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Abstract
A theoretical investigation of loss-compensation capabilities in composite materials made of

plasmonic nanoshells is carried out by considering quantum dots (QDs) as the nanoshells’

cores. The QD and metal permittivities are modeled according to published experimental data.

We determine the modes with real or complex wavenumber able to propagate in a 3D periodic

lattice of nanoshells. Mode analysis is also used to assess that only one propagating mode is

dominant in the composite material whose optical properties can hence be described via

homogenization theory. Therefore, the material effective permittivity is found by comparing

different techniques: (i) the mentioned mode analysis, (ii) Maxwell Garnett mixing rule and

(iii) the Nicolson–Ross–Weir method based on transmission and reflection when considering a

metamaterial of finite thickness. The three methods are in excellent agreement, because the

nanoshells considered in this paper are very subwavelength, thus justifying the parameter

homogenization. We show that QDs are able to provide loss-compensated ε-near-zero

metamaterials and also loss-compensated metamaterials with large negative values of

permittivity. Besides compensating for losses, the strong gain via QD can provide optical

amplification with particular choices of the nanoshell and lattice dimensions.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we investigate the optical properties arising

from composite materials made of plasmonic nanoshells.

A comprehensive way to understand and classify collective

resonances in such composite materials is by modal

analysis [1–3] of a three-dimensional (3D) periodic structure

as in figure 1. In particular, under certain circumstances

of polarization and excitation, a 3D periodic lattice

of plasmonic nanoshells with finite thickness could be

described to a good approximation as a homogeneous

1 http://capolino.eng.uci.edu.

slab with effective parameters, such as relative permittivity

(εeff) and refractive index (neff). This effective medium

representation allows for the generation of interesting physical

properties at specific frequency bands, e.g. ε-near-zero (ENZ)

metamaterials [4], cloaking [5] and ‘perfect lenses’ [6].

However, the metamaterial performance is usually affected

and highly limited by the presence of large absorption losses.

Therefore, loss-compensation mechanisms are inherently

required to overcome this issue. Recently, active photonic

materials such as fluorescent dye molecules, rare earth

materials or quantum dots (QDs) have been proposed as a

promising solution, because the gain experienced through

the stimulated emission of an active medium is capable

10957-4484/12/235703+06$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Composite material made of a 3D periodic lattice of
nanoshells embedded in a homogeneous medium with relative
permittivity εh. Each nanoshell core is a QD plus a spacer. The shell
is made of metal. The QD internal radius is r1, the spacer has outer
radius r2, with relative permittivity ε2, the shell has outer radius r3,
with relative permittivity ε3; a, b and c are the periodicities along x,
y and z directions, respectively. We assume the nanoshell core has a
radius r2 and an equivalent relative permittivity εC.

of counteracting the high absorption losses. Dye molecules

have, in general, lower emission and absorption cross

sections than other active materials (e.g. QDs employed

here). Moreover, high molecular concentration may diminish

the overall compensation due to fluorescence quenching

and/or other non-radiative phenomena [7]. Quantum dots

usually have large cross sections and their emission frequency

can be adjusted by modifying their physical dimensions:

the smaller the radius of the QD, the larger the emission

frequency [8, 9].

This characteristic greatly eases the design of loss-

compensated metamaterials since one of the physical

properties required for an effective loss-compensation is the

‘spectrum overlap’: the metamaterial physical dimensions

have to be chosen such that the optical properties of

interest arise at a frequency region that overlaps, at least

partly, with the emission spectrum of the adopted gain

material. Here, we consider QDs as the nanoshells’ cores

in 3D periodic lattices of such nanoparticles as in figure 1

and generate loss-compensated ENZ metamaterials and also

loss-compensated metamaterials with large negative values of

permittivity. Optical loss-compensation has recently been the

focus of many published works, from both the experimental

and theoretical points of view. Experimentally, Coumarin

C500 and Rhodamine 6G fluorescent dyes, embedded into the

dielectric shell of randomly dispersed nanoshells, have been

used to mitigate the absorption at optical frequencies in [10,

11]. Similarly, in [12], Rhodamine 800 dyes have been used

in the fishnet structure, and the experimental results, along

with numerical simulations, demonstrated that the fabricated

sample was loss-compensated. Theoretically, homogenized

effective parameters of metamaterials made of nanoshells

have been analyzed in [13], where ideal loss/gain conditions

have been set through the imaginary part of the dielectric

cores. A binary mixture of two kinds of QDs [8, 14], as

well as of QDs and silver nanorods [15, 16], has shown

the feasibility of lossless negative effective permittivity. A

near-infrared ENZ metamaterial has been shown in [17]

by using QDs in the nanoshells’ cores. Similar structures

have been used in [18] to obtain loss-compensated negative

permittivity at near-infrared. Realistic parameters of dye

molecules (specifically Rhodamine 6G and Rhodamine 800)

have been used in [3] to compensate for the losses in 3D

periodic lattices of nanoshells, focusing on the generation of

an ENZ metamaterial at optical frequencies. Here, besides

using QDs instead of dye molecules as in [3], we also

compare theoretical results, based on complex mode analysis,

with full-wave electromagnetic simulation ones. There is

still a lack of understanding regarding the usage of QDs

for loss-compensation capabilities and on the possibility of

using effective material parameters; thus, this paper aims at

providing some physical insights.

2. Modes in the composite material

The nanoshells’ cores are assumed to be made of CdSe

QDs surrounded by spacers (see figure 1) with matched

relative permittivity ε2 to avoid surface polarization screening

charge [8, 19]. Assume then that the QD can be optically

pumped to gain condition, such that the equivalent dielectric

function εC of QD and spacer in the presence of gain,

assumed to be homogeneous because r2 � λ0,min, with λ0,min

the minimum free space wavelength, is calculated using the

formalism in [8, 19, 20]. Accordingly

εC = ε2 + Sω2
e

ω2 − ω2
e + i2ωγQD

, (1)

where ωe = 2π fe, fe = 604 THz is the emission frequency,

γQD = 6.07 × 1013 s−1 is the broadening parameter, S =
0.53 the unitless transition strength and ε2 = 10.2 (values

taken from [8, 21] to match experimental results; we also

assume that the QDs have the same radius as in [8] to emit

at fe = 604 THz). The nanoparticles’ shells are assumed to

be made of gold, whose relative permittivity ε3 is described

by interpolating the metallic bulk experimental results εJC

from [22] with surface correction as [23, 24]

ε3 = εJC + ω2
p

ω(ω + iγD)
− ω2

p

ω(ω + iγF)
. (2)

Here ωp = 1.36 × 1016 rad s−1 is the Drude plasma angular

frequency, γD = 1.05 × 1014 s−1 is the Drude damping factor

and γF = γD + vF/ (r3 − r2), with vF = 1.39 × 106 m s−1

the Fermi velocity, r3 the shell outer radius, r2 the spacer

outer radius and r3 − r2 the metallic thickness. Equation (2)

is implemented to avoid underestimation of gold losses when

employing the Drude model. We model each nanoshell as a

single electric dipole, using the single-dipole approximation

(SDA) [1, 2, 25], for which the induced electric dipole

moment is p = αeeEloc, with αee the nanoshell electric

polarizability (we use here the Mie expression reported in [3,

25]) and Eloc the local field acting on it, produced by all the

other scattering nanoshells. We determine the modes in the 3D

lattice traveling along the z direction with wavenumber kz =
βz + iαz, which may assume real or complex values following

the procedure described in [1–3]. In general, two modes

with transverse polarization and one mode with longitudinal

2
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polarization with moderately low attenuation constant αz
are present when spatial dispersion is not negligible [2,

26, 27]. However, in all cases treated here, the size of the

nanoshells is smaller than that of the nanoparticles in [2, 3]

and this implies that spatial dispersion is even lower than

the already weak one observed in [2, 3]. Basically, here only

one dominant mode, whose electric polarization is in the

direction transverse to the mode traveling in the z direction, is

propagating. However, a mode with longitudinal polarization

with significantly small attenuation constant αz may appear in

a very narrow frequency range, where effective permittivity

is vanishing, especially under the low-loss condition treated

in this paper. It is therefore one of the purposes of this

paper to check this peculiar condition and provide information

about the polarization modes able to travel in the composite

material. Accordingly, without loss of generality, we consider

here the transverse polarization p = pxx̂ and the longitudinal

polarization p = pzẑ. Under these assumptions, the modal

wavenumbers are retrieved by solving the scalar equations:

Axx(kz) = 1 − αee
	
G∞

xx (r0, r0, kz) = 0, (3)

Azz(kz) = 1 − αee
	
G∞

zz (r0, r0, kz) = 0, (4)

for complex kz zeros. The terms
	
G∞

xx (r0, r0, kz) and
	
G∞

zz (r0, r0, kz) represent the x̂x̂ and ẑẑ components, respec-

tively, of the regularized periodic dyadic Green’s function [2]

and provide the field contribution evaluated at r0 = x0x̂+y0ŷ+
z0ẑ produced by all the nanoshells in the lattice except the

one at r0. To evaluate
	
G∞

xx (r0, r0, kz) and
	
G∞

zz (r0, r0, kz) we

employ the Ewald method [2, 28–32], for it provides (i) rapid

converging summations (i.e. only a handful of summation

terms is needed to achieve convergence) and (ii) analytic

continuation to the complex kz plane.

We analyze the physical properties of a lattice whose

dimensions are chosen to achieve an ENZ metamaterial

around the QD emission frequency when in gain condition:

r1 = 2 nm (same radius as in [8]), r2 = 4 nm, r3 = 8 nm,

a = b = c = 21 nm and a host with relative permittivity εh =
2.25. The modal wavenumber for the dominant propagating

mode (i.e. the one that contributes mostly to the field in the

3D lattice, as discussed in [2]) with transverse polarization in

the case of (i) lossy (i.e. using equation (2)), (ii) lossless (i.e.

Im[ε3] = 0 artificially imposed) and (iii) loss-compensated

lattices is reported in figure 2. At low frequencies, the real part

of the modal wavenumber follows a typical dispersion curve

which is almost straight. This corresponds to an effective

medium slightly denser than the host medium (the light line

βz = k is plotted as a black dotted line, where k = k0
√

εh

is the host wavenumber and k0 the free space wavenumber)

with small attenuation αz (equal to zero in the lossless case).

Then, increasing the frequency, the dispersion curve bends,

exhibiting large phase constant βz (with the largest peak

for the lossless case). Thus this mode could be employed

in field concentration and imaging applications. Further

increasing the frequency, the modal wavenumber experiences

a bandgap with a strong attenuation αz (particularly apparent

for the lossless case); finally, at higher frequencies it re-enters

a propagation band (except for the lossless case, where

Figure 2. Modal wavenumber dispersion diagram versus frequency
for the dominant mode with transverse polarization. (a) Real part
and (b) imaginary part of the wavenumber kz = βz + iαz for lossy,
lossless and loss-compensated cases.

βz ≈ 0) with almost constant attenuation. Note that in the

loss-compensated case the resonant behavior of the QD

in gain condition modifies strongly the dispersion diagram

around kc/π ≈ 0.125 (i.e. f ≈ 600 THz): the adopted

QDs provide a large gain (more than required for just

loss-compensation). Thus the attenuation constant αz becomes

negative in a narrow frequency band, a symptom of optical

amplification (see the discussion in section 3).

Other modes with transverse polarization, dramatically

decaying because αz � k, and the symptom of a weak spatial

dispersion, are present, but their effect can be neglected

as discussed in [2, 33]. For example, analogously to what

was previously reported in [2], we also find a transversely

polarized mode with backward propagation which, however,

always has a large attenuation constant αzc/π > 1, even in the

loss-compensated case and therefore it does not propagate.

The modal wavenumber kz = βz + iαz for the mode

with longitudinal polarization in the case of (i) lossy,

(ii) lossless (i.e. Im[ε3] = 0 artificially imposed) and (iii)

loss-compensated lattices is reported in figure 3. In the lossy

case, this modal wavenumber is mainly characterized by a

large attenuation constant αz. In the lossless case, instead,

this mode has a narrow propagation band with very small

attenuation constant αz at kc/π ≈ 0.105 (i.e. f ≈ 505 THz),

as also described in [2]. Note that this narrow propagation

band disappears when considering losses in the metal. At

low frequencies, the loss-compensated case follows the lossy

one. However, around kc/π ≈ 0.125 (i.e. f ≈ 600 THz) the

adopted QDs provide gain. Thus the attenuation constant

αz is smaller than in the lossy case, in a narrow frequency

band. Nevertheless, the normalized attenuation αz remains

larger than 0.5 even at its lower value. In summary, this

longitudinal mode in the loss-compensated case is always

highly attenuated, even in the very narrow frequency region

around kc/π ≈ 0.125, where αz is still large, and therefore it

does not contribute significantly to a field inside the lattice.

3
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Figure 3. Modal wavenumber dispersion diagram versus frequency
with longitudinal polarization. (a) Real part and (b) imaginary part
of the wavenumber kz = βz + iαz, for lossy, lossless and
loss-compensated cases.

It is also interesting to note that the propagation constant βz

of this longitudinal mode becomes negative, a symptom of

backward propagation, not allowed in standard 3D lattices [2,

26, 27].

3. Loss-compensation and electric permittivity

As previously mentioned, we are interested in generating a

loss-compensated ENZ metamaterial as in [3], and also in

showing the possibility of achieving large negative values

of εeff with low losses. The results in section 2 have

shown that one mode only, with transverse polarization,

is able to propagate inside the lattice, and therefore

the composite material is now considered for permittivity

homogenization. We retrieve the effective permittivity by

using three different methods: (i) modal analysis (Mode-

SDA), (ii) Maxwell Garnett (MG) homogenization theory and

(iii) the Nicolson–Ross–Weir (NRW) retrieval method from

reflection R and transmission T of finite thickness structures,

here computed using a HFSS full-wave simulation. Note that,

when employing MG and NRW methods, it is implicitly

assumed that only one propagating mode is dominant, and this

has been verified by mode analysis. The comparison among

the different methods is performed because their agreement

confirms the validity of the homogeneous treatment of the

composite material. For brevity, we direct the reader to [2,

3] for a list of references about the MG and NRW methods.

Since we deal with losses in the system, both εeff and neff

are complex valued quantities and can be easily retrieved

through modal analysis as neff = kz/k0 and εeff ≈ n2
eff, using

the results in figure 2. According to NRW, instead, treating

the composite slab as a uniform continuous medium with

thickness h = Nc, with N denoting the number of layers and

c the separation between two contiguous layers, the complex

Figure 4. (a) Real and (b) imaginary part of the effective
permittivity. The result in the absence of gain is computed using the
Mode-SDA method (justified by the agreement of the different
methods).

Figure 5. Zoomed ENZ frequency band with and without
loss-compensation. The results in the absence and in the presence of
gain are computed using the Mode-SDA and the NRW method,
respectively (justified by the agreement of the different methods).

effective refractive index can be retrieved as

neff = {±cos−1[(1 − R2 + T2)/(2T)] + 2πq}/(k0h), (5)

where q is an integer to be determined. We direct the reader

to [2, 3] and references therein for guidelines on how to

choose q and +/− in equation (5). Then, one can easily

retrieve εeff ≈ n2
eff. In general, the NRW solution should be

proven to be consistent for varying the number of layers N, as

shown in [2] for example. For simplicity in figures 4 and 5 we

show only the result with N = 4, because results with other N
values are found to be in good agreement.

The effective relative permittivity of the homogenized

metamaterial discussed in section 2 is reported in figures

4(a) (real part) and (b) (imaginary part) in the presence

of gain; the same result in the absence of gain is shown

as a dotted black line. The comparison with the different

retrieval methods, performed only in the case of gain for

clarity of the results, shows very good agreement. Modal

analysis usually provides more accurate results than Maxwell

Garnett theory around the nanoparticle resonance frequency

because it includes all the field retardation effects and all

nanoparticle interactions. Since modal analysis is here based

on the SDA, full-wave NRW-HFSS is expected to be the most

4
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Figure 6. ENZ frequency band with and without
loss-compensation by assuming γQD ≈ 5.26 × 1013 s−1. Result
computed by using Maxwell Garnett homogenization theory
(justified by the agreement of the different methods).

accurate among the three methods for parameter retrieval.

However, here the nanoshells and the lattice period are

very subwavelength with respect to any guided wavelength.

Indeed, the maximum value assumed by the normalized βz in

the lossy and loss-compensated cases reported in figure 2(a)

is βzc/π < 0.25, and therefore c < λg/8, with λg being

the guided wavelength in the lattice. This implies that the

nanoshell dimension is r3 ≈ c/3 < λg/24. For this reason,

MG can be used as a powerful tool for the prediction

of metamaterial physical properties providing very accurate

results.

Note in figure 4 the resonance introduced by the QD

around 600 THz. In the absence of gain, the effective

permittivity has a large imaginary part and a positive real

part around the QD resonance. For clarity, we report in

figure 5 a zoomed section of the curves in figures 4(a)

and (b) relative to the NRW method. In the frequency

range shown before point ‘A’ (located at around 593 THz)

and after point ‘B’ (located at around 599 THz) absorption

losses are compensated (the dashed red curve is lower than

the dotted black one, representing the case without gain);

moreover, in the region before point ‘A’, the real part also

assumes values very close to zero, proving the feasibility

of ENZ properties with low losses. The ENZ behavior is

exhibited in a frequency band of about 3 THz, in the range

590.5–593.5 THz. In particular, at around 593 THz the

material exhibits no losses (Im[εeff] ≈ 0) and Re[εeff] ≈ −0.2.

In the frequency range between points ‘A’ and ‘B’, instead,

a negative Im[εeff] is observed, which means that optical

amplification is present in the system. This amplification

may involve a natural oscillatory behavior in the system,

thus the relation between possible instabilities and an overall

gain should be further studied. Nonetheless, this result shows

clearly over-compensation capabilities, which means that

even less gain could be sufficient for loss-compensation or,

vice versa, structures with larger losses could be compensated

by the proposed method. These results open up possibilities to

loss-compensate efficiently metamaterials by properly tuning

the QD resonance frequency and other optical parameters. In

the analyzed frequency region in figure 5, before reaching

point ‘B’, the real part of the permittivity also assumes

negative values.

In order to avoid optical amplification, and therefore the

possible oscillatory behavior described above, we report as

Figure 7. Loss-compensation capabilities varying array physical
dimensions. Result computed by using Maxwell Garnett
homogenization theory. Solid = with gain; dotted = without gain.

an example in figure 6 the result computed by artificially

decreasing the QD broadening parameter to γQD ≈ 5.26 ×
1013 s−1. In this case, as shown in figure 6, the loss-

compensated metamaterial has Im[εeff] that never assumes

negative values. The metamaterial also exhibits a frequency

band where the effective permittivity is large, negative and

with very low losses.

Another possible way to avoid the optical amplification

described above is by modifying the nanoshell dimensions and

nanoshell filling fraction in the composite fvol = 4πr3
3/(3abc).

Two illustrative examples are shown in figure 7, where

we analyze the loss-compensation property when varying

certain physical dimensions of the 3D lattice as follows,

and keeping the others as in section 2: (A) r3 = 9 nm and

fvol = 44%, and (B) r2 = 11 nm, r3 = 23 nm and fvol =
50%. In both cases, two frequency bands with interesting

physical properties can be observed: (i) ENZ behavior in the

range 550–590 THz (frequency band of about 40 THz) and

(ii) negative permittivity in the range 585–600 THz. We have

observed that by varying the filling factor one can tune the

permittivity values in the ENZ region. In both cases A and B in

figure 7, the presence of gain (solid curves) greatly reduces the

value of Im[εeff] compared to the results without gain (dotted

curves), without assuming negative values. Regarding case A,

losses have been highly compensated in a wide frequency

band, i.e. 530–595 THz, with respect to the case without

gain. Case B exhibits a better loss-compensation than Case

A in a wider frequency band. Both configurations A and B

also exhibit negative Re[εeff] with very low losses at optical

frequencies.

4. Conclusions and final remarks

In conclusion, we have shown the possibility to tailor

the effective permittivity to approach virtually almost zero

losses in an ENZ frequency band by using small nanoshell

5
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particles, thus creating favorable conditions for a number of

applications, including low-threshold nonlinear effects [34].

Moreover, we have observed the generation of negative

effective permittivity with low losses to be possible as well.

Besides loss-compensation capabilities, the strong gain via

QD can provide optical amplification with particular choices

of the nanoshell and lattice dimensions, although the relation

between possible instabilities and an overall gain should

be further studied. These conditions have been obtained by

using cores with QDs whose emission band overlaps with

that where the 3D lattice exhibits low values of Re[εeff].
In other words, the emission band of the QD cores has

been chosen slightly higher than the collective plasmonic

resonance frequency of the 3D lattice. One can, however,

foresee other possible loss-compensation arrangements that

will be studied in future work. For example, QDs can

be arranged around a nanosphere or nanoshell as shown

experimentally in [35, 36]. That structure would represent

a good candidate for loss-compensation studies in optical

metamaterials which would, however, require accounting for

the nanoshell–QD and QD–QD interactions. The high gain

provided by QDs have permitted us to consider nanoshells

with very subwavelength dimensions and therefore the electric

properties of the composite material can be well described

using homogenization techniques.
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