOFS OF THEOREMS

Theorem 1 is Theorem 5 of Chandler (l]. Theoreﬁ 2 is trivial. Theorem 3 is
proved in Stapp (10]. Pham's Theorem is proved in Pham (9). Theorem 4 1is

part of Theorem 6 of Chandler (l). A similar reSdlt.at nonpositive-a points

is proved in Section 3 of Coster (2) (see (3.10)eof'that reference). A still
more general version is lemma A9 of Appendix A of Coster (5). Theorem 5 is
Theorem 7 of Chandler (l]. Theorem 6 isvcontained in Theorem 6 of Chandler (l).
The connection between Landau surfaces and space-time diagrams is discussed in

detail in Chandler (1), in Coster (2), and 'in Iagolnitzer (8].

The formal method is developed in Coster (4) and in Coster (S), where the
uniﬁueness of the TG and TG is shown. The generel formula for the discon-
tinuity of f+ around LO(D+) is derived by finite methods in Coster (2)

for all points lying below the lowest 4-particle threshold. The results (4.1)
and (5.1) of Section V are Egqs. (B3) and (5.7) of Coster (3). The properties
of the -a box are described in detail in Coster:(3], where a 1is replaced
by i. '

The discussion given here is more general than that of the earlier works in
that it uses the newer stronger version of the structure theorem recently
proved by Iagolnitzer, and discussed in the preceding series of lectures.

This allows some unnecessary assumptions to be eliminated.

The proof of hermitian analyticity and crossing is essentially the argument
of Olive, which is described in Eden (6), and developed in Stapp (11). The

discussion of the triangle diagram cuts. is based on the work of Hwa (7).
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