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ABSTRACT Here, we report metagenome-assembled genomes for “Candidatus Phormidium
sp. strain AB48” and three cooccurring microorganisms from a biofilm-forming industrial
photobioreactor environment, using the PacBio sequencing platform. Several mobile genetic
elements, including a double-stranded DNA phage and plasmids, were also recovered, with
the potential to mediate gene transfer within the biofilm community.

Cyanobacteria offer the possibility of producing energy and materials from sunlight and
carbon dioxide (1, 2). However, these applications of cyanobacteria remain limited, and

more industrial strains with desirable growth properties are needed (1, 3, 4). Recent studies
indicate that members of the Phormidium genus have potential to fill this gap (5–7). The genus
represents a polyphyletic distribution of filamentous cyanobacteria containing over 200 species,
many of which form dense biofilms with co-occurring microorganisms (8–10).

Here, we describe metagenome-assembled genome (MAG) sequences, including mobile
genetic elements (MGEs), from an industrial photobioreactor environment. The photobior-
eactor uses high temperature (35 to 45°C), salinity (10 g/L), and alkaline conditions (pH 9
to 11) to support biofilm-based growth. After several months of continuous cultivation, with
harvesting every 48 to 96 h, a biofilm sample was collected. Genomic DNA was extracted
from biofilm biomass using a cetyltrimethylammonium bromide (CTAB)-chloroform extraction
protocol (11). DNA was sheared to 10 kb using Covaris g-TUBES and size selected (.10 kb)
with AMPure beads (Beckman Coulter). This high-molecular-weight fraction was used to pre-
pare a Pacific Biosciences (PacBio) SMRTbell library for sequencing on the PacBio Sequel
platform. Default parameters were used for sequencing data processing and analysis soft-
ware, unless otherwise noted. A total of 1,551,061 reads (5,417 Mbp) were filtered and trimmed
using BBTools (v.38.79) (parameters: jni=t json=t ow=t cq=f keepshortreads=f trim=f), resulting
in 1,417,931 reads (4,615 Mbp) with an N50 value of 5,590 bp. The metagenome was
assembled with Flye (v.2.7) usingmeta parameters, and the Flye assembly graph was converted
into FASTA format for downstream processing (12). Contigs of.1,000 bp were assigned to
population genome bins using MaxBin2 (v.2.2.6) (13), and the completeness and contamination
of resulting MAGs were assessed using CheckM (v.1.1.3) (14).

A total of 281 contigs, with an N50 value of 56,161 bp and a total length of 13,019,354 bp
as evaluated by QUAST (v.5.0.2) (15), were assembled. Four MAGs were resolved, including a
complete genome and three additional population genome bins of varying quality. The
complete genome was 4,818,683 bp, with a GC content of 51.64% and an N50 value of
4,751,363 bp. A high-quality genome of 3,207,041 bp, with CheckM completeness of 89.03%,

Editor Irene L. G. Newton, Indiana University,
Bloomington

Copyright © 2022 Noonan et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Steven J. Hallam,
shallam@mail.ubc.ca.

The authors declare a conflict of interest.

Received 3 August 2022
Accepted 27 October 2022
Published 21 November 2022

December 2022 Volume 11 Issue 12 10.1128/mra.00447-22 1

GENOME SEQUENCES

https://orcid.org/0000-0002-9039-8379
https://orcid.org/0000-0002-4889-6876
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00447-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00447-22&domain=pdf&date_stamp=2022-11-21


a GC content of 49.23%, and an N50 value of 51,694 bp, and two draft-quality genomes of
3,511,511 bp and 1,359,261 bp, with completeness values of 37.80% and 23.31%, GC contents
of 59.57% and 63.91%, and N50 values of 30,355 bp and 25,610 bp, respectively, were identi-
fied. MGEs, including putative phages and plasmids, were identified using PlasFlow (v.1.1),
VirSorter2 (v.2.2.2), and CheckV (v.0.8.1) (16–18). A total of three circular plasmids, one high-
quality double-stranded DNA (dsDNA) phage (100% completeness), and one medium-quality
dsDNA phage (50.59% completeness) were predicted. One of the plasmids, 51,598 bp in
length, clustered with the complete cyanobacterial MAG. The remaining contigs passing the
quality control (QC) threshold (0.94% of total bases) could not be assigned.

Analysis of single-copy marker genes in the four MAGs using GTDB-Tk (v.0.3.2) (19) and
an average nucleotide identity (ANI) of 87.75% with its closest relative, Phormidium_A
sp007126595 (GCA_007131565.1), as calculated using fastANI (v.1.1) (20), indicated that
the complete genome represents a novel member of the cyanobacterial Phormidium_A genus,
designated “Candidatus Phormidium sp. strain AB48” (21). The high-quality genome
was assigned to the Alteromonadaceae family, and the two draft-quality genomes
were assigned to the Verruco 01 and Maricaulaceae families. Open reading frame (ORF)
prediction and genome annotations were performed using Prokka (v.1.14.5) (22). The complete
“Candidatus Phormidium sp. strain AB48” genome contains 4,372 genes, 4,318 coding sequen-
ces (CDSs), 6 rRNA genes (two 5S rRNAs, two 16S rRNAs, and two 23S rRNAs), and 47 tRNAs.

Data availability. Data from this project are publicly accessible through the NCBI under
BioProject accession no. PRJNA834472 and BioSample accession no. SAMN28044958. Raw
sequencing data are available from the Sequence Read Archive (SRA) under the SRA accession
no. SRR13132258. This BioProject also includes BioSample SAMN28044976; this repre-
sents a distinct sample and contains Oxford Nanopore Technologies and Illumina data
sets for Phormidium yuhuli AB48, which was isolated from the photobioreactor enrichment
described here (23).
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