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ABSTRACT: 

The ability to achieve highly-resistive beta-phase gallium oxide (β-Ga2O3) layers and 

substrates is critical for β-Ga2O3 high voltage and RF devices. To date, the most common approach 

involves doping with iron (Fe), which generates a moderately deep acceptor-like defect state 

located at EC-0.8 eV in the β-Ga2O3 bandgap. Recently there has been growing interest in 

alternative acceptors such as magnesium (Mg) and nitrogen (N) due to their predicted deeper 

energy levels, which could avoid inadvertent charge modulation during device operation. In this 

work, a systematic study that makes direct correlations between the introduction of N using ion 

implantation and the observation of a newly observed deep level at EC-2.9 eV detected by deep-

level optical spectroscopy (DLOS) is presented. The concentration of this state displayed a 

monotonic dependence with N concentration over a range of implant conditions, as confirmed by 

secondary ion mass spectrometry (SIMS). With a near 1:1 match in absolute N and EC-2.9 eV trap 

concentrations from SIMS and DLOS, respectively, which also matched the measured removal of 

free electrons from capacitance-voltage studies, this indicates that N contributes a very efficiently 

incorporated compensating defect. Density functional theory (DFT) calculations confirm the 

assignment of this state to be an N (0/-1) acceptor with a configuration of N occupying the oxygen 

site III [NO(III)]. The near ideal efficiency for this state to compensate free electrons and its location 

toward the midgap region of the β-Ga2O3 bandgap demonstrates the potential of N doping as a 

promising approach for producing semi-insulating β-Ga2O3. 
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Beta-phase gallium oxide (β-Ga2O3) possesses an ultra-wide bandgap (UWBG) of 4.6-4.8 

eV1–3, inherent n-type conductivity with donor impurities4,5, and projected high radiation 

hardness6,7. The advantageous material properties of β-Ga2O3 lead to outstanding device figures 

of merit projections that can revolutionize high voltage and RF devices. As a result of these 

anticipated performance specifications, a large body of research has focused on advancing the 

quality of gallium oxide materials, heterostructures, and a wide variety of devices. To date, high 

breakdown β-Ga2O3 metal-semiconductor field-effect transistors (MESFETs)8, high 2DEG charge 

densities in (AlxGa1−x)2O3/Ga2O3 modulation-doped field-effect transistors (MODFETS)9, and 

enhancement mode β-Ga2O3 transistors10 have been epitaxially grown on Fe-doped β-Ga2O3 semi-

insulating substrates. For these lateral devices, it is necessary to have semi-insulating or highly 

resistive buffers or substrates acting as a blocking layer to prevent buffer leakage. Regardless of 

the growth method, the unintentional n-type conductivity can be compensated by introducing deep 

acceptor-like impurities. Density functional theory (DFT) calculations have identified several 

impurities that are predicted to form deep acceptor-like bandgap states, such as iron (Fe), nitrogen 

(N), cobalt (Co), and magnesium (Mg)11–14. These deep acceptors can be used as dopants to 

compensate for excess electrons and create highly resistive layers.  Of these, Fe has been adopted 

in most cases for achieving highly resistive and semi-insulating bulk β-Ga2O3 substrates and 

epitaxial layers12,15,16.    

Due to this popularity, much work has been published regarding the properties of Fe in β-

Ga2O3. Computational results validated by deep-level (thermal) transient spectroscopy (DLTS), 

electron paramagnetic resonance (EPR), and cathodoluminescence (CL) experiments have 

demonstrated that Fe incorporates into n-type β-Ga2O3 as an acceptor-like defect.12,17–26 It is 

predicted to preferentially substitute on the Ga sites in the β-Ga2O3 lattice, creating a bandgap state 

at EC-0.8 eV (commonly referred to as E2).12,27  However, with an activation energy of only 0.8 

eV below the conduction band, Fe has shown to be a source of device instabilities. For example, 

McGlone et al. have shown a clear link between the thermal emission of electrons from the EC-0.8 

eV Fe state during device biasing and significant threshold voltage instabilities for β-Ga2O3 delta 

doped MESFETs.28 This results from Fe incorporation from the Fe-doped substrates tailing into 

the unintentionally doped (UID) epitaxial buffer layer between the substrate and the 2DEG device 

channel. Hence, while this degradation mode can be mitigated by using thicker UID buffers 19, this 

highlights the concern that the EC-0.8 eV position of Fe acceptors in the 4.6-4.8 eV bandgap of β-

Ga2O3 may not be ideal since its charge state can be modulated during device biasing and trapped 

electrons can be thermally emitted. An impurity with a deeper acceptor level could therefore be 

advantageous in reducing the chance of modulating its charge state during biasing and becoming 

thermally ionized, even at the high operating temperatures envisioned for β-Ga2O3 power 

electronics.  

As a result, there is interest in alternative acceptor-like dopants to Fe. A recent study 

published by Seyidov et al. demonstrated cobalt doping in Czochralski (CZ) growth resulting in 

semi-insulating β-Ga2O3 substrates with the Fermi level pinned at EC-2.1 eV.13 Similarly, Mg 

doping has resulted in high-quality semi-insulating β-Ga2O3 materials with a predicted acceptor 

level at EC-3.4 eV by DFT.11,14,29 Nitrogen has been identified as a deep acceptor candidate by 

Peelaers et al. through DFT calculations.11 N substituting on oxygen I, II, and III sites in the β-
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Ga2O3 lattice forms acceptor-like levels with (0/-1) charge-state transition levels at EC-1.61 eV, 

EC-1.46 eV and EC-2.84 eV, respectively.11 In recent experimental measurements after ion 

implantation, N was found to diffuse only at temperatures greater than 1100oC, while Mg diffusion 

was observed at temperatures as low as 800oC.30,31 Using these results and evaluating them with 

transition state theory, barrier diffusion activation energy of 3.87 eV for N and 2.84 eV for Mg 

was obtained.11,30 Large activation energies indicate high thermal stability in extreme 

environments and are desirable for deep acceptor dopants. In addition, the ion implantation study 

reported that a high acceptor doping efficiency was achieved using N.30 Nitrogen has been 

successfully incorporated in epitaxial layers grown by metal-organic chemical vapor deposition 

(MOCVD) using an N2O precursor, resulting in room-temperature electron mobility of 153 cm2/Vs 

and low net ionized doping concentration of 1014 cm-3.26,32 With these promising preliminary work 

as motivation and given the lack of experimental knowledge regarding the nature of nitrogen-

related defects within β-Ga2O3, we have undertaken a study to investigate the electronic properties 

associated with nitrogen-related deep-level defects within β-Ga2O3.  A combination of both deep-

level transient (thermal) spectroscopy (DLTS) and deep-level optical spectroscopy (DLOS) 

measurements were applied to a systematic sample set of Si and N co-doped β-Ga2O3 materials 

designed to allow for precise and quantitative identification of nitrogen-related defect states in β-

Ga2O3, which were confirmed by DFT calculations. This study suggests very efficient 

incorporation of nitrogen into a preferred configuration in the β-Ga2O3 lattice, having an energy 

level of EC-2.9 eV, implying significant promise for future applications of nitrogen doping to 

create ideal, highly resistive β-Ga2O3 materials for implementation into future device technologies.  

 

TEST STRUCTURES 

A systematic set of experiments was performed using several N-implant conditions on thick, Si-

doped hydride vapor phase epitaxy (HVPE) grown β-Ga2O3 materials with (001) orientation to 

investigate the introduction of deep levels associated with nitrogen. The reference sample was a 

10 µm thick Si-doped HVPE grown epilayer on a highly conductive (n = 3-5×1018 cm-3) Sn-doped 

β-Ga2O3 substrate procured from Novel Crystal Technology.33,34 The HVPE-grown epilayer was 

doped with Si to achieve a net ionized doping concentration of 1.2×1017 cm-3. This value was 

chosen so that subsequent nitrogen co-doping via ion implantation could be used to achieve 

nitrogen concentrations high enough to be measured using secondary ion mass spectrometry 

(SIMS), i.e., above the SIMS detection limit of ~ 1×1016 cm-3, while simultaneously producing an 

appropriate degree of carrier compensation to be within ideal measurement conditions for 

capacitance-based DLTS and DLOS characterization. Using Stopping and Range of Ions in Matter 

(SRIM) simulations,35 a uniform implantation profile was created by combining nitrogen implant 

energies from 10-680 keV, each with different dose; an example of the individual implant profiles 

is shown in Fig 1a in the light grey curves. The cumulative nitrogen implant profile from the 

individual energy implants results in the desired uniform nitrogen concentration profiles. Two sets 

of samples were created, one with a uniform nitrogen doping of 2×1016 and another at 5×1016 cm-

3, within the top ~0.8 μm of the HVPE layer, depicted in Fig 1a. The implantation was performed 

using a commercial implanter (Cutting Edge Ions). Post-implantation annealing was performed at 
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1100oC in nitrogen ambient for 10 minutes using a rapid thermal annealing system to remove 

implantation damage and activate the dopants as reported elsewhere.30 The annealing was 

performed on ULVAC technology MILA 3000 rapid thermal annealing (RTA) system.   

Multiple Schottky diodes were fabricated on each of the three samples: a baseline HVPE 

sample without implantation and annealing and the two implanted and annealed samples with 

nitrogen concentrations of 2×1016 and 5×1016 cm-3 confirmed by SIMS (discussed later). The 

Schottky diode fabrication process in all cases is now described. All samples were solvent cleaned 

with acetone and isopropyl alcohol (IPA), followed by a rinse in deionized (DI) water. Semi-

transparent 8 nm Ni Schottky contacts (290 × 290 µm2) were then deposited using electron (e)-

beam evaporation, followed by an e-beam deposited ohmic contact stack of Ti/Al/Ni/Au 

(20/200/30/200 nm) on the back side of the conducting substrate. A thick Ni/Au (30/200 nm) 

contact stack of 25 × 25 µm2 was deposited on a small area of the thin 8 nm semi-transparent Ni-

Schottky for probing the device and making stable contacts during measurements. A cross-

sectional diagram depicting the fabricated diodes on the baseline HVPE and the post-implant 

annealed samples are shown in Fig 1b and c, respectively. The fabricated samples yielded dozens 

of high-quality Schottky diodes across each sample, with nearly identical I-V characteristics 

having ideality factors of 1.1 ± 0.05 and leakage current densities below 10-9 A/cm2. Typical 

Schottky barrier heights were found to be ~ 1.4 V as measured using internal photoemission (IPE) 

spectroscopy, with negligible changes after N-implantation.36,37 
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      (b)         (c) 

Fig 1: (a) Nitrogen implantation profiles simulated using SRIM and implemented by implanting 

with multiple energies into the Si-doped HVPE layer for the two target concentrations. The figure 

provides implant profiles of N for the individual implant energies from 10-680 keV used to achieve 

the uniform implantation profiles. Cross-sectional diagrams of the fabricated diode structures with 

Ni-Schottky contacts and backside ohmic on (b) the baseline Si-doped HVPE sample and (c) the 

N co-doped sample with the implanted region in the upper 0.8 µm are shown. 

 

DEFECT SPECTROSCOPY 

DLTS measurements on the fabricated diodes were carried out over a temperature range 

from 77K-400K, enabling the determination of concentrations and activation energies for trap 

states within ~ 1 eV of the conduction band. Briefly, the DLTS conditions used here consisted of 

a “fill pulse” of 0 V for 10 ms to fill traps, followed by a “quiescent state” reverse bias at -2 V for 

2 seconds, during which any capacitance transients due to thermally stimulated electron emission 

from traps are recorded at each temperature from 77 - 400 K in steps of 0.1 K, and subsequently 

analyzed using a conventional double boxcar method.  The full details of the measurement can be 

found in previous publications.38–41 The remaining distribution of trap states in the bandgap was 

obtained using DLOS measurements.  DLOS is based on direct photoemission of trapped carriers 

from states too deep to be seen by thermally stimulated carrier emission measurements like DLTS. 

The trap-filling in the depletion region is achieved with a fill pulse voltage of 0.7 V for 10 seconds, 

followed by a thermal settling time of 100 seconds. Trapped carriers, if any, are then optically 

emitted by a monochromatized light source providing photons with energies between 1.2-5.0 eV, 

scanning the bandgap in 0.02 eV steps for 300 seconds each, and photocapacitance transients are 

recorded. These are subsequently analyzed to extract optical cross-sections of any traps present as 

a function of photon energy. The extracted optical cross-sections are then fitted to the Pässler 

model, which enables the determination of the equilibrium trap energy level and the Frank-Condon 

energy (DFC).42,43 The concentration of each DLOS-detected state is determined from the steady-
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state photocapacitance (SSPC) associated with each state. The lighted C-V (LCV) method was 

also used to assure complete saturation of the SSPC for accurate trap concentration extraction since 

we have reported that for cases where a defect state possesses a small optical cross-section, SSPC 

saturation can be difficult.36,37,44,45  

As noted above, the Si:N co-doping concentrations were chosen to allow correlations 

between the nitrogen concentration, carrier compensation, and deep-level concentration by being 

within the measurement limits of both SIMS and DLTS/DLOS. The nitrogen concentration 

profiles obtained by SIMS for both target concentrations after the post-implant anneals are shown 

in Fig 2a, revealing uniform implant profiles in close agreement with the targeted design discussed 

earlier. Capacitance-voltage (C-V) measurements reveal systematically increased carrier 

compensation (lower net doping) as a function of increased nitrogen doping, as shown in Fig 2b 

(It should be noted that without post-implant annealing the implanted samples are fully depleted, 

presumably due to implantation damage). Based on the simple assumption that each nitrogen 

defect is activated and removes a single conduction band electron, nitrogen doping should remove 

approximately 17% and 42% of the free electron concentration in the lower and higher nitrogen 

co-doped samples, respectively, for each N concentration. However, the results indicate that while 

almost all the implant damage was removed by the post-implant anneal, the slightly higher amount 

of carrier removal actually observed, at 27% and 67%, respectively, suggests that some damage in 

the form of additional compensating defects is likely to remain, in addition to the nitrogen 

acceptors. This work, however, is not focused on anneal optimization. The next section presents 

comprehensive DLTS and DLOS investigations, which focus on identifying nitrogen-related states 

but can also reveal residual defect states that could contribute to the slightly higher degree of 

observed carrier compensation for the implant and anneal conditions used here.       
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(a)                                                                         (b) 

Figure 2: (a) The N concentration profiles measured by SIMS in each sample and the (b) 

corresponding net ionized doping (ND-NA) concentrations extracted from the CV for each co-

doped sample, after both implant and anneal, along with the non-implanted control (black) sample. 

The N concentration in (a) matches the difference in net ionized doping (b) between the control 
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sample and the respective implanted samples in a monotonic fashion, indicating very efficient 

carrier removal by N, as desired.  

 

DLTS RESULTS 

 

The DLTS spectra for the baseline and two N co-doped (post-implant and annealed) HVPE 

samples are shown in Fig 3 a-c, with the Arrhenius characteristic for each DLTS trap shown in Fig 

3d. The DLTS spectra reveal states at EC-0.25 eV, EC-0.34 eV, EC-0.4 eV, EC-0.6 eV, EC-0.7 eV, 

and EC-0.8 eV. The levels at EC-0.7 eV and EC-0.8 eV are also present in the baseline Si-doped 

HVPE sample, while the other four levels were only observed in the N co-doped samples. The trap 

concentrations for each state were calculated using the “lambda” correction to account for the 

volume of the depletion region in which the occupancy of the specific trap level is modulated by 

the DLTS biasing.40 This is critical for the most accurate concentration values, shown for each trap 

in Fig 3 a-c.  

Several observations are important from the DLTS data.  First, none of these energy levels 

match anywhere close to the predicted nitrogen states previously reported for β-Ga2O3.  So, the 

sources of these states are likely due to pre-existing defects in the baseline Si-doped HVPE 

material or result from implantation damage that was not fully removed by the post-implant anneal 

process used here and is not related to nitrogen.7,12,21,46 Second, regardless of their source, the 

individual and total concentrations of DLTS-detected traps are on the order of 1013-1014 cm-3. This 

is far lower than what can account for the large carrier removal observed in the C-V data. Still, the 

total is large enough to account for some of the differences between the anticipated and measured 

amount of carrier removal discussed above. While this work is not focused on optimizing the 

implant and annealing conditions for nitrogen doping by implantation, it is still helpful to consider 

possible sources for these defect states to provide insights into the HVPE material and the implant 

process used here.  

To that end, we have included other sets of well-known and commonly observed DLTS 

data with the Arrhenius plot shown in Fig. 3d, which are associated with Fe impurities and point 

defects due to high-energy particle irradiation, as labeled in the same figure. Comparisons with the 

data here are revealing.  First, the radiation-induced defect data closely matches three trap states 

observed here, at EC-0.34, EC-0.6, and EC-0.7 eV.7,47 Since the proton radiation damage produces 

intrinsic point defects, these are all likely due to residual damage from the nitrogen implantation 

process.  The state at EC-0.7 eV has received significant focus in prior work and has been connected 

with gallium vacancies; recent work has proposed the Ga-O divacancy as the most likely 

origin.7,12,17,47 Additionally, the state detected at the EC-0.8 eV closely matches the well-known 

trap associated with FeGa defects, suggesting that residual Fe is present in the HVPE material.12,15,21  

As noted above, both the EC-0.7 and EC-0.8 eV traps are present in the control baseline HVPE 

sample, and the concentration of the EC-0.8 eV trap did not change, consistent with its source being 

residual Fe.  Finally, the sources of the remaining two DLTS states at EC-0.25 eV and EC-0.4 eV 

could be introduced by the implant damage and/or by the annealing process. Regardless, none of 

the DLTS traps have high enough concentrations of consequence to explain the strong carrier 

compensation observed in the co-doped samples.  Thus, the next section focuses on the rest of the 

bandgap using DLOS measurements.  
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(c)                                                                    (d) 

Figure 3: DLTS spectra measured at a rate window of 0.8 s-1 on the (a) baseline HVPE sample, 

(b) 2×1016 cm-3 N co-doped sample, and (c) 5×1016 cm-3 N co-doped sample, with lambda 

corrected concentrations for each state presented in the trap labels. The Arrhenius plot in (d) 

compares the traps from (a) – (c) with previously published results of traps due to high energy 

proton irradiation damage and from Fe impurities in β-Ga2O3.7,12,21  

 

 

DLOS RESULTS 

 

The individual DLTS measured trap concentrations (~ 1013-1014 cm-3) were several orders 

of magnitude lower than the targeted N concentrations shown in Fig 1a or the measured carrier 

compensation in Fig 2b. Furthermore, the N on oxygen substitutional sites in β-Ga2O3 form 

acceptor levels predicted by DFT to be significantly deeper than anything observed by DLTS. 

Therefore, DLOS and LCV measurements were used to interrogate the rest of the bandgap to 
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investigate the possible presence of other state(s) responsible for the carrier compensation. The 

SSPC data in Fig 4a reveals three SSPC onsets, at EC-2.0 eV, EC-2.9 eV, and EC-4.4 eV, associated 

with very deep levels in the bandgap. The concentrations from the SSPC onsets indicate trap 

concentrations on the order of 1016 cm-3, far higher than the DLTS trap concentrations. In order to 

ensure complete saturation of the DLOS-detected states to compare concentrations with SIMS, 

LCV measurements were applied to each state. Considering the EC-2.9 eV state first, Fig. 4b 

compares independently measured EC-2.9 eV trap concentrations with SIMS-measured N 

concentration as a function of the targeted N implant concentration.  There is a clear correlation 

and quantitative match between the concentration of this trap and the total N concentration. The 

LCV measured trap concentrations for the EC-2.9 eV state were found to be 1.8×1016 cm-3 and 

4.5×1016 cm-3 for the 2×1016 cm-3 and 5×1016 cm-3 N co-doped samples.  
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(a)                                                                         (b) 

Figure 4(a): Steady state photocapacitance spectra measured on the baseline HVPE and N co-

doped samples with the precise trap energy and DFC calculated from optical cross-section fitting 

to the Pässler model.43 A monotonic increase in the trap concentration of EC-2.9 eV state with N 

is evident from the SSPC spectra. (b) This figure shows the match between the EC-2.9 eV trap 

concentration measured by LCV, the total N content from SIMS, and the target N implant 

concentration. The dotted line represents a one-to-one correspondence between the target N 

concentration and the measured concentrations of N and EC-2.9 eV trap. 

The overall quantitative trends for all detected states as a function of N implant concentrations are 

depicted in Fig 5, confirming that the primary influence of N doping is on the EC-2.9 eV state. 

Before considering the physical defect configuration associated with the EC-2.9 eV state, the two 

DLOS detected states at EC-2.0 eV and EC-4.4 eV warrant some discussion since both display 

small but measurable increases in their concentrations with nitrogen implantation, as seen in Fig 

5. Previous work on gallium oxide subjected to high energy particle irradiation by both protons 

and neutrons has connected the EC-2.0 eV state with a 2VGa
1 − Gai defect “split-vacancy” 

complex,48 and gallium vacancies will likely form due to the implantation damage (though largely 

annealed out). The commonly reported EC-4.4. eV state is not well understood, and its physical 

source is still being explored, with prior reports showing inconsistent dependencies on variables 

such as growth method and high energy particle irradiation conditions.7,37,45,47,49,50    
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Figure 5: Summary of the energy positions and concentrations for traps detected by DLTS and 

DLOS in baseline HVPE, 2×1016 cm-3, and 5×1016 cm-3 N co-doped HVPE samples. The lambda-

corrected DLTS-detected trap concentrations are in the upper 1 eV from the conduction band, 

while the DLOS-detected trap concentrations are measured from LCV. EC-2.9 eV trap 

concentration measured from LCV tracks with an increase in nitrogen implant concentration 

highlighted in red color. 

The above experimental studies strongly indicate the EC-2.9 eV state is due to a nitrogen 

acceptor. To provide further verification and confirm the charge state and the possible physical 

defect configuration causing the emission process, we performed DFT studies.  The calculations 

used projector augmented wave potentials 51,52 as implemented in the VASP code.53 Ga 3d 

electrons were treated as valence states. We used the Heyd–Scuseria–Ernzerhof (HSE) hybrid 

functional54, with the screening parameter fixed at the standard value and the fraction of screened 

Hartree–Fock exchange set to 0.33, resulting in a direct bandgap of 4.9 eV.  For nitrogen impurity 

calculations we employed 160-atom supercells, a plane-wave energy cutoff of 500 eV, and a single 

special k-point at (0.25, 0.25, 0.25).   Energies of various configurations and charge states were 

calculated using the formalism defined by Freysoldt et al.,55 including charge-state corrections.56–

58 

As noted in Peelaers et al. 11 the NO(III) configuration has the lowest energy among the three 

possible substitutional oxygen sites when the Fermi level is above 3 eV, a condition that is fulfilled 

in these Si-doped samples.  As noted in the introduction, the (0/-) charge-state transition levels for 

the nitrogen impurity were found to strongly depend on the site on which the nitrogen atom 

substitutes; again, it is the level for NO(III), at EC-2.84 eV, that closely matches the trap energy 

extracted from optical cross-section shown in Fig. 6(a). In order to further confirm this 

identification, we calculated configuration coordinate diagrams59 in the one-dimensional 

approximation, which works very well when electron-phonon coupling is very strong as is clearly 

the case here.  The diagram in Fig. 6(b) illustrates the potential energy surfaces as a function of 

atomic coordinates for the NO(III) impurity in the (ground-state, g) negative and (excited-state, e) 

neutral charge state, showing a large change in configuration coordinate ΔQ.  The zero-phonon 

line (ZPL) energy EZPL corresponds to the charge-state transition level with respect to the 

conduction-band minimum, and effective phonon frequencies for ground and excited states are 
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indicated.  Within this model, the Franck–Condon (DFC) energy for the excitation process is the 

difference between the peak absorption energy Eabs and EZPL, and thus given by 4.15-2.84=1.31 

eV, in very good agreement with the DFC value extracted from the Pässler model shown in Fig 6a. 
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(a)                                                                  (b) 

Figure 6 (a): The optical cross-section extracted from the photocapacitance transients of the N co-

doped samples fitted to a Pässler model43 for calculating the equilibrium trap energy and DFC. EC-

2.9 eV shows similar N-concentration as implanted and has a large DFC of 1.4 eV, implying broad 

lattice relaxation. (b) Configuration coordinate diagram calculated by DFT for NO(III) illustrating 

the optical transition that matches the optical cross-section fitting results. 

In conclusion, this study investigates the use of N as a deep acceptor dopant in β-Ga2O3 

through ion implantation. Strong evidence of background carrier compensation with implanted N 

is presented, demonstrating over 95% dopant activation under optimized conditions. This work 

establishes a clear correlation between the nitrogen implant concentration and the EC-2.9 eV level 

determined by DLOS. As the nitrogen implantation concentration increases, there is a monotonic 

increase in the concentration of the EC-2.9 eV level, resulting in effective carrier compensation. 

First-principles DFT calculations indicate a (0/-1) transition for this state, verifying its acceptor-

like behavior and showing that the experimentally observed configuration is for nitrogen 

occupying O site III (NO(III)), resulting in a deep compensating center at EC-2.9 eV. Furthermore, 

the photoionization of the NO(III) acceptor is accompanied by a large local lattice relaxation, leading 

to a high Franck-Condon (DFC) energy of 1.4 eV in the configuration coordinate diagram. This 

energy was experimentally obtained by analyzing the optical cross-section derived from DLOS. 

This combined experimental and theoretical effort shows that nitrogen doping is a very effective 

process to introduce extremely efficient deep acceptors for the purpose of achieving very high 

degrees of controlled carrier compensation in β-Ga2O3.  
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