
Lawrence Berkeley National Laboratory
LBL Publications

Title
Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017

Permalink
https://escholarship.org/uc/item/02n6c542

Journal
Nature Sustainability, 2(8)

ISSN
2398-9629

Authors
Qin, Yuanwei
Xiao, Xiangming
Dong, Jinwei
et al.

Publication Date
2019-08-01

DOI
10.1038/s41893-019-0336-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02n6c542
https://escholarship.org/uc/item/02n6c542#author
https://escholarship.org
http://www.cdlib.org/


Improved estimates of forest cover and loss in the Brazilian 
Amazon in 2000–2017

Yuanwei Qin1, Xiangming Xiao1*, Jinwei Dong2*, Yao Zhang 1, Xiaocui Wu 1, 
Yosio Shimabukuro3, Egidio Arai3, Chandrashekhar Biradar4, Jie Wang1, 
Zhenhua Zou1, Fang Liu2, Zheng Shi1,6, Russell Doughty1 and Berrien Moore 
III5

1 Department of Microbiology and Plant Biology, Center for Spatial Analysis, 
University of Oklahoma, Norman, OK, USA. 2 Institute of Geographic Science 
and Natural Resource Research, Chinese Academy of Sciences, Beijing, 
China. 3 Brazilian National Institute for Space Research, São José dos 
Campos, Brazil. 4International Center for Agricultural Research in the Dry 
Areas, Cairo, Egypt. 5 College of Atmospheric and Geographic Sciences, 
University of Oklahoma, Norman, OK, USA. 6Present address: Co-Innovation 
Center for Sustainable Forestry in Southern China, College of Biology and the
Environment, Nanjing Forestry University, Nanjing, China. *e-mail: 
xiangming.xiao@ou.edu; dongjw@igsnrr.ac.cn

Abstract

The data, information and knowledge on the tropical forest area and its 
dynamics in the Brazilian Amazon remain contentious. We use time-series 
satellite images to quantify annual forest area, loss and gain in the Brazilian 
Amazon during 2000–2017. We find that forest area was ~15% higher than 
the estimate by the official Brazilian forest dataset (PRODES), but annual 
forest-loss rates were twice the PRODES estimates (~0.027 × 106 km2 yr–

1 during 2001–2016). Forest-loss rates increased again after 2013. The El 
Niño and drought year (2015/2016) drove large forest area loss. The 
cumulative forest-loss area within the protected areas (which include ~50% 
of forests in the region) was ~11% of the total forest-loss area, which 
highlights the roles of protected areas in forest conservation.

Introduction

The area, spatial distribution and annual dynamics of tropical forests 
substantially affect biodiversity, terrestrial carbon cycle, hydrology and 
climate at local, regional and global scales1,2. As the world’s largest tropical 
forest and most biodiverse terrestrial ecosystem3, the Amazon Basin is a 
priority area for global conservation and warrants precise monitoring of 
anthropogenic impacts. Rapidly changing climate, land use, disturbances (for
example, fire) and human activity in the Amazon Basin have resulted in 
substantial deforestation over the past several decades4,5.

Several studies have generated maps of forest in the Amazon through 
analyses of space-borne optical images at various spatial resolutions, 
including coarse (≥1 km; for example, the Advanced Very High Resolution 
Radiometer (AVHRR)6 and Satellite Pour I’Observation de Ia Terre 4 (SPOT-4) 
VEGETATION7), moderate (≥100 m; for example, Moderate Resolution 



Imaging Spectroradiometer (MODIS)8,9) and fine (≥10 m; for example, 
Landsat10,11) resolutions. However, these Amazon forest maps have large 
uncertainties and have sparked intense debate due to image data 
availability, image data quality (cloud cover, shadows and fire-induced 
atmospheric contamination), mapping algorithms, forest definition, minimum
mapping unit, etc.12,13,14. Forest area, spatial distribution, temporal dynamics 
and annual rates of forest loss have been contentious for decades12,15,16. Two 
recent studies15,17 reported that both the official Brazilian deforestation 
dataset (PRODES)18 and Global Forest Watch (GFW)11 missed relatively large 
areas of forest loss. For instance, approximately 9,000 km2 of forest loss was 
not reported by the PRODES dataset for 2008–2012 due to the 6.25-ha 
minimum mapping unit15. These staggering omissions show the need for 
more accurate annual Amazon forest maps and improved analyses of forest 
area, spatial distribution and annual dynamics to support the scientific, 
legislative and land management communities who strive to better 
understand and conserve rainforests in Brazil.

Space-borne Synthetic Aperture Radar (SAR) technology has made notable 
progress in the past decade and has also been useful in forest mapping13. 
SAR images, especially the L-band SAR images, can penetrate clouds and 
smoke haze to interact with tree trunks and branches and differentiate 
forests from non-forest biomes13. A number of recent studies demonstrated 
the potential of SAR images from the Advanced Land Observing Satellite 
(ALOS) Phased Array Synthetic Aperture Radar (PALSAR) to identify and map 
forests19,20. However, those forest maps produced by using only PALSAR 
images often contained commission errors due to buildings, houses and 
rocks21.

Several studies have reported the potential of combining PALSAR and optical
images (MODIS, Landsat) to map tropical forests12,13. Time-series optical 
images (for example, MODIS and Landsat) can capture the seasonal and 
interannual variation of vegetation canopy. Satellites acquiring daily images 
have a much higher probability of cloud-free observations22. Compared to 
Landsat with its 16-d repeat cycle at 30-m spatial resolution, MODIS sensors 
onboard the Terra and Aqua satellites have a daily repeat cycle at 250-m, 
500-m and 1-km spatial resolution that offers more cloud-free observations 
in a year. MODIS data have therefore been used to track the temporal 
dynamics of various land cover types and transitions in the Brazilian Amazon
since 2000 (refs. 23,24,25). We developed the Forest-MODIS and Forest-PALSAR/
MODIS mapping tools, which use time-series image data and algorithms to 
identify forests and applied them to generate forest and evergreen forest 
maps for the pantropical zone26,27, China28, monsoon Asia27 and South 
America12.

In this study, our first objective was to more accurately map annual forest 
area in the Brazilian Amazon (Supplementary Fig. 1). We combined PALSAR 
images at 50-m spatial resolution (Fig. 1a) and MOD13Q1 (Vegetation Indices
16-Day L3 Global 250 m) images during 2007–2010, and we used the Forest-



PALSAR/MODIS mapping tool12 to generate annual maps of tropical forests 
(both evergreen and deciduous) in the Brazilian Amazon (Fig. 1a,b). The 
resultant annual PALSAR/MODIS maps of forests at 50-m spatial resolution 
during 2007–2010 were compared with the official forest statistics from 
PRODES and other available forest map products (see Methods). Our second 
objective was to better understand the annual dynamics of forest area loss 
and gain (deforestation, reforestation and afforestation) in the region during 
2000–2017. We generated annual evergreen forest maps for 2000−2017 
(named as MOD100; Fig. 1c) by applying a simple and robust Forest-MODIS 
algorithm (see Methods) to time-series MOD09A1 (Surface Reflectance 8-Day
L3 Global 500 m) data for each year26,27. We analysed the resultant annual 
evergreen forest maps to quantify the annual dynamics of forest area loss 
and gain within the Brazilian Amazon, states and protected areas. Finally, we
investigated the trajectories of forest area loss and gain as well as their 
driving factors.

Results

Annual estimates of forest area in 2007–2010



Forest area estimates from the PALSAR/MODIS forest dataset ranged from 
~3.77 × 106 km2 in 2007 to ~3.75 × 106 km2 in 2010 (Fig. 1a,b). We compared
the Brazilian Amazon forest maps for 2010 from seven data products 
(Supplementary Fig. 2) to illustrate the differences between the forest data 
products and to explore the potential of improving estimates of annual forest
area in the Brazilian Amazon by integrating optical and SAR imagery and 
new algorithms (Fig. 2a and Supplementary Table 1). The PRODES dataset 
estimated 3.28 × 106 km2 forest in 2010. Depending on the percentage of 
tree cover threshold values used, the forest area estimates from the GFW 
dataset11 ranged from 3.71 × 106 km2 (≥60% threshold), 3.88 × 106 
km2 (≥45% threshold), 3.97 × 106 km2 (≥30% threshold) to 4.05 × 106 
km2 (≥10% threshold) in 2010. Our previous study12 suggested that a 30–
60% tree cover threshold was appropriate for estimating forest area from the
GFW dataset when compared to forest maps derived from the PALSAR 
microwave images, which used a definition of forest (10% tree cover) by the 
UN Food and Agriculture Organization (FAO). The JAXA dataset reported 3.69 
× 106 km2 of forest in 2010. The forest area in 2010 from our PALSAR/MODIS 
forest map was 3.75 × 106 km2 in the Brazilian Amazon, approximately ~2% 
higher than the JAXA dataset, which only used the PALSAR images19, ~10% 
higher than the MODIS land cover dataset (MCD12Q1)9, ~12% higher than 
the European Space Agency (ESA) Climate Change Initiative (CCI) land cover 
dataset29 and ~15% (470,000 km2) higher than the PRODES dataset18. These 
various forest area estimates highlight the discrepancies between the data 
products (Fig. 2a).



Annual estimates of evergreen forest areas in 2000–2017



We used the MOD100 dataset to investigate the spatial distribution and 
annual dynamics of evergreen forests in the Brazilian Amazon. Annual 
evergreen forest area from the MOD100 dataset ranges from 3.72 × 106 
km2 in 2007 to 3.70 × 106 km2 in 2010, only 1−2% lower than the forest area 
estimates from the Forest-PALSAR/MODIS dataset (Fig. 2a). A spatial-
temporal comparison between the MOD100 dataset and the Forest-PALSAR/
MODIS dataset in 2007–2010 demonstrates the robustness of the Forest-
MODIS algorithm and the reliability of the MOD100 dataset in the Brazilian 
Amazon (Supplementary Fig. 3 and Supplementary Table 2). We also 
compared the MOD100 dataset with the MCD12Q1, which uses MODIS 
images and defines forest as tree cover >60% with a tree height >2 m. The 
MCD12Q1 reports 3.42 × 106 km2 forests in 2010. The improvement of the 
MOD100 dataset over the MCD12Q1 dataset makes it possible to further 
investigate annual evergreen forest losses and gains in the Brazilian Amazon
during 2000–2017.

Annual loss of evergreen forest area

Annual evergreen forest area declined from 3.93 × 106 km2 in 2000 to 3.59 × 
106 km2 in 2017 (Figs. 1d and 2a), a net loss of 0.34 × 106 km2 (~20,000 km2 
yr–1) or about 9% of the total evergreen forest area in 2000. To reduce 
commission and omission errors, we excluded the first (2000) and last (2017)
year and analysed MOD100 annual evergreen forest loss during 2001–2016. 
The result showed a cumulative loss of 0.41 × 106 km2 (Fig. 1e), which was 
much larger than the estimates from the GFW (0.30 × 106 km2) and PRODES 
(0.18 × 106 km2) datasets. On average, the MOD100-estimated rate of annual
evergreen forest loss was 0.027 × 106 km2 yr–1, close to five times the size of 
the Federal District (5,780 km2) in Brazil.

The trajectory of annual forest area loss over time has been widely used for 
determining land cover and land-use change, conservation policies, 
management practices and identifying the socio-economic drivers of annual 
forest area dynamics2,4,5. The MOD100, GFW and PRODES datasets show 
three distinct phases of deforestation within the last two decades (Fig. 2b–d):
(1) an initial phase of increasing forest loss (2001−2004), (2) a phase of 
decreasing forest loss (2005−2013) and (3) a current phase of increasing 
forest loss (2013−2016). All three datasets show a substantial and 
significant (P < 0.05) decreasing trend (Fig. 2b–d) of forest area loss in the 
second phase due to enforcement of public policy and interventions in the 
beef and soya markets5. During 2013-2016, both the GFW and MOD100 
datasets showed a substantial increase in the deforestation rate, 7.5 × 103 
km2 yr–1 and 4.8 × 103 km2 yr–1, respectively. However, the PRODES dataset 
shows a much smaller increase of 0.6 × 103 km2 yr–1.

Hot-spots of evergreen forest area loss

We analysed the MOD100 dataset and identified evergreen forest loss during
2001−2016 for individual pixels geographically (Fig. 1e). The hot-spots were 
distributed in the ‘Arc of Deforestation’, which spans the Brazilian states of 



Para (PA, 0.11 × 106 km2), Mato Grosso (MT, 0.11 × 106 km2), Maranhao (MA, 
0.087 × 106 km2) and Rondonia (RO, 0.052 × 106 km2) (Fig. 3). The total forest
loss in these four states accounted for approximately 87% of the total 
evergreen forest area loss in the Brazilian Amazon. Using a 5-km buffer in a 
geospatial analysis, we found that over 90% of deforestation occurred in 
close proximity to those areas deforested before 2002, which indicated the 
degree of anthropogenic activities driving the spatial dynamics of 
deforestation expansion (forest loss) in the Brazilian Amazon (Fig. 4).



The conversion of forests to pasture was associated with 60−80% of Amazon
deforestation17,30,31. About 62% of the deforested area in MT was converted 
into pasture during 2001−200431. The cattle count increased substantially 
from 48 × 106 head in 2000 to 86 × 106 head in 2016 (Supplementary 
Fig. 4a). Assuming one cow per hectare of pasture32, the additional number 
of cattle may occupy 0.38 × 106 km2 of pasture, which would account for 
~94% of the evergreen forest-loss area. MT had the largest increase in cattle
(11.4 × 106 head), followed by PA (10.2 × 106 head), RO (8.0 × 106 head) and 
MA (3.6 × 106 head). Before 2006, the conversion of forests to croplands (for 
example, soya bean) also contributed to deforestation in the Brazilian 
Amazon5,31. After 2006, croplands were mostly established on previously 
cleared land24. Overall, the four states with the greatest increases in cattle 
numbers and cropland area also experienced the largest losses of evergreen 
forests (Supplementary Fig. 4) according to the MOD100 evergreen forest 
dataset.

Driving factors of evergreen forest area loss

We investigated the factors driving annual forest losses in the MOD100 
dataset during 2000–2017 (Supplementary Fig. 5). Annual forest losses 
corresponded well to climate parameters, and the standardized cross-
correlation coefficients (lag = 0) were −0.89, 0.92 and 0.96 between annual 
deforestation rate and annual precipitation, TWSmin and active fire area, 
respectively (Supplementary Fig. 6). This cross-correlation suggested that 
annual forest loss was higher in dry years, especially during the strong El 
Niño years (2010 and 2015/2016) (Fig. 2b, Supplementary Figs. 5a–c and 7). 
The deforested area in 2010 and 2015/2016 were about 2.3 and 3.7 times 
higher than the deforested area in 2009 and 2013, respectively. However, 
the PRODES dataset did not indicate obvious increases of deforested area in 
2010 and 2015/2016.

During these drought years, the data from the Tropical Rainfall Measuring 
Mission (TRMM) and the Gravity Recovery and Climate Experiment (GRACE) 
showed remarkably low annual precipitation and annual 
TWSmin (Supplementary Fig. 5b), in addition to substantial increases in fire 
activity and burned area (Fig. 2e). We also found that in the non-drought 
years (2006, 2008, 2009, 2011 and 2013), about 23% of the deforested 
areas experienced fires in the same year that deforestation occurred. In the 
drought years, however, deforested areas often experienced more fire (36%)
in the same year (Supplementary Figs. 8a,9 and 10). About 70% of 
evergreen forests had a fire history before deforestation (Supplementary 
Fig. 8b). Forests in the Amazon can be degraded over time due to successive
fires, drought and selective logging16,33. These degraded forest stands can 
then become more vulnerable to future drought and fire. The relatively dry 
states (PA, RO, MT and MA) in the ‘Arc of Deforestation’ (Supplementary 
Fig. 5d), corresponded well to GRACE TWSmin and fire activity (Fig. 3). 
Although the wet states (AM, AP and RR) in northern Brazilian had relatively 



small areas of deforestation, they also experienced increased deforestation 
in severe drought years.

Annual gain of evergreen forest areas

We defined forest gain as non-forested area that was converted into 
continuous forest for ≥4 years (ref. 25). During 2001–2013 the MOD100 
dataset showed a total gain of 0.071 × 106 km2 in evergreen forest area in 
the Brazilian Amazon (Figs. 1f and 2b). This study reported the annual 
dynamics of both deforestation and reforestation in the Brazilian Amazon 
using time-series image data and time-series algorithms. Reforestation area, 
although relatively small, did partially offset deforestation by 21% in the 
Brazilian Amazon during 2001–2013, which indicates that reforestation 
played an important role in reducing net forest loss and carbon emissions.

Annual forest area dynamics within protected areas

In an effort to conserve forests in the Brazilian Amazon, protected areas 
(PAs) have increased from 1.09 × 106 km2 in 2000 to 2.32 × 106 km2 in 2013 
(Fig. 5), which accounted for 43% of the total land area of the Brazilian 
Amazon. We analysed annual evergreen forest area dynamics within PAs of 
the Brazilian Amazon during 2000–2017. PAs sheltered about 50% of the 
total evergreen forest area in the Brazilian Amazon in 2013. Total evergreen 
forest area within PAs decreased slightly from 1.98 × 106 km2 in 2000 to 1.96 
× 106 km2 in 2017 (~1.3% loss over 17 years) (Fig. 5c). This small change in 
forest area clearly demonstrates the critical role of PAs in forest 
conservation. When we analysed annual evergreen forest maps, the 
cumulative deforested area within PAs was 0.044 × 106 km2, accounting for 
~11% of total forest area loss (0.41 × 106 km2) and the cumulative 
reforestation within PAs, 0.014 × 106 km2, ~20% of total forest area gain 
(0.071 × 106 km2). In comparison, evergreen forest area in non-PAs 
decreased substantially from 1.95 × 106 km2 in 2000 to 1.64 × 106 km2 in 
2017 (Fig. 5c). Deforestation within/around PAs occurred throughout the 
study period, rendering them fragmented, isolated and under increased 
threat of further deforestation (Fig. 5b). Previous studies analysed 
deforestation data during 1998–2010 and reported that PAs reduced 
deforestation and carbon emissions34,35. As various socio-ecological factors 
influence illegal (and legal) deforestation in PAs, our results could be used to 
strengthen the governance of PAs in the Brazilian Amazon.



Discussion

Our results show large discrepancies between PALSAR/MODIS forest product 
and the Landsat-based forest product (PRODES). We investigated to what 
degree cloud cover and shadow affected optical images in terms of the 
number of good-quality observations in 1 year in the Brazilian Amazon 
(Fig. 6). Analysis of all Landsat images in 2010 shows that a number of pixels
in the Brazilian Amazon do not have good-quality observations in 1 year due 
to cloud cover and shadow (Fig. 6). In addition, about 178–210 Landsat 
images (path/row) were used in PRODES before 2009 and about 228 Landsat
images (path/row) have been used since 2009 (Supplementary Fig. 11). 
Approximately 5–15% of the area captured by Landsat images still had cloud 
cover (Supplementary Fig. 11). In comparison, almost all MODIS pixels had 
good-quality observations in 1 year due to its daily revisit cycles. Those 
Landsat pixels with no or few good-quality observations in 1 year contributed
to the smaller estimates of forest areas reported by PRODES (Supplementary
Fig. 2). For those Landsat pixels with no or few good-quality observations in 
1 year, GFW used cloud-free observations in neighbouring year(s), which 
contributed to the uncertainty in annual forest area estimates reported by 
GFW. We also carried out accuracy assessments of these forest data 
products using common reference datasets (see Supplementary 
Information). The PALSAR/MODIS and GFW datasets have similar overall 
accuracy of ~90% and are higher than that of PRODES (~80%) 



(Supplementary Table 3). The PRODES forest had a noticeable omission error
(~25%) in forest area estimates in 2010 (Supplementary Table 3). Our 
PALSAR/MODIS forest maps suggested that the Brazilian Amazon may have 
substantially more forest area than estimated by the PRODES dataset, which 
has been widely used in many scientific studies5,8,34 and in public policy 
development.

Three publications reported the underestimation of forest area loss in the 
PRODES data and likely casual factors15,17,36. The larger estimate of evergreen
forest loss from the MOD100 dataset accentuates the likelihood of 
underestimates in other existing data products, specifically PRODES. The 
PRODES forest product had high omission errors of about 40% and 28% in 
2000 and 2010, respectively (Supplementary Table 3), which can be 
attributed, to a large degree, to the spatial extent of satellite images to 
identify forest and the fact that Landsat images have a number of pixels with
no good-quality observations in 1 year (Supplementary Fig 11). PRODES 
forest data has a minimum mapping unit of 6.25 ha, thus it would not 
account for forest loss in small patches15,36. Compared with GFW and 
MOD100, PRODES underestimated forest-loss area by 67–127%. Landsat 7 
Enhanced Thematic Mapper Plus (ETM +) images used in the GFW forest-loss 
dataset also had a fair number of pixels with no or few good-quality 
observations in 1 year. For example, about 13.5% of forest area had less 



than three good-quality observations in 2010 (Fig. 6). The phenological 
characteristics of many land cover types could be similar for some time 
periods in the Brazilian Amazon37, and thus a limited amount of good-quality 
observations in 1 year could result in an underestimation of forest-loss area. 
About 27% of forest-loss area in the PRODES dataset was not identified in 
the GFW dataset during 2001–201315. In comparison, the MOD100 product 
used all the observations in 1 year (full or dense time-series) from MOD09A1,
which has six or more good-quality observations over 99% of the pixels 
(Supplementary Fig. 11).

Our results reported forest area gain in the Brazilian Amazon. Various forest 
restoration projects were carried out in the Brazilian Amazon, most of which 
focused primarily on commercial plantations, such as eucalyptus, pine and 
rubber38. Compared to native forests, commercial plantations usually have 
small species richness and simple canopy structure, which have very limited 
values for biodiversity conservation39,40,41,42. The largest tropical reforestation 
project in recent history was launched in late 2017 by Conservation 
International, the Brazilian Ministry of Environment, the Global Environment 
Facility, the World Bank and the Brazilian Biodiversity Fund with the aim to 
plant 73 × 106 trees in the Brazilian Amazon by 2023. Under the Paris 
Climate Agreement, Brazil has committed to restoring or reforesting 0.12 × 
106 km2 of land by 2030. Our approaches for mapping the spatio-temporal 
changes of forests could identify the areas with successful and unsuccessful 
reforestation efforts and provide valuable information for reforestation 
projects.

In conclusion, this study demonstrates the potential of time-series 
microwaves, optical images and algorithms to characterize forest areas in 
the Brazilian Amazon. The resultant datasets could have important 
implications for not only land-use policy, management and conservation, but 
also our understanding of the terrestrial carbon cycle, hydrology and climate.
Recent development and policy changes in Brazil, such as the changes to the
forest code—the proposed one-sentence constitutional amendment (PEC-65)
—and the large-scale construction of dams and highways probably threaten 
environmental protection policies and efforts that aim to conserve the forest 
in the Brazilian Amazon43,44. If the Brazilian government’s deforestation 
target is to be met (0.004 × 106 km2 yr–1)30, concrete efforts must be made to 
improve our capacity for monitoring, reporting and verifying deforestation 
and reforestation, and to reverse the sharply increasing trend in forest loss 
over the past few years.

Methods

Remote sensing data

PALSAR data

The PALSAR onboard the ALOS satellite was launched on 14 January 2006. 
The annual 50-m PALSAR mosaic products are in the Fine Beam Dual (FBD) 



polarization mode (HH and HV dual polarizations) and have been slope-
corrected, orthorectified and radiometrically calibrated19,45. HH means that 
microwave energy was transmitted and received in the horizontal direction 
by the antenna and HV means that microwave energy was transmitted in the
horizontal direction and received in the vertical direction. We converted the 
digital number (DN) values into gamma-naught backscattering coefficient in 
decibels (γ°) using a calibration coefficient (equation (1)).

where CF is the absolute calibration factor of –83. We further calculated 
PALSAR difference (equation (2)) and ratio (equation (3)) layers as:

A number of studies have reported that PALSAR backscattering coefficients 
are sensitive to tree structure and can be used to generate annual maps of 
forests12,19,27,28 and to estimate forest above-ground biomass in different 
climate regions46,47,48.

MOD13Q1 Normalized Difference Vegetation Index (NDVI)

The MODIS/Terra MOD13Q1 data are a composite product with the best 
quality pixel in each 16-d window from daily observations. MOD13Q1 
products include the NDVI and Enhanced Vegetation Index (EVI)49. The 
MOD13Q1 NDVI and EVI products are computed from atmospherically 
corrected bi-directional surface reflectance, which has been masked for 
water, clouds, heavy aerosols and cloud shadows. NDVI is calculated as a 
normalized ratio between the red and near-infrared (NIR) surface reflectance.
A 16-bit vegetation index quality is provided in the dataset, and only good-
quality observations were used in this study.

MOD09A1 data and vegetation indices

The MOD09A1 (v.006) data product has seven land surface spectral bands 
and contains 1-d observations within an 8-d period. The MOD09A1 has a 16-
bit surface reflectance data quality description. We used the MOD09A1 
standard data quality flags to identify observations covered by cloud (cloudy 
and mixed), internal cloud, cloud shadow, high aerosols, high cirrus or snow. 
We treated those observations with the above-mentioned quality flags as 
bad observations and excluded them from the time-series data analysis. In 
addition, we also treated those observations with blue band surface 
reflectance value >0.20 as bad observations and excluded them from data 
analysis. Over 99.9% of the MOD09A1 dataset had two or more good-quality 



observations in the Brazilian Amazon (Supplementary Fig. 12). We calculated
three vegetation indices: NDVI (equation (4)), EVI (equation (5)) and Land 
Surface Water Index (LSWI) (equation (6))50 using blue, red, NIR (841–875 
nm) and shortwave-infrared (SWIR) (1628–1652 nm) bands.

where ρblue, ρred, ρNIR and ρSWIR represent land surface reflectance values from 
MOD09A1 blue, red, NIR and SWIR bands, respectively.

Precipitation data from TRMM

We calculated annual precipitation during 2001–2016 using observations 
from TRMM, a joint mission between NASA and JAXA. We used the 
precipitation from the TRMM 34B2 product with a 3-h temporal resolution 
and a 0.25-degree spatial resolution51.

TWS data from GRACE

The 1° GRACE Tellus Monthly Mass Grids provide monthly gravitational 
anomalies, which have units of ‘Equivalent Water Thickness’, indicating the 
deviations of mass in terms of the vertical extent of water in centimetres52,53. 
We calculated annual TWS from the 1° GRACE (GRACE TWSmin) Tellus 
Monthly Mass Grids dataset from 2002 to 2016 in the Brazilian Amazon.

Active fire and burned area data

The active fire and burned area data were from MOD14A2 (Terra Thermal 
Anomalies & Fire 8-Day Global 1 km, v.006)54 and MCD64A1 (MODIS Burned 
Area Monthly Global 500 m, v.006)55, respectively. We selected active fire 
with nominal and high confidence levels and burned areas with sufficient 
valid data in the reflectance time-series in this study. We then generated 
annual active fire and burned area binary maps if the active fire and burned 
areas occurred in 1 year in the Brazilian Amazon, respectively.

Multiple forest maps

PALSAR/MODIS forest maps (2007–2010)

We used the FAO’s forest definition in our forest mapping studies: forest as a
land parcel (≥0.5 ha) covered by 10% or more tree cover with tree height ≥5 
m at their maturity. We developed a new and robust decision tree approach 



that combined PALSAR images (50 m) and MOD13Q1 NDVImax images (250 m)
to identify and map forests. We used this to generate annual maps of forests 
at 50-m spatial resolution in China28, monsoon Asia27 and South America12. 
The resultant annual PALSAR/MODIS forest maps have been evaluated with 
extensive ground reference data interpreted from in situ global positioning 
system-based field photos and Very High Resolution (VHR) images and 
compared with other forest products and national forest inventory data. In 
this study, we used annual maps of forests in South America during 2007–
2010 from the Forest-PALSAR/MODIS approach12, and the Brazilian Amazon 
boundary map was used to subset the South American forest maps.

MOD100 evergreen forest maps (2000–2017)

We used three freely available datasets as the input datasets for algorithm 
training in 2010: (1) the Global Land Cover Validation Reference Dataset 
(GLCVRD), (2) MCD12Q1 land cover product and (3) ESA CCI land cover 
product. The GLCVRD dataset was produced from analyses of VHR images 
(QuickBird-2, WorldView-1/2, IKONOS-2 and GeoEye-1) acquired mostly in 
2010 and based on a stratified random sampling design56,57,58. There are 18 
sites in the Brazilian Amazon and each of them covers an area of about 5 × 5 
km2 at a 2-m spatial resolution (Supplementary Fig. 13). The GLCVRD has 
five land cover types (Tree, Water, Barren, Other Vegetation and Ice & Snow)
and two non-land cover types (Cloud and Shadow). We grouped the five land 
classes into two layers (tree, non-tree) and the two non-land cover types into
one class (bad observations) for each site’s map and converted their 
universal transverse mercator projection into an ‘equal-area projection’ (that 
is, South_America_Albers_Equal_Area_Conic). We aggregated the tree, non-
tree and bad observations layers into the same spatial resolution as 
MOD09A1 (500 m) and calculated their percentage area fraction within 
individual pixels. We excluded those pixels with more than 1% area of bad 
observations, and a total of 966 pixels at MODIS 500-m spatial resolution 
were selected for algorithm training. For those areas covered by the GLCVRD
dataset, we selected evergreen forest and non-evergreen forest training 
samples within evergreen forest and non-evergreen forest boundaries 
derived from MCD12Q1 and ESA CCI land cover products.

A unique physical feature of evergreen forests is that they have green leaves
all year. Conversely, deciduous forests usually have few or no green leaves 
during the dry season or winter season, leaving soils and tree trunks to be 
observed by space-borne sensors. We developed and reported a new, simple
and robust algorithm that generated annual maps of tropical evergreen 
forests in the pantropical zone and monsoon Asia based on the canopy 
phenology from analyses of time-series water-related LSWI and greenness-
related EVI calculated from the MOD09A1 product26,27. The Forest-MODIS 
algorithm is well documented in our previous studies26,27. First, we counted 
the number of good-quality observations that had no cloud (cloudy and 
mixed), internal cloud, cloud shadow, high aerosols, high cirrus or snow 
(equation (7)). Second, of those good-quality observations, we counted the 



number of observations with LSWI ≥ 0 (equation (8)). Third, we calculated 
the percentage of observations with LSWI ≥ 0 out of all good observations in 
1 year (equation (9)). Fourth, we calculated the minimum EVI values in those 
good-quality observations in 1 year (equation (10). In this study, we applied 
this Forest-MODIS algorithm (PCTLSWI ≥ 0 = 100% and EVImin ≥ 0.2; ref. 26) 
(Supplementary Fig. 14) to MOD09A1 time-series data in individual years 
during 2000–2017 and generated annual maps of evergreen forest in the 
Brazilian Amazon (Fig. 1c) in the web-based cloud computing platform 
Google Earth Engine. Our Forest-MODIS algorithm is sensitive to evergreen 
forest loss (Supplementary Fig. 15) and gain (Supplementary Fig. 16).

where NGood-quality observation, MLSWI ≥ 0, PCTLSWI ≥ 0 and EVImin are the number of good-
quality observations, the number of observations with LSWI ≥ 0 from good-
quality observations, the percentage of observations with LSWI ≥ 0 out of all 
good observations in one year and the minimum EVI (EVImin) values of those 
good-quality observations in one year, respectively. 𝑂1, 𝑂2, O𝑖, Oj, and O𝑛 are 
the 1st, 2nd, ith, jth and nth individual observation in one year, respectively.

Deforestation is the process of converting forest into non-forest. 
Reforestation is the process of non-forest being reforested or afforested. 
Short-rotation industrial plantation (for example, eucalypt) usually has a 
cycle of 4–6 years25, thus we defined reforestation as an area converted from
non-forest into forest for at least 4 years. We developed an approach to 
identify and map evergreen forest change (deforestation and reforestation) 
in the Brazilian Amazon based on the annual MOD100 evergreen forests. This
approach includes three steps: (1) we masked out those MOD100 pixels 
lacking any good-quality observation, (2) we applied a three-observation 
moving window filter and reduced random errors in the MOD100 evergreen 



forest maps and (3) we identified and mapped the location and date for 
deforestation (equation (11)) and reforestation (equation (12)) based on the 
refined MOD100 evergreen forest maps during 2001–2016.

where MOD100 is the evergreen forest maps, F and NF are the abbreviations 
for evergreen forest and non-evergreen forest, respectively, and k = 2001,…,
2016.

JAXA forest maps (2007–2010, 2015–2016)

The 25-m annual JAXA forest maps19 were produced using PALSAR FBD 
polarization mode data from June to September during 2007−2010 and 
2015−2016. Data pre-processing includes speckle reduction, ortho-
rectification and slope correction and intensity equalization between 
neighbouring strips. In general, a decision tree algorithm was used to 
generate the JAXA forest maps. First, a 5 × 5 pixel median filter was used to 
reduce noise in images, followed by a multi-resolution segmentation. Then, 
15 region-specific HV threshold values were determined to identify forest 
pixels based on the ground references and cumulative distribution functions. 
We aggregated the 25-m JAXA forest maps to 500-m resolution for 
comparison with MODIS-based forest maps.

PRODES forest dataset (2000–2016)

The PRODES project at the Brazilian National Institute for Space Research 
(INPE) has been mapping annual deforestation since 1988 and providing 
annual remaining forest area estimates for the Brazilian Amazon since 2000. 
Visual interpretation of Landsat images was used to generate annual 
deforestation maps during 1988–1999. The digital image classification 
approach18 was used to generate annual deforestation maps from 2003 to 
2005. The TerraAmazon platform has been used since 2005, which allows 
PRODES analysis to be more uniform. In general, three steps are used to 
generate the PRODES products. First, images are selected to be as cloud-free
as possible with an acquisition date closest to the reference date (1 



August)18. The images are then masked to exclude non-forest and previous 
deforestation, using the previous year’s analysis results. Finally, interpreters 
delineate deforested polygons (shapefile format) in the intact forest of the 
previous year. In this study, we used the annual forest cover areas during 
2000–2017 (Supplementary Table 1) and annual deforestation area statistics 
in the Brazilian Amazon during 2001–2016, as reported by the INPE. To 
estimate the total forest area in the Brazilian Amazon, we generated a cloud-
free and a maximum spatial extent of forest (Supplementary Fig. 2) using 
the annual PRODES forest maps during 2007−2010.

GFW forest dataset (2000–2016)

Tree cover product in 2000 and 2010, annual forest loss from 2000 to 2016 
and total forest gain from 2000 to 2012 are generated in GFW through the 
analysis of time-series Landsat ETM + and Operational Land Imager (OLI) 
images taken during the growing season11. Landsat ETM + images from 
multiple years around 2000 and 2010 were used to retrieve 30-m GFW tree 
cover for 2000 and 2010 through a decision tree algorithm based on the 
training datasets, selected percentile values and the slope of the linear 
regression of band reflectance value versus image date. We calculated GFW 
forest maps for 2000 and 2010 (Supplementary Fig. 2) as well as forest loss 
based on a tree cover ≥10%.

MCD12Q1 land cover dataset (2001–2013)

MCD12Q1 (Land Cover Type Yearly L3 Global 500 m Sinusoidal (SIN) Grid) 
land cover product has five different land cover classification systems. We 
used the International Geosphere–Biosphere Programme (IGBP) 
classification9. The IGBP classification map was produced using a supervised 
classification algorithm. The input datasets include a training dataset and the
phenology and temporal variability features of land cover types extracted 
from 500-m aggregated 32-d average nadir Bidirectional Reflectance 
Distribution Function (BRDF)-adjusted land surface reflectance (NBAR), EVI, 
land surface temperature (LST) and annual metrics (minimum, maximum 
and mean values) for EVI, LST and NBAR bands. Post-processing refinements 
were applied to create the final land cover product, including sample bias 
correction and spatial explicit prior probability adjustments. IGBP 
classification map includes five forest types, including evergreen needleleaf 
forest, evergreen broadleaf forest, deciduous needleleaf forest, deciduous 
broadleaf forest and mixed forest, which we merged into a single forest layer
(Supplementary Fig. 2).

ESA CCI land cover (2000–2015)

The 300-m ESA CCI land cover maps use the Land Cover Classification 
System developed by the FAO29. First, a unique baseline land cover map is 
generated using 7-d time-series medium resolution imaging spectrometer 
imagery during 2003–2012. Independently from this baseline, land cover 
changes are detected at 1 km based on the AVHRR time-series between 



1992 and 1999, SPOT-VEGETATION time-series between 1999 and 2013 and 
PROBA-V data for years 2013, 2014 and 2015. The last step consists of back-
dating and updating the 10-year baseline land cover map to produce the 24 
annual land cover maps from 1992 to 2015. We used five forest classes in 
this study: (1) tree cover, broadleaved, evergreen, closed to open (>15%), 
(2) tree cover, broadleaved, deciduous, closed to open (>15%), (3) tree 
cover, needle-leaved, evergreen, closed to open (>15%), (4) tree cover, 
needle-leaved, deciduous, closed to open (>15%) and (5) tree cover, mixed 
leaf type (broadleaved and needle-leaved) (Supplementary Fig. 2).

Accuracy assessment and inter-comparison of forest area data products

We carried out substantial accuracy assessment and inter-comparison of 
forest area data products (see Supplementary Information). The MOD100 
forest dataset in 2000 and 2010 had an overall accuracy of ~97% 
(Supplementary Tables 3 and 4), based on the same reference dataset used 
in accuracy assessment of PALSAR/MODIS, PRODES and GFW. The MOD100 
forest-loss dataset had an overall accuracy of ~98% (Supplementary 
Table 5). The MOD100 forest gain dataset had an overall accuracy, user’s 
accuracy and producer’s accuracy of 99.18% (±0.27), 48.72% (±16.22) and 
87.06% (±16.36), respectively (Supplementary Table 5).

Data availability

The PALSAR/MODIS forest and MOD100 forest data that support the findings 
of this study are available from the corresponding author upon request and 
will be made available to the public. The other datasets are publicly available
online (Supplementary Table 6).
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