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Henry P. Stapp 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

0. INTRODUCTION 

The aim of these lectures is to show how discontinuity formulas for multiparticle 

scattering amplitudes are derived from unitarity and analyticity. The assumed 

an lyticity property is the normal analytic structure, which was shown in the 

previous lecture series to be e-quivalent to the space-time macrocausality condi­

tion. The discontinuity formulas to be derived are the ~asis of the multi­

particle fixed-t dispersion relations,- upon which the subsequent lecture series on 

Regge theory is based. 

I. PROPERTIES OF LANDAU SURFACES 

This section contains a brief review of the properties of Landau surfaces that 

are needed in the work that follows. 

·1. Landau Diagrams D 

Example 

A Landau diagram is a diagram formed from lines L. and vertices v Each line 
1 r 

is directed from left to right. The topological structure of D is defined by 

the incidence matrix e:ir: 

e:ir -1 if L. originates on v 
1 r 

e:ir +1 if L. terminates on v (1.1) 
1 r 

e:ir 0 otherwise 

Each line Li is associated with a momentum-energy vector r-i' with a particle-

type label ti' and with a mass m. characteristic of particles of type t .. 
1 1 

These masses m. ar.e assumed to be positive: m. > 0. Eacri internal line L. 
1 1 

of D either carries a sign cri, plus or minus, or carrles no sign. 

2. Landau Equations Associated with D 

1 

For each Landau diagram D there is an associated set of Landau equations. These 

are 

(1) The mass-shell constraints: for each line Li of D 
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0 
p. > 0 

1 
(2.1.1) 

(2) The momentum-energy conservation-law constraints: for each vertex 

V of D 
r 

0 (2.1.2) 

(3) The Landau loop equations: for each directed closed loop ~ that 

can be drawn on the internal lines of D 

0 (2.1.3) 

Each ai is a scalar, and nH is the number of times loop ~ passes along 

line L. moving in the direction of L. minus the number of times it passes 
1 1 

along L. moving against the direction of L .• 
1 1 

Example 

4 
n71 1 

nsl 1 

n91 -1 
2 5 

other nH 0 

3 9 

(4) The nontriviality condition: for some internal line Li 

ai + 0 

(5) The sign conditions: for every signed line. Li 

> 0 

All variables are real unless otherwise stated. 

3. Space-time Representations of D 

(2.1.4) 

(2.1.5) 

For each solution {pi,ai} of the Landau equations associated with D 

there is a space-time representation of D. This representation is a space-time 

diagram that has the topological structure of D. The vertex V of the repre­
r 

sentation lies at the space~time position 

line Li to its terminus, namely 

6. - [ e:. w 
1 1r r 

r 

satisfies 

lli aipi 

wr' and the vector from the origin of 

(3.1) 

(3.2) 

The Landau loop equations entail the existence of a set of space-time vectors 

such that (3.1) and (3.2) hold. Conversely, these two equations entail the 

w 
r 
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Landau loop equations. 

The space-time representation can be interpreted as a classical multiple-scatter­

ing diagram for point particles. The conditions (3.1) a~d (3.2) are the classical 

condition pi = mivi, where vi is the four-vector velocity of particle i: 

vi = dxi/dT. The sign condition oiai > 0 specifies that particle i move 

forward or. backward in time according to whether oi is plus or minus. 

4. Internal and External Variables 

ED - { i: L. is an external line of D} 
]. 

ID - { i: Li is an internal line of D} 

p - {pi: i e: E } D 
p - {pi: i e: ID} 

a - {ai: i e: ID} 

Landau Surfaces L(D~ 5. 

t(D) is the set of points (p,p,a) such that the Landau equations associated 

with D are satisfied. The Landau surface L(D) is the projection of L(D) onto p 

space: 

L(D) {p: (p,p,a) satisfies the Landau equations associated with 

D for some (~,a)}. (5.1) 

6. Representations D(p) 

A representation of D whose external lines are associated with the set 

(p
1
,···,pn) = p of momentum-energy vectors is denoted by D(p). Each D(p) 

generates the point p on L(D), in the sense that reprE:sents a solution 

{p,p,a} of the Landau equations associated with the Landau diagram D. The 

Landau surface L(D) is ~he set of p such that some D(p) exists: 

L(D) {p: some D(p) exists}. (6.1) 

Given any D(p) there is a five-fold continuum of others obtained from it by 

dilations (positive scale changes a.+ >.a.,>. > 0) and overall space-time 
]. ]. 

translations. These transformations are called the trivial transformations. 

7. Simple points of L(D) 

A simple point p of L(D) is a point p such that D(p) is unique, modulo 

the trivial transformations: only one representation of D, modulo these trivial 

transformations, generates the point p. 

8. Basic Surfaces L
0

(D) 

{p: p is simple point of L(D)} 

{p: p is generated by only one representation of D, modulo the 

trivial transformations}. 

9. Positive-a Di<lll!":":!_ms m1cl Surfaces_ 

A Landau diagram D is c:alled a positive-a diagram if and c 1ly if P<lch internal 
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+ line of D carries a positive sign cri = +. A superscript plus on D. 

cates that this diagram is a positive-a diagram. Landau surfaces L(D+) 

ponding to p6sitive-a diagrams are called positive-a Landau surfaces. 

10. The Restricted Mass Shell ~r 

indi-

corres-

Let p = (p .... p ) 
1' ' n 

be the set of momentum-energy vectors associated with the 

full set of initial and final particles of some scattering process. The corres­

ponding restricted mass shell is 

{p: 0, and at least one pair of 

The sign E. 
1 

Pi are nonparallel} 

is plus for final L. 
1 

and minus for initial 

(10.1) 

The complex restricted mass shell ?r/. r 
c 

is defined in the same way except that 
0 pi > 0 is dropped. is complex and the positivity condition p 

ll. .L The Space 121 (p) 

The set of vectors normal to the mass shell "YYLr at point p + is called '?'?? (p): 
_L 

)'11 ( p) { U: U •/i (Ep) 
r 

0 for all 

p} 

O(Ep) in the tangent space to 

"M at (11.1) 

ui = Aipi + d, d is any four-vector, 

.l 
Ai is any scalar} (11.2) 

For any u in 117 (p) one has 

U•O(Ep) 
n 
L ui. cS (E. p . ) 
i=l 1 1 

n 
l: (A.pi + d)·E. cSp. 
i=l 1 1 1 

0 

since the cSpi are subject to the constraints 

0. For any two four-vectors a and 

2 
li(p. 

1 

.b 

a·b a
0

b
0 

- ~·b 

12. The Sets 'YYlo and ~· 

111o is the subset of <tY!r such that two or 

two or more final pi are parallel. The set 

'»\.' - 'Y>tr - 'Y77a 

more 

'1?7' 

initial 

is "Yr[ r 

(11.3) 

0, and 

(11.4) 

pi are parallel or 

minus '1"1 
0

: 

(12.1) 

13. Theorem 1 Each nonempty set L0 (D+)() ~· is a codimension-one analytic 

submanifold of o/>7'. 
Meaning: For any p in L0 (D+) n ~· there is real function ~(p) 

such that (i) •(p) 

outside ~i(p), and 

is analytic at p, (ii) the gradient 

(iii) Lo(D+) fl ~·. coincides with 

~·(p) at p lies 

{ • ( p) = 0} 17 ~' in 
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some sufficiently small neighborhood of p. 

14. Theorem 2 

15. Theorem 3 

Only a finite number of D+ give surfaces L
0

(D+) that int~rsect any bounded 
r 

portion of ?Y/. . 

These three theorems, taken together, say that L+/1 fYL 1 consists of a locally 

finite union of codimension-one analytic submanifolds. , Thus L + fl 'J'Yl. 1 is· the 

union of a set of smooth surfaces:· it has no cusps, acnodes or other irregu­

larities. 

References for the proofs of these and other theorems are given in a section at 

the end of the lectures. 

16. The 4n-Vector u(D(p)) 

Let D(p) be a space-time representation with N external lines. Then 

u(D(p)) = u = (u1 , · · · ,u
0

) is a set of n four-vectors ui such that ui is the 

vector from some arbitrary origin 0 to some arbitrary point on the space-time 

line that contains the trajectory of external particle i. 

Example 

2 5 
I -

3 -~-- I -T--us 
' ' I ,., 6 

...... 
' I I / / 

' / 

' 'u2 I I / / ...... 
' / / 

u' ' I I /. 

3 ', ' I I / _,-" Us 

','.....~:...-"" 
0 
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Given any D(p) there are others obtained from it by the trivial transformations 

Also, the loC'ation of the end point of u. on the line containing L. can be l. l. 
changed. These changes alter the scale of u and add increments of the form 

uo{p) (A. 1 pi + d · · · A. p + ' ' n n 
d) (15.1.1) 

where the are the mom~ntum-energy vectors of t~e external lines of D{p). 

The set of vectors u
0

(p) is just the set of vectors 

uo(p) £ cnf<p) (15 .1. 2) 

17. The Functions 4> (p; D(p)) 

For any space-time representation D(p) define 

I (£ipi - £ipi) ·wr(i) Ql(P)) 
i £ED 

(17.1) 

where Vr(i) is the vertex of D connected to external line i, 

is the location of V in the representation D(p). The function 
r 

a linear function of p that vanishes at p = p and has at p 

and wr (D<P>) 
<t>(p; D(p)) 

the gradient 

is 

Vcp(p; D(p)) (17.2) 

.1.­
lies in ~ (p). 

18. The Physical Region 6P(D) 

lP (D) is the set of points p such that for some (p, p) the mass-shell and 

conservation-law conditions (2.1.1) and (2.1.2) in the Landau equations associ­

ated with D can be satisfied. The surface L(D) clear:y lies in OJ(D): 

L(D) C {J> (D) • (18.1) 

19. Pharo's Theorem 

For any representation D+(p) of D+ 

lP<D+) c {p: 4J(p; D+(p)) ~- O} (19.1) 

·Proof For brevity write w (o + (p)) = ~ , and identify also any either quantities 
r + _ r + 

pertaining to the representation D (p) by a bar. Then for any p in fP (D ) 

<t>(p; D+(p)) I (pi - pi) 
-

£i wr(i) 

i £ED 

I. I - (p. - pi) £. w 
l. l.r r 

i £ED r 

I ~ (pi - pi) £ir w 
r 

i £ 10 r (Equation continued next page) 

:.0 

-·-

"" 
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(Equation contin~ed) 

(19.2) 

Tl,! final step in .(19.2) follows from the fact that for any two positive-energy 

Ill£ ;s-shell vectors and 

2 m. 
l. 

(19.3) 

Remark 1 The last line of (19.2) expresses cp(p; D+(p)) in terms of the 

internal variables associated with the solution of the Landau equation at p, 

The in this expression can be any set of internal pi 

mass-shell ari.d conservation law constraints. The fact that 

that satisfy the 

<P(p; D+(p)) does 

not depend on the particular choice of these internal pi is a consequence of 

the Landau loop equations. 

20. Theorem 4 Consider any point p on L
0

(D+)(7 (}1 '. Let <l>(p) be as in 

Theorem 1. Then the sign of cj>{p) can be chosen so that 

Vcj>(p) - u(D+{p~ (20.1) 

where - means equal modulo positive scale changes and additions of vectors 

uo(i5) £ 'J?t.l.(p). 

Proof The set L
0

"(D +) /} "Yf?. ' lies in fP (D +) {) i?'( '. Thus {cj>(p) = O}(J )'??' 

lies in {cp(p; D+(p)) ::! 0} n "YY/'. The gradient 'ilcj>(p) lies outside 

by virtue of Theorem 1, and the gradient llcp(P; D+(p)) lies outside 

.L -iiYl (p), 

'??7..L(p) 

by virtue of the positive-a conditions, the stability conditions, and the condi­

tion that p lie outside ~ 
0

. For these conditions entail that the (approp­

riately extended) external trajectories cannot pass through a common point, which 

they would if 'ilcj>~; D+(p)), and hence u(D+(p)), lay in 'h-z.L{p). But if both 

these gradients lie outside "hz.L(p) then they must be the same, modulo scale 
cy,., .L -changes, sign changes, and vectors of _'"l (p), in order to accomodate the inclu-

sion of {cj>(p) = 0}(/ '?")(' in {cp(p; D+ (p)) ::! O} (] ~'. This result entails 

(20.1). 

Remark Two functions. cj>(p) that are analytic at p, that have gradients lying 

outside 'f7('..L(p), and that give the same regions {cj>(p) ~- rq (j 'fYl 1 near p are 

equivalent·insofar as the defining properties of cj>(p) are concerned. Thus if 

cj>{ p) is acceptable, and ~(p) 1 d h -~ r is ana ytic at p an v~ni~ es on ''{ then 

Acj>(p) + ~(p) is also acceptable, provided A is positive. The gradient 

V~(p) lies in '11('.J.(p), hence 'ilcj>(p) : 'i7Q<P(p) + ~(PJ· TJ-.us the significant part 

of Vcj>(p) is defined only modulo positive scale changes a~d additions of vectors 
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uo(p) E: ~(p). 

The result V<jl (p) .:: u (o + (p)) is the origin of much of tile importance of the 

space-time diagrams. It says that the normal to the Landau surface L0 (~+)n ~~ 
at p is essentially determined by the locations of the external space-time. 

trajectories of any space-time representation D+(p) of D+ that generates p. 

This fact eliminates, in many situations, the need to actually calculate the 

Landau surface: the essential information can be extracted directly from the 

s ace-time representation. 

Theorem 5 If two basic surfaces and coincide near 

p e:~, then 

(21.1) 

(The equality of signs entailed by (21.1) rules out a clash of ie: rules for 

+ + ) coincident surfaces L
0

(o
1

) and L
0

(o
2
). 

22. Analytic Submanifolds and Local Coordinates 
r 

The restricted complex mass-shell ~ is a 3n-4 dimensional analytic sub-
4rt c 

manifold of the space ~ of the n complex four-vectors pi. This means 

that for each point p of ~cr one can introduce a set of 4n functions 

z
1 

(p), • • • ,z
4

n (!.)) that are analytic and functionally independent at p (i.e., 

the 4n gradient vectors exist and are linearly independent at p) such that the 

image under the mapping z(p) of any sufficiently small complex mass-shell 

i hb h d f h ,..)n-4 d f · d b z -- 0 ne g or oo o p is an open set in t e space ~ e ~ne Y )n-4+i 

for i = l,··•,n+4. The analyticity and functional independence of the z.(p) 
1 

at p entails that the inverse mapping p(z) is uniquely defined and analytic 

near the image z of p. Thus sufficiently small neighborhoods of p and z 

are one-to-one analytic images of each other, with mass-shell neighborhoods 
3n-4 mapping onto neighborhoods in a: . 

for i = l,···,n+4 can be taken to be the n The functions z)n-~+i(p) 

functions p. 
2 

- m. · , and 
1 1 

the four functions I: e:iP/ = 0, ~ = 0, •. · • ,3. The 

functions can easily be shown to be linearly indepen­

in ""7 r. This fact ensures that the remaining set of 

gradients of these n + 4 

dent for all points p c . 
3n- 4 functions zi(p) can be found. These latter coordinates (z

1
,···,z

3
n_

4
) 

are called local coordinates of the mass shell at 

The surface 1
0 

(D +) IJ '7?7 1 is a codimension-one analy:::ic submanifold of ~ 1 • 

It· coincides locally with the set {<jl(p) = 0} n ~I, where V<P(p) lies outside 

~~(p). This last condition ensures that the functic~ z
1 

(p) can be taken to 

be <jl(p), since its gradient at p is linearly independent of the n + 4 

gradients Vz)n-4+i(p). In this local coordinate system the singularity surface 

.. 
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L
0

(D)-(} 1?'/' is just the surface z = 0, restricted to the space a;3n-4 of 
1 

@(D+) local coordinates. The physical region .near p ·is mapped into the 
3n-4 ~ 

intersection of a: with the ray 

0 (22.1) 

II. BUBBLE DIAGRAM FUNCTIONS 

Topological considerations arising from the cluster decomposition of the S­

m~trix play a central role in the derivation of discontinuity formulas. Conse­

q;~ntly it is helpful to represent certain important f~nctions by diagrams, 

rather than by letters • 

. 1. Box Diagrams The S-matrix is represented by a plus box, and its hermitian 

conjugate is represented by a minus box: 

S(p ···p . p ···p) 
1' m' m+l' n 

st(p ···p . P ,···p) 
1' m' m+l n 

lflm+l 2 m+ 2 
: + : 
• • 

m n 

'Um+l 2 • • - . • • • m . n 

The unit operator is represented by an I-box: 

The unitarity equation 

is writteri 

llim+l 2 ' • 
• I • • • • m n 

I(p ,···p " P ,···P) 1 m' m+l n 

(1.1.1) 

(1.1.2) 

(1.1.3) 
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m +I 

(1.1.4) 

m n 

The shaded strip between the plus and minus boxes stands fer a sum consisting of 

all possible numbers N of intermediate lines, and there is an implied summa­

tion over all distinct sets of variables associated with these lines: 

N 

II J f(
N d4 1 

pz (211) 

1=1 (211) 

+ 2 
6 (p~ - m ) ® 

1 i 
(1.1.5) 

Here S is a normal-ordering theta function that exclucies from the region of 

integration all points p' = (pi,···p~) that differ only by the ordering of the 

variables p~ from points already included in the region of integration. 
1 

Alternatively, ~ can be taken to be the inverse of the symmetry number of the 

diagram. This number is the number of symmetry operations that take the diagram 

into itself. In particular, for the term on the left-hand side of (1.1.4) having 

N intermediate lines the symmetry number is N!, provided the particle types ti 

associated with the intermediate lines are not predetermined, and hence the sum 

includes for each internal line .i a sum over all particle types 

external lines of a diagram are considered to be distinguishable. 

2. The Cluster Decomposition 

t .. 
1 

The 

Each box is written as a sum over all topologically differe~t ways of connecting 

the fixed external lines to a set of bubbles. For example 

·~· 2 . + 6- ~8: + ·2: ::(±)E 
3 7 -,3 7 
4 8 4 8 (16) -o--

+ 2: :::(±)= + 2: :::(±)= 
(72) -<>--

(36) =E):: --o--

2: 
--o--

+ --o--
(4.') --o--

--o--

(2.1) 

), 
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This is the cluster decomposition of S. The order (from top to bottom) in 

which the lines are connected to a bubble is not a topological distinction, nor 

is the (vertical) order in which the bubbles are placed on the paper. The 

number of diagrams in each partial sum in (2.1) is given below the summation sig~ 

Within the bubbles occurring in the'cluster decomposition of the plus (resp. 

minus) box is placed a plus (resp. minus) sign, except that no sign is placed 

inside the trivial bubbles, which are those with exactly one incoming line and 

~ :actly one outgoing line. The nontrivial bubbles with one or zero incoming 

r.nes or with one or zero outgoing lines are omitted~ because of stability 

requirements. 

The cluster decomposition of the !-box is similar, except that only trivial 

bubbles are allowed. Thus if the box on the left-hand side of (2.1) were an 

I-box thentheright-hand side would be reduced to the final sum of 4! terms. 

The plus and minus bubbles represent the connected parts of S and 

respectively: 

and 

I :::G"rm+l . + . 
m : : n 

l~m+l 
m~n 

F-(p) 

t 
S (pl,···,pm; pm+l'···,pn) 

(2.2) 

(2.3) 

Sometimes (see below) the minus bubble is defined to be minus the function 

defined above. Then in each term of the cluster decomposition of the minus box 
N-

there is an extra factor (-1) , where N- is the number of minus bubbles in 

that term, and (2.3) is replaced by 

•.~m+l 
m~n 

F-(p) 

t 
-Sc(pl,···,pm; pm+l'···,p~) (2.3') 

The trivial bubble represents the same function in the decompositon of the plus, 

minus, and I boxes: 

i ----(}- j (2.4) 

Each term in the cluster decomposition represents the product of the functions 

represented by the individual bubbles in that term. Thus each of the 4! terms 
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·in the final sum in (2.1) is a product of four factors of the type (2.4). 

Particles with spin can be included by regarding particles with different z 

components of spin as different types of particles. Fermions can be included by 

introducing a minus sign for each crossing of fermion lines in a diagram. 

The connected parts F+ 

The functions . f+ and 

and F each contain a conservation-law delta function. 

are defined by 

4 4 + 
(2rr) o (E £.p.)f-(p) 

~ ~ 
(2.5) 

These functions f+ (p) and f- (p) are called the scatte·.cing function and the 

hermitian conjugate scattering function, respectively. 

3. Bubble Diagrams B 

Example 

Generally a bubble diagram B is a diagram consisting of signed bubbles connected 

by directed lines. Each bubble has two or more lines entering on its left side 

and two or more lines leaving from its right side. Each line runs always from 

left to right. This last condition excludes, for example,· 

from the class of bubble diagrams. 

4. Bubble Diagram Functions FB and fB 

Each bubble diagram B represe.nts a function FB, which is the product of the 

functions F+ or 7 corresponding to the bubbles of B, integrated over all 

distinct values of the variables corresponding to the internal lines of B. 

This integration has the same form and normalization as (1.1.5), where ~ can 

now be taken to be the inverse of the symmetry number NB. This number NB is 

the number of symn,2trv operations that take B into itself. 

•• 
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then N
8 

is 3!3!4!4!2!. The 2! comes from the symmetry under interchange of 

the two minus bubbles. The other four factors come from the symmetries under 

interchanges of the internal lines within each of the four sets of internal 

lines. In calculating the symmetry number of a diagram the external lines are 

considered distinguishable. 

With this normalization the bubble diagram functions occurring in the equations 

we consider will always occur with coefficients plus or minus one. 

F
8 

contains an overall conservation-law delta function, and fB is defined by 

(4.1) 

5. Products of 8-Functions 

A bubble diagram function F
8 

will generally contain a product f of scattering 

functions f+ and f- times a product of mass-shell and conservation-law 

delta functions. A product of delta functions is generally defined by transform­

ing to a set of integration variables that includes the arguments of the delta 

functions: 

J fTI 5 (g1 (x)) dx1 , • · ·dxn 

Iff[' ({.1 (x)) dgl ... dgn J -1 

J -1 f dg •. ·dg J 
m+l n (5 .1) 

where J = ldg/d~i is the Jacobian of the transformation. This procedure is 

legitimate provi~ed J is nonzero throughout the domain of integration. 

6~ Condition for J 1 0 

Near any point x in the domain of integration one can find a set of functions 

gm+1 (x), ... ,gn(x) ~u~h that J; 0 unless the m gradient vectors 

Vg1 ,···,Vgm are linearly dependent at x. To find the J 1 0 conditions for 

a bubble diagram function F
8 

first eliminate the conservation-law delta 



HENRY P. STAPP 

functions by expressing the pi in terms of the loop momenta ki, 

(6 .1) 

where is a function of the external momenta. Then the arguments of the 

remaining delta functions are the functions 

(6.2) 

The gradients 1\gi of these functions are linearly dependent if and only if 

for some set of ai, not all zero, 

I ai 17kgi 
i 

0 (6.3) 

The insertion of (6.2) and (6.1) in (6.3) gives for each loop i the equation 

0 (6.4) 

These equations (6.4) are just the Landau loop equations for the Landau diagram 

D(B) constructed by shrinking each bubble of B to a point. Thus the product 

of the mass-shell and conservation-law delta functions occurring in FB is 

well defined away from the Landau surface L(D(B)). The function FB is 

expected to be singular at L(D(B)). It will also have other singularities 

arising from the singularities of the functions f+ and f- themselves. The 

structure theorem to be described in Section III specifies the possible locations 

of singularities of bubble diagram functions. 

7. Singularities Required by Unitarity 

Consider 3 ~ 3 unitarity: 

+ L: ~ 
f f 

+ L: ~ I 

+ L: 
it f 

(convention (2.3') is used here.) 

(7.1) 
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Can we assume that all scattering functions f+ and f;_ are everywhere.analytic? 

No, this is not compatible with unitarity. For the bubble diagram functions on 

the right-hand side of (7.1) would then contain singularities that could not 
+ 

cancel among themselves. (provided the relevant f-'s are not identically zero, 

in which case other unitary equations could be considered). Thus unitarity 
+ 

requires some of the functions f- to have singularities (since we know they are 

not all identically zero). 

The normal analytic structures (NAS) described in Professor Iagolnitzer's 

lectures does not require scattering functions to have any singularities: it 

says only that the allowed singularities ·lie on L +. Thus we have 

(i) Unitarity requires some singularities; 

(ii) NAS allows only certain singularities. 

Questions 

(1) Is NAS consis.tent with unitarity? 

(2) If so, which of the singularities allowed by NAS are forced to be 

present by unitarity? 

(3) Can one derive the discontinuity formulas just from unitarity and 

NAS? 

(4) If so, what. are these formulas? 

The present work is addressed to these questions. 

III. THE STRUCTURE THEOREM 

The structure theorem describes certain analyticity properties of bubble diagram 

functions that follow from the normal analytic structure of s~attering functions. 

This theorem plays a fundamental role in the derivation of discontinuity 

formulas. 

1. The Normal Analytic Structure 

(a) f+ (p) is analytic in '7?7. r - L +. 

(b) f+ (p) at p e: <nzr fl L + is the boundary value of an analytic function 

from any direction in the tangent space to ~ cr at p that lies in the cone 

C+(p),:: n {p + iq: Im <P(P + iq; D+(p» > 0} (1.1) 

D+(p) 

The cone C+(p) is the intersection of the "upper...:half planes" a~sociated with 
+ -all the positive-a diagrams D (p) that generate p. Properties (a) and (b) 

also hold if f+ is replaced by f-, provided the sign of .p in (1.1) is 

reversed. 

The precise meaning of properties (a) and (b) is defined by introducing a set 

z = Cz1 ,···,z3n_4) of local coordinates of ~tr at p. Property (a) says 

that if the mapping z(p) is restricted to some sufficiently small neighborhood 
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of p then f+(p(z)) is analytic in the z-space image z~n{ .:.. L+) of .:m.r - i.+. 
This property is independent of the particular choice of local coordinates 

2 1 (p),···,z3n-4(p). 

Property (b) is expressed in terms of the vectors 

'V <t>(p; D+(p))j _ 
p p=p 

"V cp(P; D+(p)) 
(1. 2) 

or. more precisely, their z-space images 

(1. 3) 

The components of u' are related to those of u by 

u' 
i 

(1.4) 

The cone of vectors u' (n+(p)) has in y = Im z space a dual cone n {y: y·u' (p+<i>>) > o} 

D+(p) 

(1.5) 

Let C be any nonempty open cone (with apex at y = 0) that is contained 

with its boundary in C+(z) l/ {y = 0}. Then property (b) asserts that there 

h h "'VV f f f+(z) h (1) · 1 · is a complex neig bor ood , 1 o z and a unction t at 1s ana yt1c 

in 17 11 {Im z £ C}, and (2) coincides in the limit Im z ~ 0 with the distri­

bution f+(p{x)) in 17 {} {Im z = 0}, in the sense that for any test function 

x(x} with support in 17 /7 {Im z 0} 

Moreover, 

cones Li 

J f+(p(x)) x(x) 

any de.compositon of 

(with apex at the 

dx 

the set 

origin) 

lim J f+(x + i;) x(x) dx (1.6) 
y~ 

of vectors u' (n+ {p)) into closed convex 

induces a corresponding decomposition of 

f near p into distributions fi such that each fi(f(x)) near x = x is 

the boundary value of a function f.(z) from almost all directions in the dual 
1 

cone 

+­C. (z) 
1 

in the manner analogous to that described above. 

'· 
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Claim (b) depends on the function <P(p; D+(p)) only via the direction of the 

z-space image u' (o+(p)) of u(D+(p)). Any u E W<ii> has an image u' = 0, 

since the vectors ap/az. occurring in (1. 4) lie in the tangent space to ?11.. r 
~ 

at p. 

The expression (1.1) for C+(p) can be simplified by using the following 

theorem: 

For any representation + -D (p) 

as .the finite sum 

where the· ;>... are nonnegative scalars and the 
~ 

D+ + 
are contained in and satisfy p E L

0
(D.). 

D+ if and only if D+ 
+ J.. 

2 2 
contracts to Dl. 

can be expressed 

(1. 7) 

+ Di a~e the diagrams that 

A diagram D~ is contained in 

This result is closely connected to Theorem 2. To prove it one may first use 

the argumentation in Pham's theorem to conclude that all representations D+(p) 

of D+ that generate p must have the same set of internal momenta p, and 
+ then, by considering the range of the a's, identify the diagrams D. as the 
~ 

various contractions of D+ at p that cannot be further contracted. 

This result allows, in Eq. (1.1), the sum over all D+(p) to be reduced to a 

sum over all D+(p) such that p £ L
0

(D+). 

2. Landau Diagrams That Fit into Bubble Diagrams 

Example 

B -

o= 
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D fits into B. 

Generally a Landau diagram D is said to fit into bubble diagram B if and only 

if D can be constructed by inserting into each bubble b of B either a connected 

Landau diagram Db or a point vertex Db. The initial and final lines of Db 

must coincide with t·he incoming and outgoing lines of b, in the natural orte-to-

one fashion indicated in the example, and each internal line L. of Db 
~ 

carry a sign a. that coincides with the sign of b. The external lines 
1 

va--ious Db, which are all explicit lines of B, are left unsigned. 

A .. uperscript B on DB means that this Landau diagram D fits into B. 

3. The Structure Theorem 

and 

Theorem If the NAS holds then 

(a) fB(p) is analytic in 1?{ r LB, where 

must 

of ti1e 

(3.1) 

(b) fB (p) at p e: ?Yl. r n L B is the boundary value of an analytic function 

from any direction in the tangent space to ~ r at p that lies in the cone 
c n {p + iq: Im 4l(P f. iq; DB(p)) 

DB(p) 

> 0} • (3.2) 

This result for the bubble diagram function fB is completely analogous to the 

NAS: the superscript 

Claim (b) is void if 

+ is 

CB(p) 

merely replaced throughout by the ~uperscript B. 

is empty or fails to intersect the tangent space to 

n/ at p. 

4. The Physical Region of B 

The physical region of B, called QP(B), is the region outside which FB = 0 due 

to the mass-shell and conservation-law constraints occurring in its definition. 

These constraints are the same as those associated with the bubble diagram D(B) 

obtained by shrinking the bubbles of B to points. Hence 

@(B) 6' (D(B)) (4.1) 

and 

0 for p outside 6P(B) (4.2) 

The function FB(p) is generally nonzero inside QJ(B). Thus it cannot generally 

be the limit of a single analytic function in any real neighborhood of a point 

p e: L(D(B)). Hence claim (b) of the structure theorem n1ust be void for 

p e: L(D(B)). 

This is indeed the case. Since every bubble of DB D(B) is contracted 

. .., 
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to a point, no line of DB carries a sign. Thus for any representation DB(p) 

another can be constructed by reversing the signs of all a .. The signs of the 
~ 

vectors u(p) and w(p) are also reversed, hence so is the sign of <l>(p; B -) D (p) . 

Thus if p lies on LQl(B)) the cone CB(p) is empty, and claim (b) is void. 

5. u = 0 points 

Suppose there is a D
8

(p) such that 

u(D
8 (p)) 0 

or equivalently such that 

0. (5.1) 

Then does not intersect the tangent space to "t>?r 
c .. 

at p, and claim (b) 

is void. 

A point p such that (5.1) holds is called a u = 0 point. Such points some­

times cover open sets. However, in the many cases studied so far the function 

fB is not actually singular on these open sets. Thus the structure theorem, in 

its present form is inadequate at u = 0 points: it permits singularities that . 

are not actually present. 

This inadequacy of the present version of the structure theorem is circumvented 

in the present work by introducing a perhaps needless assu~ption, as will be 

discussed later. 

IV. THE DISCONTINUITY OF f+ AROUND L
0

(D+) 

Let D+ be a positive-a diagram, and let ~ £ ~· be a point that lies on 

L~(D~), if and only if D~ is D+. To define the discontinuity of 

f around L
0

(D+) near p it is convenient to introduce the local coordinates 

described at the end of Section II. The Landau surface L
0

(D+) near p is then 

mapped into {z
1 

= 0}, and the physical region 00<D+) near p is mapped into 

the positive real axis in z
1 

space. 

The domain of analyticity of f+ (p(z)) near z 

.the NAS, controlled by the vectors u'(D;(p)). 

dilations, just one such vector, 

(1,0,· .. ,0) 

z(p) z = 0 is; according to 

In our case there is, modulo 

Thus f+ (p(x)) at any real point sufficiently near z ' 0 is the limit of the 

analytic function f+(z) = f+(P(z)) !'ron any direction in y = Irn z space that 

satisfies y·u' > 0; i.e., f+(p(x)) near x = 0 is essentially the limit of 

r+(p(z)) from the upper-hal[ 7.1 plane. 
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'• 

The discontinuity of f+ around L0(D+) is defined to be f+ minus the function 

f' obtained by analytically continuing· f+ from the region x
1 

< 0 into the 

region 

half 

by a path that passes around z = 0 
1 

plane, as indicated in the figure below: 

via a detour into the lower 

This discontinuity is evidently zero at points x
1 

< 0. 

The general formula for this discontinuity is illustrated by the following 

example: .if 

then the discontinuity of f+ around L
0

(D+) is the function represented by 

'-...''----~. ----l0l1- ~ 
I 

y 
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The letters a, B, and y labal certain specified sets of particles, and the 

corresponding dotted lines cut sets of internal lines that correspond to these 

sets of particles. The -a box represents the function S -l defined by 
a 

S S -l I , 
a a a 

where S and I are the restrictions of S and I to the space corresponding 
a a 

to the set of particles a. 

The formula in any other case is constructed analogously: each vertex of D+ 

is replaced by a plus bubble, and on each set of lines .a connecting a pair 

of vertices of D+ there is inserted a -a box. 

This formula holds in some small neighborhood of the specified point p. Later 

we shall obtain some discontinuities formulas that hold globally (i.e., at all 

real points p £11tr). These global formulas are the ones that control the 

principal contributions to the dispersion relations, but the local ones des­

cribed above are also important. For example, they are needed in the derivation 

of the Reggeon discontinuity formulas. 

v. DERIVATION OF THE FORMULA FOR THE DISCONTINUITY 

OF f+ AROUND L
0

(D+) 

section it is shown how the formula ·for the discontinuity of f+ In this around 

L
0

(D+) is derived. First the general method is outlined, and then some examples 

are given. 

1. General Method 

Consider a diagram 
+ + 

D1 is D . 

and a point p E: "Yr/.' that lies on 

Step 1 Use unitarity and the cluster decomposition properties of s and to 

effect a decomposition 

(1.1) 

such that 

(1. 2) 

and 

(1.3) 

The B(T,D+) and B(R,D+) are sums of bubble diagrams, each multipled by a 

nonzero scalar coefficient. These coefficients are generally plus or minus one, 

and the sums represent the sums of the corresponding bubble diagram functions, 

each multiplied by the corresponding scalar coefficient. The following two 

demands are made: 

(a) 

(b) 

For each 

No B in 

+ B in B(T,D ), D(B) contains 

B(R,D+) supports D+. 

(1.4) 

(1.5) 
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B supports D if and only if some D' that fits into B contains D. A 

diagram D' contains a diagram D if and only if the lines of D can be placed 

in one-to-one correspondence with a subset of the lines of D', and the contrac­

tion to points of the remaining lines of D', all of which must be internal, 

reduces D' to D. A signed line of D can be placed in correspondence with 

a line of D' having either the same sign, or having no sign, but not with any 

line of . D' having the opposite sign. The main problem in calculating the 

discontinuity formula is to find a decomposition satisfying (1.1)-(1.5). 

Step 2 Consider first only those singularities that correspond to solutions of 

the Landau equations in which all a's are positive or zero, or all a's are 

negative or zero; i.e., temporarily ignore all mixed-a singularities, which are 

singularities corresponding to solutions of the Landau equations in which some 

a's are positive and others are negative. 

+ L
0

(D ), but on no other basic pos~tive-a surface, all Because p lies on 

vectors u(D' (p)) corresponding to positive-a solutions are positive multiples 

of u(D+(p)), by virtue of Theorem 6, and all vectors u(p'(p)) 

to negative-a solutions are negative multiples of u(D+ (p)) ·. 

corresponding 

+ + + + + 
The functions f , t(D ), and r(D) represent the functions F , T(D ), and 

R(D+), with the factor ~2rr) 4 o(EE.P.) removed. The NAS says that f+(p(x)), 

near p, is the boundary value of ~f~(P(z)) from within the cone dual to 

u'Ql+(p)), i.e., essentially from the upper-half z
1 

plane~ 

The analytic structure of r(D+) is given by the structure theorem. The 

requirement .(b) on B(R,D+) ensures that none of the singularities of r(D+) 

correspond to diagrams that contain D+. If mixed-a singularities are ignored 

this leaves only the singularities corresponding to the negative-a solutions. 

All the vectors u' (D(p)) corresponding to these negative-a solutions are 

negative multiples of u'(D+(p)). Consequently, r(D+) is the limit from the 

lower-half z
1 

plane. 

Property (a) of B(T,D+) ensures that T(D+) vanishes outside QJ(D+), i.e., 

in x
1 

< 0. Thus in this region the function f+ coincides with r(D+). 

Therefore r(D+) is a function that coincides with f+ in the region 

x
1 

< 0 (i.e., below the threshold x
1 

= 0) 

by a detour into the lower-half z
1 

plane. 

of the preceeding section, and the difference 

discontinuity. 

and that continues around X = 0 
1 + Thus r(D ) 

f+ - r(D+) 

is the function 
+ = t(D ) is the 

f' 

Step 3 Use the discontinuity formulas obtained, neglecting mixed-a singulari­

ties, in steps L.and 2 to show that all mixed-a singularities in r(D+) cancel 

among themselves. 
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This procedure leads (at least in the formal framework described below) to the 

unique discontinuity formulas described at the end of the preceding section. 

However, it is based on the ansatz that the mixed-a singularities cancel among 

themselves. Hence the possibility of some other solution, in which the mixed-a 

singularities do. not cancel among themselves,' is. not ruled out. 

Derivations not based on the mixed-a cancellation ansatz are blocked, at the 

present ~ime, by the inadequacy of the structure theorem at u = 0 points. If 

one uses a recently proposed, but still unproved, new version of the structure 

theorem that does adequately cover u = 0 points then it is possible to derive 

without using the mixed-a cancellation ansatz, and also to prove unique, the 

discontinuity formula described above at least in the simplest of all cases, 

which is the pole-factorization theorem below the four-particle threshold in 

the equal-mass case. However, this new theorem is still unproved and has not 

been applied to any other cases. Thus we shall use, in the present work, the 

mixed-a cancellation ansatz, and leave aside the question of uniqueness, except. 

to express the opinion that a consistent solution of the unitarity and analyti­

city conditions in which the mixed-a do not cancel among themselves is surely 

impossible. 

The' third step listed above, namely the verification that all mixed-a singulari­

ties do indeed cancel out among themselves in R(D+) has been carried out in 

many special cases, but has not been proved in general.· 

2. Pole-Factorization Theorem Below 4-Particle Threshold 

In this special case the diagram D+ in question is the pole diagram 

+ + 0 pote= D = 
2 

5 (2.1) 

6 

Unitarity and clL:>t·~r decomposition give 
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B-B=~+l:~ (3) ~-........ . 

+ l: ~ + l: :t+'J;:--::'. 
(3) (9) ~ 

(2. 2) 

where, merely to shorten the formulas, the two-particle intermediate states have 

been omitted. Postmultiply.ing (2. 2) by 

l: ::g:: + l: =0= 
(3!) --o- (9) --o-

(2.3) 

rearranging terms, and using two-particle unitarity, 

(2.4) 

one obtains 

(2.5) 

where 

F+ (2.6) 
'! 
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= 

(2. 7) 

and 

+ l: . -:0:: 
(8) :::€L-

+ (='='=~~+ l:~ )x ~ ' (3) ~ 

-o-
-o--o- +l: =0= 

(9) -o--
) 

(2.8) 

Properties (a) and (b) are easily checked: 

(a) B(T,D+) is the right-hand side of (2. 7). It consists of a single 

diagram B, and D(B) clearly contains 
+ 

D . 

(b) B(R,O+) is the right-hand side of (2.R). It is easy to se·e that 
+ D+. no B in B(R,D ) supports 

The following two observations suffice: 
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(i) Stability conditions entail that each vertex of a Landau diagram 

have at least two initial lines and at least two final lines. (The others 

correspond to empty sets L(D), and are to be omitted.) Thus the two lines 

coming into a two-to-two bubble must meet at a vertex. This fact, together with 

the fact that the diagram Db inserted into each bubble b must be a connected 

diagram, precludes the possibility of fitting D+ into any bubble diagram in 

the first ;hr~e sums in R(D+). 

(ii) · ·in considering whether a D + fits into a B one may consider 

ea h minus bubble of B to be a point vertex, since all lines coming from 

inside such a bubble carry minus signs, and hence must be contia~ted to points 

in the contraction that yields D+. But the contraction of the big minus 

bubbles in the remaining term in R(D+) renders it unable-to support D+. 

Decomposition of Singularities This formula for the discontinuity near p, 

together with the NAS, implies that near p 

and 

Here means equal in the sense of microfunction and locally modulo 

analytic functions), and a plus (or minus) sign on a line Li 

diagram B means that only those parts of the singula•ities of 

of a bubble 

FB that 

correspond to vectors u'~'(p)) associated with solutions of the Landau 

equations with (l > 0 
i 

(or are accepted. Similarly a zero on a 
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line Li of a bubble diagram B means that only those parts of the singulari­

ties of F8 that correspond to solutions of Landau equations with a = 0 are 
i 

accepted. The notion of a decomposition of singularities into parts associated 

with different directions u(p(p)) is the heart of the theory of essential 

support, and of the theory of microfunctions. It is closely connected with the 

local decomposition of 

-i£/p.
2 - m. 2 - i£. 

2 2 
271 o (p. m. ) into 

l. l. 

2 2 
i£/pi - mi + i£ and 

l. l. 

Ca,cellat1on of Mixed-a Singularities Consider the Landau diagram 

o' = 2 

where a zero on a line Li of a Landau diagram indicates that the corresponding 

ai is zero. The associated Landau surface L(D 1
) is confined to L(D;ole), 

L(D+ 
1 

) in some neighborhood of p. If such a mixed-a and may coincide with 
po e + 

singularity were present in R(D 
1 

) 
po e 

formula for the discontinuity around 

However, . the various contributions to 

D' exactly cancel: 

it would disrupt the derivation of the 
+ 

Lo(0pole). 

R(D;ole) associated with this diagram 

0 

~ 
0. 

+ The three bubble diagrams on the left are the only once in B(r,D 
1 

) that 
po e 

support D'. Their ~ontributions to the singularity corresponding to D' are 

indicated on the right. These contributions sum to zero, by virtue of two~ 

particle unitarity. 

3. Triangle Diagram Singularity 

(Below the 4~particle threshold). Define 
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Co•.sider the expansion F+ = T+(D+ 
1 

+ R(D+ 1 used in the preceding sub-
p~ e ~o e + 

section. The only B's in _B(T,D) + B(R,D) that support D~ are 

~+~ 

=~-

+~ 

=-(0+~~~ :so 
+2:~+ (2)~ 

+--m­
:::0----@:: 

(~)~)(~) 
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+ 
D(B) corresponding Only the last term supports Dll. And the 

+ 
Thus if this last is identified as T(D:) contains Dll. term 

conditions (a) and (b) on T(D:) and R(D:) are satisfied. 

4. The Indented Box 

Theorem 7 Unitarity and cluster decomposition entail that 

where the indented box represents the sum 

Y, 

CX) am • 

I L(-l)m a2 

-~-H··· 
y2 

n 11 0 ai,Yi a, 

/3 

Sec. V 

to this last term 

then the required 

(4.1) 

(4. 2) 

Only a finite number of terms contribute to this sum at any (finite) point p. 

There is a sum over all ways of decomposing the set a into parts a 1 ,···,an+l' 

a sum over all ways of decomposing y into parts y
1 

and y
2

, and 

Examination of (4.2) shows that the indented box is a suru ~f bubble diagrams 

B with the following property: no B in this sum supports any D having a 

set a' t a o~ positively signed lines which if cut sP~~rate the diagram into 

two parts A and B such that A has incoming lines a and outgoing lines 

a' and B has incoming lines a' and B and outgoing lines y. That is, no 

D that fits into any B in the indented box can be decom.~sed into a structure 

of the form 
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a 
y 

(4.4) 

unless a' =a (i.e., unless A contains only trivial bubbles). The A and 

B are allowed to be either .connected or not connected. 

Theorem 7 combined with unitarity gives 

= a mEJClnn· y 
J3~ ., 

(4.5) 

These results play a central role in the derivation of general discontinuity 

formulas, and they will be used in the following subsection. 

5. Leading Normal-Threshold Formula 

Theorem 8 

+ -a + '+ ag· a'_ ~a' atl· a' 
13 !3' lf~/3 {3 13' 

where the arrow box represents 

(5.1) 
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.·. 

(5.2) 

The arrow box is a sum of bubble diagrams B · with the following property: 
+ . 

every D ·· that fits into any B .in this sum has a path that begins ~n a and 

ends in· a', and consists of segments Li all of which ~redirected along the 

path. Thus no B in this sum supports any diagram D .of.the form 

a 
. 13' 

(5.3) 

where the .A ~nd B are allowed to be either connected or disconnected. 

Defining 

0=0-0 (5.4) 

one can write 



HENRY P. STAPP 

~-~ 
~-~ 

~~~ 
+~.+~-~ 

(5.5) 

The second and third terms in the last line of this _equation support no normal 

threshold diagram D+ 
t' which is a diagram D+ of the form (5.3) with point 

vertices A and B. The last term does support D+ 
t+ 

in general, but not at 

points p that lie on no basic surface except LO(Dt). For the disconnected 

nature of the boxes on the ends of this term entails that the corresponding 

function vanish unless the conservation-laws corresponding to the disconnected 

parts are satisfied, and this entails that p lie on L
0

(D
1

+) for a corres­

ponding diagram n'+ 1 D+. Thus at points p that lie on no basic surface 

except L0 (n;) we can identify the first term in (5.5) as T(D;): then 

conditions (a) and (b) are satisfied, and T(D;) is the discontinuity around 

D+. 
t 

VI. FORMAL METHOD 

The procedures used in the preceding section allow the discontinuity 

formula stated at the end of Section IV to be 

the question arises whether functions T(D+) 

properties exist for all D+ with nonempty 

derived in many cases. However, 

and R(~+) satisfying the required 
+ L

0
(D ), whether these functions are 

unique (within the framework based on the mixed-a cancellation ansatz), and 

whether the stated formula holds in all cases. The aim of the present section 

is to explore .these questions, and in particular to: 

(a) Prove the existence of T(D+) and R(D+) 
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(b) Prove the uniqueness of T(D+) 

(c).~Der1ve the general formula far 

+ .. 
ang R(D ) 

•. + 
T(D.). 

Sec. VI 

The work in this section is based on infinite serie·s expansions for the quanti­

ties of interest. The method is formal in the sense that the question of the 

convergence of these series is not considered: two functions having the same 

expansion are .called equivalent, ·and are considere~ to be equal, and analytic 

properties that hold for every term of an expansion are assumed to hold also 

fo· the sum. Also, the mixed-et cancellation ansatz is accepted. Within these 

li.•litations the formal method used in this section is neat and powerful. 

1. The Minus-Bubble Expansion of S 

Write 

s s+ (1 + R+) (1.1) 

and 
st s (1 - R-) (1. 2) 

Then tinitarity, 

s-s+ 1 (1. 3) 

can be written 
R+ R-(1 + R+) (1.4) 

Iteration gives, formally, 

(1. 5) 

Theorem 9 

s (1. 6) 

i 

The sum runs over every bubble diagram Bi each bubble of which is a minus 

bubble, and the convention in which the minus bubble represents -s c 
is used. 

Theorem 9 follows from (1.5) after some cancellations. For example, the bubble 

diagram 

e-:- = 
I 

=0= 
=0= 

occurs in three terms of (1.5): 
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TI'~ first two terms come from - 2 -(R ) , whereas the last comes from R • The 

minus sign in the last term comes from the one minus sign in (1.2) and two 

minus signs from the minus bubble convention. 

Corollary 

s 
c I B~ 

c 

(1. 7) 

where Sc is the connected part of S, and the sum runs over the connected Bi. 

2. Formal Framework 

Any B can be expressed in a unique way as a linear combination of the various 

minus bubble diagrams Bi: one simply replaces each plus bubble b+ of B by 

its expansion (1. 7) and collects terms. This gives 

B (2.1) 

where the sum runs over the set of all bubble diagrams Bi having only minus 

bubbles. The infinite set of numbers n. (B) 
l. 

is regarded as an infinite dimen-

sional vector n(B), and all B having the same n(B) are said to be equiva-

lent. Sums B = Ec B 
i i 

of bubble diagrams with scalar coefficients 

can also be ~onsidered, and the corresponding vector n(B) is defined to be 

Ec.n(B.). By this procedure the B. become the basis vectors of a linear space 
l. l. l. 

of (generalized) bubble diagrams B. 

Theorem 10. If can be transformed into B2 by an application of 

unitarity and ~luster decomposition then B
1 

is equivalent to B
2

• 

Outline of Proof The unitarity equations, 

+-S S - I 0 

are equivalent to zero: 

n [@0-1] 0 

(2.2) 

(2.3) 



DISCONTINUITY FORMULAS Sec. VI 

For example, in the two-to-two case 

00 
= I + L '( =0= ) n 

n=l (2.4) 

and 

::[J==r 

(2.5) 

Multiplying (2.4) by (2.5) and collecting terms one finds that every term but 

I drops out. Thus (2.3) holds in this case. In fact, it holds in general: 

i.e., in the expansion of (2.2) in terms of minus bubble diagrams B~, each 

Bi occurs with net coefficient zero. 

In any application of unitarity and cluster decomposition one replaces some B1 
by B2 where B1 and B2 differ by parts B~ and B2 that are equd by 

virtue of unitarity and cluster decomposition. These two parts are therefore 

equivalent, by virtue of (2.3): the expansion of B' 
1 

in terms of minus bubbles 

is identical to the expansion of B2· But then the replacement of B~ by 

B2 in B will not alter the minus bubble expansion of the larger diagram: 

B1 will be equivalent to B
2

. 

Theorem 10 is the basis of the usefulness of the representation n(B) of B: 

this representation is invariant under the operations of applying unitarity 

and cluster decomposition. Any two B that are_ equal by virtue of unitarity 

and cluster decomposition, are represented by the same vector n(B), and 

conversely, any two B's that are equivalent can be formally converted to the 

same infinite series by using unitarity and cluster decomposition, and this 

infinite series, which is specified by n(B), is moreover unique. 

3. Existence of T(D+) and R(D+) 

Let B-(T,D+) be the sum of all connected Bi that support 

be the sum of. all connected B. that do not support D+. Let 
~ 

sum of all connected B .. Then 
~ 

The corollary of Theorem 9 says that B-(F+) is equivalent to F+: 

- + 
B (F ) 

(3.1) 

(3.2) 



HENRY P. STAPP 

- + The sum B (R,D ) satisfies the defining property of 
. + 
B(R,D ). Moreover, the 

- + sum B (T,D ) satisfies the defining property of + B(T,D ), by virtue of the 

following equivalence: for any bubble diagram B- each bubble of which is a 

minus bubble 

B supports if and only if (3.3) 

This is true because every positively signed line in any D that fits into B­

is a line of D(B-), and conversely D(B-) fits into B . 

Since the requirements on the various terms are all satisfied (3.1) is a formal 

solution of the equation 

F+ T(D+) + R(D+) (3.4) 

The general formula. for T(D+) given in Section IV is the result of reassemb-

ling the infinite set of terms in 

B(T,D+), as will be shown later. 

- + B (T ,D ) into an equi•Talent finite expression 

4. Uniqueness of the T(D+) and R(D+) 

Theorem 11 Let 

F+ B(T,D+) + B(R,D+) (4.1) 

be any decomposition of F+ that is derived soley from unitarity and cluster 

decomposition and that satisfies the defining conditions for B(T,D+) and 
+ B(R,D ). Then the following equivalences hold: 

B(T,D+) - + B (T,D ) (4.2) 

and 

B(R,D+) B-(R,D+) (4. 3) 

Proof Suppose B is in + 
B(T,D ). Then D(B) must contain D+. But the 

procedure that converts B into its image B' 

unchanged every line of D(B): i.e., D(B') 
D+ 

in the space of 

contains D(B), and 

and hence belongs to 

Bi leaves 

hence D+. 
- . + 

Thus every Bi in B'(T,D+) contains 
' 

B (T,D ): 

Suppose B is 

contains 
+ 

D • 

space of B. 
1 

fits into B. 

in + B(R,D ). Then, by definition, no D 

(4.4) 

that fits into B 

But the procedure thar·converts B to its image B' in .the 

introduces no plus lines that are not present in some D that 

Titus no B. in B'(R,D+) can support D+: 
1 

{ni (B(R,D>) ; 0}==3> {ni (B- (R,D+)) = 1} • (4.5) 

On the other hand, E~. (4.1) is derived soley from unitarity and cluster decom­

position. Thus the two sides are equivalent, and hence for every i 

1 (4.6) 

Since the sets 
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and 

{i: ni(B-(R,D+)) 1} 

are disjoint, by construction, the conditions (4~4), (4.5), and (4.6) imply that 

for all i 

(4. 7) 

and 

(4.8) 

These are the desired conditions (4.2) and (4.3). 

The decomposition (4.1) therefore exists and is unique, within the formal frame­

work. The remaining problem is to show 

the end of Section IV is equivalent to 
+ 

and only if D+ + 
LO (Dl) if 

1 
is D . 

5. The Indented Box Revisited 

that the discontinuity formula given at 
- + B (T,D ), near points p lying on 

To introduce some ideas needed for the derivation of the general discontinuity 

formula we consider again the formula 

a~y 
·~ 

(5.1) 

Definition A bubble whose initial lines consist exclusively of lines from the 

set a is called an a bubble. 

Definition 

(5.2) 

is the sum of all B. that have incoming lines a and 13 ,· outgoing lines y, 
~ 

but have no a bubble. It is called S(a,l3; y) truncated on a. 

Remark Each term of S'(!:!,B; y) satisfies the characteristic property of the 

indented box, which is that no a' I a effects a separation of the form of 

(4.4) of Section V. And every Bi not in S'(!:!,l3; y) fails to satisfy this 

characteristic property. 
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Theorem 12 

(5.3) 

Proof Map the.left-hand side into Bi space by inserting the expansion S' of 

S given in (1.6): 

(5.4a) 

(5.4b) 

where 

0=0-m@rr (5.5) 

Consider a Bi with exactly one a bubble. It occurs exactly once in the first 

term of (5.4b) (i.e., in S'), and with a plus sign. It also occurs exactly once 

in the second term, in the diagram obtained by shifting this one a bubble into 

the slashed minus box. In this term it occurs with a minus sign (we are using 

the convention where the minus bubble represents -S ). Thus the two terms can-
e 

eel. If B. has n a 
~ 

bubbles then there are, in an exactly similar way, 

terms in (5.4b) that exactly cancel out. But if Bi has no a bubble then 

occurs in' S' but.not in the second term, and there is no cancellation. This 

gives (5.3). 

6. Flowlines and Schnitts 

B~ 
~ 

To prove general discontinuity formulas the concepts of flow lines and schnitts 

are useful. A flowline is a path in a Landau diagram D that runs from the ex­

treme left of the diagram to the extreme right. It consists of an ordered se­

quence of line segments 1 1 of D all of which point in the direction pf the 

path. A schnitt a is a cutting of a set of lines L of a diagram. It is 
i 

allowed to cut no flow line more than once. The set fa is the set of frow lines 

cut by a. Equivalent schnitts a are schnitts that cut the same set of flow 

lines. A line 1
1 

lies right (resp. left) of line 1
2 

if and only if 1
1 

lies 

right (resp. left) of 1
2 

on some flow line. A schnitt a
1 

lies right ~resp. 

left) of a schnitt a
2 

if and only if a
1 

is equivalent to a
2 

and some line. 

Li cut by a
1 

lies right (resp. left) of some line Lj cut by a
2

, and no line 

1
1 

cut by a
1 

·lies left (resp. right) of any line Lj cut by a
2

. A rightmost 
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(resp. leftmost) schnitt a is a schnitt such that rto s~hnitt a' lies-right 

(resp. left) of it. The rightmost (resp. leftmost) schnitt equivalent to any 

given schnitt is well defined. 

A schnitt in a bubble diagram B is a schnitt in D(B). 

Consider now the set of 

y. The sets a and S 

B. that have initial lines a ·and B and final lines 
l. 

define leftmost schnitts, and y defines a rightmost 

schnitt. Let a' be the rightmost schnitt equivalent to a. The sum of all 

these diagrams is represented by 

a~'a'.' 
= y 

{3 . 

' 
(6.1) 

where the primed boxes represent the expansions of the unprimed boxes in terms of 

the Bi. The identity (6.1) follows from the fact that the schnitt a' has a 

well-defined location in each B~, and hence one gets each term on the left-hand 

side once and only once by combining independently the sum of all B~ that can 

occur on the right of a•, which is the sum that represents S(a,B; y) truncated 

on a, with the sum of all possible Bi that can occur on the left of a', which 

is the sum of all Bi that represent S(a; a'). This argument will be_ used 

several times in what follows. 

Application of unitarity to (6.1) gives (5.1). 

Consider next the set of all B. that have incoming sets a and B and outgoing 
l. 

sets a' and B'. Separate these B. into two sets. The first set consists of 
l. 

those that have- a schnitt y such that (1) all flow lines in f start 
y in a 

and end in B', and (2) the schnitt y cuts Bi into two disjoint parts one 

containing y and y' the other containing B and B'. The second set is the 

remainder R. 

Let y' be the rightmost schnitt equivalent to y. Then the sum of these dia­

gram Bi can be collected into the expression 

aS' a' a 
+ -

{3 . {3'- {3' + R 

(6. 3) 
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This result combined with (5.3) gives, 

!3' + R, 

(6.4) 

from which the normal-threshold discontinuity formula can be derived as before. 

7. Strongly Equivalent Schnitts 

The mass of a schnitt is the sum of the masses of the lines cut by the schnitt. 

Two schnitts are strongly equivalent if and onl,Y if they are equivalent and 

have the same mass. 

The concept of the rightmost (or leftmost) schnitt strongly equivalent to given 

schnitt is not always well defined. 

satisfy m
1 

> m2 then in 

a' a II 
I 

For example, if the masses artd 

a 111 a1111 

the two schnitts a' and a" are both strongly equivalent to a, but there 

is no unique leftmost schnitt strongly equivalent to a. However, a simple 

argument shows that there will always be a unique leftmost (and rightmost) 

schnitt a' strongly equivalent to any given schnitt a if there is no 

schnitt a"' ec,ui·1alent to a but with larger mass. 

Consider the set or all B. 
l. 

with incoming lines a and B, and outgoing lines 
- r all of the parallel. y. Let pe: ·rrz. be a point such that pj in a are Let 

X(p) be the subs"~Le generated by the set of all Bi such that p lies out-

side {-J(B~). Then 
. l. 

'. 
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a~la I = y mod X(p). 

(3 ' 

(7 .1) 

The condition mod X(p) means modulo contributions corresponding to Bi in 

X(p). All contributions B~ in which there is schnitt a'" that is equivalent 

to a but with larger mass fall into this class. When these Bi are excluded 

the rightmost schnitt n' strongly equivalent a is well defined. Every 

term of the remaining sum of Bi appears exactly once in the box expression 

on the right-hand side of (7.1) 

8. Nonleading Normal Threshold 

A slight modification of the argument leading to (6.3) gives this same formula 

with y' now the rightmost schnitt strongly equivalent to a schnitt Y of 

some definite mass MY, and R expanded to include terms Bi that have 

schnitts equivalent to Y but with larger mass. Then from (7.1) one obtains 

(8.1) 

where the -y box represents the inverse s -1 of the restriction s of y y 
s to y space, which is the sum of the spaces corresponding to all sets of 

particles the sum of whose masses is the same as that of the set y. From 

this formula (8.1) one derives the discontinuity around a nonleading normal 

threshold by the procedure of Section V.6. 

9. Truncated s~attering Functions 

Let a and 13 represent the initial and final variables of a scattering 

function: 

(9.1) 
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Let some subset of the set a be separated into a set of disjoint sets 
+ a

1
,···,as. Recall that Sc(a; 8) = F (a;S) is equivalent to the sum of all 

connected Bi. The functior.. F+ truncated on ai is defined to be the sum of 

all connected Bi that have no ai bubble, i.e., that have no bubble each 

initial line of which corresponds to a variable in a .. Similarly, the function 
l. 

F+ truncated on several sets ai is the sum of all connected Bi having no 

function F+ truncated on the set a. bubble for any ai in this set. The 
l. 

al,···,as of sets a. is represented by 
l. 

~~r~ F+ 

i=l i 

Lemma 1 Let a
1
,···,as be a decomposition of a subset of the set of variables 

a. Let p be a point such that for each i = l,···,s all the pj in ai 

are parallel. Then p will lie on various Landau surfaces corresponding to 

diagrams in which there is for each a., considered as a schriitt, a rightmost 
l. . • 

schnitt a! 
l. 

strongly equivalent to it, and all of the lines cut by all of 

these schnitts a' 
i 

terminate on one single vertex. Suppose p lies on no 

positive-a Landau surface corresponding to a diagram in which these lines 

terminate on more than one vertex. Then 

+ F (a; 8) = J ITS rs(a .. a:) da'r ] l 1.' 1. i a. 
i=l l. 

+( ' ' F a
1

, .. • , a , a ; 
s t 

where the integral over a' 
i 

is over all sets of variables the sum of whose 

(9.2) 

masses is the same as that of and X(p) is the linear space generated by 

those that satisfy 

Proof The left-hand side of (9.2) is equivalent to the sum over all connected 

Bi. The mod X(p) condition allows us to ignore, as above, all contributions 

Bi in which any ai (considered as a schnitt) is equivalent to a schnitt of 

greater mass. Then for any one of the remaining Bi one can consider, for 

each ai' the rightmost schnitt ai strongly equivalent to ai. Consider next 

the part P' of this Bi that lies to the right of all of the rightmost 

schnitts ai· This part P' is either connected or is not connected. If it 

is not connected then Bi lies in X(p). For if p lies in fP (B:) then 

the conservation-law constraints corresponding to the vario~s disconnected 

parts of P' must be satisfied, and p must consequently lie on one of the 

Landau surfaces excluded by the hypothesis of the lemma, namely the one in which 

the lines cut by the rightmost schnitts a' 
i 

terminate, not on one single 

vertex, but rather on .the several vertices corresponding to the several dis­

connected parts of P'. These Bi with disconnected P' may, therefore, also 

be ignored, dtie to the mod X(p) condition, and one is left with the Bi 

such that P' is connected. 

-· 
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The remaining set of Bi is generated by summing independently over all possible 

a!. The part P' 
~ 

parts lying on the various sides of the rightmost schnitts 

lying to the right of all these schni~ts a! will be just the truncated function 
~ 

occurring in.(9.2)~ i.e., it is the sum of all connected B. that have no 
.~ 

the rightmost a. bubble for any a.;. And the part lying to the lef'.~ of 
~· ... 

schnitt aj_ is just the expansion of S(ai,a~). Any Bi constructed in this 

~ay is one of the remaining B. defined above, and each such B. is different 
L ~ 

because the location of each schnitt a' is uniquely defined in each of these 
i 

remaining Bi. Finally, every one of the remaining B. is obtained at least 
~ 

once because every possible combination of parts on the various sides of the var-

ious schnitts a! is included. Thus the lemma is proved. 
~ 

The Bi that were ignored during proof because they belong to X(p) satisfy 

a certain finite set of mass-shell or conservation-law conditions that force 

p to lie outside (P(B~). 
~ 

Thus Eq. (9.2) holds mod X(p) for all p in some 

finite neighborhood of p. 

From (9.2) one obtains by inversion, near p, 

(9.3) 

where S-l is the inverse of the restriction S of S to the space a.;, which 
a. a. ... 

is the su~ of the spaces associated with the sets~of variables a' having 
i 

where I 
ai 

is 

s-1 
a. 
~ 

s-1 
a. 
~ 

the 

R 
a. 
~ 

is defined formally 

"" 

Iai + L (-R 
a. 

n=l ~ 

restriction of unity 

- s I 
a. ai 
~ 

10. The General Formula 

by 

)n 

to the space ai and 

(9.4) 

(9.5) 

Theorem 13 For any D+ let t.(D+) be the discont~nuity formula defined 

at the end of Section IV. Let PE 977 I be a point that lies on 1
0

cn'+> if 
'+ + 

and only if D i:i D • Then 

(10.1) 

- + + 
where B (T,D ) is the sum of all Bi that support D , and X(p) is the 

subspace generated ~y the set of B. such that p lies outside V(CB~). If 

for some of the sets o( lines of D.f that run between pairs of vertic~s of 

D+ there are other sets with the same sum of rest masses, so that the theorem 

as stated above is empty, then D+ can be interpreted in an expanded sense, in 
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which each .of these sets of intermediate lines is interpreted as a sum over all 

sets having the same sum of rest masses. The formulas for 6(D+) and B-(T,D+) 

should then also be interpreted in this extended sense: the intermediate sets 

n' should be allowed to run over the other sets with the same sum of rest 
i 

masses. 

Proof Let Bi be any diagram in 
- + 

B (T,D ). This diagram supports That 

means that there is a set .J of schnitts a. of B. whose elements are in 
J 1 

one-to-one correspondence with the sets of intermediate lines of D+. If for 

any one of these schnitts there is an equivalent schnitt of greater mass, then 

p lies outside OO<B~) and this Bi lies in X(p), and hence does not con­

tribute to (10.1). For each remaining Bi there is for any schnitt in ..J a 

unique rightmost schnitt strongly equivalent to it. 

Consider any one of the remaining Let each schnitt ai in .J be shifted 

be the part of Bi to its rightmost strongly equivalent position a~. Let P 

corresponding to some vertex of 
+ 1 

D ; it lies to the right of certain schnitts and 

to the left of others. Consider what happens to P, and to its boundary 

schnitts, when each ai is shifted to its rightmost strongly equivalent position 

a~. 
1 

· One of several things can happen. The first possibility is that the topology 

is unaffected: i.e., that the new schnitts a' lie in the same positions 
i 

relative to each other as the original schnitts ai, and that the new part P' 

is connected. The second possibility is that the new schnitts a' lie in the 

same positions relative to each other as the original s.chnitts, but that P' 

is disconnected. In this second case B~ belongs to 
1 ' 

X(p). For if p lies 
'+ + 

in then it must also lie on L
0

(D +) for some D f D ; contrary to 
"+ 

hypothesis. In particular, it lies on the Landau'surface L(D ), where D" 
+ 

is the diagram constructed from D+ by replacing the schnitts bounding P by 

the schnitts bounding P', and then joining the lines cut by these new schnitts 

to vertic~s corresponding to the various disconnected parts of P~ to which 

·they are attached. This surface L(D"+) is defined by essentially the same 

conditions that define L(D+), plus the extra conservation-law conditions 

entailed by the break-up of the connected part P into the disconnected part 

P'. But if p lies in ?<B~) then these extra conservation-law conditions 
"+ "+ must be satisfied, and hence p must lie in L(D ). However, L(D ) is 

"+ 
the union of L

0
(D ) "+ "+ with the various surfaces L

0
(Di ), where the D. are 

"+ . '+ 1 '+ 
D Hence p must lie on L

0
(D ) for some D certain contractio~s of 

+ different fr6m D , contrary to the hypothesis of the theorem. This is not 

allowed. Thus we conclude that p does not lie in jJ(B~); i.e., that Bi 

lies in X(p), and hence. does not contribute to (10.1) 

.. 
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The third and final possibility is that the rightmost schnitts ex' 
i 

do not lie 

in the same position relative to each other as the original schnitts a.. Then 
1 

in the original D+ the for some schnitt ex. standing to the left of some 
1 

a. 
J 

rightmost ex~ strongly equivalent to ai lies partly on the right of 

Then some set of flow lines f has a part Q that starts on a subset of 

aj and ends on a subset Qi of 

equal to the .sum of the masses of 

could be moved further right. On 

a~. The sum of the masses of Qi cannot be 

QJ., for if these sums were equal then a' 
j 

the other hand, if the first sum were greater 

than the second sum then there would be a schnitt aj equivalent to exi, but 

having greater mass. If the first sum were less than the second sum then the 

analogous result is true with a. 
1 

replacing a .• In either case B. lies in 
J 1 

X(p), and does not contribute to (10.1). Thus we are left with the first case; 

i.e., with the sum of all having the following properties: (1) there is a 

set of schnitts a. 
1 

(2) for each in RJ 
that separate 

there is no a' 
i 

B. in the manner described by D+, 
1 

equivalent to . ex. and having greater 
1 

mass, and (3) when the ai 

positions exi the rtew parts 

are pushed to their rightmost strongly equivalent 

P' are well defined and connected. 

Since the locations of the rightmost schnitts ex~ in each of the remaining 

B~ are well defined the full sum can be constructed by adding independently 

all possible contributions corresponding to each of the connected parts P'. 

The sum of all possible contributions corresponding to any P' is precisely 

the corresponding function F+ truncated on those sets of initial variables 

exi that belong to ~ . Use of (9.3) converts this form to 6(D+). 

- + The formula (10.1) converts the expression B (T,D ) for the discontinuity 

T(D+) obtained in subsections 3 and 4 to the formula quoted at the end of 

Section IV. The contributions Bi £ X(p) that were ignored in the course of 

the proof all vanish in some finite neighborhood of p. 

VII. BASIC DISCONTINUITIES FOR 6-PARTICLE PROCESSES 

The discontinuity formulas derived above are local formulas; they give the 

difference f+- f' in some small neighborhood of the point p on L
0

(D+). 

Moreover, this point p must lie in ~· = ~r- ~0 . 

For dispersion relations one needs· global formulas; i.e., formulas that hold 

at all real points p. And the needed discontinuities are around the leading 

normal threshold cuts, which always extend to points p lying in 

Furthermore, one needs not only single discontinuities, but also multiple 

discontinuities. 

Mttltiple discontinuities across sets of leading normal threshold cuts play a 

basic role in S-matrix theory and are called basic discontinuities. 

Global formulas for all basic discontinuities of six-particle processes have 
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been derived, and will now be discussed. The derivation has three parts. The 

first part. which is described in this section, specifies the relevant functions 

and describes the discontinuities and multiple discontinuities formed from them. 

The second part, which is described in the next section, proves the analytic 

structure of these func~ions at real points p ~~·. The third, which is 

described in Section IX, shows that these functions are the appropriate boundary 

values of a single analytic function; i.e., that there are paths of continuation 

in the complex mass shell' that connect these functions to each other, and that 

these functions are the boundary values needed for dispersion relations. 

Anticipating the later results we shall already. in this section refer to certain 

functions as boundary values from specified sides of various normal threshold 

cuts. The discontinuities in the three-to-three physical region are discussed 

first~ those in the two-to-four and four-to-two physical regions will b~ 

discussed later. 

1. The Sixteen Channels g 

A channel is defined by a separation of the initial and final lines of a bubble 

diagram into two disjoint parts, each containing at leas.t two initial lines or 

at least two final lines. For a three-to-three process the sixteen channels 

are indicated below 

2 5 1*4 3 . 6 
g t J 

t - {4,5,6} 

i=t:E g i = 1,2, or 3 Ji {4,5,6,8} 

~f g f 4,5, or 6 Jf {4,5,6} - {f} 

. f 

i===EE g (if) J (if) {4,5,6,i} - {f} 

2. The Sixteen Basic Cuts C 

Define the invariant'!t 

s ::: s(J ) - ( L p )

2 

g g j~Jg j 
(2.1) 

.. 

·-
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{p + iq: I~ s = 0, 
g 

Re s > s 0
} 

g- g 

is the leading normal threshold singularity in channel 

Sec. VII 

(2.2) 

g; where .s 0 = 0 
go 

i..e., s 
g 

is the square of the smallest sum of rest masses of sets of particles 

that communicate with particles of channel g. 

3. The 216 Functions MG 

Let G be any subset of the complete set E of sixteen channel labels g. 

There are 216 
different G's. For each one we define a function MG which 

will be called the boundary value from beneath every cut 

and from above each of the remaining cuts. 

c g 
with g e: G 

The sixteen variable s are not all independent. Consequently there are sets 
g 

G such that there is no mass shell point (p + iq) that lies simultaneously 

in the lower-half plane Im s < 0 for all g e: G and in the upper-half plane 
- g 

Im sg > 0 for all g e: G = E - G. For example, if sa + sb sc + real const. 

then it is not possible to have Im s > 0, Im s > 0 and. Im s < 0. 
a . b c 

Im sa= 0 
Im sa= 0 

However, the cut Im s = 0 
c 

can in general be pushed back to expose a region 

of analyticity that lies on top of the cuts Im sa = 0 and Im sb = 0 but 

Boundaries.that can be reached only lies below the displaced cut I~ s = e:. 
c 

by pus~ingback some cut in this way are called inaccessibl~ boundaries. The 

boundary values at both accessible and inaccessible boundaries will be used in 

the dispersion relations. 

4. Functions 

The functions MG are defined in terms of some closely related functions TG 
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and TG. These later functions, and also the MG, 
s, are defined without reference 

to the in:inite series expansion used in.the formal method. And the proofs of 

the analyticity properties of these functions can be carried out by finite methods. 

However, it is useful to present first the infinite series representations of 

the functions TG and TG. 

Let D+ be the connected positive-a diagram that has precisely two vertices, each 
g 

connected to one of the two sets of lines that define channel g. Then 

T0 T F+ ~ Bi 
B. connected 
~ 

T I;: B-:-
D+ g 

Bi conn~cted and supports g 

Tgh [ B~ 
D+ D+ B~ connected and supports and g h 

TG [ B~ 
D+ B. connected and supports for all g in G. (4.1) 

~ g 

r" T 
Tg T - T 

g 
Tgh T T - T + 

g h Tgh 

TG I (-l)n(H) 
TH (4.2) 

HcG 

where n(H) is the number of elements of H. 

These definitions entail also 
Tg [ B. 

D+ B. con~ected and does not support 
~ g 

Tgh t , Bi 
D+ D+ B. connected and supports nei~her nor 

~ g h 

TG [ B~ 
D+' B. connected and SJpports no ·ge:G. (4.3) 

1 g 

These properti_:s (4. 3) and the structure theorem entail that TG has no 
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singularity associated with·any diagram that contains D+ for any g in G. 
g 

Thus it should continue underneath the normal threshold singularities in each 

channel g .e G. On the other hand, (4.2) can be inverted to give 

,. (4.4) 

which is the formula for the multiple discontinuity across the set of cuts H. 

F<.~ example, 

_etc. 

Properties (4.1) ensure that the multiple discontinuity TH vanishes, as it 
0 

should, at any real p such that sh(p) < sh for some heH. 

The general defining properties of the TG and TG are: 

Property 1 

Each TG can be written as 

TG I (-l)n(H) TH (4.5) 

with 

TH I B (4. 6) 

Bf:. df 
H + 

where for each Bf:. PH, and each heH, D(B) contains Dh. 

Property 2 

Each TG can be converted soley by means of unitarity and cluster decomposition 

properties to a form 

L B 
Be (J3 G 

where no B in d) G supports for any ge:G. 

Property 3 

T 

Property 1 ensures that the multiple discontinuities Yri' have the correct 
0 they vanish at real p in sh < sh , h(H. Property 2 

(4. 7) 

support property: 

ensures that TG continues underneath all normal threshold singularities in 

Property 3 ensures that T0 is the physical scattering function channels 

F+. 
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A set of f~nctions satisfying these properties 1, 2, and 3 has been constructed 

by finite methods. The infinite series representations defined in (4.1)-(4.4) 

formally satisfy these properties, and thts·~olution can be shown to be unique, 

in the formal framework. 

5. The 217 Functions TG and TG 

Property .2 makes·. TG cc;mtinu.e underneath the· normal-threshold singularities· 

in channels g~G. However, we also want TG to continue above the normal-

th:eshold singularities in channels g~G = E - G. Consider, therefore, the 
-G functions T and 

the plus signs in 

given by 

defined by the same properties 1; 2, and 3 except that 

and F+ are replaced by minus signs. A solution is 

-(T )t 
H 

and this solution is used. 

6. The Good and Bad MG's 

(5.1) 

For certain G's, called good G's, the relation TG 

MG is defined by 

-c T holds. In this case 

MG - TG TG 

This function continues underneath the normal threshold singularities for 

ge:G and continues above the normal threshold singularities for ge:G. 

In general,the relation holds, and is defined by 

MG TG - DG -c -c 
- T D 

where 
DG - 0 if te:G 

and 

DG - I Bif if te:G , 
(if) e:XG 

and D 
-G -(DT)t. Here 

X - {(if); ife:G, i~G, fe:G} G 
and 

(6.1) 

(6. 2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

.. 

~ . 
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Among the. 2l6 = 65,536 .G's there are 26,018 good G's. These are those 

such that there is ·no ·(H) s~<!h ·that .either {(if)e:G, te:G, HG, fe:G} or 

{(iO.~G, te:G,. .f6G., f6:G} • Fo.r good G's DG = DG = 0, and hence (6.2) reduces to 

(6.1) 

The good are those with good G's. The bad MG's are the rest. The 

MG's do not. However, good MG's have nice analyticity properties, the bad 

the bad MG's will be useful nevertheless. 

7. Formula for Multiple Discontinuities 

Th, multiple disctontinuity across the set of cuts H evaluated underneath the 

set of cuts 9 (s•tisfying en H = 0) is, by definition, 

~G L (-l)n(H') MGH' 

H' H 

This set of formulas is equivalent to the set of formulas (for G(7 H 0) 

~G ~ (-l)n(G') ~G' 
G' G 

(7 .1) 

(7 .2) 

This second form is convenient because most of the ~ are zero. Indeed all 

~ with n(H) > 3 vanish, and many of the rest do also. The nonzero ~ 

are now listed. 

The function M0 - M0 _ M is the connected part of the physical scattering 

amplitude: 

= ~=70--~. 
3~6 

The sixteen single discontinuities Mg are 

M;=~ 

=i~ 

Mf=~f·~ 
~ 

(7.3) 

(7.4a) 
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M(it)=i~l (7.4c) 

and 

Mt=~. 

It is convenient to introduce special symbols to represent the sum of terms of 

S (or of St) that have special connectedness properties. The symbol defined 

by 

;~=;~ i~ {7.5) 

can be shown to represent the sum of the terms of S (or St) in which the 

initial line i is connected to some nontrivial bubble; i.e., it represents 

the sum of terms in which the line i does not go straight through. Similarly, 

the symbol 

~'=~' (7.6) 

represents the sum of terms of S (or St) in which the final line f does 

not go straight through. Finally, the symbol 

i~f 

=~'-.~' . I 
I 

(7.7) 
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repr~~ents the s~m of terms of S (or st) in which neither i nor f go 

straight ~hrough. .rwo f-:re<ijuen·tly used identities, which follow from (7 .8), (7. 9), 

and unitatity; are 

and 

~~ = -::§;' 

~ 
i~ 

-
i 

In terms of these symbols the nonvanishing Mgh are given by 

M;r=~ 

·;~ 

M;t=~ 

=-;~ 

·Mtf:~ 

=-~' 
~ 

M;(ifl".~ 
I 

Mtif)f=.~ ~ 
=-;~, 

The nonvanishing .f·mctions are 

(7 .8) 

(7.9) 

(7.10a) 

(7 .lOb) 

(7.10c) 

(7.10i) 

(7.10e) 
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'-;~ 

'-~' ~ 

~ . I . . - , + 

(7.lla) 

~ (7.llb) 

The first form given for each of these functions MH• although longer than the 

succeeding ones, exhibits a systematic rule: There is a minus box for each 

h in H, and these minus boxes occur between the parts of plus boxes that 

contain nontrivial bubbles on which the appropriate external lines terminate. 

8. The Inclusive Optical Theorem 

To show how these formulas work we calculate M~if)' which is the discontinuity 

across the cut (if) evaluated below the cut f, but above all the other cuts. 

Using in order equations (7.2), (7.6), (7.8), (7.18), and (7.8), one obtains 

M 1
c111 = MCih- Mcif>f 

~ + 

+ 
I 

~ 

.· 
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(8.la) 

In a similar way one obtains 

:·"' . 
(8.lb) 

These formulas (8.1) yield the inclusive optical theorem for the. three-to-three 

case. 

9. Results for, Two-to-Four and ·Four-to.,-Two Processes 

The results for two-to-four and four-to-two processes are very similar to those 

for three-to-three processes. Only the definitions of the channels and the 

formulas for the ~ differ. The nonzero ~ are as. follows: 

(9.1) 

(9.2b) 

·~-+ .. + . 
. f 

(9.2c) 
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~t 
Mt(tf')=~ f' 

=~~/ 

~ 
=-~ 

. t 

M(ff'l(fHt"'l=~f/1 
~f"' 

(9.3a) 

(9.3b) 

(9.3c) 

(9.3d) 

(9.3e) 



DISCONTINUITY FORMULAS Sec •. VII 

Mttlt't"l= 

(9.4) 

The good G's for the two-to-four case are those such that there is no pair 

(ff') such that either {(ff')EG, tEG, f"EG, f"'EG} or {(ff')EG, tEG, f"EG, 

f"'EG} For the good G 

MG TG TG 

For all G 

MG TG - DG -G -G 
T - D 

where 
DG 0 if tEG 

DG I Bff, if tEG 

(ff I) EXG 

Here 

XG - {(ff'): (ff' )EG, f"EG, f"'EG} 

and 

The results for the four-to-two case are mir.ror images of the two-to-four 

results with i's in place of f's. 

10. Generalized Steinmann Relations 

(9.5) 

(9.7) 

(9.8) 

(9.9) 

A pair of channels g and h is sai~ to be overlapping if each of the sets 

that define .g intersect both of the sets that define h. Note that 

·~ 0 (10.1) 
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if H contains any pair of overlapping channels. Then (7.2) implies that the 

same is true for ~G· These results are a generalization of the Steinmann 

relations found in field theory: these latter relations give analogous results 

for the discontinuities formed from 2282 of our 65,536 functions MG. 

VIII. ANALYTIC PROPERTIES OF THE GOOD MG's 

The good MG's defined in the preceding section have nice physical-region 

analyticity properties. In particular, they continue into themselves around 

every singularity surface except for certain exceptional ones. This property 

is the result of systematic cancellations. For each MG is constructed, 

according to properties 1 and 2, as a sum of terms only one of which, namely 

M itself, enjoys this property. All of the remaining terms are represented 

by bubble diagrams with several bubbles, summed over all possible intermediate 

lines connnecting these bubbles. Each of these remaining terms changes its 

analytic form at each threshold where a new term, formerly zero, starts to 

contribute. However, in the sum there is a cancellation of either the plus 

ie: or minus ie: part of every threshold singularity, and i::he function MG in 

some neighborhood of the singularity is a limit of an analytic function from 

some cone of directions in q = Im(p + iq) space. This .result holds, in 

fact, near all singularity surfaces except the exceptional ones. 

Continuation through the physical region is blocked by the exceptional surfaces. 

However, the functions on the two sides of these exceptional surfaces should be 

regarded as parts of a single analytic function, in the context of dispersion 

relations. This will be discussed in the next section. In the present section 

the continuation of the good MG around the nonexceptional surfaces is 

discussed. 

1. · Schnitts a 

A schnitt a is a schnitt that separates a diagram D into two parts each 
g 

of which is connected and contains one of the two sets of external lines that 

define channel g. All lines cut by a schnitt a are required to cross the 
g 

cut 
+ 

in the direction of the positive energy flow in channel g. A schnitt 

a is schnitt a 
g g 

each line of which is either a plus line of D or a .line 

of D with no sign. A schnitt aj is defined analogously, with either minus 
+ lines or unsigned lines of D. A diagram D contains a schnitt 

a-) if and only if it contains a normal threshold diagram D+ 
g g 

2. Signs of Lines V + V 
r s 

a (resp. 
g 

(resp. D-). 
g 

A line v + v in D is a portion of a flow line in D that runs from v r s r 
to v A sign 11 is ascribed to v + v if and only if no schnitt a -n 

s r s g 
in D cuts v + v 

r s 
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3. Theorem 14 

Consider any B, any D that fits into B, and any line v + v 
r s 

in D that 

has sign n. In any representation of D 

where and 

w - w s r 
E vn 

are .the open forward and backward light-cones, and w 
r 

(3.1) 

and w 
s 

are vectors to the space-time location of v 
r 

and V , respectively. 
s 

Proof Suppose n is plus. If V and V both lie inside a plus bubble 
r s 

then each segment on the path between them has a plus sign, hence points into 

do not lie inside the forward light-cone, and (3.1) follows. If V and V 
r s 

the same plus bubble then shrink all plus bubble to points. Then almost any 

vertical line that passes between and V defines a schnitt a .that 
s g 

v 
r 

cuts Vr + Vs' contrary to hypothesis. An analogous argument holds if n 

is minus. 

4. Skeleton Diagrams 

Each Landau diagram 

of D 

D contains a set G(D) of schnitts a • 
g 

is a minimal subset of the flow lines of D 

A skeleton 

such that diagram Ds 

G(D) = G(D ). 
s 

For three-to-three diagrams there are 76 types of skeleton 

diagrams: 

(ai [I] 

~' < 
(C) [3) 

).7" ~ 
I 

( tl [3) 

. ' 7 . .,!< 
(Q) [3) 

' ~ . I 

lil [9) 

' >-+-< 1 .. 

(k) [9) 

(b) [3) 

(d) [ 91 

)4-< 
l 

Ill [9) 

~ I 

(h) [9) 

' > ;'7"/. < 
( Jl [9) 

ill [9) 

FIG. The 
76 skeleton dia­
grams ro·r 3-3 
processes. The 
Indices i and f 
run over 
(1,2,3), and 
(4,5,6), re­
spectively, The 
number In 
square brackets 
be low each fig­
ure Is the num­
ber of ske teton 
diagrams repre­
sented by that 
figure • 
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5. Theorem 15 

Let 

of 

V ~ V be a line of a skeleton diagram 
r s 

D . 
s 

Let G(V ~ V ) be r s 
g such that some schnitt a 

g 
Then for cuts V ~ V . 

r s 
D D that 

s with skeleton .contains G(V ~ V ), for every 
G r s 

in 

Proof 

wh re 

d3 , and for every representation of such a D 

w - w e: v-
s r 

Consider any D with skeleton 

G contains This 

D that fits into a 
s 

D contains no D+ 
g 

every G 

fits into a 

B in 

with g in 

the set 

that 

B 

(5.1) 

G, G(V ~ V ) • + s 
an~ hence no schnitt a with 

g 
G(V ~ V ). Thus g in 

(3.1). 

"'G Theorem 15' Theorem 15 holds if ~ 

v 
r 

-+V 
s 

has a minus 
r s 

sign n, and (5.1) follows from 

+ -G 
replaced by. V , where d) 

6. Continuation of Good MG's 

Consider any good G. Then 

MG TG 

and 

MG -G T 

is the set of 

is replaced by 

B = -Bt for 

Around Nonexceptional L( D) 

L B 

Be:~G 

I B 

Be:d3 G 

is 

(6.1) 

(6.2) 

In considering the singularities of MG all Landau surfaces L(D) corresponding 

to diagrams D, having the same type of skeleton D 
s 

will be treated together. 

Suppose Ds is· a tree diagram. Let V ~ V 
r s 

be any minimal line of Ds. 

Then G(V ~ V ) 
r s 

to G or to G. 

will consist of a single element g, which will belong either 

Suppose G(V ~ V ) c G. In this case consider the expression (6 .1) .for 
r s 

The structure theorem says that this expression for MG 

those L(D) corresponding to D that fit into a B 

is singular only on 
li1 G. in ~ If p lies 

only on a subset of these L(D) that all correspond to D's having skeleton 

D , then Theorem 15 says that for all representations of these D (5.1) holds. 
s 

Equation (5.1) precludes the possibility that two D(t•)'3 related to each other 

by a negative scale change both contribute at p = p. lL i~ the clash of the 

ie: prescriptions corresponding to two representations connected by a negative 

scale change that signals the presence of a threshold, a~d that is the normal 

cause for the structure theorem to yi~ld no cone of analyticity near p. 

The other cases are similar. If D
5 

is a tree graph and G(Vr ~ V
5

)C:. G 
then use of (6.2) and Theorem 15' leads to essentially the ~arne result as 
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+ -above, with V replacing V . If D 
s 

is a box diagram then for any good G 

at least two of the four minimal lines v -+ v 
r s 

satisfy either G(V -+ V ) C G 
r s 

or G(V -+V )c G, and (3.1) holds for them. 
r s 

again ruled out. 

Thus negative scale changes are 

The above argument rules out, for good MG, threshold-type singularities 

generated by a pair of D(p) related by a negative scale change. However, 

the continuation might be blocked by some other conspiracy of singularities. 

Or~ can show, however, by dimensional considerations, that the only conspiracies 

tblt can block the continuation near p are those involving two diagrams D
1 

(p) 

and D2 (p) whose external trajectories are transformed into each other by a 

negative scale change for each 

On the other hand, the o
1 

and 

p in some codimension-one neighborhood of p. 

o
2 

must conform to the sign conditions (3.1) 

derived above. Surfaces generated n
1

(p) and n
2

(p) satisfying these conditions 

are called exceptional. The occurrence of such exceptional surfaces appears 

to be essentially accidental and of no great significance for dispersion 

relations. This will be discussed in the next section. 

IX. ANALYTICITY IN THE COMPLEX MASS SHELL 

.The physical-region analyticity properties discussed above flow from unitarity 

···and riiac-rocausality. To obtain analyticity properties at -riorrreal points an 

.additional assumption is needed. In S-matrix theory this extra assumption is 

maximal analyticity, which -says that the only singularities of the scattering 

amplitude are those required for consistency with the other S-matrix principles 

of unitarity, macrocausality, and Lorentz invariance. This assumption, and 

several of its consequences, are discussed in this section. 

1. Maximal Analyticity 

Unitarity and macrocausality yield the physical-region analyticity properties 

described in the preceding sections. Maximal analyticity says that there are 

no singularities in the complex mass shell not required for consistency with 

these physical-region analyticity properties and Lorentz invariance. This 

assumption has two levels. On the deeper "bootstrap" level it refers to a 

complete solution to the unitarity, analyticit~ and Lorentz invariant require­

ments that may in principle determine all the parameters of the S-matrix, i.e., 

the masses; and coupling constants etc. But on the illll1lec'iate.practical level 

it refers to the analyticity properties associated witn given values of the 

masses. On this latter level it means, in practice, an iterative procedure 

whereby the singularity structure in the complex mass shell is built up starting 

frdm the basic normal threshold cuts. In this procedur~ one first neglects 

all cuts but the normal threshold cuts, and then derives further cuts and 

singularities by introducing these normal threshold cuts into the unitarity 

equations. T~ese new singularities are then themselves introduced into unitarity 
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and further singularities are derived, etc. At each stage one considers only 

those singularities that have arisen in the previous stages, and expects to 

generate in the end the complete analytic structure. 

This iterative procedure has two parts. In the first part one considers only 

stable particles (in an approximation where massless particles, and hence 

electromagnetic, weak, and gravitational interactions are ignored) and seeks to 

generate only the physical-sheet analytic structure. This is the sheet in 

wh~ch dispersion relations operate, and hence the sheet of principal interest 

he~ e. In the second part one allows unstable particle poles, and seeks to 

generate the analytic structure on all sheets. 

The initial stages of this iterative procedure are described in the following 

subsections, and are used to obtain hermitian analyticity, crossing, and certain 

other properties rieeded for dispersion relations. 

At the first stage of the iterative procedure one considers only the normal 

threshold singularities and cuts, which include the pole singularities associated 

with one-particle exchange diagrams. The pole-factorization theorem is used 

extensively, and it is assumed that no singularities associated with other 

types of diagrams mask or simulate these one-particle exchange pole singulari­

ties. That is, it is assumed that the only singularities of bubble diagram 

functions that contribute to residues of poles at the ·particle masses 2 
pa m 

a 
are singularities associated with the corresponding one-particle exchange dia-

2 

grams. If at some stage of the construction of the singularity structure a 

singularity is found thc.t disrupts this property then it should be taken into 

account at .the subsequent stages, but not before. Howevever, no such singularity 

has ever been found. 

2. Hermitian Analyticity 

This property says that the functions represented by the plus .and minus bubbles 

are analytic continuations of each other. To show this for a two-to-two 

process consider a larger process whose amplitude contains the two-to-two 

amplitude as a factor of a four-fold multiple-pole residue. The scattering 

amplitude for the larger process is represented by the bubble on the left-hand 

side of 

(2.1) 
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The original two-to-two processes is represented by the central bubble on the 

right-hand side. 

Consider now the unitarity equation 

+ 

c c 
(2.2) 

where the subscript c denotes connected part. It can be separated into four 

terms 

c c c 

where R is the sum of contributions to (2.2) not appearing in any of the 

first three terms. For brevity this equation is written 

A - AO + R 0 (2.3) 

The term R gives no contribution to the four-fold multiple-pole at 

The contributions of the first three terms are displayed in the equations 

Equatiori (2.4) conilnued next page 

m 
(l 

2 
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Equation (2.4) continued 

A_ 

•(2.4) 

A plus or minus sign on a line of a bubble diagram signifies 

the restriction of essential support of the displayed function to the part 

generated by the Landau equations with the restriction aiai > 0. This means 

that the mass-shell delta function associated with this line is replaced by a 

pole, according to the rules 

+ - m 
2 + ie: a 

- i/ 2 2 . - Pa - ma - 1E: 

(2.5) 

in the sense that the displayed function in a neighborhood of one of these 

singularities is represented by a function having a pole factor of the indicated 

type (2.5) and having the indicated residue. This residue is the product of 

the displayed bubble functions, times a factor of plu~ i for each plus line 

andafactor of minus i for each minus line. These factors of i come from 

the residues of the pole factors (2.5). 

The. remaining terms R+' R , and R0 in (2.4) have no four-fold multiple-pole 
2 2-

contribution at Pa =rna a= 1, •.. ,4. 

The momentum-energy variable pa is the momentum-energy variable associated 

with internal line a: 

ie:E a 

(2.6) 

where E is the set of labels i of the external lines of the outer bubble 
a 

connected to line a. 

Multiplication of (2.3) by the factor 

/~ 2 . I I <Pa 
a=l 

gives 

2 
- m ) 

a 
(2. 7) 

.~ 
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A' - A' - A' + R' 0 (2.8) 
+ 0 

where A' 
·+ =11A+ etc·. 

Each of the. three central functions in (2.4) has. certain singularities in the 

complex mass-shell of the four particles a= 1,·••,4. When variable 
2 '2 

p = (p1 , ... ,p16) goes to the pole position pa =rna, a= 1,2,3,4, the 

singularities of these central functions in (2.4) will produce singularities 

in the corresponding primed functions in (2.8). These latter singul~rities 

b 2 2 b b b · p 2 
.J. m 

2
·• h cannot e present at pa_ ma ut a sent at near y po1nts a r a t ere 

is a general theorem of functions of several complex variables (Bremermann's 

special continuity theorem) that rules this out. 

These neighboring singularities of the primed functions are associated with the 

Landau diagrams of the larger process in which the four intermediate pole lines 

in (2.4) are contracted to points. These contributions .to the singularities of 

the primed functions are represented by the first terms in the equations 

A' + 

A' 

A' 
0 

= 

= 

= 

~+R', 

~··'-

~+R' 
~0 

Each first term r-epresents a function that becomes equal to the displayed 

(2.9) 

(2.10) 

(2.11) 

2 2 product of bubble functions at the mass-shell points pa =rna a= 1,···,4, 

and that outside these inass-shell points has only singularities corresponding to 

the Landau diagrams that fit into these bubble diagrams. -The remaining terms 
. ' 

R_; .. R:, and R0 .. have no singularities corresponding to diagrams that fit into 
. 2 2 

.~e bubble diagrams, and they vanish at the mass shell points p m 
a a 



HENRY P. STAPP 

a= 1, ... ,4, along with their discontinuities. The equations (2.9), (2.10), 

and (2.11) represent essentially decompositions of the singularities of A~, A~, 

and A' into those that have discontinuities having nonzero multiple-residue 

at pa2- ma
2 

= 0, a= 1,···,4, are those that do not. 

Consider now a path in the variables of the larger process 

The variable s is the square of the center-of-mass energy of the central 

The variable' 2 is the common value of the variables 2 
and 2 process. p pa ' 

m 
2 is the (assumed common) value of the m The t variable of the central 

a 
process can be fixed at zero, and the other variables of the larger process 

changed in some minimal way that keeps all momentum-energy vectors pi real, 

except near infinitesimal i£ distortions around singularity surfaces. 

p+ be a mass-shell 2 2 1, ... ,4) lying above the Let (pa rna ' 
a point 

physical threshold at s = 4m2. Let A' be continued first at constant s 
+ 2 2 2 2 2 from p m to p = 0, and then at constant p 0 to p = s = 0. This 

path will follow a plus i£ (physical) continuation around the singularities 

·associated with the plus bubbles of (2. 9) and a minus i£ (antiphysical) 

continuation around the singularities associated with the minus bubbles of 

(2.9). The path is allowed, however, to pass through cuts corresponding to 

singularities 

function A' + 
this way the 

At the point 

of the function R~ of (2.9). In crossing such a cut the 

changes by just the discontinuity of R~ across this cut. In 

function on the path remains always the function 

2 
p = s = 0 the term A' 

0 

A' 
+ defined above. 

the lowest threshold s = 4/ in the 

vanishes, because this point lies below 

s channel. Thus by adding R', which 

can be considered to be the discontinuity across a cut, one obtains the 
2 2 function A~~ which isthencontinued at p = 0 back to s > 4m , and then at 

constant s to the mass shell point P Thus one has a path that follows 
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well-defined iE rules for singularities corresponding to diagrams having the 

four verti~es a, but that jumps across cuts associated with the functions. 

R~, R',. and R'. 

Let this path of continuation now be shifted into the mass shell 2 
p 

2 
m 

In this shift of the path of continuation one keeps track of the various cuts 

of the functions R~, R', and R~, that the path jumps across, but does not 

seek to avoid them: instead one adds the discontinuities across these cuts. 

However, one does try to distort the path away from singularities corresponding 

to diagrams that have the four vertices a. 

In tracing out the distortion of the path one may consider the five parts 

separately; one traces out the motion of the singularity surfaces of the 

individual bubbles of (2.9), (2.10), and (2.11) as the "mass variable" 

corresponding to the vertices a increase from zero to m 
a 

2 

2 
Consider first the path in the variables of the central bubble. For p = 0 

this path starts at a point s = 4m2 + E above threshold,continues down to 

s = 0, crosses the line Im s = 0, and continues back. As one shifts p
2 

from zero to m
2 

certain singularities may cut across this original path in 

the s plane and force a distortion. However, in the first stage of the 

iterative procedure one considers only normal threshold singularities. These 

stay fixed in the 
2 

thresholds in p 

s plane and hence cause no distortion of the path. Normal 
2 2 . 

must lie at p > m , and hence are not encountered in the 

continuation. 

Consider next the paths in the variables of the outer bubbles. These can be 

made to trace exactly the same paths along the original and return portions of 

the part between p 
2 

m 
2 

and p 
2 

0 at fixed s > 4m
2

• Moreover, since the 

invariant variables of the outer parts are independent of s one can keep the 
···..! 

same path in the space of invariants for all s. 

After the path is shifted into the mass shell, which is certainly possible at 

the first stage of the iteration procedure, one has a mass-shell path of 

continuation that connects the residue at P+ to the residue at P . This 

path.jumps across various cuts of the functions R~, R', and R', but the 
2 - 2 

discontinu-ities across these cuts vanish on the mass shell pa = ma 
a = 1, · ·. ,4. Thus the analytic continuation of the residue at P+ along the 

mass-shell path to the point P yields the residue at P . 

The residue at P+ is, by virtue of the pole-factorization theorem, the product 

of the five functions represented by the first term of (2.9). Similarly the 

residue at P is the product of the five functions represented by the first 

term of (2.10). 
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The five functions in the residue at P+ continue independently. The variables 

of the outer processes remain always at the same point in the space of the 

invariants, and trace out only a trivial path in p space. Thus in the continua-

tion from P+ to P the outer functions continue into themselves, and hence 

into the outer functions occurring in the residue at P • Therefore the inner 

function must continue from its value in the residue at P+ to its value in the 

residue at P . That is, the function represented by the plus bubble must con­

tinue into the function represented by the minus bubble. The path of continuation 

in the variables of the central process, is, at the_ first stage of the construc­

tion of the singularity structure in the complex mass shell, a path that starts 
2 

at a physical point above the physical threshold s = 4m , moves in the upper 

half plane (i.e. via the plus i£ rule) to 

lower half plane and returns via the minus 

s = 0, where it moves into the 
2 ie rule t6 the region s > 4m . 

This relation between the plus and minus bubbles is called hermitian analyticity. 

At a later stage of the construction of the singularity structure some singularity 

may move across the original s-plane path of continuation during the shift from 
2 2 2 

p =-o to p = m , and cause a distortion of the path away from its original 

position. An example will be given later. But at the initial stage, where only 

normal threshold cuts are considered, the plus and.minus bubbles represent two 

different boundary values of the same analytic function. 

The same argument works for multiparticle amplitudes, and shows that our good 

functions MG are the boundary values indicated by G of a single analytic 

function, at least at the first stage of the construction of the complex singu­

larity structure. To obtain this result the larger space is constructed by 

replacing each line of the 6-particle process by four lines, as in (2.1). The 

needed equation in this larger space can be constructed, in the formal framework, 

by defining the functions by the same equations in terms of 

but with the T's now functions in this larger space, and the 

Bi as before, 

D+'s now the 
g 

natural in~ges of the original 

_proceeds as just before. 

in this larger space. The argument then 

As an example consider the case where g = i = 1 designates an initial subenergy 

channel. It is sufficient to enlarge the process only with respect to the two 

initial lines 2 and 3. As before, the T of the enlarged process is continued 
. 2 2 2 

to p2 = p
3 

= 9, at fixed s
23 

= (p2 + p
3

) and then to 

0. At this point the discontinuity function Tg = T
1 

vanishes, and T can be replaced by T- T = Tg, modulo R-type functions, 
g 2 2 2 2 

first from 
2 

s23 = P2 

which are functions that lack the double pole at p
2 

= m
2 

, p
3 

= m
3 

Then 

Tg = T - T is continued back to P_, following the i£ prescription approp­g 
riate to it, and jumping across R cuts, and also across the cuts attached to 

exceptional surfaces, by adding the appropriate discontinuities. Finally the 
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path is distorted into the mass shell 
2 2 

p2 = m2 , 
2 2 p

3 
= m

3 
, and the residues 

the double pole in T and considered. These two functions are 

analytically connected by the mass--shell path obtained by distorting into the 
2 2 

mass shell the original p
1 

= ~2 = 0 path in the s
23 

plane. That original 

path starts in s
23 

> (m
2 

+ m
3

) , then runs down to s
23 

0 following the 

plus i£ rule for singularities not of R type, and then runs back to 

s
23 

(m
2 

+. m
3

) 2 following the i£ rules appropraite to Tg =Mg. Again the 

two ·.uter factors can be factored out, leaving the analytic connection between 

T and T - T 
g 

in the space of the six original particles. This path jumps 

across cuts attached to exception_al surfaces. The placement of such cuts will 

be discussed later. 

By similar arguments one can derive 

+ r) 
c 

(2.12) 

where the left-hand side represents the continuation of 

complete set of cuts that start at the threshold point 

S (a,S; 'Y) 
c 

to below the 

The -CL 

s 
CL 

0 

box is, as before, an operator in 

sets of particles the sum of whose masses is 

restriction of the S-matrix to this space. 

(2 .13) 

CL space, which is the space of 

s 0 , and is the inverse of the 
CL 

In deriving (2.12) the original 
2 2 

path in the variables of thE larger process can be taken to lie at pCL = mCL - £, 

p 2 = 0, and to describe an infinitesi­
CL 

with £ arbitrarily small, instead of at 

mal contour in the space of variables of the central process, since this small 

contour is enough to take it into the region < 
0 where the threshold s s , 

CL CL 

term vanishes. Thus the continuation that connects S ( CL, 13; y) to the ·function 
c 

represented on the left-hand side of (2.12) is nondistJrted; it is an infinitesi-

mal circle around the threshold point that is the contlnu:~tion into the mass-
Z 2 

shell of a infinitesimal circle originally define-.d for pCL m
0 

- £, for 

£ > 0. 

3. Crossing 

Crossing is the property whereby the analytic continuation of the scattering 

function for any given process describes also the various p-ocesses related to 

it bych~n~ipgvarious sets initial particles into final antiparticles, and 

vice versa. It ls derived by methods very similar to those just described, so a 
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very brief description will suffice. 

Conside~, for example, a pole in a four-to-four amplitude 

(3.1) 

This pole lies at 

is the exchanged momentum-energy. If the exchanged particle has an antiparticle 

then this same four-to-four amplitude will have, in another portion of its 
2 2 

physical region, another pole at Pa rna 

(3.2) 

0 The first pole lies in the region pa > rna, whereas the second lies in 

pa
0 

<rna. The intervening regiori along pa
2 = ma

2 
lies outside the physical 

region. 

Let f+ be the four-to-four scattering amplitude, and consider the continuation 

of the residue function (p 2 - m 2)f+ along the path indicated below: 
a a 

(3. 3) 

.... 
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This continuation starts a mass-shell point P+, at which the residue function 

is i times 

(3.4) 

and moves, staying always in the physical region of 

P_, at which the residue function is i times 

f+, to a mass-shell point 

(3.5) 

2 2 Let this path now be shifted into the mass shell pa = rna , jumping across all 

cuts of the R-type, which are cuts corresponding to diagrams that are not 

separated into parts in the manner indicated in (3.4) and (3.5). As before, 

the discontinuities of the residue function across these R-type cuts will 
2 2 

vanish at pa = rna , because they do not correspond to one-particle exchange 

diagrams, and hence lackthepole singularity. However, the discontinuity across 

the singularities corresponding to diagrams that fit into the bubbles (3.4) and 

(3.5) will be nonzero, in general, and should be avoided, if possible. 

At the first stage of the procedure for building up the singularity structure 

the path of continuation can certainly be shifted into the mass shell, for the 

only normal threshold singularity that could block the shift would be one in 
2 2 2 

the variable pa , whereas the point pa ma lies below the lowest communi-

cating normal threshold in this channel, by virtue of the stability of particle 

a. 

· If the path can be shifted into the mass shell then the product represented by 

(3.4) continues into the product represented by (3.5). The individual factors 

are functions of different variables and hence they also continue into each 

other, modulo constant factors c and c-l 

These factors c and 

be defined by 

and 

-1 
c can be taken to be unity. To see this let 

+ - c 
cf (···-p. ; ···) 

l. 

-1 + - c 
c f (···;-pi ···) 

where the functions on the left-hand sides represent the continutions of 

(3.6) 

(3. 7) 
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and ···), ~espectively, from their original physical 

regions along an on-mass-shell crossing path to the real point p.c, which has 
1 . 

negative energy component, and the bar over indicates that the associated 

suppressed type-variable is ti = -ti, which designates the antiparticle of the 

particle of type t .. Continuation of (3.6) along the path of hermitian 
1 

conjugation of the function on the right gives 

ch f ( ... ; ... p ) -ch cf ( .. ·-p ; ..• ) 

- -ch 
cf (· · ·-p ; · · ·) 

+ ~ch * c(-f (···; ···~p )) 

On the other hand, the continuation of 

hermitian conjugation gives 

h 
f(···; ···pi) 

(3.8) 

along its path of 

(3.9) 

Continuation of (3.9) along the path of crossing of the function on the right­

hand side gives, by virtue of (3.7) (and 'bose statistics), 

The paths ch 

he f ( ... ; ..• p. ) 
1 

-1 + - he * 
-(c f (···; ···-pi )) 

and he are homotopically equivalent, at least 

(3.10) 

stage of the iterative procedure. 
ch Hence the points p 

at the first 
he and p represent 

the same points on the Riemann surface. 

yields 

Thus comparison of (3.8) and (3.10) 

which says that c = c
1 

is a phase factor: ci exp i$i· 

Because of the factorized form of (3.4) and (3.5) this phase factor 

c. depends only on the type t. of the particle exchanged. This factor may 
1 1 

be removed completely by redefining the phase of the S-matrix: 

where 

and 

c 

(. 
1 

flexp ( -i ~ 
i=l 

-1 for i 1, · · · ,m 
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+1 for i = m+l,···,n 

The phases will always be chosen so that the ci are unity. 

The above arguments yield hermitian analyticity and crossing only at the first 

stage of the iterative procedure for building up the singularity structure in the 

complex mass shell, but this is all that is needed to start the procedure going. 

At later stages certain cuts generated by the iterative procedure may block the 

continuations, but these cuts, since they are generated by unitarity should, 

in principle, have their discontinuities determined by unitarity. If they do 

then it is not important whether they block or do not block the paths of 

crossing and hermitian analyticity. 

4. Triangle Diagram Cuts 

The second stage of the iterative procedure generates cuts associated with 

triangle diagram singularities. 

Consider, for example, the six-particle function f as a function of one initial 

subenergy o, with seven other variables s held fixed and nonreal. At the first 
g 

stage of the iterative procedure the function f near the o normal threshold 

can be represented by the Cauchy· formula with a principal contribution 

L Disc f(o') 
d0 1 0 

2Tri (o' - o) 

The discontinuity is given by 

Disc f(o') 
0 

Let ~ represent some triangle diagram 

a 

(4.1) 

(4. 2) 

(4.3) 

and consider the discontinuity of (4.2) around L(~). The discontinuity of a 

b~bble dia~ram function F8 around a singularity surface L(D) is obtained by 

summing, over all ways that D fits into B, the discontinuity associated with 



HENRY P. STAPP 

this particular way. This latter discontinuity is obtained by replacing each 

bubble b of B by the discontinuity function associated with the part Db of 

D that fits into b. 

In our case the diagram ~ fits into (4.2) in two ways. In the first way the 

initial vertex fits into the minus bubble and the other two vertices fit into 

the plus bubble. In the second way the leading vertex is considered to be a 

contraction of several vertices, one of which fits in the minus bubble, and the 

rest of which fit into the plus bubble. (Only unsigned lines can be contracted.) 

Actually these latter diagrams D are different from ~ but, because of the 

contraction of vertices, the surfaces coincide, and they should be considered 

together. 

The sum of contributions corresponding to these various ways of fitting ~ into 

(4.2) is 

a a 

+ 

a 
= 

a 

= 

Disc~ Disc
0 

f (4.4) 

; 
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Note that 

Disc
6 

Disc
0 

f (4. 5) 

This relation (4.5) means that the surface 1(6) need not be singular on all 

sheets of the a cut: the 6 singularity can be "shielded" by the a cut, 

and not appear on all sheets. 

Consider, for simplicity, a theory with all masses equaL Then the physical 

region in the real a - s plane con~ists of the two shaded regions in 

The little oval in the 4-by-4 box represents the location of the triangle 

diagram singularity for the case in which each set of lines a, 8, and y 

(4. 6) 

of 6 cbnsists of one line. A condition on the singularity structure entailed 

by the arguments of the preceding subsections is that if .the singularity 

structure is formally continued off-:mass-shell to a neighborhood of the origin 

p = 0, then .that neighborhood should be free of singularities. This condition 

~ntails that the dotted portion of the triangle singularity not be present on 

the physical sheet: it must lie on an unphysical sheet of the a cut. 

Tracing the motion of the ~ singularities in the a plane as s increases 

from a·value slightly less than three, and moves on a path infinitesimally 

above the real axis, one finds 
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~I -------
--- s=IO l,--

-+---~. --n 
~ 

- .... ·-----
5 =I 0 • 

(4. 7) 

where the solid line represents the physical-sheet part of the trajectory. 

This path is also traced out in (4.6). The two singularities of the discon­

tinuity function (4.4) at each value of s are connected by a cut, which is 

here pictured for s = 10: 

3-3 

rzzam 
~=4 

s = 10 
• .. 

) 
S: 10 

2-4 
VV?ZV 

(4. 8) 

This cut separates the real a axis into two parts, in which lie the 3 ~ 3 

and 2 ~ 4 physical regions. The discontinuity formula in the 3 ~ 3 physical 

region is representEd by 

(4. 9) 

.~ 
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whereas that in the 2 + 4. physical region is repre~ented by 

(4.10) 

This cut that separates the two physical regions of the discontinuity function 

does not separate the two physical regions of the scattering function itself: 

they are connected by a direct path that remains always near the real o axis. 

This is because the part of the cut in the discontinuity that lies in the 

upper-half o. plane lies on the unphysical sheet of the scattering function. 

On the other hand, the part of this cut that lies in the lower-half o plane 

extends into the physical sheet of the scattering functions, and hence gives an 

extra contribution to the dispersion (i.e., Cauchy) formula. 

As one formally increases the mass my of line y in ~ the tip of the cut 

curls around and at m 
y 

2 it touches the underside of the 3 + 3 physical 

region: 

l s = 10 
my=2 

~," -- .... , 
3-3 \ .. tJ 

(4.11) 

This singularity sits in the. region associated with the function Mg, where g 

identifies the o cut that we have been discussing. The continuation of Mg 

is blocked by this singularity surface, which is one of the exceptional surfaces 

mentioned in earl~er sections. 

This surface does noL :ause any serious difficulty for dispersion relations. 

In the principal contribution to the Cauchy formula, i.e., in the contribution 

from the normal thr»s!.old cut, one uses the normal threshold discontinuity 

formula (4.8) or (4.10) at all points along the cut. However, there is also 

the contribution corresponding to tl1e loop in the lower-half plane of (4.11). 

The discontinuity aero: s this latt('r cut is given by (4.5). 



HENRY P; STAPP 

This relatively simple situation can be contrasted to conceivable ones in which 

the singularity lies at the end of a cut that bounds the physical sheet and 

extends to infinity, and for which no discontinuity formula is known. 

cut would add an uncontrolled contribution to the dispersion relation. 

Such a 

As the mass m increases above 2, with a small negative imaginary part, the 

/:; diagram cut passes through the sequence of positions shown below (s = 10) 

~ ' 
VZTL{??;V 

----.. 
(VZZZ?Vl 

I 

-- ---
_;. .. 

/ 

\ VZZZZZZI 
' ' ..... 

vzvzaz 

fVVZZZ 

vzvzvz 

That is, it rapidly retreats from the physical sheet, and then moves, in the 

unphysical sheet, away from the real axis. 

The situation indicated in (4.11) occurs when m m + 1, and a and s are y p 

large enough. so that the process represented by the triangle diagram (4.3) is 

physical. Thus as the masses 

move to larger values of s 

m , rna, and m increase these singularities 
a " y 

and cr. The physical-sheet parts of the /:; cuts 

are torifined to a neighborhood of the gap between the two physical regions 

that grows only as \(0 (or ~). Hence these singularities become increasingly 

localized on rays that run almost parallel to the line a = s: they do ·not 

go into the regi0n ~here a j> s or s >> a. This is true both for the case 

above, where 

for the case 

and the cut curls into the 

where the cut curls into the 

3 .... 3 

2 .... 4 

region, and also 

region. This 

localization of these complex cuts will be used in the discussion of the 

generalized fixed-t dispersion relations. 

5. Higher Cuts 

Box diagram cuts and ~·gher-order cuts are generated by the same procedure. Box 
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diagram cuts sometimes protrude from triangle diagram cuts, etc. In the 

examples studied so' far nothing happens that is significantly different from 

what happened in the ~ case, and all the new physical-region ~uts appear to 

be localized in the neighborhood of the gap. 

REFERENCES-TO PROOFS OF THEOREMS 

Theorem 1 is Theorem 5 of Chandler (1). Theorem 2 is trivial. Theorem 3 is 

proved in Stapp (10). Pharo's Theorem is proved in .Pham (9). Theorem 4 is 

part of Theorem 6 of Chandler (1). A similar res~lt at nonpositive-a points 

is proved in Section 3 of Coster (2) (see (3.10) of that reference). A still 

more general version is lemma A9 of Appendix A of Coster (5). Theorem 5 is 

Theorem 7 of Chandler (1). Theorem 6 is contained in Theorem 6 of Chandler (1). 

The connection between Landau surfaces and space-time diagrams is discussed in 

detail in Chandler (1), in Coster (2), and in Iagolnitzer (8). 

The formal method is developed in Coster (4) and in Coster (5), where the 

uniqueness of the TG and TG is shown. The general formula for the discon­

tinuity of f+ around L
0

(D+) is derived by finite methods in Coster (2) 

for all points lying below the lowest 4-particle threshold. The results (4.1) 

and (5.1) of Section V are Eqs. (B3) and (5.7) of Coster (3). The properties 

of the -a box are described in detail in Coster (3), where a is replaced 

by i. 

The discussion given here is more general than that of the earlier works in 

that it uses the newer stronger version of the structure theorem recently 

proved by Iagolnitzer, and discussed in the preceding series of lectures. 

This allows some unnecessary assumptions to be eliminated. 

The proof of hermitian analyticity and crossing is essentially the argument 

of Olive, which is described in Eden (6), and developed in Stapp (11). The 

discussion of the triangle diagram cuts is based on the work of Hwa (7). 
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