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Abstract 

Single-cell and single-molecule methods for mapping protein-DNA interactions 

by  

Nicolas F Altemose 

Joint Doctor of Philosophy in Bioengineering 

University of California, Berkeley and University of California, San Francisco 

Assistant Professor Aaron Streets, Chair 

The same two meters of DNA is carefully packed into the nucleus of nearly every cell in 
a human’s body, where it encodes essentially all of the complex information required 
to build a complete human being. However, DNA by itself cannot give rise to life; it 
must be decoded and maintained by specialized macromolecules, including proteins 
that read, regulate, replicate, recombine, and repair DNA. Mapping where and how 
these life-giving proteins interact with DNA can provide key insights into how they 
function or malfunction in healthy and diseased cells.  

High-throughput DNA sequencing technologies form the basis of several powerful 
methods for mapping protein-DNA interactions across the genome, but they often 
require researchers to blend together many thousands or millions of cells to provide 
enough material to make an accurate measurement. Due to this blending, these bulk 
methods cannot capture the dynamic and heterogeneous nature of protein-DNA 
interactions as they regulate the genome in individual cells. While newer methods are 
beginning to enable protein-DNA mapping in single cells, they are incompatible with 
high-resolution microscopy, which can provide rich orthogonal information about 
nuclear organization and other complex phenotypes in single cells. Furthermore, 
existing protein-DNA mapping approaches fail almost completely within highly 
repetitive DNA sequences, which constitute roughly 5-10% of the human genome and 
play indispensable roles in maintaining genome stability. 

In this body of work, I have developed two new technologies to address each of these 
limitations in turn. Firstly, I designed an integrated microfluidic platform (µDamID) that 
combines high-resolution imaging and sequencing information in the same single 
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cells, allowing for the joint analysis of the nuclear localization, sequence identity, and 
variability of protein-DNA interactions in single cells. Secondly, I worked collaboratively 
to develop DiMeLo-seq (Directed Methylation with Long-read sequencing), which uses 
cutting-edge DNA sequencing technologies to map protein-DNA interactions on long, 
single molecules of DNA that retain endogenous DNA methylation marks and can be 
mapped to highly repetitive regions of the genome. Together, these new methods 
expand the toolkit available to researchers to study the fundamental processes that 
regulate the genome, with the potential to enhance our understanding of embryo 
development, stem cell differentiation, and diseases resulting from genome 
misregulation.
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Chapter 1 
 
 
Introduction 
 
Motivation 
Complex life depends on protein-DNA interactions that constitute and maintain the 
epigenome, including interactions between DNA and histone proteins, transcription 
factors, DNA (de)methylases, and chromatin remodeling complexes, among others. 
These interactions enable the static DNA sequence inside the nucleus to dynamically 
execute different gene expression programs that shape the cell’s identity and behavior.  
 
Methods for measuring protein-DNA interactions have proven indispensable for 
understanding the epigenome, though to date most of this knowledge has derived 
from experiments in bulk cell populations. By requiring large numbers of cells, these 
bulk methods can fail to capture critical epigenomic processes that occur in small 
numbers of dividing cells, including processes that influence embryo development, 
developmental diseases, stem cell differentiation, and certain cancers. By averaging 
together populations of cells, bulk methods also fail to capture important epigenomic 
dynamics occurring in asynchronous single cells during differentiation or the cell cycle. 
Because of this, bulk methods can overlook important biological heterogeneity within 
a tissue. It also remains difficult to pair bulk biochemical data with imaging data, which 
inherently provide information in single cells, and which can reveal the spatial location 
of protein-DNA interactions within the nuclei of living cells. These limitations underline 
the need for high-sensitivity single-cell methods for measuring protein-DNA 
interactions. 
 
Another major limitation of existing methods for mapping protein-DNA interactions is 
the inability to map these interactions in highly repetitive regions of the genome, owing 
to the short length of DNA sequencing reads produced by next-generation DNA 
sequencing technologies. In the human genome, these highly repetitive regions 
account for 5-10% of the total length of the genome but have remained almost entirely 
missing from the human genome assembly for the last 20 years (I. H. G. S. Consortium 
2001). These missing regions are composed primarily of centromeres, telomeres, and 
the short arms of the acrocentric chromosomes, all of which serve important biological 
functions but have been ignored by most sequencing-based functional studies in the 
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age of genomics. Although new long-read sequencing technologies (M. Jain et al. 
2016, Wenger et al. 2019) are now enabling the completion of the human genome 
reference assembly to include these highly repetitive regions (Miga et al. 2020), it 
remains challenging to uniquely map short sequencing reads within highly 
homogenized DNA repeats. This highlights the need for new protein-DNA interaction 
mapping methods that fully leverage the power of new long-read sequencing 
technologies to study the regulation and function of these formerly missing regions of 
the genome. 
 
Existing methods for mapping and visualizing protein-DNA interactions 
Chromatin Immunoprecipitation 
Most approaches for mapping protein-DNA interactions rely on chromatin 
immunoprecipitation (ChIP) (Solomon et al. 1988), in which protein-DNA complexes 
are physically isolated using a high-affinity antibody against the protein, then purified 
by washing and de-complexed so the interacting DNA can be amplified and measured. 
The most widely used among these methods is chromatin immunoprecipitation with 
sequencing (ChIP-seq) (Barski et al. 2007, Johnson et al. 2007, Robertson et al. 2007), 
which has formed the backbone of several large epigenome mapping projects 
(Celniker et al. 2009, T. E. P. Consortium 2012, Meuleman et al. 2015). I used ChIP-seq 
extensively in my past work to study the DNA-binding properties of the meiotic 
recombination initiation protein PRDM9 (Altemose et al. 2017, Davies et al. 2016, R. Li 
et al. 2019). Protein-DNA mapping data proved essential for us to discover how 
changes in PRDM9’s DNA binding patterns can lead to infertility and the early stages 
of speciation in mice (Davies et al. 2016, R. Li et al. 2019). 
 
One drawback of ChIP-seq is that protein-DNA complexes, which are often fragile, 
must survive the shearing or digestion of the surrounding DNA, as well as several 
intermediate washing and purification steps, in order to be amplified and sequenced. 
This often requires fixing the sample with formaldehyde to covalently crosslink proteins 
to DNA, then removing these crosslinks after shearing and immunoprecipitation, a 
process that can result in substantial artifacts (Teves et al. 2016). Overall, ChIP methods 
typically have inefficient recovery of DNA from on-target protein-DNA complexes, 
which is overcome by starting with a large amount of input material, usually from 
millions of cells. 
 
In situ antibody-targeted cleavage 
More recent immunoaffinity-based methods have lower input requirements relative to 
ChIP-seq, but they recover relatively few interactions in small numbers of cells or single 
cells (Carter et al. 2019, Grosselin et al. 2019, Harada et al. 2019, Jakobsen et al. 2015, 
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Kaya-Okur et al. 2019, Ku et al. 2019, Rotem et al. 2015, Shen et al. 2015, Skene & 
Henikoff 2017, Wu et al. 2012, B. Zhang et al. 2016). Specifically, the methods 
CUT&RUN (Skene & Henikoff 2017) and CUT&TAG (Kaya-Okur et al. 2019), which are 
based on the earlier ChIC method (Schmid et al. 2004), involve binding an antibody to 
the target protein in permeabilized nuclei in situ. Then, the primary antibody is bound 
by Protein-A, a protein that binds to certain antibodies, fused to an endonuclease or 
transposase enzyme. After many washing steps to reduce nonspecific binding, the 
enzyme is activated by adding calcium to the buffer, releasing small fragments of DNA 
near the target protein’s binding sites, which can be recovered from the supernatant, 
amplified, and sequenced. These in situ approaches greatly reduce the input 
requirements relative to ChIP-seq, and they preserve local chromatin structure while 
eliminating the need for heavy crosslinking.  
 
DamID plus short-read sequencing 
An alternative method for probing protein-DNA interactions, called DNA adenine 
methyltransferase identification (DamID), relies not on physical separation of protein-
DNA complexes (as in ChIP-seq), but on a sort of ‘chemical recording’ of protein-DNA 
interactions onto the DNA itself, which can later be selectively amplified (Figure 1.1)  
(Steensel & Henikoff 2000, Vogel et al. 2007). This method utilizes a small enzyme from 
E. coli called DNA adenine methyltransferase (Dam). When genetically fused to the 
protein of interest, Dam deposits methyl groups near the protein-DNA contacts at the 
N6 positions of adenine bases (m6A) within GATC sequences (which occur once every 
270 bp on average across the human genome). That is, wherever the protein contacts 
DNA throughout the genome, m6A marks are left at GATC sites in its trail. These m6A 
marks are highly stable in eukaryotic cells, which do not tend to methylate (or 
demethylate) adenines (O’Brown et al. 2019). Dam expression has been shown to have 
no discernable effect on gene expression in a human cell line, and its m6A marks were 
shown to be passed to daughter cells, halving in quantity each generation after Dam is 
inactivated (Park et al. 2019). These properties allow even transient protein-DNA 
interactions to be recorded as stable, biologically orthogonal chemical signals on the 
DNA, useful for integrating protein-DNA interactions over time, up to the length of a 
cell cycle. 
 
DamID reads out these chemical recordings of protein-DNA interactions by specifically 
amplifying and then sequencing fragments of DNA containing the interaction site. First, 
genomic DNA is purified and digested with DpnI, a restriction enzyme that exclusively 
cleaves Gm6ATC sites (Figure 1.1). Then, universal adapters are ligated onto the 
fragment ends to allow for amplification using universal primers. Only regions with a 
high density of m6A produce DNA fragments short enough to be amplified by 
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Polymerase Chain Reaction (PCR) and quantified by microarray or high-throughput 
sequencing (Wu et al. 2016). DamID has been used to explore dynamic regulatory 
protein-DNA interactions such as transcription factor binding (Orian 2003) and RNA 
polymerase binding (Southall et al. 2013) as well as protein-DNA interactions that 
maintain large-scale genome organization. One frequent application of DamID is to 
study large DNA domains associated with proteins at the nuclear lamina, near the inner 
membrane of the nuclear envelope (Guelen et al. 2008, Pickersgill et al. 2006, Steensel 
& Belmont 2017). Because DamID avoids the limitations of antibody binding, physical 
separations, or intermediate purification steps, it lends itself to single-cell applications. 
DamID has been successfully applied to sequence interactions of the protein LaminB1 
with DNA in single cells in a one-pot reaction, recovering hundreds of thousands of 
unique DNA fragments per cell (Kind et al. 2015). 
 

 
Figure 1.1. Overview of DamID and m6A-Tracer methods 
This schematic illustrates how DamID can be used to map protein-DNA interactions, in 
this case, interactions between the Lamin B1 protein and lamina-associated domains. 
A fusion between Dam and the protein of interest causes DNA to be methylated at 
adenines within GATC sites nearby. These methyladenine marks can then be read out 
by imaging, using the m6A-Tracer protein, or by high-throughput sequencing after 
digesting the genome with a methyl-specific restriction enzyme, DpnI. 
 
 
Variations of DamID 
One variation of DamID, called MadID, involves fusing the nonspecific adenine 
methyltransferase EcoGII to the protein of interest in vivo, in lieu of Dam (Sobecki et al. 
2018). EcoGII methylates adenines in any context, not just in GATC sites, which are rare 
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in certain repetitive parts of the genome. Instead of using DpnI to release and 
sequence small DNA fragments, methylated DNA is isolated by immunoprecipitation 
with an anti-mA antibody then sequenced by short-read sequencing. The authors 
demonstrated that this method can enrich for repetitive sequences bound by 
centromere and telomere binding proteins (Sobecki et al. 2018). MadID is a substantial 
improvement on the earlier method DamIP, which used a mutant version of Dam with 
less specificity than wild-type Dam, but more specificity than EcoGII (Xiao et al. 2010).  
 
Another variation of DamID, called pA-DamID, involves targeting the Dam 
methyltransferase to a protein of interest in situ, in a similar fashion to CUT&RUN 
(Schaik et al. 2020). The methyl donor group S-adenosylmethionine (SAM) is withheld 
until the final activation step to prevent premature methylation. The cells are then 
processed according to the standard bulk DamID protocol. The authors show that this 
method generally has poorer signal-to-noise ratios than conventional DamID. This may 
owe to the longer effective incubation times of Dam fusion proteins expressed in vivo, 
and to the fact that active chromatin remodeling makes more DNA accessible to the 
Dam enzyme in vivo. Because methylation represents a cell’s state at an instant in time, 
rather than an integrated signal of a protein’s binding sites over time in vivo, this 
method allows for greater time resolution and was used to investigate cell cycle 
dynamics of LADs in synchronized cells (Schaik et al. 2020). 
 
Researchers have also developed a split Dam enzyme to investigate protein co-
localization in the genome (Hass et al. 2015). Others utilized tissue-specific promoters 
to constrain Dam-fusion protein expression to particular cell types in flies, allowing 
recovery of tissue-specific protein-DNA binding information from whole flies, without 
tissue isolation (Southall et al. 2013). Others have engineered different mutants of Dam 
with more specific activity and used them as synthetic controllers of gene expression 
and epigenetic inheritance (Park et al. 2019). Single-cell DamID has recently been 
combined with single-cell RNA sequencing in a method called scDam&T, which uses 
in vitro transcription to linearly amplify both RNA and Dam-methylated DNA from the 
same single cells in multiplexed batches (Rooijers et al. 2019). 
 
DamID plus m6A-Tracer imaging 
While DamID maps the sequence positions of protein-DNA interactions throughout 
the genome, the spatial location of these interactions in the nucleus can also play an 
important role in genome regulation (Bickmore & van Steensel 2013). A method 
related to DamID can be applied to specifically label and visualize protein-DNA 
interactions using fluorescence microscopy, revealing their spatial location within the 
nucleus in live cells (Kind et al. 2013). Visualization requires co-expression of a different 
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fusion protein called m6A-Tracer, which contains green fluorescent protein (GFP) and a 
domain that binds specifically to methylated GATC sites (Figure 1.1). Unlike other 
methods for imaging protein-DNA interactions, such as immunofluorescence (IF) plus 
fluorescence in situ hybridization (FISH), the m6A-Tracer approach allows visualization 
of everywhere where the protein has bound during the full incubation period, not just 
where the protein was bound at the moment of harvesting or fixation. This imaging 
technology has been applied to visualize the dynamics of LaminB1-DNA interactions 
within single cells (Kind et al. 2013). Both imaging and sequencing protein-DNA 
interactions can provide useful single-cell epigenomic information, but despite recent 
advances in single-cell sequencing technologies, it remains fundamentally difficult to 
track individual cells and pair their sequencing data with other measurements such as 
imaging data. While other DamID studies have performed imaging and sequencing in 
parallel (Borsos et al. 2019, Kind et al. 2015), they do not provide linked imaging and 
sequencing data for individual cells. 
 
Approaches for combined single-cell imaging and sequencing 
Microscopy is the original single-cell measurement platform, and imaging 
technologies still drive most cell biology studies. High-resolution imaging can provide 
important phenotypic information about single cells not achievable by other 
measurement approaches, including details about their morphology, metabolism, and 
subcellular protein localization over time. Using this information in combination with 
single-cell sequencing can provide useful insights into the connection between ‘omics 
measurements and cellular phenotypes. Pairing imaging and sequencing data could 
be applied to study, for example, how the dynamic remodeling of chromatin proteins 
across the genome in developing cells relates to the localization of those proteins in 
the nucleus. Imaging prior to sequencing also allows for the identification and sorting 
of complex cytological phenotypes in cells, such as the presence of micronuclei and 
other nuclear abnormalities that would be difficult or impossible to measure using 
common fluorescence activated sorting methods. 
 
However, it remains difficult to pair single-cell sequencing data with single-cell imaging 
data. Popular platforms for high-throughput single-cell sequencing, such as droplet-
based sequencing methods (Macosko et al. 2015, Rotem et al. 2015, Satpathy et al. 
2019, Zheng et al. 2017, Zilionis et al. 2017) or combinatorial indexing methods (Cao 
et al. 2018, C. Chen et al. 2017, Ramani et al. 2017, Vitak et al. 2017) assign sequencing 
barcodes at random to individual cells in a way that cannot be matched back to their 
individual images. It is possible to use single-cell sorting to combine single flow-
cytometry-like fluorescent measurements with single-cell sequencing data (J. Q. Zhang 
et al. 2020), but this offers far less imaging information than obtainable on a 
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microscope. Some commercial microfluidic platforms enable combined imaging and 
sequencing, but their physical constraints make them incompatible with high-NA 
microscope objectives for sensitive, high-magnification imaging (Islam et al. 2014, 
Lane et al. 2017, Shalek et al. 2014, A. K. White et al. 2011). One possible option is to 
use a micromanipulator to move a cell into a well with a known barcode after imaging 
at high magnification (Saint et al. 2019), but this is labor intensive, slow, and prone to 
operator error or contamination. Cells can also be allowed to settle in or adhere to 
glass-bottom microwells (Yaron et al. 2014), but adhesion can take hours, and locating 
a cell within a microwell is nontrivial and inefficient. 
 
To address these limitations, Streets et al. developed a custom microfluidic platform to 
enable combined high-resolution imaging and RNA sequencing of single cells (Streets 
et al. 2014, Streets & Huang 2013). This device uses active trapping of cells on a 
multilayer PDMS-based device with elastomeric valves and carries out each reaction 
step in physically separated nanoliter reaction chambers. Chen & Gupta et al. further 
developed this device to enable single-cell RNA library barcoding on chip (T. N. Chen 
et al. 2020). Other recent solutions to the problem of imaging and RNA-sequencing 
involve optical decoding of barcodes after random pairing of barcodes with single 
cells. In SCOPE-seq, combinatorial barcodes are attached to beads in microwells, and 
the sequence of each barcode is read out optically though iterative hybridization of 
fluorescently tagged oligonucleotide probes (Yuan & Sims 2016). In a different 
approach, barcodes are attached to beads whose identity is specified by spectral 
encoding with different ratios of lanthanide nanophosphors (Nguyen et al. 2017). 
 
One limitation of all of these approaches is the need to dissociate cells into a 
suspension prior to trapping or encapsulation, which can be difficult for some tissues 
and destroys any spatial information in that tissue. Spatial ‘omics approaches have 
begun to address this issue by enabling sequencing or detection of many nucleic acid 
targets in fixed cells in situ. Seq-FISH, mer-FISH, and related methods use sequential 
hybridization of carefully designed fluorescent probes to identify single RNA 
molecules from hundreds to thousands of pre-specified genes in situ (K. H. Chen et al. 
2015, Lubeck et al. 2014). Slide-seq uses an array of barcoded beads with known 
coordinates on a glass slide to capture RNA molecules that diffuse out of a fine tissue 
slice, followed by multiplexed RNA sequencing, providing near-single-cell resolution 
(Rodriques et al. 2019). DBiT-seq deterministically patterns an array of barcodes onto 
a fixed tissue using a microfluidic device (Yang Liu et al. 2020). Lastly, in situ de novo 
RNA and DNA sequencing approaches have been developed, which require no pre-
specification of target regions (J. H. Lee et al. 2015, Payne et al. 2021). 
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Fabrication and operation of microfluidic devices 
Microfluidic devices allow for exquisite control of sub-microliter volumes of liquid and 
can exploit the efficiency gains possible when scaling laws favor small masses and 
volumes (reviewed by Streets & Huang 2013). By using small volumes, microfluidic 
devices enable orders of magnitude in cost savings, especially when using expensive 
biochemical reagents like enzymes. These cost savings, and the density of features that 
can be engineered into these small devices, can enable massively multiplexed 
measurements across thousands of reaction conditions in nanoliter-scale chambers in 
a single experiment (as a recent example, Aditham et al. 2021). Small reaction volumes 
also allow for rapid heating and cooling of reactions, rapid diffusion of solutes into or 
out of perfusion lines, and high effective concentrations of biomolecules or 
immobilized reagents. Microfluidic devices often take advantage of low Reynold’s 
number conditions inside microfluidic channels, where viscous forces overtake inertial 
forces, enabling phenomena like laminar flow and inertial focusing (Squires & Quake 
2005, Streets & Huang 2013). 
 
A popular material for making microfluidic devices is polydimethylsiloxane (PDMS), a 
silicone polymer that is clear, flexible, gas-permeable, biocompatible, and 
hydrophobic. Because PDMS is gas-permeable, microchannels can be “dead-end 
filled” with liquids, meaning a closed chamber can be filled with a liquid by injecting it 
at high pressure, causing the gas already inside to diffuse through the PDMS and be 
displaced by the liquid (Hansen et al. 2002). PDMS can also be bonded to itself to form 
multilayer devices, and this allows for the creation of elastomeric valves (Figure 1.2; 
Unger et al. 2000). In an elastomeric valve device, two layers of microchannels are 
carefully aligned and bonded together. One layer is very thin, only ~30 microns taller 
than the tallest microchannel, and the other is thick, typically millimeters tall. Where 
channels overlap between the layers, they are separated only by a ~30 micron thick 
membrane (the difference between the thin layer total height and the thin layer 
channel height). If one channel is pressurized, the flexible membrane will deform into 
the other channel, closing it off like a valve in a plumbing system. Typically, one layer 
is used exclusively for fluid flow (the “flow layer”), and one is used exclusively for 
pressurizing the elastomeric valves (the “control layer”). In a low Reynold’s number 
regime, elastomeric valves are analogous to transistors in electronic circuits, and they 
can be used to separate reagents, redirect fluid flow, trap cells/particles, create 
peristaltic pumps, and combine liquids in complex combinations (Streets & Huang 
2013, Thorsen et al. 2002). Valve states are usually controlled by electronically actuated 
pneumatic valves in the air lines that pressurize each control layer microchannel. 
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PDMS is purchased as two separate liquid components, a base and a crosslinker, 
which, when mixed together, cure into a solid matrix in a concentration- and 
temperature-dependent manner. PDMS devices can be rapidly prototyped and 
fabricated in a process called soft lithography (Xia & Whitesides 1998), in which PDMS 
is cured on top of a solid mold, casting submicron features from the mold into the 
PDMS. The PDMS is typically peeled from the mold, holes are punched to provide 
access to any microchannels from the opposite side, and the feature-containing side is 
bonded to glass or another layer of PDMS to seal off microchannels. Molds are most 
often fabricated using photolithographic techniques borrowed from microchip 
manufacturing methods on silicon wafers. In a typical workflow, a two-dimensional 
pattern is first printed on transparency paper with a high-resolution printer, or etched 
into a thin chrome layer on glass, creating a mask. This mask is placed on top of a UV-
activated epoxy resin, called photoresist, which has been spun and baked onto a flat 
silicon wafer to achieve a precise thickness. This assembly is exposed to an exact dose 
of collimated UV light then baked again, washed in a developer solution that removes 
unexposed resin, and baked a final time. The result is that the printed pattern has been 
transferred onto the silicon wafer as a set of permanently bonded epoxy features with 
a uniform height, usually tens of microns tall. More sophisticated versions of this 
protocol can produce features of different heights on the same mold, or allow for the 
creation of rounded or spherical features, which is critical for the creation of devices 
with elastomeric valves (Unger et al. 2000). 

 
Figure 1.2. Schematic of elastomeric valve operation 
Elastomeric valves can be created at the junctions of channels on overlapping layers of 
PDMS. Illustrated here is a “push-down” valve that is actuated by pressurizing a channel 
in the upper “control” layer, causing the thin PDMS membrane separating these two 
channels to deform and close off the “flow” layer channel below. 
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DNA Sequencing Technologies 
Illumina 
Illumina’s sequencing-by-synthesis approach became dominant among peer “next 
generation sequencing” technologies beginning in the 2000’s (Bentley 2006). In 
Illumina’s sequencing approach, DNA fragments are first ligated to an adapter 
sequence, which is designed to hybridize onto immobilized DNA oligos patterned 
inside nanowells in a microfluidic flowcell. Once a DNA molecule diffuses into a 
nanowell and hybridizes onto the complementary adapter sequence, it is rapidly 
copied by an isothermal process of bridge amplification. The reaction kinetics favor the 
copying of only a single input DNA molecule per nanowell, ultimately resulting in many 
copies of the same single-stranded DNA molecule in one tight cluster. After 
amplification, a primer and a mix of DNA bases conjugated to distinct fluorophores are 
added in and ligated to a growing complementary strand on each molecule, but the 
chemistry guarantees only one base is added at a time. The flowcell is imaged, and the 
fluorescent signal present in each nanowell provides a readout of which base was 
incorporated into that growing molecule. The fluorophore is then cleaved off, and the 
cycle is repeated, one base at a time, until a fixed maximum number of cycles is 
reached, usually up to 250 bp with the latest chemistries. The whole process is then 
repeated using a different primer, to read from the opposite end of each molecule. 
The result is up to billions of paired 250 bp sequencing reads from each flow cell, 
typically with 99.9% base calling accuracy, at a basic marginal sequencing cost of ~$10-
$35 per gigabase (Logsdon et al. 2020). 
 
Pacific Biosciences Single Molecule, Real-Time Sequencing 
Pacific Biosciences (PacBio) sequencing also sequences DNA by imaging the 
incorporation of fluorescently tagged nucleotides during DNA synthesis. However, this 
incorporation happens continuously in real time rather than in discrete, global 
hybridization and washing steps as with Illumina sequencing, allowing for much longer 
sequencing reads to be produced. There is also no amplification step; rather, the 
activity of a single polymerase enzyme copying a single DNA molecule is recorded in 
a movie, which is then decoded to produce a single sequencing read. To achieve the 
ability to rapidly detect photons from single fluorophores, the polymerase is 
immobilized above the holes of a zero-mode waveguide, a thin metal film with holes 
smaller than the wavelength of light being emitted, similar to the screen on the door 
of a microwave oven. This zero-mode waveguide only allows light from a tiny volume 
above each hole to pass through to the camera, effectively removing any background 
fluorescence from unincorporated nucleotides (Levene et al. 2003). Although the 
accuracy of a single basecall is only around 85-92% (Logsdon et al. 2020), the same 
~20 kb DNA molecule can be circularized and read over and over, producing a 
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consensus sequence with median 99.8% accuracy, which is marketed as HiFi 
Sequencing (Wenger et al. 2019). The cost for HiFi sequencing is currently in the range 
$43-$86 per gigabase (Logsdon et al. 2020).  
 
One additional benefit of PacBio’s method is that information is not only derived from 
the fluorescent signals observed in each movie, but from the time intervals between 
fluorescent signals. Specifically, methylated adenine bases take significantly longer to 
pass through the polymerase during synthesis, and the presence of methyladenines 
can be called with over 90% accuracy in most sequence contexts (Flusberg et al. 2010, 
McIntyre et al. 2019). Methylcytosines produce a much weaker signal, but they can be 
called indirectly if first chemically converted to thymines (Yibin Liu et al. 2020) 
 
Oxford Nanopore Technologies 
Oxford Nanopore Technologies (ONT) has developed an altogether different 
sequencing approach, which reads out base sequences according to their impedance 
of ion flow as a single DNA strand is pushed through a tiny protein pore in a thin 
membrane (M. Jain et al. 2016). The raw data are recordings of picoamp currents over 
time for thousands of individual pores per flowcell, which are decoded by a deep 
learning algorithm into a sequence of bases. While the basecalling accuracy per read 
is only 87-98% with standard basecallers (Logsdon et al. 2020), this figure is 
substantially improving over time. The key advantage of nanopore sequencing is that 
reads up to several megabases long can be produced, with read length primarily 
determined by DNA library preparation methods. ONT sequencing hardware can be 
as small as a handheld device, in the case of the small-scale MinION device intended 
for individual use, or as large as a common benchtop centrifuge, in the case of the 
large-scale PromethION device intended for sequencing service provider use. This 
allows for a democratization of DNA sequencing in a way not possible before, as 
Illumina and PacBio sequencers can be the size of washing machines and involve 
massive up-front capital costs. Moreover, this technology allows for readout of both 
cytosine and adenine DNA base modifications (Yibin Liu et al. 2020, Rand et al. 2017, 
Simpson et al. 2017). ONT sequencing on a PromethION can cost as little as $21-$42 
per gigabase (Logsdon et al. 2020). 
 
The challenges of assembling and mapping to repetitive DNA 
In 2001, the Human Genome Project announced that it had completed its draft 
reference sequence, but with an important caveat: due to technical limitations, it 
excluded highly repetitive sequences comprising roughly 5-10% of the human 
genome, found primarily in all centromeres, telomeres, and rRNA genes (Figure 1.3; 
I. H. G. S. Consortium 2001). These regions have remained almost entirely missing from 
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the reference sequence since then, owing to the fairly short lengths of sequencing 
reads produced by Sanger and Illumina sequencing. Genomes are typically assembled 
by shredding the whole genome, or portions of it, into small fragments, which are 
sequenced and stitched back together computationally based on unique sequence 
overlaps, a bit like a jigsaw puzzle. When short sequencing reads originate from highly 
repetitive regions, it becomes impossible to find unique stretches of sequence that 
allow those reads to be unambiguously stitched together. To carry on the jigsaw 
analogy, these repetitive regions are rather like the homogeneous sky pieces in a 
landscape, often left for the very end after all the more easily assembled pieces with 
unique features have been stitched together. The puzzle of the human genome 
sequence has remained unfinished for 20 years. 
 

 
 
Figure 1.3. The missing regions of the hg38 human genome assembly 
Chromosome ideograms show the scale and banding patterns of the 24 distinct human 
chromosomes. Purple bands in the adjacent track highlight the gaps and problematic 
areas in the latest hg38 human genome reference assembly, which are found at every 
centromere and telomere, on the short arms of the acrocentric chromosomes, in large 
pericentric heterochromatin blocks, and in various duplicated gene regions. The 
sequences in these gaps can be highly size variable among individuals, but on average 
they represent 5-10% of any person’s genome. 
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These missing repetitive regions of the genome are known to play essential roles in 
chromosome segregation, nuclear architecture, and cell senescence, among others. 
However, without a reference sequence, studies of these regions have fallen behind 
the rapid advances of the genomics era, and many fundamental questions remain. Just 
this past year, the Telomere to Telomere (T2T) Consortium completed the first linear 
assembly of an entire human chromosome, repeats and all, owing to advances in long-
read sequencing technologies (Miga et al. 2020). Two complete chromosomes (chrX 
and chr8) have been released so far (Logsdon et al. 2021, Miga et al. 2020), with the 
remainder of the genome expected to be released later this year. With this emerging 
reference, the formerly missing repetitive regions of the genome are ripe for 
investigation of their regulation, function, and evolution, but such studies also demand 
novel technological approaches. 
 
Even with a complete linear reference sequence across the most repetitive regions of 
the genome, it remains challenging to map short high-throughput sequencing reads 
from existing protein-DNA mapping approaches, such as ChIP-seq or CUT&RUN reads, 
unambiguously within these regions. Occasionally a mutation within a repetitive region 
will create a unique marker that can anchor any overlapping reads to that exact site, 
but these can be rare, sometimes separated by tens of thousands of bases (Figure 1.4). 
It’s also possible to identify “region-specific” markers that occur multiple times but with 
all instances contained in the same region of the genome. Both of these short-read 
mapping approaches within repetitive regions provide extremely limited resolution of 
individual protein-DNA interactions. This low resolution can be acceptable for some 
proteins with enormous DNA-binding footprints, but it remains challenging to achieve 
the resolution required to map the binding sites of rare histone variants or transcription 
factor-like proteins. 
 
The formerly unassembled regions of the human genome 
Centromeric alpha satellite 
The largest component of the formerly missing regions of the genome is centromeric 
alpha satellite DNA, which occurs as multi-megabase arrays of 171 bp sequences 
repeated in tandem and organized into higher-order repeating units (Schueler et al. 
2001). One or more large alpha satellite arrays occur in the centromere regions of 
every chromosome, near the middle of the chromosome for all chromosomes except 
the acrocentrics (13, 14, 15, 21, 22), which have a very short arm and a long arm. Each 
chromosome’s alpha satellite sequence can be distinguished from other 
chromosomes by its sequence composition and repeat organization (McNulty & 
Sullivan 2018). Altogether, alpha satellites constitute about 3.1% of the genome, 
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although this varies from 1-5% among individuals due to large alpha satellite structural 
variations within populations (Miga 2019). 
 
Roughly 35% of each alpha satellite array contains some amount of centromere protein 
A (CENP-A), a histone 3 variant that plays an essential role in the inner kinetochore, but 
the density of this protein throughout the centromere remains under dispute (Bodor et 
al. 2014, Sullivan et al. 2011). The CENP-A-containing regions of each alpha satellite 
array are also characterized by H3 nucleosomes with marks of open chromatin, such as 
H3K4me2, while chromatin outside this region is characterized by the constitutive 
heterochromatin mark H3K9me3 (McNulty & Sullivan 2018). Scores of inner and outer 
kinetochore proteins must assemble at the centromere every cell cycle. Proper 
kinetochore assembly is essential for proper chromosome segregation in mitosis and 
meiosis, and failure of this process can lead to cancer and birth defects.  
 
Because long Oxford Nanopore sequencing reads also include information about 
endogenous CpG methylation, Miga et al. were able to investigate the DNA 
methylation landscape within the centromere of the telomere-to-telomere assembly of 
chrX (Miga et al. 2020). In doing so, they unexpectedly found a ~60 kb region of CpG 
hypomethylation within the repetitive sequences that constitute the centromere, and 
they suggest that it may overlap the region where a high density of inner kinetochore 
proteins bind to DNA; this pattern was also seen on chr8 (Logsdon et al. 2021, Miga et 
al. 2020). This highlights a need for the ability to map inner kinetochore proteins at 
high resolution to investigate how centromeres are epigenetically specified and 
inherited. 
 
Pericentric satellite DNA, segmental duplications, ribosomal DNA loci, & telomeres 
Apart from the alpha satellite sequences that encompass functional human 
centromeres, other families of tandemly repeated DNA are found in large arrays near 
centromeres, on the short arms of the acrocentric chromosomes, and on the long arm 
of the Y chromosome. The largest of these are Human Satellites 2 and 3 (HSat2 and 
HSat3), which occur in enormous arrays on chromosomes 1, 9, 16, Y, and the 
acrocentrics and altogether constitute about 2.1% (range 1-7% due to variation) of the 
human genome (Miga 2019). I studied the genomic organization of HSat2,3 extensively 
in the past, providing the first comprehensive catalog of these sequences in a human 
genome, along with tools to study their variation in populations; I showed that a large 
HSat3 array on chrY can vary in size from 7 to 98 Mb among a sample of 396 males 
(Altemose et al. 2014). The potential function of HSat2,3 remains elusive, although they 
have been shown to be transcribed in response to cellular stress and in certain cancers 
and senescent cells (Bersani et al. 2015, Landers et al. 2021, Swanson et al. 2013, Zhu 
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et al. 2018). It has been suggested that pericentromeric satellites in other organisms 
play a role in facilitating inter-chromosomal interactions to keep chromatin in one 
cohesive unit in the nucleus (Jagannathan et al. 2018). Other poorly characterized 
human pericentromeric satellite families include beta satellite, gamma satellite, Human 
Satellite 1, and others. Pericentromeric regions also tend to contain large stretches of 
segmental duplications, recent low-copy duplications of non-satellite sequences from 
other regions of the genome, which can include genes (Emanuel & Shaikh 2001). The 
ends of chromosomes, called the telomeres, contain simple repeated DNA sequences 
and play critical roles in nuclear organization, senescence, and cancer (Shay & Wright 
2019). 
 
Lastly, the human reference sequence has excluded ribosomal DNA (rDNA) loci, found 
on the short arms of the acrocentric chromosomes. These regions contain hundreds of 
tandem near-identical 43 kb repeats, each including a copy of the genes encoding the 
47S rRNA component of the ribosome and a spacer region responsible for organizing 
the nucleolus (Salim & Gerton 2019). While nearly 60% of cellular transcription is 
devoted to rRNA production, only a subset of rDNA genes are active in any given cell, 
and large structural variations can occur between individuals and within cell 
populations (Salim & Gerton 2019). Studying the epigenetics of these formerly 
nebulous regions of the genome will benefit enormously from new T2T references as 
well as new technologies for mapping protein-DNA interactions in these regions. 
 

 
 
Figure 1.4. The challenges of mapping short reads in highly repetitive regions 
This illustrates how short reads can only be mapped uniquely within repetitive regions 
when they overlap a unique sequence marker, while the intervening regions can only 
be mapped ambiguously. Long sequencing reads can bridge between these markers. 
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Measuring DNA accessibility with methyltransferases 
In most conventional DamID studies, an unfused Dam-only control is used to account 
for regional differences in DNA accessibility, GATC frequency, and sequencing bias 
across the genome (Vogel et al. 2007). This Dam-only DamID approach can also be 
used on its own to investigate DNA accessibility in vivo (Aughey et al. 2018, Singh & 
Klar 1992, Wines et al. 1996) or in situ (Schaik et al. 2020). DNA accessibility has also 
been measured in situ using the GpC cytosine methyltransferase M.CviPI in 
conjunction with whole-genome bisulfite sequencing, which maps both endogenous 
CpG and exogenous GpC methylcytosines using short-read high-throughput 
sequencing (Kelly et al. 2012). 
 
Recently, five similar methods have been published that use DNA methylases to 
methylate accessible regions of the genome in situ, followed by direct readout of DNA 
methylation using Oxford Nanopore or Pacific Biosciences long-read sequencing 
(Abdulhay et al. 2020, I. Lee et al. 2020, Shipony et al. 2020, Stergachis et al. 2020, Y. 
Wang et al. 2019). In the meSMLR method, permeabilized yeast cells were treated with 
M.CviPI then sequenced using Oxford Nanopore sequencing (Y. Wang et al. 2019). 
The nanoNOME approach is similar but also involves jointly measuring endogenous 
CpG methylation in human cells (I. Lee et al. 2020). SMAC-seq expanded on this and 
added two additional methyltransferases to improve resolution in yeast genomes, 
which lack endogenous methylation: EcoGII, which methylates adenines 
nonspecifically, and M.SssI, which methylates CpG sites. SAMOSA-seq used EcoGII to 
methylate adenines in reconstituted chromatin and in human cells, but it read out the 
methylation using PacBio sequencing instead of ONT (Shipony et al. 2020). Finally, 
Fiber-seq identified and used a different non-specific adenine methyltransferase, Hia5, 
and similarly read out adenine methylation using PacBio sequencing in human cells 
(Stergachis et al. 2020). Because they produce long reads, these methods can be used 
to investigate DNA accessibility in newly assembled repetitive regions of the human 
genome. 
 
Lamina Associated Domains (LADs) 
The nuclear lamina is a tangle of filamentous proteins, including Lamins A/C, B1, and 
B2, that lines the inside of the nuclear envelope and helps to maintain nuclear integrity. 
Lamina Associated Domains (LADs) are large segments of DNA (range 10 kb – 10 Mb, 
median 500 kb) that associate with the nuclear lamina in some or all cells (reviewed by 
van Steensel & Belmont 2017), comprising up to 30% of the genome in human cells 
(Guelen et al. 2008). The nuclear lamina and LADs serve both a structural function, 
underpinning the three-dimensional architecture of the genome in the nucleus, and a 
regulatory function, as LADs tend to be gene-poor, more heterochromatic, associated 
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with the “B compartment,” and transcriptionally less active (reviewed by Buchwalter et 
al. 2019, Karoutas & Akhtar 2021, van Steensel & Belmont 2017). However, this 
regulatory role is complex, as programmed localization of DNA to the lamina is not 
sufficient to silence reporter genes (Kumaran & Spector 2008). Furthermore, this 
canonical nuclear organization, with heterochromatin at the periphery, can be inverted 
in some cell types, like rod photoreceptor cells (Solovei et al. 2009). 
 
The establishment and inheritance of LADs through generations and cell divisions is 
closely tied to histone methylation, especially H3K9me2 and H3K9me3 marks 
(reviewed by Hoskins et al. 2021). However, histone modifications are not sufficient to 
cause lamina association of particular region of DNA (Karoutas & Akhtar 2021). It has 
been suggested that some LADs stochastically reshuffle between the nuclear lamina 
and nucleolus-associated heterochromatin every cell cycle (Kind et al. 2013). 
Additionally, some regions, often at the boundaries of LADs and the so-called “inter-
LADs” (iLADs) that surround them, show variable contact with the nuclear lamina in 
single cells (Kind et al. 2015).  
 
Because certain lamin proteins like Lamin B1 are found almost exclusively in the lamina, 
mapping their interactions with DNA can reveal how DNA is organized in the nucleus. 
LADs are frequently mapped using DamID with the LaminB1 protein (Borsos et al. 
2019, Guelen et al. 2008, Kind et al. 2015, Lenain et al. 2017). These maps allow for 
comparison of nuclear organization between cell types (Lenain et al. 2017). While some 
regions are found associated with the nuclear lamina to some degree in all cell types 
(constitutive LADs, cLADs), others are associated in only some cell types (facultative 
LADs, fLADs), or in no cell types (constitutive inter-LADs, ciLADs). 
 
Lamin proteins are critical for nuclear integrity and proper genome regulation, and 
their mutation or misregulation can lead to devastating diseases classed as 
laminopathies, including Hutchinson-Gilford progeria syndrome (Eriksson et al. 2003). 
Changes in lamin expression and laminar integrity are hallmarks of cellular senescence 
and aging (Freund et al. 2012). Disruptions of the nuclear lamina also contribute to 
changes in nuclear shape and size, which are commonly used as diagnostics for various 
cancers (Wolberg et al. 1999) and have been directly linked to malignancy and tumor 
progression (Bell & Lammerding 2016). 
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Dissertation Overview 
This dissertation is broadly organized into two themes: developing methods for 
mapping protein-DNA interactions in single cells, and developing methods for 
mapping protein-DNA interactions in highly repetitive regions in bulk cell populations. 
Motivated by the need to pair imaging and sequencing information in single cells, I 
engineered an integrated microfluidic device that enables single-cell isolation, 
imaging, selection, and DamID processing, which I call “µDamID,” for microfluidic 
DamID (now published in Altemose et al. 2020). Here I describe the theoretical and 
practical considerations that went into the design and implementation of this 
technology, as well as its benchmarking and potential applications. I applied this 
device to image and map lamina-associated domains in a transiently transfected 
human cell line co-expressing m6A-Tracer, and I validated these measurements against 
bulk DamID data from the same cell line as well as other human cell lines (Kind et al. 
2015, Lenain et al. 2017). Then, I describe the ongoing development of a new method 
for mapping protein-DNA interactions using long, single-molecule reads, which we call 
DiMeLo-seq, for Directed Methylation with Long-read sequencing. I describe the 
development of an optimization pipeline for this method, an optimized protocol, and 
its application to new protein targets with an outlook to high-resolution mapping 
proteins in human centromeres. Together these methods advance our ability to map 
protein-DNA interactions in some of the most challenging settings.  
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Glossary of key terms and abbreviations 
 

Dam: a DNA adenine methyltransferase that specifically methylates GATC sites 
 
EcoGII: a non-specific DNA adenine methyltransferase 
 
Hia5: a non-specific DNA adenine methyltransferase (with preference for A 
surrounded by G, C, or T) 
 
M.CviPI: a GpC cytosine methyltransferase 
 
M.SssI: a bacterial CpG cytosine methyltransferase 
 
SAM: S-adenosylmethionine, a methyl donor substrate used by many 
methyltransferase enzymes  
 
DpnI: a restriction enzyme that exclusively cleaves Gm6ATC in half, leaving blunt 
ends; cleaves hemimethylated sites much less efficiently than fully methylated 
sites 
 
DpnII: a restriction enzyme that exclusively cleaves fully unmethylated GATC 
sites 
 

m6A-Tracer: a truncation of the DpnI protein, which binds exclusively to fully 
methylated Gm6ATC sites but does not cleave them; fluorescently tagged for 
imaging protein-DNA interaction sites 
 
LMNB1: LaminB1, an intermediate filament protein found almost exclusively at 
the nuclear lamina 
 
NES: nuclear export signal; a small peptide sequence bound by nuclear 
exportin proteins, which actively transport the NES-containing protein out of 
the nucleus 
 
PCR: Polymerase Chain Reaction, a method for amplifying DNA that requires 
repeated thermal cycling 
 
PDMS: polydimethylsiloxane, a flexible, clear, hydrophobic, gas-permeable 
silicone polymer used to make microfluidic devices 
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µDamID: a microfluidic device developed here, enabling the joint imaging and 
sequencing of protein-DNA interactions in single cells 
 
DiMeLo-seq: Directed Methylation with Long-read sequencing, a protein-DNA 
mapping method developed here that uses long-read sequencing to directly 
read out methyl marks deposited by methyltransferases near a target protein’s 
binding sites 
 
pA or pAG: protein A or protein A/G; proteins that bind to IgG antibodies from 
common host organisms; pA binds best to rabbit IgG; pAG binds equally well 
to rabbit and mouse IgG 
 
LAD: Lamina Associated Domain, a large region of DNA (median 0.5 Mb) 
associated with the nuclear lamina at the periphery of the nucleus; usually gene 
poor and transcriptionally quiet 
 
iLAD: an “inter-LAD”, i.e. the opposite of an LAD—a region occurring between 
two LADs that is not associated with the nuclear lamina 
 
cLAD: a constitutive LAD, meaning it appears to associate with the nuclear 
lamina across all cell types (though not necessarily in every single cell of a given 
type) 
 
fLAD: a facultative LAD, meaning it associates with the lamina in only a subset of 
cell types 
 
ciLAD: a constitutive iLAD, meaning it never appears to associate with the 
nuclear lamina in any cell type 
 
vLAD: a variable LAD; a term we use to describe LADs that only associate with 
the lamina in a subset of single cells in the same population; distinct from fLAD, 
which is a bulk cell property involving comparisons across cell types 
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Chapter 2 
 
 
Design, fabrication, and operation of µDamID, a 
microfluidic device for imaging and sequencing protein-
DNA interactions in single cells 
 
Aims & overview 
I set out to create a device that would allow us to combine imaging and sequencing 
measurements of protein-DNA interactions in single cells. After surveying existing 
single-cell protein-DNA mapping methods available at the time (Kind et al. 2015, 
Rotem et al. 2015), it became clear that single-cell DamID, which could be done in a 
one-pot reaction and recover hundreds of thousands of DNA fragments per cell (Kind 
et al. 2015), and which could be combined with live-cell m6A-Tracer imaging (Kind et 
al. 2013), would be best suited to porting onto a valve-based microfluidic device. One 
major concern was that the DamID method is limited in resolution and sensitivity by the 
uneven distribution of GATC sites throughout the genome. Before proceeding with 
device design, I performed computational simulations to estimate the theoretical 
maximum coverage of the genome with this method, and I began testing and 
optimizing cell transfection and m6A-Tracer imaging procedures. Once satisfied with 
the theoretical and practical performance of DamID and m6A-Tracer imaging, I 
proceeded to adapt a microfluidic device for carrying out single-cell DamID on chip, 
making key design optimizations critical to the final performance of the device. I further 
built up the fabrication infrastructure and protocols needed to fabricate the device with 
high reliability. Additionally, I designed, assembled, tested, and optimized the 
pneumatic and thermal control hardware needed to operate the device. In this chapter, 
I describe these preliminary steps and the final protocols for fabrication and operation 
of the device, highlighting common pitfalls and their solutions. 
 
Simulated digestion at GATC sites 
To examine some of the fundamental limitations of single-cell DamID for probing 
protein-DNA interactions across the genome, I performed several computational 
analyses to simulate elements of the scDamID protocol. DamID involves digesting the 
genome with the DpnI restriction enzyme, which cuts at adenine methylated GATC 
sites. After DpnI digestion, adapters are ligated to the resulting fragments, and DNA is 
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amplified by PCR, which favors shorter DNA fragments. Furthermore, Illumina library 
preparation involves a cleanup step that depletes very short fragments under ~150 bp, 
and cluster generation on most Illumina flow cells strongly disfavors fragments longer 
than ~750 bp (determined empirically from published sequencing data from Kind et 
al. 2015). Thus, scDamID can only probe regions of the genome producing fragments 
short enough to be PCR amplified and sequenced (~150-750 bp). However, GATC 
sites occur with an uneven distribution across the genome, owing to differences in 
regional GC content and repetitive sequences, and in some regions sequenceable 
fragments cannot be produced. 
 
To survey where the “unsequenceable” regions of the genome are with respect to 
DamID, I simulated digestion at every GATC site in the reference sequence. While I 
initially used the incomplete hg38 reference for this analysis, I have now updated it 
using the Telomere-to-Telomere Consortium’s complete chm13 v1.0 draft reference 
sequence. First, I quantified the proportion of the genome contained in fragments in 
the sequenceable range. Figure 2.1a shows the cumulative distribution of the 
proportion of the genome contained in GATC digestion fragments of increasing size; I 
found that 47.4% of the genome is contained in fragments in the sequenceable range. 
However, this should not be interpreted to suggest that only 47.4% of the genome can 
be probed by DamID. The Dam enzyme is reported to have a reach of up to 5 kb from 
a point binding site (Steensel & Henikoff 2000), so I sought to determine what fraction 
of the genome has a sequenceable fragment within reach, or in other words, what 
fraction of 5-kb bins overlap a sequenceable fragment. Figure 2.1b shows this 
proportion for bins of different sizes (1, 5, 10, 100 kb), revealing that 95.8% of 5-kb bins 
overlap a sequenceable fragment. To examine where the unsequenceable 4.2% might 
be, I plotted the relative coverage of 150-750 bp fragments across the chm13 
reference (Figure 2.1c), showing that the most of the GATC-depleted regions occur in 
highly repetitive regions like centromeres and pericentric heterochromatin. Apart from 
these regions, the remainder of the genome appears to be sequenceable with 
scDamID, although this analysis has underlined the limitations of resolution possible 
with any method relying on DpnI digestion. 
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Figure 2.1. Simulated DpnI digestion of the T2T chm13 reference assembly 
(A) the cumulative proportion of bases in the genome contained in simulated DpnI 
digest fragments of increasing length. 47.4% of bases exist in fragments in the Illumina-
sequenceable range 150-750 bp. (B) The proportion of fixed non-overlapping bins, of 
various sizes, that overlap at least one fragment of sequenceable length. (C) A plot of 
relative coverage by sequenceable fragment lengths across each chromosome. GATC 
sites are often rare in repetitive regions, resulting in large, unsequenceable fragments 
from these regions. 
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HEK293T cells were chosen for their ease of growth, transfection, suspension, and 
isolation (CRL-3216, ATCC, Manassas, VA; validated by microsatellite typing, at 
passage number <10). I opted to express Dam proteins by transient transfection and 
optimized transfection conditions by varying concentrations of DNA and transfection 
reagent. Ultimately, cells were seeded in 24-well plates at 50000 cells per well in 0.5 
ml media (DMEM plus 10% FBS). The next day, cells were transfected using FuGene 
HD transfection reagent according to their standard protocol for HEK293 cells 
(Promega, Madison, WI). DNA plasmids were cloned in Dam-negative E. coli to reduce 
sequencing reads originating from plasmid. Dam-LMNB1 and m6A-Tracer plasmids 
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were obtained from Bas van Steensel (from Kind et al. 2013); Dam-LMNB1 was 
modified to replace GFP with mCherry and to produce a Dam-only version, as well as 
to create a Dam-tdTomato-LMNB1 fusion for later experiments; their sequences are 
available as supplementary information (see 
https://github.com/altemose/microDamID). 250 ng Dam construct DNA plus 250 ng 
m6A-Tracer DNA were used per well. As controls to validate transfection, additional 
wells were left untransfected, transfected with m6A-Tracer only, or transfected with Dam 
construct only. The following day, successful transfection was validated by widefield 
fluorescence microscopy, seeing GFP signal in wells containing m6A-Tracer, and 
mCherry signal in all wells containing Dam construct only. Expression was highest at 
72 hours post transfection, which is when cells were harvested. 20 hours before 
harvesting, the media was replaced and 0.5 µl Shield-1 ligand (0.5 mM stock, Takara 
Bio USA, Inc., Mountain View, CA; final concentration 0.5 µM) was added to each well 
to stabilize protein expression. I found that the use of polystyrene, not polypropylene, 
tissue culture plastic was critical for efficient transfection with FuGene HD, perhaps due 
to adhesion of the transfection reagent to polypropylene. 
 
Fluorescence confocal imaging of cells was performed using an inverted scanning 
confocal microscope with a 488 nm Ar/Kr laser (Leica, Germany) for excitation, with a 
bandpass filter capturing backscattered light from 500-540 nm at the primary 
photomultiplier tube (PMT), with the pinhole set to 1 Airy unit, with a transmission PMT 
capturing widefield unfiltered forward-scattered light, and with a 63X 0.7 NA long-
working-distance air objective with a correction collar, zoomed by scanning 4X. For 
later imaging, a 63X 1.2 NA water immersion objective was used, with a 6X scanning 
zoom. The focal plane was positioned in the middle of each nucleus, capturing the 
largest-circumference cross-section, and final images were averaged over 10 frames 
to remove noise. Confocal images confirmed the expected “ring-like” structures in a 
subset of cells expressing both Dam-LMNB1 and m6A-Tracer (Figure 2.2), consistent 
with proper DNA methylation. The presence of m6A was also validated by mass 
spectrometry (Table 2.1), with samples prepared as described in (Kriaucionis & Heintz 
2009, Quinlivan & Gregory 2008). 
 

https://github.com/altemose/microDamID
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Figure 2.2. Tracking DNA methylation with m6A-Tracer in live cells 
HEK293T cells were transiently transfected with constitutively expressed m6A-Tracer 
and shield-1-inducible Dam or Dam-LMNB1 then imaged 15 hours after induction with 
a scanning confocal microscope. Characteristic laminar rings indicate that DNA 
adenine methylation has been properly targeted to the nuclear lamina. 
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Table 2.1. m6A mass spectrometry results 
DNA was harvested from untransfected cells or from transiently transfected cells with 
or without induction of Dam or Dam-LMNB1 expression, then digested to nucleosides 
(Kriaucionis & Heintz 2009, Quinlivan & Gregory 2008) and characterized by liquid 
chromatography mass spectrometry. This confirmed the presence of m6A following 
Dam or Dam-LMNB1 transfection, and an increase in induced relative to uninduced 
cells. However, m6A was still present to a lesser degree in uninduced cells, consistent 
with leaky expression.  
 
 
Overview of device design and operation 
I designed and fabricated a polydimethylsiloxane (PDMS) microfluidic device with 
integrated elastomeric valves to facilitate the various reaction stages of the DamID 
protocol in a single liquid phase within the same device to avoid sample loss prior to 
DNA amplification (Figure 2.3). The device is compatible with high-magnification 
imaging on inverted microscopes, enabling imaging prior to cell lysis. Each device was 
designed to process 10 cells in parallel, each in an individual reaction lane fed from a 
common set of inlets to avoid sample cross-contamination. Valves are controlled by 

Sample Methyl-deoxycytidine 
(% of all C)

Methyl-
deoxyadenosine 

(% of all A)

1) DAM-LaminB1, induced (expect mA) 6.7% 0.9%

2) DAM-LaminB1, not induced (expect mA only if expression is leaky) 6.3% 0.7%

3) Dam only, induced (expect mA) 7.3% 1.9%

4) Dam only, not induced (expect mA only if expression is leaky) 7.0% 1.3%

5) Untransfected, with induction drug (expect no mA) 13.2% <LOD

6) Untransfected, no induction drug (expect no mA) 10.2% <LOD

7) no DNA mock control (expect no mA) <LOD <LOD
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pneumatic actuators operated electronically via a programmable computer interface 
(J. A. White & Streets 2018). 
 
Device operation was modified from a previously published single-cell RNA 
sequencing platform (Streets et al. 2014). A suspension of single cells is loaded into 
the cell inlet (Figure 2.3b) and cells are directed towards a trapping region by a 
combination of pressure-driven flow and precise peristaltic pumping. Cells enter the 
device in a wide filter region where dozens can be visualized and screened at once as 
they move towards a narrow channel leading to the trapping regions. As a cell crosses 
one of the 10 trapping regions, valves are actuated to immobilize the cell for imaging 
(Figure 2.4). The cell is imaged by confocal fluorescence microscopy to visualize the 
localization of m6A-Tracer, and after image acquisition, the user can choose whether to 
select the cell for DamID processing, or to reject it and send it out the waste outlet 
(Figure 2.3b). 
 
Selected cells are injected from the trapping region into a holding chamber using 
pressure-driven flow from the reagent inlet (Figure 2.3b, Figure 2.4). Once all 10 
holding chambers are filled with imaged cells, processing proceeds in parallel for all 
10 cells by successively adding the necessary reagents for each step of the single-cell 
DamID protocol (Kind et al. 2015) and dead-end filling each of the subsequent reaction 
chambers. Reaction temperatures are controlled by placing the device on a custom-
built thermoelectric control unit for dynamic thermal cycling. Enzymes are heat 
inactivated between each step (Kind et al. 2015) and a low concentration of mild 
detergent was added to all reactions to prevent enzyme adhesion to PDMS (Streets et 
al. 2014). Reaction dehydration due to water vapor diffusion through PDMS was 
prevented by pressurizing large hydration paddles overlapping each of the large 
reaction chambers during heating steps.  
 
In the first reaction stage, a buffer containing detergent and proteinase pushes the cell 
into the lysis chamber, where its membranes are lysed and its proteins, including m6A-
Tracer, are digested away (Figure 2.3c). Next, a DpnI reaction mix is added to digest 
the genomic DNA at Dam-methylated GATC sites in the digestion chamber. Then, a 
mix of DamID universal adapter oligonucleotides and DNA ligase is added to the 
ligation chamber. Finally, a PCR mix containing primers that anneal to the universal 
adapters is added and all valves within the lane are opened, creating a 120 nl cyclic 
reaction chamber. Contents are thoroughly mixed by peristaltic pumping around the 
reaction ring, then PCR is carried out on-device by thermocycling. Amplified DNA is 
collected from each individual lane outlet, and sequencing library preparation is 
carried out off-device.  
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Figure 2.3. μDamID device design and function  
(A) Overview of DamID (van Steensel & Henikoff 2000) and m6A-Tracer (Kind et al. 2013) 
technologies applied to study interactions between DNA and nuclear lamina proteins. 
(B) The overall design of the 10-cell device, showing the flow layer (blue, where cells 
and reagents enter channels) and the control layer (red, where elastomeric valves 
overlap the flow layer to control the flow of liquids). (C) A closer view of one lane 
explaining the DamID protocol and the function of each chamber of the device. 10 cells 
are trapped, imaged, and selected serially, one per lane, then all 10 cells are lysed and 
processed in parallel.  
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Figure 2.4. Illustration of cell trapping procedure 
(A) an image of the μDamID device, with the flow layer filled with blue food coloring 
and the control layer filled with red food coloring, alongside an image of the device as 
operated on an inverted microscope. (B) Cells are driven through the device by 
peristaltic pumping or pressure-driven flow. Valves are actuated to confine the cell in 
the trapping region, where it is imaged, and if selected, it is pushed by dead-end filling 
into a holding chamber to the right of the trapping region. (C) 10X magnification 
images of an actual cell held in the trapping chamber prior to high-resolution imaging 
and sequencing (cell #018, expressing untethered Dam). 
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Key design elements and optimizations 
The final design of the device incorporates several key improvements over previous 
versions, designed to address common pitfalls in device fabrication and operation. I 
highlight these here for consideration in future designs of similar devices. Figure 2.5 
illustrates five modifications from the first to the second major version of the device. 
Firstly, the device width was decreased, allowing for two device molds to be produced 
on a single 10 cm silicon wafer. Inlet ports on the flow layer, which were previously 
continuous circles, had “cartwheel” patterns added to improve their visibility when 
punching inlet holes. One common failure mode involved the large hydration paddles 
above each reaction chamber collapsing and fusing to the other layer of the device, 
blocking the channel and altering the chamber volume. To address this, I added a 
column directly beneath the hydration paddle and increased the chamber dimensions 
to keep the volume equivalent. I also increased the dimensions of valves on the control 
layer to allow for greater alignment tolerance, and I added large inlet filters to remove 
debris such as small pieces of PDMS that would frequently clog channels. These inlet 
filters also reduce the speed of fluid flowing through them, relative to the narrow 
channels they flow into, allowing many cells to be examined simultaneously under the 
microscope before they enter the channels and trapping regions.  Finally, I redesigned 
the cell trap valves to make the right valve individually addressable, meaning each 
lane’s right valve can be opened or closed independently of all the other lanes, while 
the left valve open or closes simultaneously for all lanes. In the previous, opposite 
configuration, residual pressure in the system would cause all holding chambers to fill 
with liquid, rendering them useless for cell trapping by dead-end filling. This 
configuration guarantees only the contents of the targeted trapping area plus clean 
buffer get loaded into the holding chamber. 
 
Further changes to the device in version 3 are illustrated in Figure 2.6. Firstly, the 
geometry of the reagent input tree was adjusted so that all lanes have equivalent path 
lengths from the reagent inlet to either the cell inlet (used as an outlet in washing steps) 
or the waste outlet. This equalizes the volumetric flow rate between lanes and helps 
guarantee more efficient washing, and it was especially critical after moving the 
independently addressable valves from the left to the right side of each trapping 
chamber in version 2. There is still a potential “dead zone” between lanes 5 and 6, but 
this can be washed efficiently by alternately closing and opening valves above and 
below this region. Another common failure mode involved the right valve in each 
trapping area failing to close fully, due to the narrower geometry of the holding area 
and due to the effect of photoresist reflow causing channel junctions to rise, creating 
an aspect ratio incompatible with valve closure. To address this, I widened the holding 
chamber and the right valve. I also switched the chip configuration to be a “push-up” 
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style chip, with the control layer being the thin layer that gets bonded to glass, and the 
flow layer being the thick layer that is thermally bonded above that. This configuration 
allows valves to close with much less pressure, given the uniform thickness of the valve 
membrane relative to the “push-down” configuration. Given that the device was 
mounted on a #1.5 (170 micron thick) coverslip and the thin layer was spun to be 55 
microns tall, with flow channels at 25 microns tall, the distance from the top of a channel 
to the bottom of the glass would be at max 250 microns, well within the 300 micron 
working distance of our 63X/1.2NA water immersion objective. However, for objectives 
with shorter working distances, fabricating the device in a “push-down” configuration 
is still possible, though it may require higher pressures for valve closure.  
 
I also adjusted the AZ-40XT reflow protocol from a long reflow process to a 1-minute 
reflow at 140 °C (detailed below), reducing the degree of junction heightening. I also 
switched to exclusively use RTV615A PDMS with on-ratio PDMS thermal bonding (Lai 
et al. 2019), due to this PDMS formulation being more flexible, less prone to inlet 
splitting, and more predictable in terms of valve membrane material properties. Inlet 
splitting was also reduced by using wider, 690 micron TiN-coated punches (Accu-
Punch MP10 with CR0420275N19R1 punch, Syneo, Angleton, TX). Finally, to reduce 
the chance that a misaligned final lane valve could lead to leakage during the final PCR 
step, I added a second valve at each lane outlet, controlled by the same control inlet. 
 
Any future updates to the device design, software, or operation protocol will be 
posted to streetslab.com. 
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Figure 2.5. Key improvements to the device design 
 

 
Figure 2.6. Additional improvements to the device design 
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Mold fabrication optimizations 
After adding inlet filters to version 2 of the device design, I initially attempted to make 
them in the same mold layer as the rest of the flow channels, using AZ-40XT 
photoresist, which can be reflowed to produce rounded channels essential for valve 
closing (Unger et al. 2000). Unfortunately, the fine features in the filters tended to 
reflow into each other, resulting in filters either being overmerged, meaning they 
provided no filtration of fouling particles, or disconnected, meaning no fluid could pass 
(Figure 2.7). The solution to this was to create a multilayer mold for the flow layer, first 
by patterning on SU-8 photoresist, which does not reflow and can resolve fine features, 
to form the filters (which do not overlap valves and thus do not require rounded 
features), and then AZ-40XT photoresist to form the channels. The filters could also be 
made to be higher than the channels to increase the capacity of the filter regions 
(Figure 2.7). The final mold fabrication protocol is below. 
 

 
 
Figure 2.7. Solving filter fabrication issues using multilayer mold fabrication 
Microfluidic filters were added to the flow layer cell and reagent inlets, which use finely 
spaced patterns to create a sieve that will catch any particles that could clog channels. 
These finely spaced patterns cannot be resolved using AZ-40XT photoresist, because 
they either merge or disconnect during the reflow step. Images show resulting PDMS 
channels using disconnected or overmerged filters, which block fluid flow completely 
or provide no filtering, respectively. To solve this, I first fabricated filters with SU-8 
photoresist, which does not reflow, then patterned AZ on top of this. I made the filters 
taller than the channels to decrease their volumetric flow rate and provide more 
filtration surface area to avoid fouling. 
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Molds for casting each layer were fabricated on silicon wafers by standard 
photolithography. Photomasks for each layer were designed in AutoCAD and printed 
at 25400 DPI (CAD/Art Services, Inc., Bandon, Oregon). The mask for the thick layer, in 
this case the flow layer to make push-up valves, was scaled up in size uniformly by 1.5% 
to account for thick layer shrinkage. A darkfield mask was used for features made out 
of negative photoresist: the filters on the flow layer and the entire control layer; a 
brightfield mask was used for all flow layer channels, which were made out of positive 
photoresist (mask designs available on GitHub; see Data Availability section below). 10 
cm diameter, 500 µm thick test-grade silicon wafers (item #452, University Wafer, 
Boston, MA) were cleaned by washing with 100% acetone, then 100% isopropanol, 
then DI water, followed by drying with an air gun, and heating at 200 °C for 5 minutes. 
 
To make the control layer mold, SU-8 2025 negative photoresist (MicroChem Corp., 
Westborough, MA) was spin-coated to achieve 25 µm thickness (7 s at 500 rpm with 
100 rpm/s ramp, then 30 s at 3500 rpm with 300 rpm/s ramp). All baking temperatures, 
baking times, exposure dosages, and development times followed the MicroChem 
data sheet. All baking steps were performed on pre-heated ceramic hotplates. After 
soft-baking, the wafer was exposed beneath the darkfield control layer mask using a 
UV aligner (OAI, San Jose, CA). After post-exposure baking and development, the 
mold was hard-baked at 150 °C for 5 minutes. 
 
To make the flow layer mold, first the filters were patterned with SU-8 2025, which was 
required to make fine, high-aspect-ratio filter features that would not re-flow at high 
temperatures. SU-8 2025 was spin-coated to achieve 40 µm thickness (as above but 
with 2000 rpm final speed) and processed according to the MicroChem datasheet as 
above, followed by an identical hard-bake step. Next, AZ 40XT-11D positive 
photoresist (Integrated Micro Materials, Argyle, TX) was spin-coated on top of the SU-
8 features to achieve 20 µm thickness across the wafer (as above but with 3000 rpm 
final speed). All baking temperatures, baking times, exposure dosages, and 
development times followed the AZ 40XT-11D data sheet. After development, the 
channels were rounded by reflowing the photoresist, achieved by placing the wafer at 
65 °C for 1 min, then 95 °C for 1 min, then 140 °C for 1 min followed by cooling at room 
temperature. In our experience, reflowing for too long, or attempting to hard-bake the 
AZ 40XT-11D resulted in undesirable ‘beading’ of the resist, especially at channel 
junctions. Because it was not hard-baked, no organic solvents were used to clean the 
resulting mold. Any undeveloped AZ 40XT-11D trapped in the filter regions was 
carefully removed using 100% acetone applied locally with a cotton swab. 
 



 35 

Soft lithography 
Devices were fabricated by multilayer soft lithography (Unger et al. 2000). On-ratio 
10:1 base:crosslinker RTV615A PDMS (Momentive Performance Materials, Inc., 
Waterford, NY) was used for both layers, and layer bonding was performed by partial 
curing, followed by alignment, then full curing (Lai et al. 2019). To prevent PDMS 
adhesion to the molds, the molds were silanized by exposure to trichloromethlysilane 
(Sigma-Aldrich, St. Louis, MO) vapor under vacuum for 20 min. PDMS base and 
crosslinker were thoroughly mixed by an overhead mixer for 2 minutes, then degassed 
under vacuum for 90 minutes. Degassed PDMS was spin-coated on the control layer 
mold (for the ‘thin layer’) to achieve a thickness of 55 µm (7 s at 500 rpm with 100 rpm/s 
ramp, then 60 s at 2000 rpm with 500 rpm/s ramp), then placed in a covered glass petri 
dish and baked for 10 minutes at 70 °C in a forced-air convection oven (Heratherm 
OMH60, Thermo Fisher Scientific, Waltham, MA) to achieve partial curing. The flow 
layer mold (for the ‘thick layer’) was placed in a covered glass petri dish lined with foil, 
and degassed PDMS was poured onto it to a depth of 5 mm. Any bubbles were 
removed by air gun or additional degassing under vacuum for 5 minutes, then the thick 
layer was baked for 19 minutes at 70 °C. Holes were punched using a precision punch 
with a 0.69 mm punch tip (Accu-Punch MP10 with CR0420275N19R1 punch, Syneo, 
Angleton, TX). The thick layer was peeled off the mold, cut to the edges of the device, 
and aligned manually under a stereoscope on top of the thin layer, which was still on 
its mold. The layers were then fully cured and bonded together by baking at 70 °C for 
120 min. After cooling, the devices were peeled off the mold, and the inlets on the thin 
layer were punched. The final devices were bonded to 1 mm thick glass slides or to 
#1.5 coverglass, which were first cleaned by the same method as used for silicon wafers 
above, using oxygen plasma reactive ion etching (20 W for 23 s at 285 Pa pressure; 
Plasma Equipment Technical Services, Brentwood, CA), followed by heating at 100 °C 
on a ceramic hot plate for 5 minutes.  
 
One common failure mode during soft lithography resulted from reactive groups left 
over on the glass after plasma bonding. In the “push-down” valve configuration, this 
would frequently result in valve membranes irreversibly fusing to the glass once 
pressurized, even many days after fabrication. In the “push-up” configuration, this 
sometimes resulted in large valves or hydration paddles fusing to the glass, preventing 
them from closing when pressurized. With Anushka Gupta, I came up with a way of 
neutralizing the reactive groups on the glass by simply heating the device while forcing 
pressurized air through the thin layer’s channels. That is, placing the device on a 
hotplate at 100 °C while forcing in air at 10 PSI for 1 hour stopped any unwanted PDMS-
glass bonding from occurring (Figure 2.8).  
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Figure 2.8. Preventing push-down valve fusion to plasma-treated glass 
Micrographs show elastomeric valves in various regions of a push-down valved 
microfluidic device shortly after plasma bonding to glass. On the left is a failure mode 
caused by fusion of the membrane to the glass below after plasma bonding. This was 
solved by forcing air through the flow layer channels while placing the device on a 
hotplate at 100 °C for 1 hour. 
 
Control hardware design and assembly 
Valved microfluidic systems require specialized infrastructure for their fabrication and 
operation (Figure 2.9). Mold fabrication requires access to a clean-room facility with 
low-uv lighting, silicon wafer spin-coaters, precision hotplates, fume hoods for organic 
solvents, a mask aligner with a collimated and uniform UV light source, and a 
profilometer for evaluating mold geometry. These resources were available at the 
Biomolecular Nanotechnology Center in Stanley Hall at UC Berkeley, with assistance 
from Paul Lum and Naima Azgui. As described above, soft lithography requires a wafer 
spin-coater, a scale, a precision hole punch, a stereoscope, a scientific oven, a 
degassing chamber with vacuum pump, a dust-free hood, and an oxygen plasma 
source. A degassing mixer also helps to improve efficiency and consistency. Each 
instrument requires calibration and protocol optimization.  
 
Once fabricated, devices were pneumatically controlled by a solenoid valve manifold 
(Figure 2.9; valves from Pneumadyne, Plymouth, MN). Each three-way, normally open 
solenoid valve switched between a regulated and filtered pressure source inlet at 25 
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psi (172 kPa) or ambient pressure to close or open microfluidic valves, respectively. 
Solenoid valves were controlled by the KATARA control board and software (J. A. 
White & Streets 2018). A detailed description of the hardware and electronic 
configurations is available in White & Streets 2018. Most operational steps were carried 
out on inverted microscopes using 4-10X objectives.  
 

 
 
Figure 2.9. Hardware and infrastructure requirements for fabrication and operation 
These images show some of the required hardware for device operation. Pneumatic 
control valves (top right) allow for computer-controlled elastomeric valve actuation, 
and a custom-built thermocycler (bottom right) allows for precise reaction temperature 
control. Andre Lai played a key role in helping to set this all up, as did Jonathan White, 
who developed the KATARA hardware and software for valve control (not shown; 
White & Streets 2018) . 
 
For incubation steps, the device was placed on a custom-built liquid-cooled 
thermoelectric temperature control module (Figure 2.9 and Figure 2.10; TC-36-25-
RS232 PID controller with a 36 V / 16 A power source and two serially connected VT-
199-1.4-0.8P TE modules and an MP-3022 thermistor; TE technologies, Traverse City, 
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MI) controlled by a computer using a new KATARA GUI software module (available at 
https://github.com/altemose/microDamID). This thermal controller uses solid-state 
Peltier heat pumps to heat and cool a small aluminum plate topped with a piece of 
silicon wafer, which provides contrast for imaging with a stereoscope. Above this 
sample plate is a machined piece of acrylic that holds the microfluidic device flush 
against the sample plate and prevents bowing that occurs when the device is heated 
or cooled, which can lead to uneven thermal control (Figure 2.10). Below the 
thermoelectric heat pumps is a large aluminum heat sink to remove waste heat. This 
heat sink was custom machined to include a chamber for liquid cooling. It is connected 
in series with tubing to a small water pump and a radiator with an attached computer 
fan. The system is sealed with grease and filled with a 1:1 mix of ultrapure water and 
ethylene glycol, which prevents corrosion and microbe growth. Different heat sink 
configurations are possible, but a complete parts list is shown in Table 2.2. I worked 
with Anushka Gupta to optimize the power supply and thermoelectric plate 
configuration, and we showed than we can achieve both heating and cooling from 55 
°C to 98 °C (the full operational range for PCR) in under 10 seconds each. A layer of 
mineral oil was applied between the device and the temperature controller to improve 
thermal conductivity and uniformity. A stereoscope was used to monitor the device 
while on the temperature controller. Critically, we replaced the standard metal pins 
and Tygon tubing at each control layer inlet with plastic PEEK tubing, which has higher 
thermal tolerance than Tygon, preventing pressure leaks that were common during the 
heating stages of PCR (Figure 2.10). 
 
To set up each new device, each pneumatic valve was connected to one control inlet 
on the microfluidic device by serially connecting polyurethane tubing (3/32” ID, 5/32” 
OD; Pneumadyne) to Tygon tubing (0.5 mm ID, 1.5 mm OD) to >4 cm PEEK tubing 
(0.25 mm ID, 0.8 mm OD; IDEX Corporation, Lake Forest, IL). Solenoid valves were 
energized to de-pressurize the tubing and the tubing was primed by injecting water 
using a syringe connected to the end of the PEEK tubing, then the primed PEEK tubing 
was inserted directly into each punched inlet hole on the device. Solenoid valves were 
de-energized to pressurize the tubing until all control channels on the device were fully 
dead-end filled, then each microfluidic valve was tested and inspected by switching on 
and off its corresponding solenoid valve. All valves were opened and the device was 
passivated by filling all flow-layer channels with syringe-filtered 0.2% (w/w) Pluronic F-
127 solution (P2443; MilliporeSigma, St. Louis, MO) from the reagent inlet and 
incubating at room temperature for 1 hour. The device was then washed by flowing 
through 0.5 ml of ultra-filtered water, followed by air to dry it.  
 

https://github.com/altemose/microDamID
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Figure 2.10. Additional optimizations to device operation 
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Table 2.2. Detailed parts list for custom-built thermocycler 

Supplier Cat # Description # 
Price 
Each NOTES URL 

TE 
Technolo
gy 

VT-
199-
1.4-
0.8P 

Thermoelectric Module-200C 
120mm Teflon wire leads potted 

2-
4 $64.10 

BE SURE 
TO ORDER 
POTTED!!! 
wire 2 in 
series 

https://tetech.com/peltier-
thermoelectric-cooler-
modules/high-
temperature/ 

TE 
Technolo
gy 

MP-
3022 

Thermistor with a 0.9 mm diameter 
sensor heat and 32 gauge wire. 50K 
ohms at 25 °C, for measuring from 0 
°C to +150 °C. 

1 $17 
good idea 
to buy a 
spare https://tetech.com/produ

ct/mp-3022/ 

TE 
Technolo
gy 

TC-36-
25-
RS232 

PID temp controller board that can 
modulate power input from 12 V up 
to 36 V, or from 0 V to 36 V with a 
second power supply, up to 25 A. 

1 $493 

never 
supply with 
wrong 
voltage 
polarization 

https://tetech.com/produ
ct/tc-36-25-rs232/ 

Eyeboot 

EYE-
600W-
36V-
22 

Power Supply, Output Power: 36 Vdc 
at 16 A max. 1 $36 

or similar 
(>= 16 
Amp 
rating) 

https://www.amazon.com/
gp/product/B01EY6BALS/
ref=ppx_od_dt_b_asin_titl
e_s00?ie=UTF8&psc=1 

TE 
Technolo
gy 

RS232 
Adapt
er 

USB-to-RS232 converter needed 
when connecting the PID controller 
to a host computer with an available 
USB port. 

1 $43 

potentially 
cheaper 
from a 
different 
supplier 

https://tetech.com/produ
ct/rs232-adapter/ 

Amazon SC-
300T 

DC 12V Ultra-Quiet Water Cooling 
Pump Tank 4W Reservoir max. 
300L/h 

1 $21.59 Amazon 

https://www.amazon.com/
gp/product/B00MB9EP3G
/ref=ppx_yo_dt_b_search
_asin_title?ie=UTF8&psc=
1 

Amazon 

AFAC
O-
12000
-
GBA0
1 

ARCTIC F12 - 120 mm Standard Case 
Fan, very quiet motor, Computer, 
Push- or Pull Configuration, Fan 
Speed: 1350 RPM 

2 $8 Buy 0.38 
Amps 

https://www.amazon.com/
gp/product/B002KTVFTE/
ref=ppx_yo_dt_b_search_
asin_title?ie=UTF8&psc=1 

LowBrow 
Customs 1224 5/16 inch Hose Barb 90 Elbow x 1/8 

inch NPT - Chrome 2 $11.10 buy spares 
https://www.lowbrowcustoms.c
om/products/cycle-standard-5-
16-hose-barb-90-elbow-x-1-8-
npt-chrome 

Amazon 
B08FS
PJ3HG 

120mm Aluminum Liquid Cooling 
Radiator Heat Sink 1 $17.99 or similar 

https://www.amazon.com/DIYhz-
Computer-Radiator-Aluminum-
Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?d
child=1&keywords=liquid%2Bcooling%2B
radiator&qid=1618950196&sr=8-7&th=1 

various  
custom machined aluminum heat sink 
with liquid cooling chamber  $1,000 

alternative 
heat sinks 
can be 
used 

design available at 
streetslab.berkeley.edu 

various  potting box, wiring  $30 
to hold 
electronics  

various  acrylic and hardware for housing  $50 

custom 
housings 
can vary  

various  ethylene glycol  $10 

mix 1:1 
with water 
for coolant  

    $1,802 TOTAL  

 

https://tetech.com/peltier-thermoelectric-cooler-modules/high-temperature/
https://tetech.com/peltier-thermoelectric-cooler-modules/high-temperature/
https://tetech.com/peltier-thermoelectric-cooler-modules/high-temperature/
https://tetech.com/peltier-thermoelectric-cooler-modules/high-temperature/
https://tetech.com/product/mp-3022/
https://tetech.com/product/mp-3022/
https://tetech.com/product/tc-36-25-rs232/
https://tetech.com/product/tc-36-25-rs232/
https://www.amazon.com/gp/product/B01EY6BALS/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EY6BALS/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EY6BALS/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01EY6BALS/ref=ppx_od_dt_b_asin_title_s00?ie=UTF8&psc=1
https://tetech.com/product/rs232-adapter/
https://tetech.com/product/rs232-adapter/
https://www.amazon.com/gp/product/B00MB9EP3G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00MB9EP3G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00MB9EP3G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00MB9EP3G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00MB9EP3G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B002KTVFTE/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B002KTVFTE/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B002KTVFTE/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B002KTVFTE/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.lowbrowcustoms.com/products/cycle-standard-5-16-hose-barb-90-elbow-x-1-8-npt-chrome
https://www.lowbrowcustoms.com/products/cycle-standard-5-16-hose-barb-90-elbow-x-1-8-npt-chrome
https://www.lowbrowcustoms.com/products/cycle-standard-5-16-hose-barb-90-elbow-x-1-8-npt-chrome
https://www.lowbrowcustoms.com/products/cycle-standard-5-16-hose-barb-90-elbow-x-1-8-npt-chrome
https://www.amazon.com/DIYhz-Computer-Radiator-Aluminum-Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?dchild=1&keywords=liquid%2Bcooling%2Bradiator&qid=1618950196&sr=8-7&th=1
https://www.amazon.com/DIYhz-Computer-Radiator-Aluminum-Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?dchild=1&keywords=liquid%2Bcooling%2Bradiator&qid=1618950196&sr=8-7&th=1
https://www.amazon.com/DIYhz-Computer-Radiator-Aluminum-Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?dchild=1&keywords=liquid%2Bcooling%2Bradiator&qid=1618950196&sr=8-7&th=1
https://www.amazon.com/DIYhz-Computer-Radiator-Aluminum-Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?dchild=1&keywords=liquid%2Bcooling%2Bradiator&qid=1618950196&sr=8-7&th=1
https://www.amazon.com/DIYhz-Computer-Radiator-Aluminum-Exchanger/dp/B08FSPJ3HG/ref=sr_1_7?dchild=1&keywords=liquid%2Bcooling%2Bradiator&qid=1618950196&sr=8-7&th=1
http://streetslab.berkeley.edu/
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Device operation 
Initially, all chamber valves and reagent inlet valves were closed. Gel-loading pipette 
tips were used to inject reagents and cells into the flow channels. To prepare the device 
for operation, pick buffer was injected into the reagent inlet and pressurized at 5-10 
psi to dead-end fill the reagent inlet channels. Negative controls were generated by 
injecting pure pick buffer into one of the holding chambers before trapping and 
sorting cells into the other lanes. 50 µl of cell suspension was then loaded into a gel-
loading pipette tip, and injected directly into the cell inlet. A high-precision pressure 
regulator was used to load the single-cell suspension at 1 psi (7 kPa). Cells were 
observed in the filter region with brightfield and epifluorescence using a 10X objective 
to identify candidate cells. These were then tracked through the device until they 
approached the trapping chamber for an empty lane. To trap a candidate cell, the 
device’s peristaltic pump was operated at 1 Hz to deliver that cell to the trap region. 
The trap valves (above and below the trap region; see Figure 2.4) were closed and the 
cell was imaged with scanning confocal microscopy as described above. If the cell was 
rejected after imaging, the trap valves were opened and it was flushed to the waste 
outlet. Otherwise, the cell was injected into the holding chamber by dead-end filling. 
This process was repeated to fill each lane with single cells for DamID. To test 
background DNA levels, we filled several lanes with only cell suspension buffer. Nearly 
undetectable levels of amplified DNA were recovered from these lanes. 
 
After filling all 10 lanes, the reagent inlet and cell trapping channels were flushed with 
0.5 ml of water, which exited through the waste outlet and the cell inlet, to remove any 
remaining Pick buffer or cell debris, then air dried. The same washing and drying was 
repeated between each reaction step. To inject reagents for each reaction of the 
DamID protocol, the trap valves were closed, the reagent channels were dead-end 
filled with freshly prepared and syringe-filtered reagent, then the reagent inlet valves 
and the valves for the necessary reaction chambers were opened, and each lane was 
dead-end filled individually to prevent any possible cross-contamination. Reaction 
contents are described in Table 2.3. 
 
Reagents were mixed by actuating the chamber valves at 5 Hz for 5 minutes. At the PCR 
step, rotary mixing was achieved by using the chamber valves to make a peristaltic 
pump driving fluid around the full reaction ring. For each reaction step, the device was 
placed on the thermal controller and reactions were with times and temperatures 
described in Table 2.3. PCR thermocycling conditions are described in Table 2.4. To 
ensure adequate hydration during PCR, all valves were pressurized. Amplified DNA 
was flushed out of each lane individually using purified water from the reagent inlet, 
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collected into a gel loading tip placed in the lane outlet to a final volume of 5 µl then 
transferred to a 0.2 ml PCR strip tube.  
 
 
 
Table 2.3. Reaction buffers and conditions 

Reaction Stage Buffer Incubation 

Trapping & Holding 

Pick Buffer: 
50mM Tris-HCl pH 8.3  
75mM KCl, 3mM MgCl2 

137mM NaCl 

RT 

Lysis 

10mM TRIS acetate pH 7.5 
10mM magnesium acetate 50mM potassium 
acetate 
0.67% Tween-20 
0.67% Igepal 
0.67 mg/ml proteinase K 

42 °C for 4 hours 
then 80 °C for 10 min 

Digestion 
mix 7µl 10X Cutsmart buffer 
1 µl DpnI (New England Biolabs, Ipswich, MA) 
62 µl H2O 

37 °C for 4 hours 
then 80 °C for 20 min 

Ligation 

mix 6 µl 10X NEB T4 ligase buffer 
1 µl DamID adapter stock at 25 µM 
0.2 µl NEB T4 ligase at 400 U/µl* 
21.8 µl H2O 
1 µl 2% w/v Tween-20 

16 °C overnight 
then 65 °C for 10 min 

PCR 

from Takara Clontech Advantage 2 kit:  
mix 5 µl 10X PCR buffer 
1 µl dNTPs at 10 mM each 
1 µl polymerase mix 
0.63 µl DamID primer 
21.37 µl H2O 

1 µl 2% Tween-20 

See Table 2.4 

*Ligase unit definitions can differ among different suppliers (e.g. Roche uses Weiss 
Units, which are equivalent to 200 of NEB’s Cohesive End Units). We predict that 
increasing the amount of NEB T4 ligase from 80 NEB units to 1500 NEB units at this 
step may improve ligation efficiency further. 
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Table 2.4. PCR thermocycling conditions 
 

PCR Step Incubation 
1 68 °C for 10 min 
2 94 °C for 1 min 
3 65 °C for 5 min 
4 68 °C for 15 min 
5 94 °C for 1 min 
6 65 °C for 1 min 
7 68 °C for 10 min 
8 Go to step 5 (x 3) 
9 94 °C for 1 min 
10 65 °C for 1 min 
11 68 °C for 2 min 
12 Go to step 9 (x 22) 
13 Hold 10 °C 

 
 
Oligonucleotides 

>AdRt 
CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGA 
>AdRb 
TCCTCGGCCG 
>AdR_PCR 
NNNNGTGGTCGCGGCCGAGGATC 

 
To anneal DamID adapter (Vogel et al. 2007): mix equal volumes of 50 µM AdRt and 
50 µM AdRb in a microcentrifuge tube, then fully submerge it in a beaker of boiling 
water, and allow the water to equilibrate to room temperature slowly.  
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Chapter 3 
 
 
Validation of µDamID and application to study single-cell 
genome organization 
 
Aims & overview 
I sought to evaluate the performance of the µDamID platform by mapping the 
sequence and spatial location of lamina-associated domains in a human cell line, 
allowing us to compare our data to previously published LAD maps from DamID 
experiments in human cell lines (Kind et al. 2015, Lenain et al. 2017). LADs are large 
(median 500 kb) and comprise up to 30% of the genome in human cells (Guelen et al. 
2008). m6A-Tracer has previously been applied to visualize LADs, which appear as a 
characteristic ring around the nuclear periphery in confocal fluorescence microscopy 
images (Kind et al. 2013; Figure 2.3c).  
 
I carried out experiments in HEK293T cells for their ease of growth, transfection, 
suspension, and isolation. To enable rapid expression of Dam and m6A-Tracer 
transgenes, I transiently transfected cells with DNA plasmids containing genes for a 
drug-inducible Dam-LMNB1 fusion protein as well as constitutively expressed m6A-
Tracer. I then induced Dam-LMNB1 expression, optimizing the expression times to 
maximize the proportion of cells with fluorescent laminar rings (an example of which is 
visible in Figure 2.3c). Because transient transfection yields a heterogeneous 
population of cells, each with potentially variable copies of the transgenes, it was 
important for me to be able to take high-resolution confocal images of cells and select 
only those with visible laminar rings, which were more likely to have the correct 
expression levels, and which were unlikely to be in the mitosis phase of the cell cycle. 
This kind of complex sorting would not be possible with sorting methods like 
fluorescence-activated cell sorting (FACS) but is straightforward in our microfluidic 
platform. 
 
In addition to processing Dam-LMNB1 cells, I transfected cells with the Dam gene 
alone, not fused to LMNB1, to provide a negative control demonstrating where the 
unfused Dam enzyme would mark the genome if not tethered to the nuclear lamina 
(Vogel et al. 2007). This control is useful for estimating the background propensity for 
each genomic region to be methylated, since Dam preferentially methylates more 
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accessible regions of the genome, including gene-rich regions (Aughey et al. 2018, 
Lenain et al. 2017, Singh & Klar 1992). I selected Dam-only cells that had high 
fluorescence levels across the nucleus and did not appear mitotic. We also performed 
bulk DamID (Vogel et al. 2007) in populations of transiently transfected HEK293T cells 
for validation (credit: Annie Maslan). We used a mutant of Dam (V133A; Elsawy & 
Chahar 2014), which is predicted to have weaker methylation activity than the wild-type 
allele on unmethylated DNA, and we hypothesized that it would reduce background 
methylation, similar to weakened Dam mutants previously engineered to improve 
methylation specificity (Park et al. 2019). To test this, we performed bulk DamID 
experiments comparing the mutant and wild-type alleles and found that the V133A 
mutant allele provides more than twofold greater signal-to-background compared to 
the wild-type allele (Figure 3.1). We also performed RNA sequencing in bulk cells that 
were untreated or transfected with Dam-only, Dam-LMNB1, or m6A-Tracer, and we 
found only two differentially expressed genes (Figure 3.1; credit: Annie Maslan). This 
corroborates similar published findings by others showing that Dam expression and 
adenine methylation have little or no effect on gene expression in HEK293T cells (Vogel 
et al. 2007). 
 
I first ran three devices containing 25 imaged cells total, with five empty lanes left as 
negative controls that did not yield sequenceable quantities of DNA. From these 25 
cells, I selected a batch of 18 cells for multiplexed sequencing based on imaging 
quality and DNA yield in order to achieve a desired level of coverage per cell (Figure 
3.2). To increase throughput modestly, I built a second microfluidic control system, 
enabling me to run two devices in parallel, processing up to 20 cells in one experiment. 
Using four additional devices, I processed a second batch of 40 Dam-LMNB1 cells, with 
several experimental changes discussed below (Figure 3.3). I found that 34 of 38 cells 
with visible laminar m6A-Tracer ‘rings’ yielded sequenceable DNA quantities (89% 
yield), and I proceeded to sequence those 34 cells plus two more: one cell with no ring, 
and one cell with a ring but low sequencing yield (D09 and D10, respectively, Figure 
3.3). In total I sequenced 54 cells from both batches. I obtained a mean of 4 million 
raw read pairs per cell (range 300k-8M), covering a mean of 140,000 unique DpnI 
fragments per cell (10k-370k), which falls in the range of previous DamID results from 
single cells (Kind et al. 2015; Figure 3.4a). 
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Figure 3.1. Comparing Dam mutants & examining effect of Dam on gene expression  
(A) Kernel density estimate of log2FoldChange from DESeq2 differential enrichment 
analysis of Dam-LMNB1 coverage compared to Dam-only as reference. With V133A, 
more extreme log2FoldChange values are observed with greater separation between 
the positive and negative log2FoldChange peaks. In other words, compared to wild-
type, the V133A Dam-LMNB1 and Dam-only signals are more distinct. (B) Kernel 
density estimate of log2 Fold Change, with cLAD/ciLAD classification from Lenain et al. 
2017 indicated, shows greater separation for cLAD and ciLAD signal with V133A.  
(C) V133A has higher sensitivity than WT, with more differentially enriched regions at 
each log2FoldChange threshold for calling significant differential enrichment. (D-I) 
Significantly differentially expressed genes (logFC significantly > 1 and adjusted p-
value < 0.01) are indicated in red for bulk HEK293T cells transfected with Dam, Dam-
LMNB1, m6A-Tracer, or no treatment control. Differentially expressed genes compared 
to no treatment control are HIST2H4A and LIF for Dam, HIST2H4A for Dam-LMNB1, 
and no genes for m6A-Tracer. When comparing Dam to m6A-Tracer, the only 
differentially expressed gene is FKBP1A, which is expected given the mutated FKBP1A-
derived destabilization domain tethered to Dam in our construct. When comparing 
Dam-LMNB1 to m6A-Tracer, the only differentially expressed gene is LMNB1, which is 
again expected given LMNB1 is expressed from the Dam-LMNB1 construct itself. Data, 
analysis, and figure were generated by Annie Maslan. 
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Figure S3. Images and sequencing 
statistics for each cell, related to Figure 2.  
(A) Each row corresponds to a single batch 1 
ce l l , showing i ts m6A-Tracer image, 
transmission image, coverage distributions in 
c/ciLAD control regions, identifier for the 
device (chip) it was sequenced on, proportion 
of reads mapping to the transfected plasmid, 
number of unique DpnI fragments covered in 
the genome, and classification accuracy on 
the c/ciLAD control regions. Nine confocal 
m6A-Tracer images from unsequenced Dam-
only cells are provided for comparison to the 
widefield images acquired for cells 015, 016, 
and 018.  

(B) Next Page: as in (A) but for 40 batch 2 
cells, with Dam-tdTomato-LMNB1 images and 
library DNA yields added. Letters in each cell 
identifier indicate which device they were 
processed on. 
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Figure S3. Images and sequencing 
statistics for each cell, related to Figure 2.  
(A) Each row corresponds to a single batch 1 
ce l l , showing i ts m6A-Tracer image, 
transmission image, coverage distributions in 
c/ciLAD control regions, identifier for the 
device (chip) it was sequenced on, proportion 
of reads mapping to the transfected plasmid, 
number of unique DpnI fragments covered in 
the genome, and classification accuracy on 
the c/ciLAD control regions. Nine confocal 
m6A-Tracer images from unsequenced Dam-
only cells are provided for comparison to the 
widefield images acquired for cells 015, 016, 
and 018.  

(B) Next Page: as in (A) but for 40 batch 2 
cells, with Dam-tdTomato-LMNB1 images and 
library DNA yields added. Letters in each cell 
identifier indicate which device they were 
processed on. 
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Figure 3.2. Images and sequencing 
statistics for each batch 1 cell  
(A) Each row corresponds to a single 
batch 1 cell, showing its m6A-Tracer 
image, transmission image, coverage 
distributions in c/ciLAD control 
regions, identifier for the device (chip) 
it was sequenced on, proportion of 
reads mapping to the transfected 
plasmid, number of unique DpnI 
fragments covered in the genome, and 
classification accuracy on the c/ciLAD 
control regions. Nine confocal m6A-
Tracer images from unsequenced 
Dam-only cells are provided for 
comparison to the widefield images 
acquired for cells 015, 016, and 018.  
 
Figure 3.3 (on next page).  
As in Figure 3.2 but for 40 batch 2 
cells, with Dam-tdTomato-LMNB1 
images and library DNA yields added. 
Letters in each cell identifier indicate 
which device they were processed on. 
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Figure3.3. Images and sequencing statistics for each batch 2 cell 
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Figure S4, related to Figure 2.  
(A) Similar to Figure 2D, a plot of classification accuracy vs library complexity (number of 
unique DpnI fragments covered), for all cells compared to single KBM7 cells from Kind et al. 
2015 (gray points). Cell colors indicate which batch the cells were sequenced in, and batch 2 
cells in the top half of Dam-tdTomato-LMNB1 expression levels are indicated as triangles. 
High-expression cells tend to have lower classification accuracies, as expected. Cells with 
fewer than 100k unique fragments show a drop in classification accuracy and were excluded 
from most downstream analyses. Cells with unusually high proportions of reads mapping to 
the transfection plasmid are circled. Rug plots are drawn on each axis. Cells D09 (no 
fluorescence at lamina or nuclear interior) and D10 (low DNA yield) are labeled, along with cell 
007 (high m6A-Tracer signal in the nuclear interior, shown in Figure 3B).  
(B) A plot of contact frequency vs. bulk DamID signal using data from KBM7 cells alone (Kind 
et al. 2015 and Lenain et al. 2017), showing high correlation (r=0.94). Sets of stringent cLADs 
(gold points) and ciLADs (blue points) were identified in a similar fashion to those in HEK293T 
cells (top 1200 by ranked bulk DamID enrichment scores, but without a p-value cutoff since 
none was available, which may explain larger variance in CF values). Above is a histogram 
showing the distribution of contact frequencies within these control sets.  
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Figure 3.4. Library complexity, and published LAD contact frequencies 
(A) Similar to Figure 3.5d, a plot of classification accuracy vs library complexity 
(number of unique DpnI fragments covered), for all cells compared to single KBM7 
cells from Kind et al. 2015 (gray points). Cell colors indicate which batch the cells were 
sequenced in, and batch 2 cells in the top half of Dam-tdTomato-LMNB1 expression 
levels are indicated as triangles. High-expression cells tend to have lower classification 
accuracies, as expected. Cells with fewer than 100k unique fragments show a drop in 
classification accuracy and were excluded from most downstream analyses. Cells with 
unusually high proportions of reads mapping to the transfection plasmid are circled. 
Rug plots are drawn on each axis. Cells D09 (no fluorescence at lamina or nuclear 
interior) and D10 (low DNA yield) are labeled, along with cell 007 (high m6A-Tracer 
signal in the nuclear interior, shown in Figure 3.6b). (B) A plot of contact frequency vs. 
bulk DamID signal using data from KBM7 cells alone (Kind et al. 2015, Lenain et al. 
2017), showing high correlation (r=0.94). Sets of stringent cLADs (gold points) and 
ciLADs (blue points) were identified in a similar fashion to those in HEK293T cells (top 
1200 by ranked bulk DamID enrichment scores, but without a p-value cutoff since none 
was available, which may explain larger variance in CF values). Above is a histogram 
showing the distribution of contact frequencies within these control sets. 
 
 
 
Validating single-cell LAD maps 
To assess whether the single-cell µDamID sequencing data provide accurate 
measurements of lamina-associated domains, I first compared my single-cell results to 
those we obtained from bulk DamID in the same cell line. DamID results are reported 
as a difference or log ratio between the observed coverage from Dam-LMNB1 
expressing cells and the expected coverage from background methylation, estimated 
using coverage from Dam-only expressing cells (see Methods). This measure is 
computed within fixed 100 kb bins across the genome, as reported previously (Kind et 
al. 2015). For each cell, I made binary calls of whether a bin was in contact with the 
lamina in that cell (Methods), and the broad-scale organization of these single-cell 
binary LAD maps largely agrees with the bulk data (Figure 3.5a). By aggregating the 
raw coverage from our Dam-LMNB1 expressing single cells, I found excellent 
correspondence with the bulk coverage obtained from millions of cells (Figure 3.5b, 
r=0.84). 
 
In order to create the binary contact maps across the genome within single cells, I 
trained a classifier on a set of stringent positive and negative controls: regions 
confidently known to be strongly associated with the lamina or strongly unassociated 
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with the lamina based on bulk DamID data from our study and others (Lenain et al. 
2017; see Methods). Positive controls were derived from 100 kb bins across the 
genome that were previously annotated in other human cell lines to be strongly 
associated with the nuclear lamina (referred to as constitutive LADs, or cLADS), and 
further filtered to have the highest bulk DamID scores in HEK293T cells.  These bins 
are therefore most likely to have high contact frequencies in individual cells (Kind et 
al. 2015; Figure 3.4b). Negative controls were similarly determined using bulk data 
to be consistently not associated with the nuclear lamina across cell types and in our 
cells (referred to as constitutive inter-LADs, or ciLADS), making them most likely to 
have low contact frequencies in individual cells (Kind et al. 2015; Figure 3.4b). These 
stringent control sets constitute roughly 4% of the genome each. 
 
 
For each single cell expressing Dam-LMNB1, I computed the distribution of its 
normalized sequencing coverage in bins from the positive (cLAD) and negative (ciLAD) 
control regions (Figure 3.5c), with the expectation that cLADs have high coverage and 
ciLADs have little or no coverage in each cell. Given these control distributions, I chose 
a coverage threshold to maximally separate the known cLADs and ciLADs. Across the 
51 Dam-LMNB1 cells, I determined thresholds that distinguish the known cLADs and 
ciLADs with a median accuracy of 85% before any filtering (vs. 63% if all bins are 
scrambled), which correlates positively with the number of unique DpnI fragments 
sequenced per cell, a measure of library complexity (Figure 3.5d and Figure 3.4a). 
Because I used a transient transfection system, expression levels of Dam-LMB1 varied 
widely from cell-to-cell, reducing classification accuracy in some cells with high noise 
levels due to background methylation. I filtered higher-noise cells using a threshold of 
unique covered fragments, leaving 31 Dam-LMNB1 cells with a median classification 
accuracy of 90% (range 74%-98%, Figure 3.5d). This classification approach enables 
inference of expected error rates for each bin’s coverage level in each cell, providing 
a framework for data normalization, interpretation, and further inference. These error 
rates can be represented with receiver operating characteristic (ROC) curves for each 
cell, showing the empirical tradeoff between false-positive and false-negative 
classifications at varying normalized coverage thresholds (Figure 3.5e). 
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Figure 3.5. Validation of μDamID sequencing data  
(A) Comparison of bulk DamID sequencing data and single-cell sequencing data 
across all of human chromosome 1 for Dam-LMNB1 data normalized to bulk Dam-only 
data. Positive values (gold) represent regions associated with the nuclear lamina, which 
tend to have lower gene density (second track from top). Each row of the binary contact 
map represents a single cell, sorted from top to bottom by genome-wide classification 
accuracy. (B) Scatterplot comparing raw Dam-LMNB1 sequencing coverage in bulk vs. 
aggregated single-cell samples. (C) Normalized coverage distributions within positive 
(cLADs, gold) and negative (ciLADs, blue) control sets in one cell (#008) expressing 
Dam-LMNB1. The threshold that distinguishes these sets with maximal accuracy is 
shown as a vertical dotted line. (D) The maximum control set classification accuracy for 
each of 50 Dam-LMNB1 cells vs. the number of unique DpnI fragments sequenced for 
each cell (also indicated by color gradient; outlier cell #007 was excluded). A coverage 
threshold of 100k fragments used for downstream analyses is indicated, as well as the 
null accuracy achieved after scrambling values in all bins across the genome (63%). (E) 
Receiver-Operator Characteristic curves for 31 Dam-LMNB1 cells above the 100k 
coverage threshold.  
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I next computed pairwise correlations between the raw coverage for all single cells with 
each other, with the bulk data, with aggregated published single-cell DamID data (from 
Kind et al. 2015), and with the number of annotated genes in each 100 kb bin genome-
wide. After removing low-complexity cells, I performed unsupervised hierarchical 
clustering on these datasets and produced a heatmap of their pairwise correlations 
(Figure 3.6a). I found that the 3 Dam-only single cells cluster with each other, along 
with the bulk Dam-only data, with the Kind et al. Dam-only data, and with the number 
of genes, as expected. The Dam-LMNB1 cells cluster separately with each other, with 
the bulk Dam-LMNB1 data, and with the Kind et al. Dam-LMNB1 data, confirming that 
these sequencing data are measuring meaningful biological patterns in single cells. 
These clusters also reflect expected nuclear spatial distributions of methylation 
reported by m6A-Tracer fluorescence (Figure 3.6b-d). Interestingly, one Dam-LMNB1 
cell with unexpectedly high fluorescence signal in the nuclear interior contained a 
methylation profile that appeared intermediate between the Dam-Only and other 
Dam-LMNB1 cells, perhaps owing to high Dam-LMNB1 expression (Figure 3.6a). This 
illustrates how spatial information can be used to validate DamID with joint single-cell 
imaging and sequencing measurements. 
 
 
Identifying variable LADs 
In any given cell, only a subset of potential LADs come into contact with the lamina, 
and this subset can vary stochastically between cells (Kind et al., 2013). While most 
LADs at the lamina appear to remain in stable contact with the lamina throughout 
interphase, some LADs have been shown to move dynamically short distances towards 
and away from the lamina within the same cell over time (Kind et al. 2013), also 
potentially contributing to cell-to-cell variability in LADs. Single-cell DamID provides a 
unique opportunity to identify LADs that vary within a population of cells of the same 
type. 
 
To measure this variability, at each bin in the genome, I counted the number of Dam-
LMNB1 cells in which that bin was classified as having laminar contact (out of 31 total 
cells) to estimate its contact frequency (Kind et al. 2015), and I developed a method for 
propagating measurement and sampling uncertainty when inferring the true contact 
frequency of each bin (Methods, Figure 3.7, Figure 3.8). As expected, bins belonging 
to the cLAD control sets have high contact frequencies and lower gene expression 
while those in the ciLAD control sets have low contact frequencies and higher gene 
expression (Figure 3.7, Figure 3.9). Furthermore, I found that contact frequencies for 
each bin correlated well overall with published single-cell contact frequencies from a 
different cell line, KBM7 (r=0.8, Figure 3.9; Kind et al., 2015). 
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Figure 3.6. Genome-wide comparisons of sequencing data and relation to imaging 
data 
(A) Pairwise Pearson correlation heatmap for raw sequencing coverage in 100 kb bins 
genome-wide, with dendrogram indicating hierarchical clustering results. Cell 
identifiers label each row (first batch 00**, second batch A-D**). DL = Dam-LMNB1. DO 
= Dam-only. Genes = number of Refseq genes in each bin. Kind = aggregated single-
cell data from Kind et al. 2015. Bulk = bulk HEK293T DamID data from this study. (B) 
Confocal fluorescence microscopy images of m6A-Tracer GFP signal from 3 cells: one 
expressing Dam-only (#018), one expressing Dam-LMNB1 but showing high interior 
fluorescence (#007), and one expressing Dam-LMNB1 and showing the expected ring-
like fluorescence at the nuclear lamina (#006). (C) Normalized pixel intensity values 
plotted as a function of their distance from the nuclear edge (blue), with a fitted loess 
curve overlaid (green). Ratios of the mean normalized pixel intensities in the Lamina 
(<1 micron from the edge) versus the Interior (>3.5 microns from the edge) are printed 
on each plot. (D) DamID sequencing coverage distributions for each of the cLAD or 
ciLAD control sets (as in Figure 3.5c). 
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Figure 3.7. Identification and characterization of variable LADs in HEK293T cells  
(A) A browser screenshot from chr18:21-33 Mb. The first track shows the chromosome 
ideogram and coordinates. The second track reports the number of Refseq genes 
falling in each 100 kb bin. The third track reports the mean Transcripts Per Million (TPM) 
value for each gene within each bin from bulk RNA-seq data from untreated HEK293T 
cells. The fourth track reports the bulk DamID log2FoldChange values as in Figure 
3.4a. The fifth track indicates the contact frequency (CF) estimate for each bin (white 
point), with a blue ribbon indicating the 95% confidence interval for the sample CF 
(measurement error), and the magenta ribbon indicating the 95% confidence interval 
for the population CF (measurement + sampling error). The sixth track shows binary 
contact calls for each bin (columns) in each cell (rows). Shades of gold and blue indicate 
bins classified as having lamina contact or no lamina contact, respectively, with darker 
shades indicating higher confidence in the classification. Annotated cLADs and ciLADs 
are indicated by gold and blue boxes, respectively, with a variable LAD region (vLAD) 
in green.(B) For one bin in a different region, a comparison of measurement (blue) and 
sampling (black) distributions, along with a combined distribution (magenta) used for 
contact frequency inference with propagated measurement uncertainty (as shown in 
(A) track 5). The gray vertical dotted line is the point estimate for that bin, and red 
dotted vertical lines are drawn at the vLAD CF thresholds (33%, 66%). (C-D) 
Distributions of the number of genes (C) or mean TPM per gene (D) per 100 kb bin for 
each of the sets of cLADs, ciLADs, or vLADs.  
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Figure 3.8. Modeling and comparing single-cell contact frequencies between cell 
types  
(A) For 3 individual bins in the genome (coordinates listed above each plot), a Poisson-
Binomial distribution representing uncertainty in its sample contact frequency estimate 
after accounting for noise in the sequencing data (classification error rates on the 
control regions). Gray vertical dotted lines are the point estimate for each bin, and red 
dotted vertical lines are drawn at 11 and 21 out of 31 cells (CF roughly 33%-66%). 
Estimated probabilities of lying above or below this interval are indicated on each side 
of the plot. Note the difference in uncertainty between bins, as well as the difference in 
probabilities of lying outside the intermediate contact frequency interval. (B) When 
filtering intermediate-contact-frequency bins to choose a final set of high-confidence 
variable LADs (vLADs), the measurement error distributions were used to select bins 
with the smallest probabilities of lying above or below the 33-66% CF interval (p<0.001 
for each test, plotted in green). 
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To identify variable LADs, I defined a conservative set of bins with intermediate contact 
frequencies between 33 and 66 percent (Methods, Figure 3.8). I hypothesized that 
these stringently defined regions, which comprise 8% of the genome, would be more 
gene rich and have higher gene expression than cLADs, given their dynamic 
positioning in cells. Indeed, these variable LADs show intermediate gene density and 
intermediate bulk gene expression levels compared to the control sets of cLADs and 
ciLADs (Figure 3.7), consistent with these regions being variably active within different 
cells. 
 
I then explored whether these variable LADs were conserved in another human cell 
type. I found that the contact frequencies of bins containing variable LADs identified in 
HEK293T cells varied widely in KBM7 cells (Figure 3.9a), suggesting only a small 
subset of these LADs are variable in both cell types, consistent with prior observations 
that regions with intermediate contact frequencies are more likely to have different 
bulk DamID signals across cell types (Kind et al., 2015). Comparison of bulk RNA 
expression levels in bins that were classified as high, intermediate, or low contact 
frequency in each cell type corroborated the inverse relationship between single-cell 
contact frequency and bulk gene expression observed previously (Kind et al. 2015; 
Figure 3.9b-h; bulk RNA data analyzed by Annie Maslan). For example, as regions shift 
from intermediate contact frequencies to high contact frequencies in one cell type as 
compared to the other, we observe a corresponding decrease of gene expression 
(Figure 3.9e,h). These observations support the notion that the nuclear lamina serves 
as a dynamic regulatory element, not only between cell types but within a given cell 
type (Rooijers et al. 2019). 
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Figure 3.9. Comparing single-cell contact frequencies between cell types  
(A) A scatterplot of the contact frequency estimates in HEK293T cells (this study) vs. 
KBM-7 cells (Kind et al., 2015) across all bins in the genome. Each point is colored if 
the corresponding bin belongs to the cLAD (gold), ciLAD (blue), or vLAD (green) sets 
defined in HEK293T. Above the scatterplot is a histogram showing the KBM-7 contact 
frequency (CF) distribution for all bins defined as vLADs in HEK293T, illustrating vLAD 
differences between cell types. (B-H) Density plots indicating the relative distributions 
of bulk RNA-seq coverage in each cell type, within bins classified as low CF (<5% CF, 
with high expression), middle CF (33-66% CF, with intermediate expression), or high 
CF (>90% CF, with low expression) in each cell type. For example, (D) shows the RNA-
seq TPM distribution for 255 bins classified as low CF in HEK293T (higher expression) 
and as middle CF in KBM7 (lower expression). 
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Imaging LADs in the μDamID device using m6A-Tracer-NES 
I aimed to use fluorescence microscopy to quantify the spatial distribution of LADs in 
the μDamID device prior to DamID processing. In the first batch of 18 cells, I imaged 
m6A-Tracer to identify the localization of lamina-interacting DNA in the nucleus. I 
selected Dam-LMNB1-expressing cells that had laminar rings consistent with effective 
LAD methylation, as well as one anomalous Dam-LMNB1 cell with high signal in the 
nuclear interior (Figure 3.6c). I also observed fairly uniform fluorescence across the 
nucleus in cells expressing untethered Dam. These imaging patterns were largely 
predictive of their respective sequencing coverage distributions (Figure 3.6d). 
However, this investigation revealed an important limitation of the m6A-Tracer 
technology, which is that the m6A-Tracer protein localizes to the nucleus even in cells 
expressing no Dam (Figure 3.10a-b). One consequence is that cells with Dam and 
cells without Dam are nearly indistinguishable (Figure 3.10b), and cells with 
overexpressed m6A-Tracer show high background fluorescence levels in the nuclear 
interior even when co-expressing Dam-LMNB1 (Figure 3.10b). The only way to 
prevent this background issue is to carefully tune the expression level of m6A-Tracer 
so that the copy number of m6A-Tracer proteins does not exceed the number of 
available methylated GATC sites. This tuning would have to occur separately for any 
new Dam fusion protein. In a heterogeneous expression system like the one used 
here, since m6A-Tracer and Dam are expressed from separate plasmids, only a small 
fraction of cells have the correct ratios of expression to produce sharp laminar rings 
with low background in the nuclear interior (Figure 3.10b). 
 
No cryptic nuclear localization sequences were detected in m6A-Tracer (Methods), nor 
are human cells likely to contain any significant background levels of m6A without Dam 
(O’Brown et al. 2019). Instead, its default nuclear localization may arise from a weak 
interaction between genomic DNA and the DNA binding domain of m6A-Tracer, 
combined with the ability of m6A-Tracer to diffuse freely through nuclear pores given 
its small size (Figure 3.10a). Annie Maslan and I hypothesized that adding a Nuclear 
Export Signal (NES) to m6A-Tracer might overcome its weak affinity for DNA and keep 
any unbound copies of the protein sequestered in the cytoplasm. With Carolina Rios-
Martinez, we found that the HIV-1 Rev NES sequence fused to either terminus resulted 
in robust localization of m6A-Tracer to the cytoplasm in cells not expressing Dam 
(Figure 3.10, Figure 3.11), and for downstream experiments we proceeded to use 
the C-terminal fusion, which we call m6A-Tracer-NES.  
 
While the NES appears to prevent nonspecific m6A-Tracer interactions with DNA, it 
does not overcome on-target binding to Dam-methylated DNA. When Dam was co-
expressed, the localization of m6A-Tracer-NES shifted almost entirely from the 
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cytoplasm to the nucleus (Figure 3.10b). When Dam-LMNB1 was co-expressed, m6A-
Tracer-NES shifted to the nuclear lamina, with excess copies remaining in the 
cytoplasm in a subset of cells with especially high expression (Figure 3.10b, Figure 
3.11). This shift in localization began within 2-3 hours of Dam-LMNB1 induction and 
produced visible rings in the majority of transfected cells within 5 hours (Figure 3.11). 
Because m6A-Tracer-NES only binds methylated sites in the nucleus, it solves two major 
problems: 1) m6A-Tracer fluorescence in the nucleus is no longer ambiguous and can 
be interpreted as a signal of methylation, and 2) high contrast between the nuclear 
lamina and the nuclear interior can be achieved for a much wider range of m6A-Tracer 
expression levels. 
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Figure 3.10. Improved imaging of protein-DNA interactions with m6A-Tracer-NES  
(A) Illustration of potential mechanism by which m6A-Tracer-NES (m6A-Tracer with a C-
terminal HIV-1 Rev Nuclear Export Signal) reduces background fluorescence in the 
nucleus caused by non-specific DNA interactions, due to the relative rates of export, 
diffusion, and DNA binding (indicated by horizontal arrows). (B) Confocal images of 
m6A-Tracer-NES expressing cells co-stained with Hoescht 34580 to label DNA and 
CellBrite Red to label plasma membranes, showing cytoplasmic localization without 
Dam co-expression. (C) Confocal fluorescent microscope images revealing the 
different localization patterns of m6A-Tracer (Kind et al., 2013) with/without a NES, and 
with/without Dam or Dam-LMNB1 co-expression.  
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Figure 3.11. Additional characterization of m6A-Tracer-NES constructs  
(A) Confocal microscope images showing the localization of m6A-Tracer fluorescence 
when fused to one of two different Nuclear Export Signals on either terminus, in cells 
not expressing Dam. The HIV-1 Rev NES worked on either terminus and the C-terminal 
fusion was selected for downstream experiments. (B) Time-lapse confocal images of 
m6A-Tracer-NES or unmodified m6A-Tracer fluorescence in different fields of cells, in 
cells co-expressing either Dam or Dam-LMNB1. Some nuclear localization is visible at 
time 0 in m6A-Tracer-NES + Dam cells, likely owing to leaky expression prior to 
induction. (C) Time-lapse confocal microscope images of m6A-Tracer-NES fluorescence 
in the same field of cells at timepoints after Dam-LMNB1 expression. An inverted 
lookup table is used, and an arrow points to the nucleus of the same cell, which begins 
to show laminar signal around 2h post-induction. 
 
 
 
 
 
 
 
 

Figure S6. Additional characterization of m6A-Tracer-NES constructs, related to Figure 6.  
(A) Confocal microscope images showing the localization of m6A-Tracer fluorescence when 
fused to one of two different Nuclear Export Signals on either terminus, in cells not expressing 
Dam. The HIV-1 Rev NES worked on either terminus and the C-terminal fusion was selected 
for downstream experiments.  
(B) Time-lapse confocal images of m6A-Tracer-NES or unmodified m6A-Tracer fluorescence in 
different fields of cells, in cells co-expressing either Dam or Dam-LMNB1. Some nuclear 
localization is visible at time 0 in m6A-Tracer-NES + Dam cells, likely owing to leaky expression 
prior to induction. 
(C) Time-lapse confocal microscope images of m6A-Tracer-NES fluorescence in the same field 
of cells at timepoints after Dam-LMNB1 expression. An inverted lookup table is used, and an 
arrow points to the nucleus of the same cell, which begins to show laminar signal around 2h 
post-induction.
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Joint imaging and sequencing analysis 
µDamID enables the joint analysis of the nuclear localization and sequence identity of 
protein-DNA interactions within each cell and between cells. Because the nuclear 
localization of LADs is well characterized, one could generate and test hypotheses 
about the sequencing data given the imaging data for each cell in this study. Because 
the first batch of cells expressed unmodified m6A-Tracer, it is possible that high m6A-
Tracer expression could explain why some anomalous Dam-LMNB1 cells have high 
fluorescence in the nuclear interior (Figure 3.6b). Furthermore, because the first batch 
of cells lacked any direct readouts of Dam-LMNB1 expression levels, excessive Dam-
LMNB1 expression could explain why some cells have high and unexpected 
sequencing coverage in ciLADs, leading to lower classification accuracy. To test this, in 
our second batch of cells I tagged the Dam-LMNB1 fusion protein with the red 
fluorescing protein tdTomato to enable monitoring of relative expression levels and 
the precise location of the nuclear lamina, and we used m6A-Tracer-NES to track the 
physical locations of lamina-associated DNA in the nucleus (Figure 3.12). 
 
For each cell, I extracted a rich set of quantitative features from its images, including: 
nuclear lamina size/roundness, cell size/roundness, overall tdTomato intensity, and 
m6A-Tracer-NES intensity in each compartment. I then compared these imaging 
features to sequencing features for each cell: library DNA yield, unique fragment 
number, signal-to-noise ratio and accuracy on control sets, and raw coverage 
distribution in genomic bins ranked by lamina association from bulk data. Several 
strong associations stood out from the data (Figure 3.13). Firstly, I found that cells with 
larger nuclei tended to yield more DNA in their libraries, and resulted in more unique 
fragments sequenced, indicating greater library complexity (Figure 3.12b). This 
matches expectations, given that larger nuclei in this asynchronous, heterogeneous 
population are likely to have more DNA, either due to ploidy differences or cell cycle 
phase.  
 
Secondly, I found that, among cells with high library complexity (over 100,000 unique 
fragments), cells with greater expression of Dam-tdTomato-LMNB1 showed 
diminished sequencing signal-to-noise ratios in cLADs vs ciLADs (Figure 3.12c) and 
generally showed higher coverage in less lamina-associated regions of the genome 
(Figure 3.12d). This is consistent with our hypothesis, as higher Dam fusion protein 
expression is expected to produce higher background methylation that is not specific 
to the protein-DNA interaction of interest. Notably, among Dam-LMNB1-expressing 
cells I did not find a strong association between m6A-Tracer-NES signal in the nuclear 
interior and background methylation (Figure 3.13). This may be because variation in 
expression of m6A-Tracer obscures biological variation in methylation at the lamina. 
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Imaging data did reveal, however, that two cells without bright laminar rings produced 
low-complexity sequencing libraries (cells D05 and D09, Figure 3.3), and these would 
be difficult to filter out by other sorting approaches and would lead to low-quality 
outliers in DamID sequencing data. This series of measurements serves as a proof of 
principle that μDamID can be used to sort cells based on visual phenotypes that are 
correlated with sequencing measurements. Here I use this capability to predict 
sequencing information content from imaging phenotypes in single cells. 
 
Figure 3.12. Joint image and sequence analysis 
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Legend for Figure 3.12. Joint image and sequence analysis 
(A) An example of raw imaging data acquired for a single cell co-expressing m6A-
Tracer-NES and Dam-tdTomato-LMNB1 used for imaging feature extraction. 
Integrated tdTomato intensity in the cell serves as a measure of relative Dam-LMNB1 
expression between cells. (B) Scatterplot of the number of unique fragments covered 
by sequencing data for each cell compared to its nuclear area determined from its 
imaging data, colored by the library DNA yield for that cell (n=30 batch 2 cells with 
detectable tdTomato signal). r2 and p(slope>0) are provided from an ordinary least 
squares linear model. (C) Scatterplot of the sequencing signal:noise ratio for each cell 
(computed using coverage in control regions) compared to its relative Dam-tdTomato-
LMNB1 expression (determined by imaging), colored by the number of unique 
fragments for that cell (n=24 batch 2 cells with detectable tdTomato signal and >100k 
unique fragments). r2 and p(slope<0) are provided as in (B). (D) a comparison of the 
distribution of raw single-cell sequencing coverage across deciles of increasing bulk 
DamID signal in the genome, for the group of 12 cells with the highest (magenta) or 
lowest (dark red) Dam-tdTomato-LMNB1 expression levels. Values for individual cells 
are plotted as points in each decile, and loess curves are overlaid with 99% confidence 
interval ribbons in gray. Higher coverage in the left-hand side of the plot is consistent 
with greater background methylation. 
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Figure 3.13. Correlations of sequencing and imaging phenotypes  
(A) A correlation matrix showing the relationships between imaging measures (see 
Methods) and sequencing measures for 30 batch 2 cells with nuclear areas definable 
by tdTomato imaging. Correlations with p<0.05 are shaded white, while significant 
correlations are colored by the strength of their positive (blue) or negative (red) 
correlation. Associations that were further explored in Figure 3.12 are highlighted in 
yellow. (B) As in (A) but after filtering cells to remove those with <100k unique 
fragments, which confound estimates of classification accuracy. (C) Imaging ratios are 
reported for each cell as in Figure 3.6. Dark blue points represent Dam-only cells, and 
dark red points and black points represent Dam-LMNB1 cells from batch 1 and batch 
2, respectively. The anomalous Dam-LMNB1 cell #007 (shown in Figure 3.6) is 
highlighted in purple. Cells with fewer than 100k unique fragments are grayed out. 
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Figure S7. Correlations of sequencing and imaging phenotypes, related to Figure 7.  
(A) A correlation matrix showing the relationships between imaging measures (see STAR 
Methods) and sequencing measures for 30 batch 2 cells with nuclear areas definable by 
tdTomato imaging. Correlations with p<0.05 are shaded white, while significant correlations 
are colored by the strength of their positive (blue) or negative (red) correlation. Associations 
that were further explored in Figure 7 are highlighted in yellow.  
(B) As in (A) but after filtering cells to remove those with <100k unique fragments, which 
confound estimates of classification accuracy.  
(C) Imaging ratios are reported for each cell as in Figure 3C. Dark blue points represent 
Dam-only cells, and dark red points and black points represent Dam-LMNB1 cells from batch 
1 and batch 2, respectively. The anomalous Dam-LMNB1 cell #007 (shown in Figure 3B) is 
highlighted in purple. Cells with fewer than 100k unique fragments are grayed out.
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Discussion and future directions 
Here I have demonstrated the use of µDamID, an integrated microfluidic device for 
single-cell isolation, imaging, and sorting, followed by DamID. This system enables the 
acquisition of paired imaging and sequencing measurements of protein-DNA 
interactions within single cells, giving a readout of both the ‘geography’ and identity of 
these interactions in the nucleus. Specifically, I tested the device by mapping well-
characterized interactions between DNA and proteins found at the nuclear lamina, 
providing a measure of genome regulation and 3D chromatin organization within the 
cell, and recapitulating similar maps in other cell types. We also improved the method 
of imaging protein-DNA interactions with m6A-Tracer by attaching a nuclear export 
signal. This modification greatly reduces background fluorescence due to nonspecific 
interactions with unmethylated DNA, providing a more universal readout of the m6A 
methylation status of the nucleus. m6A-Tracer-NES will allow for more sensitive imaging 
of other classes of protein-DNA interactions in the nucleus, and it could potentially also 
be utilized in synthetic genetic and epigenetic circuits (Park et al. 2019) to reduce off-
target effects, or to serve as a nuclear localization switch. 
 
I am now working with collaborators to apply µDamID to study protein-DNA 
interactions that are critical for the process of DNA repair. In the future, I hope to apply 
µDamID or similar methods to study protein-DNA interactions in single meiotic cells. 
Meiosis is fundamentally a single-cell process, in which a single cell produces four 
unique gametes. The uniqueness of these gametes owes in large part to the unique 
combination of protein-DNA interactions that mediate the process of meiotic 
recombination in each cell. I studied meiotic recombination extensively in my previous 
work (Altemose et al. 2017, Davies et al. 2016, R. Li et al. 2019), so I know firsthand how 
much this field could benefit from the ability to image and map protein-DNA 
interactions in single cells in this system. µDamID is also well-suited to studying 
abnormalities in nuclear morphology, such as micronuclei or the changes associated 
with aging and diseases like progeria (Karoutas & Akhtar 2021). 
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Detailed Materials and Methods 
A full list of key resources attached as Appendix 1. Any updates to the protocol will 
be posted to streetslab.com. 
 
Harvesting and imaging cells 
Cells were harvested 72 hours after transfection. 20 hours before harvesting, the media 
was replaced and 0.5 µl Shield-1 ligand (0.5 mM stock, Takara Bio USA, Inc., Mountain 
View, CA) was added to each well to stabilize protein expression. Cells transfected with 
Dam-LMNB1 were inspected by fluorescence microscopy to look for the characteristic 
signal at the nuclear lamina, indicating proper expression and protein activity. To 
harvest the cells and prepare them for loading on the device, the cells were washed 
with PBS, then incubated at room temperature with 1X TrypLE Select (ThermoFisher 
Scientific, Waltham, MA) for 5 minutes to dissociate them from the plate. Cells were 
pipetted up and down to break up clumps, then centrifuged at 300xg for 5 minutes, 
resuspended in PBS, centrifuged again, and resuspended in 500 µl Pick Buffer (50 mM 
Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl2, 137 mM NaCl), achieving a final cell 
concentration of roughly 500,000 cells per ml. Cells were passed through a 40 µm cell 
strainer before loading onto the device.  
 
For batch 2 cells, 10 confocal z slices were taken for each cell, and the slice with the 
largest nuclear perimeter was selected for image processing (see Chapter 2 for 
microscope configuration. The 3 cells expressing Dam-only that were sequenced in 
this study were imaged with a widefield CCD camera. Other Dam-only cells were 
imaged with confocal microscopy and showed similar relatively homogenous 
fluorescence throughout the nucleus, and never the distinct ‘ring’ shape found in Dam-
LMNB1 expressing cells (Kind et al. 2013; Figure 3.4a). No image enhancement 
methods were used prior to quantitative image processing. Images in Figure 3.6 have 
been linearly thresholded to diminish background signal. 
 
Quality control, library prep, and sequencing 
Samples were diluted to 10 µl total volume and two replicates of qPCR were performed 
using the DamID PCR primer to estimate DNA quantities relative to the pick-buffer-only 
negative control (1 µl DNA per replicate in 10 µl reaction volume). I also used 1 µl of 
sample to measure DNA concentration using a Qubit fluorometer with a High-
Sensitivity DNA reagent kit (quantitative range 0.2 ng – 100 ng; ThermoFisher 
Scientific). Samples with the lowest Ct values and highest Qubit DNA measurements 
were selected for library preparation and sequencing. Library preparation was carried 
out using an NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB E7645) with dual-
indexed multiplex i5/i7 oligo adapters. Size selection was not performed; PCR was 
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carried out for 9 cycles. Libraries were quantified again by Qubit and size profiled on a 
TapeStation 4200 with a D5000 HS kit (Agilent, Santa Clara, CA), then mixed to achieve 
equimolar amounts of each library. DNA was sequenced on an Illumina MiniSeq with a 
150-cycle high output kit, to produce paired 75 bp reads, according to manufacturer 
instructions (Illumina, San Diego, CA). Roughly 13 million read pairs were obtained for 
batch 1 cells. For batch 2, I performed library preparation using an NEBnext UltraII FS 
kit (NEB E7805) and obtained 200 million total read pairs with an Illumina NextSeq 550 
High Output run, to guarantee sequencing of nearly the full available library 
complexity.  
 
Bulk DamID, Credit: Annie Maslan 
Genomic DNA was isolated from ~3.7 x 106 transfected HEK293T cells using the 
DNeasy Blood & Tissue kit (Qiagen) following the protocol for cultured animal cells 
with the addition of RNAse A. The extracted gDNA was then precipitated by adding 2 
volumes of 100% ethanol and 0.1 volume of 3 M sodium acetate (pH 5.5) and storing 
at -20 °C for 30 minutes. Next, centrifugation for 30 minutes at 4 °C, >16,000 x g was 
performed to spin down the gDNA. The supernatant was removed, and the pellet was 
washed by adding 1 volume of 70% ethanol. Centrifugation for 5 minutes at 4 °C, 
>16,000 x g was performed, the supernatant was removed, and the gDNA pellets were 
air-dried. The gDNA was dissolved in 10 mM Tris-HCl pH 7.5, 0.1 mM EDTA to 1 μg/μl, 
incubating at 55 °C for 30 minutes to facilitate dissolving. The concentration was 
measured using Nanodrop. 
 
The following DpnI digestion, adaptor ligation, and DpnII digestion steps were all 
performed in the same tube. Overnight DpnI digestion at 37 °C was performed with 
2.5 μg gDNA, 10 U DpnI (NEB), 1X CutSmart (NEB), and water to 10 μl total reaction 
volume. DpnI was then inactivated at 80 °C for 20 minutes. Adaptors were ligated by 
combining the 10 μl of DpnI-digested gDNA, 1X ligation buffer (NEB), 2 μM adaptor 
dsAdR, 5 U T4 ligase (NEB), and water for a total reaction volume of 20 μl. Ligation was 
performed for 2 hours at 16 °C and then T4 ligase was inactivated for 10 minutes at 65 
°C. DpnII digestion was performed by combining the 20 μl of ligated DNA, 10 U DpnII 
(NEB), 1X DpnII buffer (NEB), and water for a total reaction volume of 50 μl. The DpnII 
digestion was 1 hour at 37 °C followed by 20 minutes at 65 °C to inactivate DpnII.  
 
Next, 10 μl of the DpnII-digested gDNA was amplified using the Takara Advantage 2 
PCR Kit with 1X SA PCR buffer, 1.25 μM Primer Adr-PCR, dNTP mix (0.2 mM each), 1X 
PCR advantage enzyme mix, and water for a total reaction volume of 50 μl. PCR was 
performed with an initial extension at 68 °C for 10 minutes; one cycle of 94 °C for 1 
minute, 65 °C for 5 minutes, 68 °C for 15 minutes; 4 cycles of 94 °C for 1 minute, 65 °C 
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for 1 minute, 68 °C for 10 minutes; 21 cycles of 94 °C for 1 minute, 65 °C for 1 minute, 
68 °C for 2 minutes. Post-amplification DpnII digestion was performed by combining 
40 μl of the PCR product with 20 U DpnII, 1X DpnII buffer, and water to a total volume 
of 100 μl. The DpnII digestion was performed for 2 hours at 37 °C followed by 
inactivation at 65 °C for 20 minutes. The digested product was purified using QIAquick 
PCR purification kit. The purified PCR product (1 μg brought up to 50 μl in TE) was 
sheared to a target size of 200 bp using the Bioruptor Pico with 13 cycles with 30”/30” 
on/off cycle time. DNA library preparation of the sheared DNA was performed using 
NEBNext Ultra II DNA Library Prep Kit for Illumina using AMPure XP beads (Beckman 
Coulter Life Sciences, Indianapolis, IN). 
 
Bulk DamID, comparing Dam mutants, Credit: Annie Maslan 
Bulk DamID for comparing the wild-type allele and V133A mutant allele was performed 
as outlined in the Bulk DamID section above with the following modifications. Genomic 
DNA was extracted from ~ 2.4 x 105 transfected HEK293T cells. A cleanup before 
methylation-specific amplification was included to remove unligated Dam adapter 
before PCR. The Monarch PCR & DNA Cleanup Kit with 20 μl DpnII-digested gDNA 
input and an elution volume of 10 μl was used. Shearing with the Bioruptor Pico was 
performed for 20 total cycles with 30”/30” on/off cycle time. Paired-end 2 x 75 bp 
sequencing was performed on an Illumina NextSeq with a mid output kit. 
Approximately 3.8 million read pairs per sample were obtained. 
 
Bulk RNA-seq, Credit: Annie Maslan 
RNA was extracted from ~1.9 x 106 transfected HEK293T cells using the Rneasy Mini Kit 
from Qiagen with the QIAshredder for homogenization. RNA library preparation was 
performed using the NEBNext Ultra II RNA Library Prep Kit for Illumina with the 
NEBNext Poly(A) mRNA Magnetic Isolation Module. Paired-end 2 x 150 bp sequencing 
for both DamID-seq and RNA-seq libraries was performed on 1 lane of a NovaSeq S4 
run. Approximately 252 million read pairs were obtained for each DamID-seq sample, 
and roughly 64 million read pairs for each RNA sample. 
 
m6A-Tracer-NES, Additional credit: Carolina Rios-Martinez & Annie Maslan 
To reduce background fluorescence due to m6A-Tracer, we fused its N or C terminus 
to one of two different nuclear export signals (NES): HIV-1 Rev (LQLPPLERLTLD) or 
MAPKK (LQKKLEELEL) (Kakar et al. 2007). We compared the localization of each of the 
4 resulting constructs by imaging HEK293T cells transiently transfected with m6A-tracer-
NES by itself or with Dam. Negative controls included transfection with unmodified 
m6A-Tracer only or Dam only, and no transfection. The MAPKK NES did not appreciably 
reduce nuclear localization of m6A-tracer-NES in the absence of Dam (Figure 3.11). 
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However, the HIV-1 Rev NES, in either the N- or C-terminal configuration, showed 
significant improvement in localizing signal to the cytoplasm in the absence of Dam, 
while permitting nuclear localization in the presence of Dam (Figure 3.10, Figure 
3.11). We proceeded to use the C-terminal HIV-1 Rev m6A-Tracer construct for 
downstream experiments. Co-transfection with Dam-LMNB1 resulted in a greater 
proportion of transiently transfected cells having visible laminar rings than with 
unmodified m6A-Tracer. Timelapse imaging of the same field of Dam-LMNB1 + m6A-
Tracer-NES cells over time or different fields at each timepoint (Figure 3.11) 
demonstrated that laminar rings become visible within 2-3 hours and reach full 
intensity around 5 hours after Dam-LMNB1 induction with Shield-1 ligand. To test the 
possibility that unmodified m6A-Tracer localizes to the nucleus due to a cryptic Nuclear 
Localization Signal, I searched for NLS motifs using NLSdb (Bernhofer et al. 2018) but 
found no matches. 
 
Quantification and statistical analysis 
Bulk RNA-seq 
Adapters were trimmed using trimmomatic (v0.39; Bolger et al., 2014; 
ILLUMINACLIP:adapters-PE.fa:2:30:10 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:36, where adapters-PE.fa is: 
>PrefixPE/1 
TACACTCTTTCCCTACACGACGCTCTTCCGATCT 
>PrefixPE/2 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT). 
 
Transcript quantification was performed using Salmon (Patro et al. 2017) with the 
GRCh38 transcript reference. Differential expression analysis was performed using the 
voom function in limma (Ritchie et al. 2015). Differential expression was called based 
on logFC significantly greater than 1 and adjusted p-value < 0.01. 
 
For KBM7 bulk gene expression analysis, publicly available single-end RNA 
sequencing data (SRA accession SRP044391, Essletzbichler et al. 2014) from two 
replicates were processed. For adapter trimming, trimmomatic was used in the SE 
mode with the adapter file ILLUMINACLIP:TruSeq3-SE. All other trimmomatic 
parameters were the same as were used in the HEK293T RNA-seq data processing, 
and Salmon was used for transcript quantification in single-end mode. Credit: Annie 
Maslan. 
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Bulk and single-cell DamID 
Bulk and single-cell DamID reads were demultiplexed using Illumina’s BaseSpace 
platform to obtain fastq files for each sample. DamID and Illumina adapter sequences 
were trimmed off using trimmomatic (v0.39; Bolger et al. 2014; 
ILLUMINACLIP:adapters-PE.fa:2:30:10 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:20, where adapters-PE.fa is: 
>PrefixPE/1 
TACACTCTTTCCCTACACGACGCTCTTCCGATCT 
>PrefixPE/2 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 
>Dam 
GGTCGCGGCCGAGGA 
>Dam_rc 
TCCTCGGCCGCGACC 
 
Trimmed reads were aligned to a custom reference (hg38 reference sequence plus the 
Dam-LMNB1 and m6A-Tracer plasmid sequences) using BWA-MEM (v0.7.15-r1140, 
(Heng Li 2013)). Alignments with mapping quality 0 were discarded using samtools 
(v1.9, (H. Li et al. 2009)). The hg38 reference sequence was split into simulated DpnI 
digestion fragments by reporting all intervals between GATC sites (excluding the 
GATC sites themselves), yielding 7180359 possible DpnI fragments across the 24 
chromosome assemblies. The number of reads overlapping each fragment was 
counted using bedtools (v2.28; (Quinlan & Hall 2010)). For single-cell data, the number 
of DpnI fragments with non-zero coverage was reported within each non-overlapping 
bin in the genome (28163 total 100 kb bins, after excluding unmappable regions with 
zero coverage in any cell). For bulk data, the number of read pairs overlapping each 
100 kb bin was reported. The same exact pipeline was applied to the raw reads from 
Kind et al. 2015 (GEO accession GSE69423). RefSeq gene positions were downloaded 
from the UCSC Genome Browser and counted in each bin. For bulk data, Dam-LMNB1 
vs DamOnly enrichment was computed using Deseq2 in each 100 kb bin (Love et al. 
2014). For single-cell data, the expected background coverage in each bin was 
computed as n(m/t), where n is the number of unique fragments sequenced from that 
cell, m is the number of bulk Dam-only read pairs mapping to that bin, and t is the total 
number of mapped bulk Dam-only read pairs. Single-cell normalization was computed 
either as a ratio of observed to expected coverage (for browser visualization and 
comparison to bulk data), or as their difference (for classification and coverage 
distribution plotting). Positive and negative control sets of cLAD and ciLAD bins were 
defined under the assumption that genomic regions that have high bulk DamID signal 
and that are lamina associated across many cell types are likely to be in contact with 
the lamina in the vast majority of single cells, which is supported by previous scDamID 
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data (Kind et al. 2015; Figure 3.4). Specifically, we defined them as bins with a bulk 
Dam-LMNB1:Dam-only Deseq2 p-value smaller than 0.05/28760, that intersected 
published cLADs and ciLADs in other cell lines (Lenain et al. 2017), and that were 
among the top 1200 most differentially enriched bins in either direction (positive or 
negative log fold change for cLADs and ciLADs, respectively). Normalized coverage 
thresholds for LAD/iLAD (i.e. contact vs. no contact) classification were computed for 
each cell to maximize accuracy on the cLAD and ciLAD control sets. To examine 
whether using the full control sets to set thresholds and define classification error was 
resulting in substantial overfitting, we split the control sets into training and test sets 
for threshold setting and accuracy determination, respectively, and only observed a 
0.7% mean drop in accuracy relative to using the full sets. Signal-to-noise ratios were 
computed for each cell using the normalized coverage distributions in the cLAD and 
ciLAD control sets as (µcLAD - µciLAD)/σciLAD. For most downstream analyses, we chose to 
exclude 20 cells with fewer than 100,000 unique covered fragments, which includes 
cells with poor laminar rings and lower DNA yields (Figure 3.4 and Figure 3.5). For 
any given application of µDamID, this threshold will depend on the level of noise due 
to background methylation in the biological system being used, which is expected to 
depend in part on the expression level of the Dam fusion protein. In a transiently 
transfected cell population, this expression level is expected to vary widely, which 
motivated the use of data to explore this as a cause of variable classification accuracy 
between cells. The remaining 31 Dam-LMNB1 cells had a median classification 
accuracy of 90% (range 74%-98%). Bulk analysis credit: Annie Maslan. 
 
Calling vLADs 
Variable LADs were defined as bins called as LADs in 33-66% of cells and 
conservatively filtered to remove regions resulting from sampling error. This was done 
by computing, for each bin and for each cell, the probability that the true sample 
contact frequency lies outside the interval (33%, 66%). I estimated this probability using 
a Poisson-binomial distribution, a generalization of the binomial distribution allowing 
individual samples to have varying success probabilities. Specifically, each bin in the 
genome has k cells called as LADs and n-k cells called as iLADs, with n=31 in this study. 
For the k LADs I generated a vector of k false-positive probabilities, with each 
probability estimated as the fraction of negative-control ciLADs with coverage greater 
than the observed coverage in that bin. I used this probability vector to parameterize 
a Poisson-binomial distribution with k draws, providing the distribution of false-positive 
calls in the bin. I repeated this for the n-k iLAD bins, with each false-negative probability 
estimated as the fraction of positive-control cLADs with coverage lower than the 
observed coverage in that bin. These two distributions were combined into a single 
density by reflecting the false-positive distribution about the y axis, scaling each one 
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according to its mean, and adding k to produce the plots in Figure 3.8). Only regions 
with p<10-3 for both tails were called as variable LADs. I then generated 10,000 
samples of the sample contact frequency, c, from this distribution and used each one 
to generate a single binomial (n=31, p=c/31) sample, generating a combined 
measurement and sampling distribution with greater variance than either alone 
(Figure 3.7), from which I generated 95% confidence intervals for the population 
contact frequency in each bin (Figure 3.7). Statistical analyses and plots were made in 
R (v4.0.0) using the ggplot2 (v3.3.0), gplots (v3.0.3), colorRamps (v2.3), reshape2 
(v1.4.4), ggextra (v0.9) and poisbinom (v1.0.1) packages. Browser figures were 
generated using the WashU Epigenome Browser (D. Li et al. 2019). 
 
Image processing 
Images were processed in R (v4.0.0) and plots were produced using the reshape2 
(v1.4.3), SDMTools (v1.1-221.1), spatstat (v1.59-0), magick (v2.0), and ggplot2 (v3.3.0) 
packages. Grayscale images were converted to numeric matrices and edge detection 
was performed using Canny edge detection using the image_canny function in 
magick, varying the geometry parameters manually for each cell. The center of mass 
of all edge points was obtained, and all edge points were plotted in Cartesian 
coordinated with this center of mass as the origin. Noise was removed by removing 
points with a nearest neighbor more than 2 microns away. Edge point coordinates 
were converted to polar coordinates, and the farthest points from the origin in each 10 
degree arc were reported. Within each 10 degree arc, all pixel intensities from the 
original image within the edges of the nucleus were reported as a function of their 
distance from the farthest edge point in that arc to make Figure 3.6c. For each cell a 
loess curve (span 0.3) was fitted to the data after subtracting the minimum intensity 
value within 3.5 microns of the edge. The Lamina:Interior ratio was computed as the 
ratio of mean intensity of pixels within 1 micron of the edge to the mean intensity of 
pixels more than 3.5 microns from the edge, after subtracting the minimum value of 
the loess curve for that cell. To provide an additional metric, I computed the distance 
from the laminar edge where the fluorescence intensity decays to 10% of the peak 
laminar intensity. A nuclear mask was created by drawing a polygon with vertices as 
the farthest point in each arc from the center of mass, and a similar cell mask polygon 
was generated using the transmission image—these masks enabled the computation 
of cell and nuclear area and perimeter as well as the mean fluorescence intensity in 
different compartments of the cell. For batch 2 cells, I used the tdTomato image for 
each cell to infer the laminar boundary by thresholding the images iteratively and 
performing morphological dilations until a closed loop formed, providing a new 
nuclear mask. As a measure of nuclear roundness, I computed the inverse isoperimetric 
quotient for each cell: the ratio of the area of a circle with the equivalent perimeter to 
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the observed area of the nucleus, computed as P2/(4pA) (domain 1 to infinity). All image 
processing steps are deterministic and reproducible, with all R code and necessary 
metadata files published in our github repository. 
 
Co-author contributions 
Nicolas Altemose and Aaron Streets conceived of and designed the study and the 
microfluidic device. Nicolas Altemose and Andre Lai fabricated and optimized 
operation of the device. Annie Maslan performed bulk cell experiments and data 
processing, Carolina Rios-Martinez performed m6A-Tracer-NES experiments with 
supervision from Annie Maslan and Nicolas Altemose, and Nicolas Altemose 
performed all other experiments, analysis, and pneumatic/thermoelectric hardware 
construction. Jonathan A. White developed the microfluidic control platform and 
thermal cycling software, with minor modifications by Nicolas Altemose. Nicolas 
Altemose wrote the manuscript with contributions from Annie Maslan, Carolina Rios-
Martinez, and Aaron Streets. Aaron Streets supervised the study. 
 
Materials, Data, and Code Availability  
Materials Availability: Plasmids generated in this study have been deposited to 
Addgene (https://www.addgene.org/browse/article/28211957/). 
 
Data and Code Availability: The sequencing data generated during this study are 
available at GEO (accession GSE156150). The imaging data generated during this 
study are available at FigShare: https://doi.org/10.6084/m9.figshare.12798158. 
Analysis code, control software, device design files, and plasmid sequences are freely 
available for download on GitHub: https://github.com/altemose/microDamID. Source 
data for bulk KBM-7 RNA-seq were obtained from SRA (accession SRP044391), and 
source data for KBM-7 scDamID were obtained from GEO (accession GSE69423). 
 
This work is now published as Altemose et al. 2020: 

Altemose N, Maslan A, Rios-Martinez C, Lai A, White JA, & Streets A. (2020). 
μDamID: a microfluidic approach for joint imaging and sequencing of 
protein-dna interactions in single cells. Cell Systems, 11(4), 354-366.e9. 
https://doi.org/10.1016/j.cels.2020.08.015 
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Chapter 4  
 
 
Development, optimization, and validation of DiMeLo-seq, 
a single-molecule method for mapping protein-DNA 
interactions in situ 
 
Aims & overview 
Measuring protein-DNA interactions is key to understanding how the information 
coded in DNA is brought to life. Making these measurements with increased sensitivity 
has proven useful for mapping protein-DNA interactions in single cells (Chapter 3), 
but these efforts also highlight an additional blind spot for protein-DNA interaction 
mapping: the repetitive regions of the genome. Due to the lack of GATC sites in many 
repetitive regions (Figure 2.1, Sobecki et al. 2018), even with the forthcoming 
complete Telomere-to-Telomere genome assembly, these GATC-poor repetitive 
regions cannot be probed by conventional DamID. Other protein-DNA mapping 
approaches, such as MadID, ChIP-seq, and CUT&RUN, can recover information from 
these repetitive regions, but they produce short sequencing reads that cannot be 
mapped unambiguously within highly repeated sequences. This underlines the need 
for a technology that is able to map protein-DNA interactions using long sequencing 
reads, which can map to and cover repetitive regions more comprehensively.  
 
To address this need, I devised and piloted the idea of using long-read sequencing to 
directly read out methyladenines deposited by an adenine methyltransferase (Dam or 
EcoGII) fused to a protein of interest (such as centromere protein C) and, with Annie 
Maslan, I extended the idea to enable this sort of mapping in situ, as in the pA-DamID 
method (Schaik et al. 2020). This makes the approach much more versatile and widely 
useful, as it can map post-translational marks like histone modifications and can be 
used in primary tissue samples, unlike conventional in vivo DamID methods. We then 
joined forces with Professor Aaron Straight’s research group at Stanford, who were 
working on a similar idea. Our collective efforts have produced a new method for 
mapping protein-DNA interactions, which we call DiMeLo-seq, for Directed 
Methylation with Long-read sequencing (Figure 4.1). The name pays tribute to my 
Bolivian heritage: in Spanish, dímelo means “tell me it.” 
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Here, I describe my conception of the idea for DiMeLo-seq and early results from in 
vivo expression experiments, followed by the development of a rapid pipeline for 
evaluating protocol performance with Annie Maslan. Next, I discuss the results of a long 
process of in situ protocol optimization using our pipeline, in collaboration with Owen 
Kabnick Smith, Dr. Kousik Sundararajan, and Rachel Brown in Aaron Straight’s group 
at Stanford. I also describe an approach I developed to enrich repetitive centromeric 
sequences prior to sequencing, along with early results and immediate plans for the 
application of these methods to probe important biological questions in the formerly 
missing regions of the human genome. 
 
DiMeLo-seq is useful for mapping protein-DNA interactions in repetitive regions, but 
it also provides additional single-molecule information that can be leveraged in several 
ways. For example, endogenous CpG methylation can be jointly measured along with 
protein-DNA interaction sites on the same single molecules of DNA. This is useful when 
studying how DNA methylation and protein binding interact, for example when DNA 
methylation abolishes the binding of certain transcription factors. Additionally, 
because methyltransferases favor accessible linker DNA between nucleosomes, 
nucleosome positioning can be inferred based on the density of methylation marks, as 
with existing long-read accessibility measurement technologies (Abdulhay et al. 2020, 
I. Lee et al. 2020, Shipony et al. 2020, Stergachis et al. 2020, Y. Wang et al. 2019). 
Because it is an amplification-free method, it also allows one to linearly infer the 
frequency of binding of a protein at a particular site in a population of cells. 
Furthermore, since the enzyme reach is on the order of 100-200 bp, and reads can 
regularly be as long as hundreds of kb, we can infer multiple protein-DNA binding 
events on single molecules. This is useful for exploring the density of a protein along a 
stretch of chromatin, or the exact joint binding profile of proteins to proximal sites. It 
also lends itself to examining the joint distribution of multiple proteins, each fused to a 
distinct DNA-modifying enzyme, on the same long single molecule of DNA. Finally, it 
is also feasible to extend the method to look at DNA-DNA or RNA-DNA interactions.  
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Figure 4.1. Schematic of DiMeLo-seq workflows 
 
 
Initial considerations 
I initially wanted to investigate whether DiMeLo-seq could faithfully reproduce existing 
DamID results with the protein LMNB1 in the HEK293T human cell line, and whether 
using the nonspecific adenine methyltransferase EcoGII would improve the accuracy 
and resolution of the method compared to Dam. I chose LMNB1 as an initial target not 
only because we had abundant reference data for it in HEK293T cells from our μDamID 
study (Altemose et al. 2020), but also because LMNB1 has an enormous binding 
footprint (median 500 kb), allowing us to meaningfully assess the performance of the 
method with low-coverage sequencing. 
 
I was concerned that conventional DamID and MadID might only achieve useful signal-
to-noise ratios because they enrich for methylated DNA (by PCR or 
immunoprecipitation), while DiMeLo-seq involves no enrichment or amplification at all. 
To emphasize, the readout for short-read DamID-like methods is the amplified 
sequence coverage of any particular region of the genome, whereas the readout for 
DiMeLo-seq is the proportion of adenines that are methylated in any particular region 
of the genome. That is, DiMeLo-seq sequences the entire genome uniformly, with 
protein-DNA information occurring as metadata along each read; if the per-cell 
methylation level is too low, then DiMeLo-seq as described would only be useful at 
impractically high sequencing depths, with only a tiny subset of reads providing useful 
protein-DNA binding information. While it would be possible to enrich for long, 
methylated DNA fragments by immunoprecipitation, this would introduce biases and 
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destroy the linear relationship between protein-DNA interaction frequency and 
adenine methylation levels. This would especially complicate the inference of joint 
binding events on single molecules. 
 
Another concern was that the mA vs A calling accuracy would be too low to provide 
useful single-molecule information without substantial binning. While PacBio 
sequencing has been shown to provide >95% mA calling accuracy in most contexts 
examined (McIntyre et al. 2019), this information was not publicly available for ONT 
MinION flowcells using their experimental release of an all-contexts mA calling model. 
To obtain a rough estimate of the accuracy, I contacted Marcus Stoiber, Senior Data 
Analyst at ONT, who helpfully shared some internal results showing that they achieve 
mA/A classification F1-scores between 0.7 and 0.95 across 16 sequence contexts, with 
most contexts in the range of 0.75-0.85 (Marcus Stoiber, personal correspondence). 
This gave us additional confidence to continue with ONT sequencing. 
 
 
In vivo DiMeLo-seq 
To examine the feasibility of DiMeLo-seq and the quality of the resulting data, I began 
by sequencing DNA that had been methylated at adenines in vivo, as in conventional 
DamID. To do so, I created stable HEK293T human cell lines that could inducibly 
express Dam, Dam-LMNB1, EcoGII, or EcoGII-LMNB1. I harvested their DNA after 
induction and incubation, as one would do for conventional DamID or MadID (Sobecki 
et al. 2018, Vogel et al. 2007), and then I sequenced them using an Oxford Nanopore 
Technologies (ONT) MinION device in our lab. I completed one sequencing run in 
March 2020, just before COVID-19-related shelter-in-place orders began, and I 
resumed these efforts in November 2020. 
 
I began by comparing DNA methylated in vivo by Dam-LMNB1 or EcoGII-LMNB1 to 
our previously published Dam-LMNB1 conventional bulk DamID data (Figure 4.2; 
Altemose et al. 2020). When using a classification model that exclusively examined 
GATC sites, it appeared that the Dam-LMNB1 sample outperformed the EcoGII-LMNB1 
sample, but when the EcoGII-LMNB1 sample was called with an all-contexts model, it 
appeared to reproduce the in vivo DamID data the best (Figure 4.2). To estimate signal 
and background in order to evaluate the performance of the method, I utilized the 
positive cLAD and negative ciLAD control regions identified in our μDamID study 
(Altemose et al. 2020). By reporting the fraction of A’s methylated in cLADs (where we 
expect LMNB1 to contact DNA in nearly all cells), the fraction of A’s methylated in 
ciLADs (where we almost never expect LMNB1 to contact DNA), and the ratio between 
these, we can obtain a genome-wide summary of the on-target vs background 
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methylation detected in each sample, even when using extremely low (0.1x) 
sequencing depth.  
 
Each adenine basecall is reported with an 8-bit probability score, where 255 represents 
a methylation probability of 1, and 0 represents a methylation probability of 0. The 
choice of threshold for binary mA calling can affect the signal:background ratio, as less 
stringent thresholds result in more false positive calls. For the EcoGII-LMNB1 sample, 
this signal:background ratio was 10.5 when using a mA probability threshold of 0.99, 
and 9.3 when using a threshold of 0.5. Nearly 1.5% of adenines on reads mapped to 
cLADs were called as methylated at the 0.5 threshold, while only 0.06% were called as 
methylated at the 0.99 threshold. These probability scores also depend on the 
algorithm used for modification calling (see below).  
 
 
 
 

 
 
Figure 4.2. In vivo DiMeLo-seq recapitulates in vivo DamID results 
Comparison of the coverage from conventional Dam-LMNB1 DamID (1st track) to the 
proportion of adenines methylated in Dam-LMNB1 or EcoGII-LMNB1 expressing cells 
sequenced with ONT, using either an m6A classification model restricted to GATC sites 
(2nd and 3rd tracks), or an all-context m6A model (4th track) across human chromosome 
7. Sequencing depth was approximately 0.1x for each ONT sample.  
 
 
 
Preliminary specificity estimates of modification calling algorithms 
ONT’s Guppy software uses a neural network to call bases and base modifications from 
raw sequencing data, while their Megalodon software calls base modifications by first 
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aligning reads to a reference sequence. To compare these algorithms and estimate the 
false positive rate at different probability score thresholds, I sequenced DNA from 
untreated cells as a negative control, and DNA from cells expressing untethered EcoGII 
as a positive control, and then plotted the distributions of modification probability 
scores across all adenines on all reads (Figure 4.3). Notably, for Guppy basecalls, I 
exclusively looked at adenines with a base quality phred score of at least 10, which 
indicates a predicted basecalling error rate of 10%; Megalodon calls are reference-
anchored so do not require a similar base quality filter. These results show that 
Megalodon appears to have a higher False Discovery Rate (FDR) than Guppy at nearly 
all probability thresholds, but it may also be more sensitive (Figure 4.3). Megalodon 
shows an anomalous spike at a probability threshold of 0.5, likely an artifact of the 
classification algorithm used. For most analyses, I compute signal:background ratios 
and mA fractions at a mA probability threshold of 0.9 (which has a predicted FDR of 
<0.6%), which provides a suitable balance between sensitivity and specificity for 
protocol evaluation in large cLADs vs ciLADs. More sensitive thresholds are needed for 
high-resolution mapping. 
 
The untethered EcoGII in vivo sample has 0.5% of all adenines called as methylated by 
Guppy at an FDR of 1%, which rises to 12.8% called as methylated at an FDR of 8% 
(Figure 4.3). Because overall methylation depends on DNA accessibility and enzyme 
efficiency, we would not expect to detect 100% methylation on any strand of DNA. It 
has also been suggested that fully adenine methylated DNA can produce errors in 
nanopore devices, biasing against the most heavily methylated strands (Shipony et al. 
2020). Speculatively, Guppy and Megalodon may perform less accurately when a 
strand contains many methylated adenines, since they were trained on microbial 
reference DNA with relatively dispersed methyladenines in a relatively small number 
of sequence motif contexts. Because we do not know the ground-truth proportion of 
adenines that are methylated in any of our samples methylated by nonspecific adenine 
methyltransferases, it is difficult to place an upper bound on the overall sensitivity of 
our mA detection pipeline. In ongoing work, we are trying to estimate this ground truth 
using a m6A ELISA kit (Epigentek P-9010-96) and mass spectrometry (Kriaucionis & 
Heintz 2009, Quinlivan & Gregory 2008). For now, given the observed positivity rate of 
12.8% at the most lenient threshold (at which the FPR is 1%), we can correct it for the 
false positivity rate and place a conservative lower bound on the sensitivity at 1-(1-
0.128)/(1-0.01) = 11.9%. However, in light of the mean m6A classification F-1 score of 
0.8 communicated to me by ONT (Marcus Stoiber, personal correspondence), we can 
infer that the actual global sensitivity should be at least 66.7%. We can use this to solve 
the confusion matrix and estimate that at most 18% of adenines are methylated by 
untethered EcoGII in vivo. 
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Figure 4.3. Estimation of false positive methyladenine calling rates 
(A) The proportion of all adenines called as methylated at each possible probability 
threshold using two different software packages on ONT reads from two HEK293T 
DNA samples: untreated genomic DNA, and DNA methylated by untethered EcoGII in 
vivo. The untreated DNA provides a measure of the false positive rate at each 
threshold, since it contains few or no methyladenines. (B) The same as A, but showing 
the cumulative proportion of all adenines called as methylated above each probability 
threshold (exclusive of 0). (C) An upper bound on the False Discovery Rate (FDR), 
computed as the ratio of mA/A for the untreated sample to mA/A for the EcoGII 
sample. Specifically, this estimates the proportion of positive mA calls in the EcoGII 
sample that are false positives at each threshold. The EcoGII sample is not 100% 
methylated, so it is not a perfect positive ground-truth set, making the FDR only an 
upper bound. (D) This shows the proportion of positive mA calls in the EcoGII sample 
after adjusting for the estimated false positive rate at each threshold. Effectively, this is 
an estimate of the true positive proportion when assuming 100% sensitivity. 
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In situ protocol development and optimization 
My preliminary data and analytical pipeline provided confidence that methyladenines 
were frequent enough, that the mod calling algorithms were sensitive and specific 
enough, and that background methylation was low enough for the general DiMeLo-
seq approach to work successfully on samples methylated in vivo. However, the in vivo 
method, like most DamID methods, relies on genetically manipulating the sample of 
interest and tuning the expression of the MTase-fusion protein to achieve useful 
signal:background methylation. This genetic manipulation is time consuming and 
difficult or impossible for some sample types, including primary human tissue samples. 
Furthermore, it does not enable the detection of post-translational modifications like 
histone marks. To address these limitations, Annie Maslan and I set out to develop an 
efficient protocol to target a nonspecific adenine methyltransferase to a protein of 
interest using antibodies in permeabilized nuclei in situ, using a similar workflow to 
CUT&RUN or pA-DamID (Schaik et al. 2020, Skene & Henikoff 2017).  
 
To begin, I designed a fusion construct between EcoGII and protein A/G (which 
combines domains from protein A and protein G to bind IgG antibodies from most 
host organisms), connected by a DDDKEF(GGGGS)x4 linker, similar to the pAG-Tn5 
construct used in CUT&RUN (Kaya-Okur et al. 2019), and I had it synthesized and 
purified (Genscript customized protein production). We decided to combine elements 
of the published in situ antibody targeting protocols CUT&RUN, CUT&TAG, and pA-
DamID (Kaya-Okur et al. 2019, Schaik et al. 2020, Skene & Henikoff 2017). To the 
standard CUT&RUN wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM 
spermidine, 1 Roche protease inhibitor tablet), we added 0.1% Tween-20 (a mild non-
ionic detergent) to reduce cell adhesion to tubes and promote plasma membrane 
permeabilization, and 0.1% Bovine Serum Albumin (BSA) to block nonspecific 
antibody interactions. For the cell/nucleus permeabilization buffer, we added 0.02% 
digitonin to the wash buffer. We opted to include multiple washing steps after the 
antibody and pAG-EcoGII binding steps in order to reduce background binding, unlike 
the pA-DamID protocol. Much like pA-DamID, we activated the pAG-EcoGII by adding 
the methyl donor S-adenosylmethionine (SAM) and incubating at 37 °C for 30 minutes. 
 
In vitro methylation comparisons 
First, we checked that the pAG-EcoGII fusion construct was capable of methylating 
DNA in vitro by a restriction enzyme blocking assay, and then we tested it with various 
buffers and additives in vitro (Figure 4.4). We also compared it to a commercially 
available EcoGII enzyme from New England Biolabs and to purified Hia5 nonspecific 
adenine methyltransferase courtesy of Aaron Straight’s lab (Hia5 was used in Fiber-seq, 
Stergachis et al. 2020). We incubated each enzyme with a double-stranded DNA oligo 



 84 

containing a single GATC in the middle, then digested this methylated oligo with DpnII, 
a restriction enzyme that is blocked by adenine methylation. We ran the resulting 
fragments on a TapeStation machine, which separates DNA fragments by size, and 
compared the intensity of bands corresponding to digested and undigested DNA—
more undigested DNA implies higher methylation levels. Using this approach, we 
confirmed that pAG-EcoGII does have strong methylation activity in vitro, it performs 
indistinguishably from Hia5, and it appeared to perform better than the commercially 
available enzyme. However, in this experiment we could not guarantee that the NEB 
EcoGII concentration was perfectly matched to pAG-EcoGII and Hia5. 
 
We also examined pAG-EcoGII’s methylation ability in various buffers and with various 
additives commonly found in antibody binding buffers: BSA, Tween-20, Digitonin (a 
detergent that permeabilizes cell membranes), Spermidine (a polyamine that stabilizes 
the charge of DNA and preserves chromatin structure when divalent cations are 
removed), HEPES (a buffer), and Roche protease inhibitor tablets. We also tested the 
reaction in Hank’s Balanced Salt Solution, an isotonic medium containing glucose, and 
in a low-salt buffer used by the Straight Lab for enzyme activation. We found a dramatic 
improvement in pAG-EcoGII’s methylation activity in our wash buffer when BSA was 
included (Figure 4.4). We speculate that it acts as a molecular crowding agent or 
reduces protein adhesion to tube walls. However, we also saw high methylation levels 
in HBSS and in Straight Lab buffer, which do not contain BSA. We saw no appreciable 
effect of spermidine, tween, Roche tablets, or digitonin on methylation activity. 
 
Immunofluorescence assays 
Satisfied that the purified methyltransferases were highly active in vitro, we next ran 
through various stages of the initial in situ DiMeLo-seq protocol and used microscopy 
and immunofluorescence to qualitatively evaluate cell permeabilization, nuclear 
integrity, primary antibody on-target and background binding, and the effects of using 
a secondary antibody to recruit many methyltransferases to each primary antibody 
(Figure 4.5). Alongside 0.02% digitonin, we decided to test a different detergent, 0.5% 
NP-40, which is frequently used in nuclear prep protocols. For detection of pAG-EcoGII 
binding, I used two different secondary antibodies: a goat anti-mouse IgG antibody 
not expected to bind to the rabbit primary or goat secondary antibodies but is 
expected to be bound by pAG, and a goat anti-V5 antibody expected to bind to the C-
terminal V5 tag on pAG-EcoGII. These ensure that we are visualizing the pAG-EcoGII 
localization and not just the primary or secondary antibody localization. 
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Figure 4.4. In vitro methylation assay confirms enzyme activity 
(A) Initial demonstration of the restriction enzyme blocking assay to test in vitro 
methylation efficiency. Both commercially available EcoGII and our purified pAG-
EcoGII are capable of methylating DNA in vitro. (B) Results from in vitro methylation 
assay in a variety of different buffer conditions, and comparing EcoGII with Hia5. Both 
pAG-EcoGII and Hia5 offer near-perfect protection from DpnII digestion. BSA improves 
efficiency methylation efficiency in our wash buffer.  
 
 
 
The confocal fluorescent images shown in Figure 4.5 reveal that the pAG-EcoGII 
protein is able to diffuse into the permeabilized nucleus. The anti-LMNB1 samples 
show the expected ring patterns consistent with proper primary antibody binding to 
the nuclear lamina, which is not seen for an anti-H3K9ac antibody or an IgG isotype 
control. Both the transmission images and the anti-LMNB1 images would suggest NP-
40 is better than digitonin at preserving nuclear integrity and removing cytoplasmic 
debris. Comparing fluorescence intensities confirms that there is an amplifying effect 
due to the use of secondary antibody. That is, it would appear that more molecules of 
pAG-EcoGII are recruited to the targeted regions when a secondary antibody is used, 
providing greater contrast between the nuclear lamina and the nuclear interior in the 
case of the anti-LMNB1 samples. Given these results, we hypothesized that using NP-
40 detergent and amplifying signal using a secondary antibody should yield the 
highest methylation levels and best signal-to-background ratios when the DNA was 
sequenced. 
 
Protocol optimization using sequencing results 
Because we were able to detect substantially different methylation levels in cLADs and 
ciLADs from in vivo EcoGII-LMNB1 samples that were sequenced at low coverage, 
Annie Maslan and I proceeded to optimize our in situ protocol using an anti-LMNB1 
antibody. Specifically, we were aiming to optimize the proportion of adenines 
methylated in cLADs, as a measure of on-target signal, as well as the ratio of this 
proportion in cLADs and ciLADs, as a measure of signal-to-background. We developed 
a pipeline that allowed us to multiplex up to 24 samples per flowcell, and to go from 
cells harvested on Monday morning to fully analyzed sequencing data by Wednesday 
night.  
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Figure 4.5. Immunofluorescence confirms proper targeting of pAG-EcoGII 
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Given this rapid optimization pipeline, we began to test variations of many components 
of the protocol: input cell numbers, detergents, primary antibody concentrations, the 
use of secondary antibodies, enzyme types, enzyme concentrations, incubation 
temperatures, methylation incubation times, methylation buffers, and methyl donor 
concentrations. We also tested whether cryopreserved or lightly fixed cells could be 
used as input and whether concanavalin-A coated magnetic beads could be used to 
carry out cell washing steps on a magnet instead of by centrifugation. While 
optimization was carried out in HEK293T cells, we validated that it worked in other 
human cell lines as well: Hap1, GM12878, HG002. We also performed IgG isotype 
controls and free-floating MTase controls to measure background methylation and 
DNA accessibility. These results are summarized in Table 4.1 and Figure 4.6. Our final 
optimized protocol is included as Appendix 2. 
 
Our very first in situ tests yielded two orders of magnitude less methylation than the in 
vivo EcoGII-LMNB1 sample, with a signal-to-background ratio between 1.6-3. After 
months of optimization in which we tested over 80 conditions, we now routinely exceed 
in vivo methylation levels (2% of cLAD adenines methylated at a Guppy probability 
cutoff of 0.5) and regularly achieve a signal-to-background ratio in the range of 20-30. 
The most important single condition was the enzyme choice. While EcoGII and Hia5 
appeared to have comparable activity in our in vitro assay, pA-Hia5 (kindly provided by 
Aaron Straight’s lab) greatly outperformed pAG-EcoGII in situ. To confirm that this was 
not due to the choice of pA vs pAG, Owen Smith and Kousik Sundararajan in Aaron 
Straight’s lab cloned and purified pAG-Hia5 and provided it to us for comparison. We 
found that pA-Hia5 and pAG-Hia5 performed almost identically, with a slight 
advantage for pA-Hia5, perhaps owing to its smaller size. We speculate that perhaps 
EcoGII and Hia5 have comparable efficiencies when they are free-floating and 
methylating naked DNA, but Hia5 has an advantage when tethered to a pA-Ab 
complex; for example, this might be the case if EcoGII requires dimerization but Hia5 
does not. We also tested two different linker lengths between pA and Hia5, which were 
produced by the Straight Lab, one short (DDDKEF) and one long 
(DDDKEF(GGGGS)x4), and we did not detect an appreciable difference between them. 
Furthermore, we tried mixing these linker lengths, and mixing EcoGII with Hia5, but 
none of these mixtures improved results. 
 
To our great surprise, some of the worst performing samples were those permeabilized 
in NP-40 detergent (Figure 4.6), despite the improvements seen in our 
immunofluorescence experiments (Figure 4.5). This is especially confusing in light of 
the fact that the detergent is used only for 5 minutes at the start of the protocol, 
followed by hours of incubations and washes without it prior to enzyme activation—the 
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detergent never touches the pA/G-MTase. The IF data confirm that this is not due to a 
failure of permeabilization or a failure of antibody or pA/G binding (Figure 4.5). We 
observe this inhibitory effect of NP-40 on both EcoGII and Hia5, but this effect has not 
been reported by others when NP-40 has been used for CUT&RUN (MNase enzyme) 
or CUT&Tag (Tn5 transposase) (based on author correspondences on the respective 
protocols.io entries for these protocols). We observed a similar effect when we used 
0.1% Triton X-100 (Figure 4.6), but we have not used imaging to formally rule out that 
this could be due to lower permeabilization efficiency rather than methylation 
inhibition (note: 0.1% Tween-20 is present in all of our wash buffers). We can only 
conclude that somehow NP-40 causes a change in the substrate chromatin that is not 
reversed by washing, and which specifically inhibits DNA methylation downstream in 
the protocol. We can only speculate about mechanisms to explain this, and it warrants 
further investigation. 
 
Another surprise was that secondary antibody amplification does not increase on-
target methylation rates or signal-to-background ratios (Figure 4.6), despite IF results 
showing that more pA/G-MTase is recruited to the nuclear lamina when a secondary is 
used (Figure 4.5). This result holds for both pAG-EcoGII and pA-Hia5: for both linker 
lengths individually, for both linkers mixed together, and for a mixture of pAG-EcoGII 
and pA-Hia5 with both linkers. Later we show that secondary antibodies provide no 
improvement for other target proteins as well, nor does using a guinea-pig-derived 
secondary antibody, which is predicted to have higher affinity for protein A and protein 
AG than goat-derived antibodies. We speculate that the secondary antibodies have 
some sort of steric effect resulting in lower methylation rates; the bulky complex of 
secondary antibodies may block access to the DNA or move the pA/G-MTase too far 
away from the DNA to methylate efficiently. Perhaps an even longer linker could help 
to resolve this, but it might result in lower binding-site resolution and more trans 
methylation. Because the secondary antibody incubation and washes add substantial 
time to the protocol, we conclude that it is more efficient to leave them out. 
 
These additional factors improved on-target methylation rates and signal-to-
background ratios (Table 4.1):  

-Straight Lab activation buffer + BSA (>Straight Lab activation buffer without 
BSA > Streets Lab buffer with BSA and low salt > Streets Lab buffer with BSA), 
-increased primary antibody concentration (1:50>1:100>1:500),  
-increased pA-Hia5 concentration (527 nM = 200 nM > 50 nM), 
-room temperature pA/G-MTase incubation (better than 4 °C), 
-increased SAM concentration during methylation (800 uM > 500 uM). 
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These additional factors did not improve performance: 
 -longer or shorter methylation incubation time (90, 60, 15 mins vs standard 30), 
 -methylation incubation at 30C instead of 37C (while this did help for pAG-

EcoGII, it did not help for pA-Hia5), 
 -replenishment of SAM during methylation, 
 -use of higher salt concentration (300 nM) in wash buffer (which has been 

reported to help in CUT&Tag protocols), 
 -pre-treatment of DNA with RNAse to potentially increase DNA accessibility. 
 
These conditions did not appreciably harm performance: 
 -using cells lightly fixed in 0.1% PFA for 2 mins, 
 -using freshly thawed cells that were cryopreserved in DMSO-containing 

freezing medium and stored in liquid nitrogen (though anecdotally we 
observed shorter read lengths for these samples), 

 -using concanavalin-A coated magnetic beads for cell processing (though this 
may limit capacity per tube and makes IF quality controls difficult), 

 -starting with 5 million cells vs 1 million cells per tube (we observed some loss 
of performance with 10 million cells though). 
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Table 4.1. Summary of all DiMeLo-seq sequencing runs 

 

index & name seq. date
bar
co
de

cell line deterge
nt Ab

Ab 
dilut
ion 
fact
or

misc pA/G linker 
len. MTase [pA/G-

MTase]

2Ab 
time 

& 
temp

pA/G 
time 

& 
temp

act. 
buffer [SAM] act. 

time
act. 

Temp
read 

number
total bases 
sequenced

mean 
read 
len

cLAD:ci
LAD mA 

ratio

cLAD  
mA/A

all reads 
mA/A

1-in vivo 
dam-lmnb1 
full

20200320 1 HEK293T - - -
in vivo Dam-
LMNB1 full 
ind, g-tube + 
SRE XS

- - Dam - - - - - - 37C 53,288 418,298,496 7,850 2.628 2.49E-05 1.51E-05

2-in vivo 
ecogii-lmnb1 
full

20200320 2 HEK293T - - -

in vivo 
EcoGII-
LMNB1 full 
ind, g-
tube+SRE XS

- - EcoGII - - - - - - 37C 61,294 445,922,529 7,275 10.464 3.97E-03 1.43E-03

3-in vivo 
ecogii full 20201117 3 HEK293T - - -

in vivo EcoGII 
full ind, SRE 
XL

- - EcoGII - - - - - - 37C 22,706 499,613,882 22,004 0.682 4.28E-03 5.30E-03

4-in vivo 
ecogii 10 ind 20201117 4 HEK293T - - -

in vivo EcoGII 
10% ind, SRE 
XL

- - EcoGII - - - - - - 37C 45,074 1,059,489,578 23,506 0.673 4.13E-04 5.18E-04

5-in vivo 
ecogii-lmnb1 
10 ind

20201117 5 HEK293T - - -
in vivo 
EcoGII-
LMNB1 10% 
ind, SRE XL

- - EcoGII - - - - - - 37C 23,326 626,118,574 26,842 12.398 3.96E-04 1.23E-04

6-pag-ecogii-
lmnb1 20201117 6 HEK293T digitonin 

0.02% LMNB1 500 SRE XL pAG 29 aa EcoGII 50 nM - 1 h, 
4C Streets 500 

uM
30 
min 37C 86,481 1,976,058,348 22,850 1.668 4.46E-05 3.37E-05

7-pag-ecogii-
igg 20201117 7 HEK293T digitonin 

0.02% IgG 500 SRE XL pAG 29 aa EcoGII 50 nM - 1 h, 
4C Streets 500 

uM
30 
min 37C 39,167 872,653,096 22,280 1.113 2.22E-05 2.46E-05

8-
unmethylated 20201117 8 HEK293T - - - unmethylated 

DNA, SRE XL - - - - - - - - - 37C 11,686 302,257,947 25,865 2.187 3.51E-05 2.51E-05

9-pag-ecogii-
lmnb1-2ab 20201119 9 HEK293T digitonin 

0.02% LMNB1 500 SRE XL pAG 29 aa EcoGII 150 nM 1 h, 
4C

1 h, 
4C Streets 500 

uM
30 
min 37C 38,539 847,065,308 21,979 2.929 1.57E-04 1.00E-04

10-pag-
ecogii-
lmnb1-1ab

20201119 10 HEK293T digitonin 
0.02% LMNB1 500 SRE XL pAG 29 aa EcoGII 150 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 36,921 856,905,359 23,209 2.499 1.37E-04 8.96E-05

11-pag-
ecogii-
h3k9ac-2ab

20201119 11 HEK293T digitonin 
0.02% H3K9ac 100 SRE XL pAG 29 aa EcoGII 150 nM 1 h, 

4C
1 h, 
4C Streets 500 

uM
30 
min 37C 44,855 1,100,797,612 24,541 0.621 8.84E-05 1.11E-04

12-pag-
ecogii-
h3k9ac-1ab

20201119 12 HEK293T digitonin 
0.02% H3K9ac 100 SRE XL pAG 29 aa EcoGII 150 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 42,793 992,142,666 23,185 0.783 5.63E-05 6.78E-05

13-pag-
ecogii-
igg-1ab

20201119 13 HEK293T digitonin 
0.02% IgG 500 SRE XL pAG 29 aa EcoGII 150 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 66,878 1,500,527,829 22,437 0.982 4.86E-05 4.68E-05

14-pag-
ecogii-
lmnb1-2ab-
np40

20201119 14 HEK293T NP40 
0.5% LMNB1 500 SRE XL pAG 29 aa EcoGII 150 nM 1 h, 

4C
1 h, 
4C Streets 500 

uM
30 
min 37C 60,602 1,490,024,882 24,587 1.208 1.18E-04 1.04E-04

15-pag-
ecogii-
lmnb1-1ab-
np40

20201119 15 HEK293T NP40 
0.5% LMNB1 500 SRE XL pAG 29 aa EcoGII 150 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 38,772 943,586,111 24,337 1.351 7.23E-05 5.95E-05

16-pag-
ecogii-
lmnb1-1ab-7.
3ug-RT

20201207 16 HEK293T digitonin 
0.02% LMNB1 500 pAG 29 aa EcoGII 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 162,252 1,752,177,765 10,799 1.377 5.32E-05 4.83E-05

17-pag-
ecogii-
lmnb1-2ab-7.
3ug-RT

20201207 17 HEK293T digitonin 
0.02% LMNB1 500 pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 198,264 2,102,108,611 10,603 3.034 9.52E-05 6.15E-05

18-pag-
ecogii-
lmnb1-1ab-2.
2ug-RT

20201207 18 HEK293T digitonin 
0.02% LMNB1 500 pAG 29 aa EcoGII 150 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 106,892 1,227,114,851 11,480 2.046 2.99E-05 2.36E-05

19-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-RT

20201207 19 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 238,437 2,415,676,861 10,131 4.795 1.74E-04 9.03E-05

20-pag-
ecogii-
lmnb1-2ab-1:
100-7.3ug-RT

20201211 20 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
4C Streets 500 

uM
30 
min 37C 121,419 1,261,478,986 10,389 4.729 4.01E-04 2.06E-04

21-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-4C

20201211 21 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 123,908 1,276,684,561 10,303 3.982 2.99E-04 1.65E-04

22-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-4C
-noSAM

20201211 22 HEK293T digitonin 
0.02% LMNB1 100 no SAM pAG 29 aa EcoGII 527 nM - 1 h, 

4C Streets 0 uM 30 
min 37C 144,251 1,297,558,669 8,995 1.216 3.83E-05 3.69E-05

23-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-4C
-60min

20201211 23 HEK293T digitonin 
0.02% LMNB1 100 60 min act pAG 29 aa EcoGII 527 nM - 1 h, 

4C Streets 500 
uM

60 
min 37C 112,198 1,162,823,359 10,364 3.728 3.23E-04 1.87E-04

24-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-4C
-60min-
replenishSAM

20201211 24 HEK293T digitonin 
0.02% LMNB1 100 SAM 

replenished pAG 29 aa EcoGII 527 nM - 1 h, 
4C

Streets, 
SAM 
replenish
ed

500 
uM

60 
min 37C 119,153 1,207,239,004 10,132 3.049 3.13E-04 1.89E-04

25-pag-
ecogii-
lmnb1-1ab-1:
100-7.3ug-4C
-90min-
replenishSAM

20201211 1 HEK293T digitonin 
0.02% LMNB1 100 SAM 

replenished pAG 29 aa EcoGII 527 nM - 1 h, 
4C

Streets, 
SAM 
replenish
ed

500 
uM

90 
min 37C 96,385 1,076,704,141 11,171 2.650 2.87E-04 1.73E-04

26-pag-
ecogii-
igg-2ab

20201211 2 HEK293T digitonin 
0.02% IgG 100 pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
4C Streets 500 

uM
30 
min 37C 165,186 1,608,748,957 9,739 0.818 6.05E-05 8.06E-05

27-pag-
ecogii-
igg-1ab

20201211 3 HEK293T digitonin 
0.02% IgG 100 pAG 29 aa EcoGII 527 nM - 1 h, 

4C Streets 500 
uM

30 
min 37C 95,567 982,777,929 10,284 0.835 7.71E-05 9.15E-05

28-baseline, 
rep1

20201223 
+ 
20201228

4 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 80,135 839,079,448 10,471 3.564 4.22E-04 2.36E-04

29-15 min act
20201223 
+ 
20201228

5 HEK293T digitonin 
0.02% LMNB1 100 15 min act pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
15 
min 37C 101,911 1,067,611,582 10,476 3.872 3.25E-04 1.74E-04

30-30C act
20201223 
+ 
20201228

6 HEK293T digitonin 
0.02% LMNB1 100 30C act pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 30C 68,779 651,361,202 9,470 7.536 4.95E-04 2.13E-04

31-baseline, 
rep2

20201223 
+ 
20201228

7 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 83,487 902,381,502 10,809 4.854 4.40E-04 2.35E-04

32-pA-Hia5-
short-2ab 20201223 8 HEK293T digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 527 nM 1 h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 37C 26,351 227,185,814 8,622 5.641 7.04E-05 2.87E-05

1
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33-pA-Hia5-
long-2ab 20201223 9 HEK293T digitonin 

0.02% LMNB1 100 pA 26 aa Hia5 527 nM 1 h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 37C 19,112 169,551,133 8,871 7.415 8.39E-05 4.49E-05

34-pA-Hia5-
both-2ab 20201223 10 HEK293T digitonin 

0.02% LMNB1 100 pA mix Hia5 527 nM 1 h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 37C 15,778 151,798,963 9,621 9.844 7.88E-05 3.82E-05

35-pAG-
EcoGII-pA-
both-2ab

20201223 11 HEK293T digitonin 
0.02% LMNB1 100

pAG-
EcoGII+pA-
Hia5-both

mix mix EcoGII
+Hia5 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 15,975 149,309,499 9,346 11.823 2.65E-04 1.45E-04

36-pAG-
EcoGII-NP40

20201223 
+ 
20201228

12 HEK293T NP40 
0.1% LMNB1 100 NP40 pAG 29 aa EcoGII 527 nM 1h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 86,033 860,416,335 10,001 2.479 2.50E-04 1.65E-04

37-pAG-
EcoGII-
freeFloating

20201223 
+ 
20201228

13 HEK293T digitonin 
0.02% No Ab - free floating 

pAG-EcoGII pAG 29 aa EcoGII 527 nM 1h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 37C 102,650 983,478,388 9,581 0.572 2.80E-04 4.49E-04

38-baseline
20201223 
+ 
20201228

14 HEK293T digitonin 
0.02% LMNB1 100 baseline pAG 29 aa EcoGII 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 101,662 993,731,709 9,775 2.513 2.97E-04 1.98E-04

39-pA-Hia5-
short dig 
Streets

20201223 
+ 
20201228

15 HEK293T digitonin 
0.02% LMNB1 100 pA 7 aa Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 106,830 985,205,512 9,222 12.427 7.89E-04 3.26E-04

40-pA-Hia5-
long dig 
Streets

20201223 
+ 
20201228

16 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 74,873 793,137,043 10,593 11.724 1.06E-03 4.23E-04

41-pA-Hia5-
both dig 
Streets

20201223 
+ 
20201228

17 HEK293T digitonin 
0.02% LMNB1 100 pA mix Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 93,269 988,096,097 10,594 17.681 8.36E-04 3.43E-04

42-pAG-
EcoGII-pA-
both dig 
Streets

20201223 
+ 
20201228

18 HEK293T digitonin 
0.02% LMNB1 100

pAG-
EcoGII+pA-
Hia5-both

mix mix EcoGII
+Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 92,725 945,637,416 10,198 6.085 7.71E-04 3.27E-04

43-pag-
ecogii-
lightFixation

20201228 19 HEK293T digitonin 
0.02% LMNB1 100 light fixation pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 91,520 686,940,638 7,506 5.370 4.31E-04 2.16E-04

44-pag-
ecogii-
lightFixation-
noAb

20201228 20 HEK293T digitonin 
0.02% No Ab - light fixation pAG 29 aa EcoGII 527 nM 1 h, 

RT
1 h, 
RT Streets 500 

uM
30 
min 37C 118,802 260,574,348 2,193 0.573 8.96E-05 1.38E-04

45-pA-Hia5 
long triton 
Streets

20201230 21 HEK293T Triton 
0.1% LMNB1 100 triton pA 26 aa Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 100,177 1,126,513,813 11,245 4.664 9.10E-05 4.20E-05

46-pA-Hia5 
long triton 
Straight

20201230 22 HEK293T Triton 
0.1% LMNB1 100 triton pA 26 aa Hia5 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 37C 114,462 1,105,844,974 9,661 21.179 3.68E-04 1.36E-04

47-pA-Hia5 
long np40 20201230 23 HEK293T NP40 

0.1% LMNB1 100 NP40 pA 26 aa Hia5 527 nM - 1 h, 
RT Streets 500 

uM
30 
min 37C 105,547 934,810,760 8,857 3.679 6.12E-05 2.82E-05

48-pAG-
EcoGII NP40 20201230 24 HEK293T NP40 

0.1% LMNB1 100 NP40 pAG 29 aa EcoGII 527 nM - 1 h, 
RT Streets 500 

uM
30 
min 37C 84,310 868,314,441 10,299 4.312 1.11E-04 5.22E-05

49-baseline 20201230 1 HEK293T digitonin 
0.02% LMNB1 100 baseline pAG 29 aa EcoGII 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 91,978 1,189,823,234 12,936 3.411 1.49E-04 7.60E-05

50-pA-Hia5 
long dig 
Streets

20201230 2 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 37C 105,110 1,264,716,882 12,032 24.212 5.33E-04 1.78E-04

51-pA-Hia5 
long dig 
Straight

20201230 3 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 37C 103,978 1,311,352,305 12,612 38.048 2.06E-03 6.93E-04

52-pA-Hia5 
long 
Straight+BSA 
37C

20210119 4 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT
Straight 
+ BSA

500 
uM

30 
min 37C 90,785 752,583,312 8,290 26.474 4.08E-03 1.47E-03

53-pAG-Hia5 
Straight+BSA 
37C

20210119 5 HEK293T digitonin 
0.02% LMNB1 100 pAG 7 aa Hia5 527 nM - 1 h, 

RT
Straight 
+ BSA

500 
uM

30 
min 37C 48,122 459,680,632 9,552 29.831 2.23E-03 8.67E-04

54-pAG-
EcoGII 
Straight+BSA 
37C

20210119 6 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

RT
Straight 
+ BSA

500 
uM

30 
min 37C 81,695 727,342,635 8,903 7.484 1.21E-03 5.25E-04

55-pA-Hia5 
long Straight 
37C

20210119 7 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 37C 65,117 583,081,677 8,954 23.486 3.05E-03 1.20E-03

56-pAG-Hia5 
Straight 37C 20210119 8 HEK293T digitonin 

0.02% LMNB1 100 pAG 7 aa Hia5 527 nM - 1 h, 
RT Straight 500 

uM
30 
min 37C 56,317 540,388,209 9,595 29.747 2.08E-03 8.06E-04

57-pAG-
EcoGII 
Straight 37C

20210119 9 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 37C 47,684 449,643,915 9,430 8.223 1.15E-03 4.77E-04

58-pA-Hia5 
long Straight 
30C

20210119 10 HEK293T digitonin 
0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 30C 58,489 523,464,949 8,950 29.977 2.24E-03 8.07E-04

59-pAG-Hia5 
Straight 30C 20210119 11 HEK293T digitonin 

0.02% LMNB1 100 pAG 7 aa Hia5 527 nM - 1 h, 
RT Straight 500 

uM
30 
min 30C 57,609 511,675,484 8,882 17.415 1.26E-03 4.72E-04

60-pAG-
EcoGII 
Straight 30C

20210119 12 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 30C 61,562 551,698,966 8,962 4.400 5.33E-04 2.44E-04

61-pAG-
EcoGII 
Streets 30C

20210119 13 HEK293T digitonin 
0.02% LMNB1 100 pAG 29 aa EcoGII 527 nM - 1 h, 

RT Streets 500 
uM

30 
min 30C 71,900 628,811,974 8,746 8.180 3.02E-04 1.31E-04

62-pA-Hia5 
long 2ab 
Straight 37C

20210119 14 HEK293T digitonin 
0.02% LMNB1 100 secondary 

(GP) pA 26 aa Hia5 527 nM 1h, 
RT

1 h, 
RT Straight 500 

uM
30 
min 37C 99,602 843,096,447 8,465 21.368 2.33E-03 8.98E-04

63-pA-Hia5 
long 2ab 
Streets low 
salt 37C

20210119 15 HEK293T digitonin 
0.02% LMNB1 100 secondary 

(GP), low salt pA 26 aa Hia5 527 nM 1h, 
RT

1 h, 
RT

Streets 
Low Salt

500 
uM

30 
min 37C 54,677 484,736,060 8,865 8.614 4.85E-04 2.04E-04

64-pAG-Hia5 
2ab Straight 
37C

20210119 16 HEK293T digitonin 
0.02% LMNB1 100 secondary 

(GP) pAG 7 aa Hia5 527 nM 1h, 
RT

1 h, 
RT Straight 500 

uM
30 
min 37C 63,400 571,575,224 9,015 13.879 1.43E-03 5.34E-04

65-pAG-
EcoGII 2ab 
Streets 30C

20210119 17 HEK293T digitonin 
0.02% LMNB1 100 secondary 

(GP) pAG 29 aa EcoGII 527 nM 1h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 30C 60,290 517,001,320 8,575 7.268 3.43E-04 1.68E-04

66-pA-Hia5 
S+L Straight 
37C

20210119 18 HEK293T digitonin 
0.02% LMNB1 100 pA-Hia5 

short+long pA mix Hia5 527 nM - 1 h, 
RT Straight 500 

uM
30 
min 37C 47,923 468,996,420 9,786 21.990 3.19E-03 1.31E-03

67-pA-Hia5 
200 nM 2ab 
Straight 37C

20210119 19 HEK293T digitonin 
0.02% LMNB1 100

pA-Hia5 200 
nM, 
secondary 
(GP)

pA 26 aa Hia5 200 nM 1h, 
RT

1 h, 
RT Straight 500 

uM
30 
min 37C 52,514 513,948,158 9,787 19.589 2.82E-03 1.06E-03

68-pA-Hia5 
50 nM 2ab 
Straight 37C

20210119 20 HEK293T digitonin 
0.02% LMNB1 100

pA-Hia5 50 
nM, 
secondary 
(GP)

pA 26 aa Hia5 50 nM 1h, 
RT

1 h, 
RT Straight 500 

uM
30 
min 37C 48,723 441,526,404 9,062 20.303 2.55E-03 9.19E-04

69-click conj 20210119 21 HEK293T digitonin 
0.02% LMNB1 100

click 
conjugation 
attempt

- - Hia5 527 nM 1 h, 
RT Streets 500 

uM
30 
min 37C 53,990 517,552,447 9,586 1.943 6.80E-05 5.19E-05

index & name seq. date
bar
co
de

cell line deterge
nt Ab

Ab 
dilut
ion 
fact
or

misc pA/G linker 
len. MTase [pA/G-

MTase]

2Ab 
time 

& 
temp

pA/G 
time 

& 
temp

act. 
buffer [SAM] act. 

time
act. 

Temp
read 

number
total bases 
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read 
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cLAD:ci
LAD mA 
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cLAD  
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all reads 
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70-pA-Hia5 
Straight 37C 
frozen

20210119 22 HEK293T digitonin 
0.02% LMNB1 100 frozen pA 26 aa Hia5 527 nM - 1 h, 

RT Straight 500 
uM

30 
min 37C 71,276 488,718,798 6,857 28.059 2.98E-03 1.09E-03

71-pAG-
EcoGII goat 
2ab Streets 
30C

20210119 23 HEK293T digitonin 
0.02% LMNB1 100 secondary 

(Goat) pAG 29 aa EcoGII 527 nM 1h, 
RT

1 h, 
RT Streets 500 

uM
30 
min 30C 61,444 554,745,469 9,028 8.711 5.32E-04 2.22E-04

72-LMNB1 
HEK 20210201 1 HEK293T digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 45,362 345,941,926 7,626 7.676 2.36E-03 1.09E-03

73-LMNB1 
HEK 20210201 2 HEK293T digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 40,187 353,173,477 8,788 6.865 2.38E-03 1.06E-03

74-LMNB1 
1:50 HEK 20210201 3 HEK293T digitonin 

0.02% LMNB1 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 33,387 278,128,346 8,330 9.621 3.97E-03 1.73E-03

75-H3K9ac 
1:100 HEK 20210201 4 HEK293T digitonin 

0.02% H3K9ac 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 40,594 335,773,580 8,272 1.615 5.57E-04 4.51E-04

76-H3K9ac 
1:50 HEK 20210201 5 HEK293T digitonin 

0.02% H3K9ac 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 33,494 295,660,205 8,827 1.097 6.40E-04 5.43E-04

77-CENP-A 
HEK 20210201 6 HEK293T digitonin 

0.02% CENP-A 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 45,117 373,778,336 8,285 1.925 3.94E-04 3.57E-04

78-LMNB1 
GM12878 20210201 7 GM12878 digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 55,380 462,838,466 8,358 8.386 2.75E-03 1.24E-03

79-LMNB1 
HG002 20210201 8 HG002 digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 59,508 439,509,594 7,386 9.339 3.13E-03 1.30E-03

80-LMNB1 
Hap1 20210201 9 Hap1 digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 59,648 424,749,575 7,121 7.473 3.43E-03 1.78E-03

81-IgG 
GM12878 20210201 10 GM12878 digitonin 

0.02% IgG 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 35,649 304,927,237 8,554 1.773 4.57E-04 3.72E-04

82-IgG 
HG002 20210201 11 HG002 digitonin 

0.02% IgG 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 58,023 418,761,436 7,217 1.448 4.44E-04 3.67E-04

83-IgG Hap1 20210201 12 Hap1 digitonin 
0.02% IgG 100 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 73,437 453,120,139 6,170 1.865 4.77E-04 3.78E-04

84-IgG HEK 20210201 13 HEK293T digitonin 
0.02% IgG 100 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 50,184 395,339,186 7,878 1.563 4.15E-04 3.44E-04

85-LMNB1 
HEK no SAM 20210201 14 HEK293T digitonin 

0.02% LMNB1 100 no SAM pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA 0 uM 30 

min 37C 37,978 301,486,227 7,938 2.585 5.13E-04 3.57E-04

86-LMNB1 
HEK fixation 20210201 15 HEK293T digitonin 

0.02% LMNB1 100 light fixation pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 52,734 315,838,720 5,989 9.736 3.58E-03 1.48E-03

87-free Hia5 20210201 16 HEK293T digitonin 
0.02% - - - free floating 

Hia5 - - Hia5 200 nM - - Straight+
BSA

500 
uM

30 
min 37C 49,149 363,924,351 7,405 1.102 7.55E-03 7.47E-03

88-LMNB1 
Hap1 RT 20210201 17 Hap1 digitonin 

0.02% LMNB1 100 primary at RT pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 54,120 354,171,388 6,544 8.120 3.29E-03 1.72E-03

89-CENP-A 
Hap1 20210201 18 Hap1 digitonin 

0.02% CENP-A 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 55,095 385,496,401 6,997 1.846 4.14E-04 3.56E-04

90-LMNB1 
HEK conA 20210201 19 HEK293T digitonin 

0.02% LMNB1 100 conA beads pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 61,614 494,542,424 8,026 8.561 3.29E-03 1.41E-03

91-LMNB1 
GM12878 
conA

20210201 20 GM12878 digitonin 
0.02% LMNB1 100 conA beads pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 64,420 461,182,886 7,159 5.146 3.08E-03 1.52E-03

92-LMNB1 
Hap1 conA 20210201 24 Hap1 digitonin 

0.02% LMNB1 100 conA beads pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 54,354 404,350,726 7,439 4.455 3.01E-03 1.65E-03

93-LMNB1 
HEK bad 20210210 1 HEK293T digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 45,503 360,723,378 7,927 10.651 1.84E-03 7.29E-04

94-LMNB1 
HEK good 20210210 4 HEK293T digitonin 

0.02% LMNB1 100 pA 26 aa Hia5 527 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 62,799 407,120,248 6,483 16.014 3.81E-03 1.55E-03

95-LMNB1 
HEK pA S 20210210 5 HEK293T digitonin 

0.02% LMNB1 100 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 33,562 297,569,878 8,866 18.086 3.28E-03 1.23E-03

96-LMNB1 
HEK pA L 20210210 6 HEK293T digitonin 

0.02% LMNB1 100 pA 26 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 27,725 284,031,573 10,245 19.494 3.78E-03 1.42E-03

97-LMNB1 
HEK pAG S 20210210 7 HEK293T digitonin 

0.02% LMNB1 100 pAG 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 31,665 307,111,011 9,699 11.343 1.75E-03 6.91E-04

98-LMNB1 
HEK pAG S 
1:50

20210210 8 HEK293T digitonin 
0.02% LMNB1 50 pAG 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 40,276 349,442,835 8,676 17.398 1.94E-03 7.89E-04

99-H3K9ac 
HEK pAG S

20210210
+2021021
2

9 HEK293T digitonin 
0.02% H3K9ac 100 pAG 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 30,374 284,046,721 9,352 1.283 3.86E-04 3.63E-04

100-cenB 
HEK pAG S

20210210
+2021021
2

10 HEK293T digitonin 
0.02% CENP-B 100 pAG 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 29,082 273,908,986 9,419 1.603 3.88E-04 3.48E-04

101-cenC 
HEK pAG S

20210210
+2021021
2

11 HEK293T digitonin 
0.02% CENP-C 100 pAG 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 29,845 307,968,146 10,319 1.541 4.22E-04 3.78E-04

102-
centromere 
enrichment

20210210 12 HEK293T digitonin 
0.02% - - cen 

enrichment - - - - - - - - - - 307,381 1,098,607,718 3,574 1.819 1.57E-04 1.31E-04

103-failed 
(run 
overloaded, 
rerun)

20210304 21 HEK293T digitonin 
0.02% - - free floating 

Hia5 - - Hia5 200 nM - - Straight+
BSA

500 
uM

30 
min 37C 87,050 355,217,390 4,081 1.099 1.16E-02 1.10E-02

104-failed 
(run 
overloaded, 
rerun)

20210304 22 HEK293T digitonin 
0.02% - - free floating 

Hia5 RNAse - - Hia5 200 nM - - Straight+
BSA

500 
uM

30 
min 37C 85,984 395,520,007 4,600 1.115 1.18E-02 1.15E-02

105-failed 
(run 
overloaded, 
rerun)

20210304 23 HEK293T digitonin 
0.02% - - free floating 

Hia5 SDS - - Hia5 200 nM - - Straight+
BSA

500 
uM

30 
min 37C 100,394 446,330,860 4,446 1.168 8.99E-03 8.33E-03

106-failed 
(run 
overloaded, 
rerun)

20210304 24 HEK293T digitonin 
0.02% CENP-A 500 baseline pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 65,318 350,707,424 5,369 1.787 1.26E-03 1.03E-03

107-failed 
(run 
overloaded, 
rerun)

20210304 2 HEK293T digitonin 
0.02% CENP-A 500 RNAse pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 121,755 632,710,163 5,197 1.712 1.32E-03 1.07E-03

108-failed 
(run 
overloaded, 
rerun)

20210304 3 HEK293T digitonin 
0.02% CENP-A 500 SDS pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 82,013 391,736,446 4,777 1.915 1.21E-03 1.01E-03

109-failed 
(run 
overloaded, 
rerun)

20210304 13 HEK293T digitonin 
0.02% CENP-A 500 salt wash pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 110,309 626,710,796 5,681 1.576 1.12E-03 1.00E-03

110-failed 
(run 
overloaded, 
rerun)

20210304 14 HEK293T digitonin 
0.02% LMNB1 100 baseline pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 88,855 450,221,395 5,067 5.291 5.27E-03 2.66E-03

111-failed 
(run 
overloaded, 
rerun)

20210304 15 HEK293T digitonin 
0.02% LMNB1 100 RNAse pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 147,418 666,882,572 4,524 4.093 3.90E-03 2.08E-03
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Table 4.1. Summary of all DiMeLo-seq sequencing runs [continued] 

 
 
 

112-failed 
(run 
overloaded, 
rerun)

20210304 16 HEK293T digitonin 
0.02% LMNB1 100 SDS pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 108,548 494,216,880 4,553 2.417 2.13E-03 1.46E-03

113-failed 
(run 
overloaded, 
rerun)

20210304 17 HEK293T digitonin 
0.02% LMNB1 100 salt wash pA 26 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 110,583 603,642,079 5,459 5.751 5.68E-03 2.96E-03

114-failed 
(run 
overloaded, 
rerun)

20210304 18 GM12878 - - -
in vivo 
EcoGII-
CenpC

- - EcoGII - - - - - - - 33,052 123,561,248 3,738 1.460 1.25E-03 9.95E-04

115-failed 
(run 
overloaded, 
rerun)

20210304 19 GM12878 - - - in vivo EcoGII - - EcoGII - - - - - - - 97,583 261,242,129 2,677 1.375 1.20E-03 1.10E-03

116-Hia5 only 20210309 21 HEK293T digitonin 
0.02% - - free floating 

Hia5 - - Hia5 200 nM - - Straight+
BSA

500 
uM

30 
min 37C 224,739 1,954,375,136 8,696 1.168 6.34E-03 6.06E-03

117-Hia5 only 
RNAse 20210309 22 HEK293T digitonin 

0.02% - - free floating 
Hia5 RNAse - - Hia5 200 nM - - Straight+

BSA
500 
uM

30 
min 37C 192,453 1,755,187,759 9,120 1.228 6.96E-03 6.45E-03

118-pA 
baseline 
CENP-A

20210309 24 HEK293T digitonin 
0.02% CENP-A 500 baseline pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 173,211 1,736,978,663 10,028 2.003 8.43E-05 6.12E-05

119-pA 
RNAse 
CENP-A

20210309 2 HEK293T digitonin 
0.02% CENP-A 500 RNAse pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 253,416 2,446,404,601 9,654 1.812 7.47E-05 6.09E-05

120-pA salt 
CENP-A 20210309 13 HEK293T digitonin 

0.02% CENP-A 500 salt wash pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 269,783 2,558,490,435 9,484 1.903 7.32E-05 6.17E-05

121-pA 
baseline 
LMNB1

20210309 14 HEK293T digitonin 
0.02% LMNB1 100 baseline pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 202,447 1,902,202,299 9,396 19.705 2.52E-03 9.67E-04

122-pA 
RNAse 
LMNB1

20210309 15 HEK293T digitonin 
0.02% LMNB1 100 RNAse pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 376,220 2,775,298,200 7,377 13.630 1.64E-03 6.31E-04

123-pA salt 
LMNB1 20210309 17 HEK293T digitonin 

0.02% LMNB1 100 salt wash pA 26 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 226,875 1,978,617,616 8,721 17.773 2.73E-03 1.13E-03

124-in vivo 
EcoGII-
CenpC 
GM12878

20210309 18 GM12878 - - -
in vivo 
EcoGII-
CenpC

- - EcoGII - - - - - - - 84,905 705,554,640 8,310 1.623 8.83E-05 6.61E-05

125-in vivo 
EcoGII only 
GM12878

20210309 19 GM12878 - - - in vivo EcoGII - - EcoGII - - - - - - - 186,218 1,222,738,245 6,566 1.071 7.38E-05 7.58E-05

126-
LMNB1-500u
MSAM

20210323 20 HEK293T digitonin 
0.02% LMNB1 100 500uM SAM pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 129,920 1,273,519,587 9,802 24.331 2.85E-03 1.04E-03

127-
LMNB1-800u
MSAM

20210323 21 HEK293T digitonin 
0.02% LMNB1 100 800uM SAM pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

800 
uM

30 
min 37C 138,407 1,318,014,140 9,523 34.315 2.90E-03 1.05E-03

128-H3K27ac 
1:50 20210323 22 GM12878 digitonin 

0.02% H3K27ac 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 130,590 1,367,470,162 10,471 0.711 7.88E-05 8.78E-05

129-H3K9ac 
1:50 20210323 23 GM12878 digitonin 

0.02% H3K9ac 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 202,096 1,926,148,906 9,531 1.550 2.07E-04 1.65E-04

130-H3K9ac 
1:500 20210323 24 GM12878 digitonin 

0.02% H3K9ac 500 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 135,495 1,418,334,592 10,468 1.536 3.22E-05 2.99E-05

131-
H3K9me3 
1:50

20210323 1 GM12878 digitonin 
0.02% H3K9me3 50 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 187,378 1,894,695,703 10,112 1.967 1.65E-03 1.50E-03

132-
H3K9me3 
1:500

20210323 2 GM12878 digitonin 
0.02% H3K9me3 500 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

500 
uM

30 
min 37C 197,488 1,908,431,833 9,664 1.808 1.18E-04 1.03E-04

133-CTCF 
1:50 20210323 3 GM12878 digitonin 

0.02% CTCF 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 226,621 2,037,821,065 8,992 0.476 1.12E-04 1.74E-04

134-CTCF 
1:500 20210323 4 GM12878 digitonin 

0.02% CTCF 500 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 205,080 2,000,935,224 9,757 0.591 7.02E-05 9.67E-05

135-nucleolin 
1:50 20210323 5 GM12878 digitonin 

0.02% nucleolin 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 201,905 1,911,021,346 9,465 1.449 4.35E-05 3.48E-05

136-nucleolin 
1:500 20210323 6 GM12878 digitonin 

0.02% nucleolin 500 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

500 
uM

30 
min 37C 176,531 1,826,421,927 10,346 1.999 3.95E-05 2.82E-05

137-LMNB1 
1:50 2M 20210405 7 HEK293T digitonin 

0.02% LMNB1 50 2M cells pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 105,855 977,322,733 9,233 15.731 3.50E-03 1.41E-03

138-LMNB1 
1:50 5M 20210405 8 HEK293T digitonin 

0.02% LMNB1 50 5M cells pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 80,057 694,123,573 8,670 15.069 3.97E-03 1.54E-03

139-LMNB1 
1:50 10M 20210405 9 HEK293T digitonin 

0.02% LMNB1 50 10M cells pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 101,673 861,972,532 8,478 13.248 2.40E-03 1.03E-03

140-CTCF 
1:50 20210405 10 GM12878 digitonin 

0.02% CTCF 50 pA 7 aa Hia5 200 nM - 1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 139,694 1,170,977,786 8,382 0.603 2.60E-04 3.49E-04

141-CTCF 
1:50 
secondary

20210405 11 GM12878 digitonin 
0.02% CTCF 50 secondary 

(GP) pA 7 aa Hia5 200 nM 1h 
RT

1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 188,343 1,616,286,164 8,582 0.657 2.41E-04 3.04E-04

142-
H3K27me3 
1:50

20210405 12 GM12878 digitonin 
0.02% H3K27me3 50 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

800 
uM

30 
min 37C 133,870 1,132,136,243 8,457 0.758 3.01E-04 4.87E-04

143-
H3K27me3 
1:50 
secondary

20210405 13 GM12878 digitonin 
0.02% H3K27me3 50 secondary 

(GP) pA 7 aa Hia5 200 nM 1h 
RT

1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 149,383 1,291,383,161 8,645 0.751 3.08E-04 4.47E-04

144-
H3K9me3 
1:50

20210405 14 GM12878 digitonin 
0.02% H3K9me3 50 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

800 
uM

30 
min 37C 110,815 971,889,773 8,770 1.897 7.65E-04 7.32E-04

145-
H3K9me3 
1:50 
secondary

20210405 15 GM12878 digitonin 
0.02% H3K9me3 50 secondary 

(GP) pA 7 aa Hia5 200 nM 1h 
RT

1 h, 
RT

Straight+
BSA

800 
uM

30 
min 37C 176,896 1,409,688,249 7,969 0.961 4.36E-04 5.05E-04

146-IgG 1:50 20210405 16 GM12878 digitonin 
0.02% IgG 50 pA 7 aa Hia5 200 nM - 1 h, 

RT
Straight+
BSA

800 
uM

30 
min 37C 169,811 1,344,179,912 7,916 1.473 1.50E-04 1.16E-04

147-Hia5 only 20210405 17 GM12878 digitonin 
0.02% - - free floating 

Hia5 - - Hia5 - - - Straight+
BSA

800 
uM

30 
min 37C 94,126 831,589,618 8,835 1.123 7.98E-03 7.66E-03
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Figure 4.6. Key conditions in DiMeLo-seq protocol optimizations 
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Legend for Figure 4.6. Key conditions in DiMeLo-seq protocol optimizations 
Barplots comparing on-target (cLAD) methylation efficiency and signal-to-background 
ratios for different DiMeLo-seq protocol conditions targeting LMNB1, with colors 
highlighting key parameters for comparison. Across the supermajority of the over 80 
conditions tested, Hia5 outperforms EcoGII. In plots where conditions are labeled 
(arbitrarily with ‘A’, ‘B’, ’C’, etc.), each condition represents identical (or effectively 
identical) protocol conditions run on the same day, with the only variable being the 
parameter investigated. Thus, it is valid to compare bars grouped into the same 
condition, but not across conditions. Digitonin greatly outperforms NP40 or Triton. 
Secondary antibodies do not help performance. Straight Lab activation buffer with BSA 
at 37 °C provides the best on-target methylation efficiency.  
 
 
DiMeLo-seq reveals lamina association of centromeric regions 
The combined results from the most optimal anti-LMNB1 conditions can be seen 
plotted along chr7 in Figure 4.7, and they correspond well with in vivo conventional 
DamID and in vivo DiMeLo-seq (shown in Figure 4.2). We can also see relatively 
uniform DiMeLo-seq coverage across the centromere given its long ONT reads, which 
is not the case for the short Illumina reads used in conventional DamID. The bottom 
two tracks show two background controls that indicate the relative accessibility, 
sequenceability, and mappability of each region of the genome. For DiMeLo-seq, this 
background control represents permeabilized nuclei that were treated with free-
floating Hia5 (as in Fiber-seq, Stergachis et al. 2020). For conventional DamID, this 
represents cells that expressed untethered Dam in vivo. In this chromosome’s 
centromere, the advantage of long reads is clear, and it is also clear that the 
centromere is sufficiently accessible to be methylated by Hia5. The anti-LMNB1 
methylation data suggest that this centromere is not strongly lamina associated, which 
aligns with broad observations that centromeres are often not preferentially associated 
with the nuclear lamina in mammalian cells, unlike certain other clades (reviewed by 
Hoskins et al. 2021).  
 
If we examine the centromere of a different chromosome, chromosome 3 (Figure 
4.7b), we see evidence of strong lamina association as well as a more pronounced dip 
in mappability and a dip in apparent accessibility at the centromere. This underlines 
the need to produce longer reads at higher coverage in centromeric regions. However, 
this centromere does exhibit a robust signal of lamina association, apparent in the 
DiMeLo-seq data, which cannot be ascertained from the DamID data. This appears to 
be the strongest signal of lamina association at any centromere, and on close 
examination it appears that this may be related to the unusual nature of this 
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centromere’s organization. The alpha satellite of centromere 3 does not occur in one 
contiguous block but is divided into two pieces by a 2.5 Mb array of a different satellite 
DNA family, Human Satellite 1A (HSat1A), which is not known to be directly related to 
centromere function. Chromosome 4 has a similar centromeric organization, and it also 
appears to have a peak in lamina association in its own intervening HSat1A array, which 
diminishes inside the alpha satellite arrays. Obtaining higher coverage with even 
longer and more mappable reads in these regions will allow us to dissect these 
differences at much finer resolution. 
 

 

 
 
Figure 4.7. Browser tracks showing DiMeLo-seq LMNB1 results 
(A) A browser screenshot across all of chr7 from the T2T-chm13 reference sequence, 
comparing conventional bulk short-read DamID coverage to DiMeLo-seq methylation 
levels. The centromere region has far more coverage in the centromere region with 
DiMeLo-seq compared to DamID. The purple track provides a measure of DNA 
accessibility, similar to Fiber-seq. (B) A similar browser view, but of the central region 
of chr3, illustrating a centromeric LAD detectable only by DiMeLo-seq but not DamID. 
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Moving toward new protein targets 
Satisfied that our in situ DiMeLo-seq protocol allowed us to methylate on-target DNA 
regions with high efficiency while maintaining low background methylation, we next 
wanted to test that this protocol would work well for target proteins other than LMNB1. 
We chose several histone marks to test in GM12878 cells, for which an abundance of 
ChIP-seq data are available for comparison (T. E. P. Consortium 2012): H3K9me3, 
H3K27me3, H3K9ac, and H3K27ac. We sequenced these at low coverage, with the 
hope that by looking at averaged profiles around many ChIP-seq peaks, we could see 
if there was specific localization (Figure 4.8). We also ran IgG isotype controls and 
Hia5-treated nuclei to probe background and DNA accessibility. To do this, we 
compared the methyl and acetyl marks of each type, which are not expected to 
overlap. The acetyl marks (H3K9ac & H3K27ac) are found in active promoters and 
enhancers, while the methyl marks (H3K9me3 & H3K27me3) are found in 
transcriptionally silenced regions (T. E. P. Consortium 2012).  
 
When the average adenine methylation probability profile for H3K27me3 is plotted 
around H3K27me3 ChIP-seq peaks from GM12878 (Figure 4.8), we see a broad 
increase over the methylation levels observed for IgG around those same sites, but we 
do not see this same magnitude of increase when H3K27me3 is centered around 
H3K27ac peaks. This is consistent with H3K27me3 having a broad, spreading 
distribution. We also do not see an increase in DNA accessibility (Hia5 methylation) 
around H3K27me3 peaks, as expected. Similarly, for H3K27ac we see a strong peak 
above its baseline when centered at H3K27ac ChIP-seq peaks, but not when centered 
at H3K27me3 peaks. However, we do see an increase in IgG and Hia5 signal at 
H3K27ac peaks, as expected since they tend to be more accessible. We see similar 
patterns for H3K9me3 vs H3K9ac. This does confirm that DNA accessibility plays a role 
in driving background methylation in DiMeLo-seq, as it does for DamID, and this 
underlines the need to develop a method for normalizing to an IgG or Hia5 control, 
just as DamID is normalized to an untethered Dam control, or ChIP-seq is normalized 
to an input control. We are continuing to explore the best method for doing this. 
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Figure 4.8. Averaged DiMeLo-seq profiles for 4 histone marks 
Averaged profile plots of DiMeLo-seq methylation probability scores centered at all 
ENCODE ChIP-seq peaks for H3K27me3 (top row, blue lines), H3K27ac (top row, green 
lines), H3K27me3 (bottom row, blue lines), and H3K9ac (bottom row, green lines) in 
GM12878 cells (the same cell line that DiMeLo-seq was performed in for these targets). 
The DiMeLo-seq target protein is printed above each plot. “IgG” is an isotype control 
antibody that provides a measure of nonspecific binding, and shows a small increase 
at H3K27ac and H3K9ac ChIP-seq peaks, which are expected to be more accessible.  
“Hia5” (last column) represents untargeted, free-floating Hia5 methylation (as in Fiber-
seq), that serves as a measure of DNA accessibility. Plot credit: Annie Maslan. 
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We next explored the genome-wide distribution of the H3K9me3 mark, since it is 
expected to be found at centromeres (Figure 4.9). Indeed, we do see a strong peak of 
H3K9me3 overlapping the centromeric alpha satellite regions on every chromosome. 
Notably, there are still some regions of the genome that are not well covered in this 
experiment; these mostly correspond to large regions occupied by Human Satellites 
1, 2, and 3, which are among the most unmappable regions of the genome and are 
found on chromosomes 1, 3, 4, 9, 16, and the acrocentrics. This low coverage stems 
from the fact that we traded shorter read lengths for higher throughput in these initial 
experiments, achieving a mean read length of only ~9 kb, and we mapped reads to 
the reference using a mapping quality threshold (mapq) of 10. For reads mapped with 
mapq 10, we can expect 10% of them to be mismapped, but it is certain that each read 
above this threshold does not have more than one mapping location tied for the top 
score. We plan to adjust our library prep strategy to increase average read lengths 
substantially, which should improve mapping to these regions. Poor mapping quality 
can also result from basecalling errors. To address this, we also plan to re-basecall 
reads using the more accurate Bonito algorithm, which is available for beta testing but 
is far slower than Guppy or Megalodon. 
 

 
 
Figure 4.9. DiMeLo-seq confirms H3K9me3 enrichment at centromeres 
Browser tracks across the entire genome showing the DiMeLo-seq methylation levels 
for H3K9me3 (blue track) and free-floating Hia5 (purple track). Chromosome 
ideograms are displayed on the top track, and the locations of centromeric alpha 
satellite arrays are displayed on the second track. The coverage track (gray) shows the 
coverage obtained after stringent alignment filtering (mapq >10). Since reads in this 
sample only have a mean length of 9 kb, some of the large pericentric satellite arrays 
remain unmappable.  
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To test DiMeLo-seq on a protein with a very small binding footprint (in contrast to 
LMNB1), we applied it to map the locations of CTCF, a zinc finger protein that binds 
small motifs at thousands of sites in the genome and plays an important role in nuclear 
architecture. We examined averaged DiMeLo-seq profiles around CTCF binding sites 
identified by ChIP-seq in GM12878 cells, and we broke these ChIP-seq peaks into four 
quartiles by their ChIP-seq signal (Figure 4.10a). Because CTCF tends to strongly 
phase the nucleosomes around it, and because Hia5 preferentially methylates linker 
DNA between nucleosomes, we observe a characteristic decaying wave pattern 
indicating the positions of these nucleosomes—a pattern commonly seen in ChIP-seq, 
CUT&RUN, and ATAC-seq data around CTCF binding sites. We did not observe the 
same pattern for the IgG control, but we did see it for the Hia5-only sample, as 
expected given the increased accessibility of these regions. The strength of 
methylation also increased with the strength of ChIP-seq signal, consistent with the 
expectation that DiMeLo-seq signal should quantitatively capture protein-DNA 
interaction frequency.  
 
Finally, to examine the spatial resolution achievable with DiMeLo-seq, we plotted 
methylation probability scores as a heat map, with rows corresponding to individual 
CTCF binding sites with the highest methylation probabilities in the surrounding 2 kb 
region (Figure 4.10b). Because coverage is so low in this sample (1X), we only expect 
1 read to overlap most of these peaks, providing a single-molecule view of methylation. 
It is clear that the reach of the methyltransferase decays completely to baseline around 
500 bp from the peak center, but 60% of this decay happens within 100 bp. This sharp 
decay will likely help us to resolve the peak center much more finely as we begin to 
develop de novo peak calling algorithms for these data. These results encouragingly 
show that DiMeLo-seq can provide binding site resolution on the order of hundreds of 
base pairs, increasing the domain of proteins that can be usefully mapped with this 
method. 
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Figure 4.10. DiMeLo-seq profiles around CTCF binding sites 
(A) Averaged DiMeLo-seq profile plots surrounding all ENCODE CTCF ChIP-seq peaks 
in GM12878 cells, broken into quartiles by ChIP-seq peak strength (q4 being the 
strongest ChIP-seq peaks; dark blue lines). Results around the same sites are shown for 
DiMeLo-seq targeting CTCF (top), IgG (middle), or untargeted free-floating Hia5 
(bottom) in GM12878 cells. The strongest ChIP-seq peaks are also the strongest 
DiMeLo-seq peaks, though some of this correlation is attributable to DNA accessibility. 
(B) A similar profile plot, but with the top quartile of individual CTCF ChIP-seq peaks 
displayed below, one site per row, and colored according to the mean mA probability 
score in 10-bp bins. Because coverage is low (1X), most of these rows (expected 70%) 
represent single reads, providing a single-molecule view of DiMeLo-seq signal and 
resolution. Plot credit: Annie Maslan. 
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Centromere enrichment strategy 
Alpha satellite repeats constitute only 1-5% of the human genome (Miga 2019). If one 
used the standard DiMeLo-seq approach to map proteins binding within alpha satellite 
arrays, like CENPA, CENPB, and CENPC, as we plan to do, then the remaining 95% of 
the genome would be sequenced needlessly, increasing the time and cost of 
sequencing. Because DiMeLo-seq relies on m6A marks, which cannot be replicated, 
specific regions of the genome cannot be targeted and amplified while retaining 
protein-DNA interaction information. While there are several targeted nanopore 
sequencing methods that do not require amplification, they are either not well suited 
to targeting large repetitive regions (Gilpatrick et al. 2020), or they require advanced 
hardware to basecall and align reads in real time while rejecting off-target reads, which 
is likely to result in lower throughput (Kovaka et al. 2021). I wanted to develop a method 
of enriching the input material itself for alpha satellite DNA, and I devised a way to do 
it that leverages the repetitive nature of satellites. Because satellite repeats are 
relatively short and homogeneous, short DNA k-mers are not uniformly distributed 
throughout these regions. In fact, some k-mers are completely absent from some 
families of repeats; for example, GATC is missing from many large repetitive regions, 
as seen in Figure 2.1. If one could digest the genome with a restriction enzyme that 
cuts motifs found commonly outside alpha satellite regions, but rarely inside them, 
then one could remove short digested DNA fragments by size selection, and mostly 
long, undigested alpha satellite DNA would remain (Figure 4.11a). 
 
To see if this approach would be feasible, I simulated digestion of the T2T chm13 
reference sequence with a set of all restriction enzymes available from New England 
Biolabs that had 4-6 bp cut sites and that were annotated as being insensitive to CpG 
or Dam methylation. Of those, I selected 28 enzymes for which fewer than 5% of 
fragments mapped to alpha satellite, and for which the genome was digested into at 
least 200,000 total fragments. I then removed all simulated fragments under 10 kb, to 
simulate a size selection process, and I computed the fraction of remaining fragments 
mapping to centromeres. This allowed me to estimate the theoretical enrichment of 
centromeric sequences as well as the systematic loss of centromeric sequences 
predicted to be digested into fragments under the size cutoff. I also tested double and 
triple digest combinations of the top 3 enzymes with >4-fold alpha satellite enrichment 
and <3% alpha satellite loss (MscI, AseI, PvuII), and I found the best possible overall 
enrichment regime to be a double digest with MscI and AseI, predicted to yield 18-
fold enrichment of alpha satellite with only 0.8% systematic loss of alpha satellite 
(Figure 4.11b). 
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Figure 4.11. Centromere enrichment by restriction digestion and size selection 
(A) Illustration of the overall centromere enrichment strategy. (B) Simulated tradeoff 
between loss of sensitivity (% of alpha satellite lost) and gain of specificity (% of non-
centromeric sequences not removed) as different size cutoff thresholds are used on 
genomic DNA digested with MscI+AseI (red line at 10 kb cutoff). (C) As in B but for 
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gDNA digested with MscI only. Red line is shown at 50 kb. (D) Tapestation results 
illustrating the change in size distribution through the steps of the enrichment protocol. 
(E) Browser tracks illustrating the location of alpha satellite higher order repeat arrays 
(1st track); theoretical coverage assuming perfect size selection, perfect recovery, 
perfect mappability, and no sequencing bias (2nd track); actual coverage from DNA 
isolated by this strategy (3rd track); coverage from un-enriched gDNA sequencing (4th 
track). Overall, there is 20-fold higher coverage in centromere regions in the enriched 
track vs control track.  
 
 
 
To test this approach in practice, I digested ~100 μg high-molecular-weight (HWM) 
DNA isolated from ~25M HEK293T cells overnight with MscI and AseI, then cleaned up 
the digest with a column that depletes fragments under 3 kb (Zymo gDNA Clean & 
Concentrator Kit), yielding 15 μg. Early attempts to perform size selection with a 
Circulomics Short Read Eliminator XS kit resulted in extremely low yields. Instead, I 
loaded this onto a 0.3% TAE + agarose gel (using SeaKem Gold agarose, which is 
specialized for large fragment separations) and ran it at low voltage (2 V/cm) until 
fragments under 10 kb were visibly separated from a visible HMW band (~1 h). I cut 
out everything above 10 kb, including the loading well, and purified the DNA using a 
Zymo Large DNA Fragment Recovery kit (with modifications detailed in Methods). This 
yielded ~1.8 μg of DNA, which we library prepped and sequenced on a MinION 
device. By mapping reads back to the reference sequence, I observed ~20-fold 
enrichment of alpha satellite sequences (Figure 4.11e). Specifically, while alpha 
satellite higher order repeats constitute only 2.3% of the genome, reads overlapping 
these regions represented 46.2% of bases on all mapped reads. This means a single 
72 hour, <$1500, 20 Gb run on a MinION flowcell could yield ~130X coverage of alpha 
satellite regions, which is enough to split over many DiMeLo-seq samples. Without 
enrichment, obtaining this same coverage on a single MinION would require 2 months 
and $30k. 

While this approach does produce longer reads compared to an average sequencing 
run (empirical N50=19 kb vs typical run with N50=15 kb), ideally these reads would be 
longer to provide greater mappability and more joint single-molecule information for 
centromere-mapping reads. Some of this loss of read length is due to the choice of a 
double digestion followed by 10 kb size selection. While most alpha satellite DNA is 
predicted to be in fragments well over 10-kb, the nanopore sequencing device tends 
to favor sequencing shorter DNA fragments, so the final distribution of read lengths is 
almost always shifted to the left relative to the distribution of input DNA fragment 
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lengths. If I were to cut with MscI alone and perform size selection at 50 kb, I could 
theoretically achieve 25-fold enrichment with only 2% systematic loss of alpha satellite 
DNA (Figure 4.11c), while likely increasing the median read length substantially.  

Loss of fragment length can also occur during gel purification or ligation-based library 
prep, which can shear DNA during column-based or bead-based purification steps. 
Another issue is that the reaction cleanup prior to gel loading, which depletes 
fragments smaller than 3 kb, would not deplete as much of the single-digest DNA 
compared to the double-digest DNA. Thus, in order to prevent anomalous band 
migration due to gel overloading, more gel lanes would need to be used, which can 
result in lower yields. To address these issues, moving forward I will test electroelution 
as an alternative method for recovering DNA from extracted gel fragments while 
preserving long fragment lengths (Strong et al. 1997). I further plan to test ONT’s 
ligation-free library prep kits recommended for ultralong read library prep. I am also 
interested in developing methods for performing library preparation reactions on 
HMW DNA trapped in an agarose gel slice, followed by electroelution of purified, 
library-prepped DNA ready for sequencing. Because buffer exchange is simplified by 
immobilizing DNA in a hydrogel, this would remove any need to purify the DNA by 
precipitation and long rehydration steps, as is done for existing ultralong library prep 
protocols. 
 
Discussion and next steps 
Here, we have developed, optimized, extended, and validated DiMeLo-seq, a new 
method for mapping protein-DNA interactions genome-wide. DiMeLo-seq can map a 
protein’s binding sites within hundreds of base pairs on single molecules of sequenced 
DNA up to hundreds of kilobases in length. This long read length improves 
mappability in repetitive regions of the genome, opening them up to new studies of 
their regulation. Because DiMeLo-seq involves no amplification, it can provide a linear 
readout of protein-DNA binding frequency at every site. It can also provide joint CpG 
and protein-DNA interactions on the same long single molecules. Now that the long 
process of basic protocol development has concluded, we are excited to explore all of 
the advantages of DiMeLo-seq and apply it to some interesting biological questions. 
 
This work has thrived as a joint effort with Owen Kabnick Smith, Dr. Kousik 
Sundararajan, and Rachel Brown in Aaron Straight’s Lab, who provided us with copious 
amounts of Hia5/pA-Hia5/pAG-Hia5, and with key reagent formulas used in the final 
protocol, like their activation buffer. They have also performed a tremendous amount 
of work characterizing the DiMeLo-seq workflow on reconstituted chromatin in vitro, 
generating high-coverage data from an extremely well-controlled system. In doing so, 
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they proved the specificity of antibody-targeted methylation, developed a method to 
detect targeted nucleosome positions on single molecules, and performed important 
controls to validate the methylation calling pipeline. Because they have expertise in 
centromere biology, we are excited to partner with them to map centromere proteins 
at high resolution using DiMeLo-seq. To begin, we are generating high-coverage, 
long-read ONT sequencing data for H3K9me3 and CENP-A, which are both found in 
centromeres and are expected to be non-overlapping (McNulty & Sullivan 2018). We 
hope to discover how CENP-A nucleosomes are distributed throughout different 
subregions of active alpha satellite arrays in every human centromere, as well as how 
boundaries between H3K9me3 and CENP-A vary among centromeres and between 
cells and cell types. The ability to jointly map multiple CENP-A nucleosomes on the 
same single molecules will prove essential for this endeavor. 
 
We are also generating high-coverage data for CTCF, to provide ample training 
material that will allow us to develop new de novo single-molecule peak calling 
algorithms for this new data type. We plan to jointly analyze endogenous CpG 
methylation on these reads, as we expect CpG methylation in CTCF’s binding motif to 
abolish its binding (H. Wang et al. 2012). In parallel, we are sequencing these samples 
with PacBio sequencing, which is expected to provide more accurate basecalls and 
methylation calls, but on reads only up to 20 kb, and without joint CpG information. 
We have also begun developing a way to multiplex DiMeLo-seq, by fusing two different 
proteins to two different methyltransferases, for example, one that methylates 
adenines and one that methylates GpC cytosines. This would allow us to jointly map 
two proteins and endogenous CpG methylation on the same long single molecules of 
DNA, which could be used to study phenomena like heterochromatin spreading. 
Future extensions of this work would enable us to map RNA-DNA interactions, as in 
ChIRP or RNA-DamID (Cheetham & Brand 2018, Chu et al. 2011), or DNA-DNA 
interactions, as in 4 °C (Zhao et al. 2006). 
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Detailed materials and methods 
Creation and induction of stable cell lines for in vivo DiMeLo-seq 
Stable HEK293T and GM12878 cell lines were created by retroviral transduction 
followed by drug selection. Retroviral plasmids containing EcoGII, EcoGII-LMNB1, and 
EcoGII-CENPC were obtained from Addgene (#122082, #122083, #122085; Sobecki 
et al. 2018). These plasmids were modified to create versions with Dam or Dam-
LMNB1. Retroviruses were produced in the Phoenix Ampho packaging cell line 
(obtained from the UC Berkeley cell culture facility). Phoenix cells were seeded in 
standard growth medium (DMEM with 10% FBS and 1X P/S) in a T75 flask 24 hours 
before transfection, aiming for 70% confluence at the time of transfection. 25 μg of 
plasmid DNA was combined with 75 μl FUGENE-HD transfection reagent in 1200 μl 
optiMEM and incubated for 10 minutes, then added to the media. After 12 hours, the 
media was replaced with fresh media, and the cells were incubated at 32 °C with 5% 
CO2 and 100% humidity to help preserve viral particles. 36 hours later, the virus-
containing media was harvested and centrifuged at 1800 rpm for 5 minutes to remove 
any Phoenix cells. The media was supplemented with 10 μl/ml of 1 M HEPES and 4 
μg/ml of polybrene. For HEK293T cells, 2.5 ml of this media was added to each well of 
a 6-well plate containing adhered cells at 40-50% confluence. For GM12878 cells, 1.5 
million cells were resuspended in 3 ml of virus-containing media and added to each 
well. Plates were spinoculated in a centrifuge with a swinging-bucket plate rotor at 
1300xg for 1 hour at room temperature, then incubated at 37 °C overnight. The media 
was replaced the next morning. After 24 hours, puromycin was added to the media at 
a concentration of 1μg/ml and the media was replenished every 48 hours for 10 days. 
Surviving cells were expanded and frozen for later use. 15 hours prior to harvesting, 
Shield-1 reagent was added to the media to stabilize protein expression, either with 1 
μM Shield-1 for full-induction, or 10 nM Shield-1 aiming for ~10% of full induction 
levels. 
 
In situ DiMeLo-seq and immunofluorescence 
Please see Appendix 2 for detailed protocol. 
 
Basecalling, modification calling, and data analysis 
All sequencing was performed on ONT MinION v9.4 flow cells. Basecalling and 
modification calling were performed on Amazon Web Services g4dn.metal instances, 
which have 8 NVIDIA T4 GPUs, 96 CPUs, 384 Gb memory, and 2x900 Gb local solid-
state storage; this configuration allows for efficient parallelization and high basecalling 
speed. Basecalling was first performed using Oxford Nanopore Technologies’s Guppy 
software (v4.5.4), using a Rerio res_dna_r941_min_modbases-all-context_v001.cfg 
basecalling model, and demultiplexing when appropriate. Modification calls were 
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extracted from fast5 output files using ont-pyguppy-client-api. Basecalled reads were 
aligned to the T2T-chm13v1 reference sequence using Winnowmap (v2.03), which is 
adapted to perform better than other long-read aligners in repetitive regions (C. Jain 
et al. 2020). Fast5 files were split by barcode using fast5_subset then re-basecalled 
using ONT’s Megalodon software (v2.3.1), using the same reference and model file. 
Custom code was used to parse output files. To evaluate performance, cLAD and ciLAD 
coordinates were lifted over from hg38 to the chm13 reference. A read was assigned 
to a cLAD or ciLAD bin if it overlapped the bin with more than 50% of its length, and 
any mA calls on that read were assigned to that bin. Profile plots were made using 
deepTools2 (Ramírez et al. 2016), after lifting over ENCODE GM12878 ChIP-seq peaks 
from hg38 to chm13. Browser plots were made using the WashU Epigenome Browser 
(D. Li et al. 2019). 
 
Centromere Enrichment 
Genomic DNA was extracted from ~25 million cells using an NEB HMW DNA extraction 
kit (#T3050L). The DNA was eluted in a total of 300 μl elution buffer and allowed to 
relax at 4 °C for 2 days, although it remained viscous until it was digested. 37 μl 
NEBuffer 2.1 was added, along with 100 units of MscI and 100 units of AseI (NEB 
#R0534M and #R0526M) to a total volume of 370 μl in a 1.5 ml lo-bind Eppendorf tube. 
This was placed on a rotator at 12 rpm at 37 °C overnight. DNA was purified from the 
reaction using a Zymo genomic DNA clean & concentrator 10 kit (Zymo #D4010), then 
quantified using a Qubit Broad Range DNA kit (Thermo Fisher #Q32850). DNA was 
then mixed with orange loading buffer and loaded on a 0.3% TAE agarose gel made 
with Lonza SeaKem Gold agarose (# 50512) and 15 μl  SYBRSafe gel stain (Thermo 
Fisher #S33102) per 100 ml gel. A GeneRuler High Range DNA Ladder (Thermo Fisher 
SM1351) was loaded in an adjacent lane. To avoid overloading, DNA was loaded with 
no more than 250 ng per mm of lane width. The gel was run at 2 V/cm for 1 hour and 
imaged over a blue light transilluminator. The gel was cut to remove fragments smaller 
than 10 kb, while keeping everything larger, up to the well itself. DNA was purified from 
the resulting gel slice using a Zymoclean Large Fragment DNA Recovery Kit (Zymo # 
D4045), with modifications: the gel slice was melted at room temperature on a rotator 
at 12 rpm, and DNA was eluted from the column twice with elution buffer heated to 70 
°C. The DNA was then quantified by Qubit again. DNA was prepared for sequencing 
using an ONT LSK-110 native library prep kit, and sequenced on a v9.4 MinION flow 
cell. 
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Chapter 5 
 
 
Conclusion 
 
Our collective understanding of genome regulation has advanced greatly in the last 
two decades, owing to the Human Genome Project and to powerful sequencing-based 
methods for measuring gene expression, DNA accessibility, and protein-DNA 
interactions. More recently, single-cell methods have enabled researchers to dissect 
differentiation processes and single-cell heterogeneity with unprecedented 
granularity, although these studies have primarily employed methods like single-cell 
RNA-seq and single-cell ATAC-seq, which have matured faster than technologies 
designed to measure specific protein-DNA interactions in single cells. Nearly all studies 
of the human genome, be they in bulk tissues or single cells, have ignored repetitive 
regions, which have remained missing from the human genome assembly until now. In 
the next decade, telomere-to-telomere genome assemblies will become routine, and 
the repetitive regions of the genome can no longer be ignored. Studying these regions 
will require new tools that can fully leverage the power of new long-read sequencing 
technologies. In this context, I have engineered new methods to advance our ability to 
measure protein-DNA interactions in single cells and in repetitive regions of the 
genome. 
 
Outlook for µDamID 
Firstly, I engineered µDamID, an integrated microfluidic device that allows the user to 
isolate single cells, image them at high resolution, sort them for processing, and then 
perform single-cell DamID on them to map protein-DNA interactions. The output data 
are paired imaging and sequencing measurements of protein-DNA interactions within 
single cells, giving a readout of both the spatial and sequence coordinates of these 
interactions in the nucleus. µDamID is compatible with any imaging modality that can 
be implemented with a standard inverted microscope, including 2-photon 
fluorescence and other nonlinear optical microscopy techniques, in addition to many 
common super-resolution microscope configurations that take advantage of 
photoactivatable fluorescent proteins (reviewed by Huang et al. 2010). However, the 
thickness of the PDMS device may be incompatible with optics above the sample, such 
as condensers, that have short working distances, in which case a thin-chip design 
might be considered (Kim et al. 2021). The device can be mounted on a coverslip and 
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therefore can be imaged using high-NA objectives, as done here. In this study, we 
demonstrate short-term live-cell imaging with µDamID; however, imaging modalities 
that require fixed cells or nuclei are also compatible, although fixation may affect 
sequencing yields. The flexibility of integrated microfluidic circuits provides 
compatibility with imaging techniques that require multiple wash steps such as in situ 
hybridization (reviewed by Rodriguez-Mateos et al. 2020), as well as time-lapse 
imaging of live cells prior to DamID processing (Ramalingam et al. 2016). However, 
these implementations would require modifications to the device design.  
 
µDamID can also be applied to study many other types of protein-DNA interactions in 
single cells, and it could be combined with other sequencing and/or imaging 
modalities to gather even richer information from each cell. For example, the nuclear 
localization of specific proteins such as heterochromatin-associated proteins or 
nucleolus-associated proteins can be visualized by fluorescent tagging, and then 
DamID can be used to sequence and identify nearby genomic regions. This device 
could readily be applied to study chromatin organization in micronuclei and other 
abnormal nuclei by imaging and selectively sorting these nuclear phenotypes and 
performing DamID, which would be infeasible by bulk or FACS-based methods. Recent 
advances allow for simultaneous DamID and transcriptome sequencing in single cells 
(Rooijers et al. 2019). The integrated valves and modular reaction chambers in the 
µDamID device could be leveraged to extend this platform to such multi-omic 
protocols. This would allow for joint analysis of spatial chromatin organization, protein-
DNA interactions, and gene expression within single cells. Further improvements to 
the DamID protocol may also increase its sensitivity and specificity. 
 
Although the sequencing throughput of this particular design is limited to 10 cells per 
µDamID device, many hundreds of cells can be rapidly screened and rejected from the 
device by monitoring a wide field of cells entering the input filter area. Thus, even 
relatively rare cell phenotypes can be enriched and sequenced on the device. We note 
that the rate-limiting step is often high-resolution image acquisition, which can take 
minutes per cell depending on the imaging method. The throughput of this platform 
can be increased to hundreds of cells per device by scaling up the design and 
incorporating features like multiplexed valve control (Kim et al. 2017) and automated 
image processing and sorting. To scale this technology further, paired imaging and 
sequencing data could be obtained using spatially or optically registered DNA 
barcodes (T. N. Chen et al. 2020, Cole et al. 2017, Nguyen et al. 2017, Yuan et al. 2018). 
 
One important limitation of µDamID is that, like any single-cell methods requiring cell 
suspensions as input, it destroys any spatial information related to the positioning of 
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cells within a tissue. The next frontier will be to develop spatial ‘omic methods for 
mapping protein-DNA interactions in situ. One can imagine, for example, using 
antibody targeting to insert sequencing adapters near a protein’s binding sites in situ, 
as in CUT&Tag, but then performing in situ DNA sequencing (Payne et al. 2021). 
 
Outlook for DiMeLo-seq 
The idea for DiMeLo-seq stemmed from my experience with DamID (Altemose et al. 
2020), my expertise in characterizing repetitive DNA sequences computationally 
(Altemose et al. 2014), and my involvement as a member of the Telomere-to-Telomere 
(T2T) Consortium, which is using long-read sequencing data to complete the human 
genome reference assembly (Miga et al. 2020). As I began to annotate newly 
assembled repetitive regions in the new T2T reference assembly as a side project, it 
became clear that there was a strong need for a long-read sequencing method to map 
protein-DNA interactions in highly repetitive regions of the human genome. To 
address this need, I conceived of the  DiMeLo-seq method, and I have worked 
collaboratively to implement, optimize, and extend it over the past 6 months. After 
developing a rapid experimental and computational pipeline to evaluate method 
performance with low-coverage sequencing, we iterated through scores of conditions 
and improved the efficiency of the method by multiple orders of magnitude. We also 
demonstrated its efficacy and utility on several different protein targets, showing that 
we can achieve binding site resolution on the order of hundreds of base pairs. Now we 
are applying the method to map the locations of important protein-DNA interactions 
within centromeric alpha satellite repeats, aided by an approach I developed to enrich 
for centromeric sequences. In the process, I am developing the analytical and 
computational tools we need to normalize our data, call peaks de novo, and estimate 
our sensitivity and specificity, as I have done in the past for other sequencing data types 
(Altemose et al. 2017). 
 
Although development of DiMeLo-seq was originally motivated by a desire to study 
repetitive regions of the genome, it offers a number of powerful advantages likely to 
make it useful for other applications. Firstly, it is a single-molecule method, which 
allows the user to jointly map proteins on long (>100 kb) single molecules of DNA. This 
can allow one to explore the density of a protein’s binding along a single chromatin 
fiber from a single cell; for example, to study how “spreading” chromatin states travel 
along DNA, or perhaps how the stoichiometry of a DNA-binding protein in an enhancer 
affects the transcription of nearby genes. Secondly, because the approach involves no 
amplification, it should provide a linear readout of a protein’s binding frequency at any 
site in the genome. That is, at any one locus, each overlapping read represents a single 
cell, so one can estimate things like single-cell contact frequency locally based on bulk 
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data. Thirdly, the method provides joint endogenous CpG methylation information, 
which can provide insights into how CpG methylation affects protein-DNA binding and 
local chromatin states. One can also imagine adding exogenous GpC methylation 
marks to provide information about DNA accessibility or a second protein’s joint 
binding profile. 
 
One limitation of DiMeLo-seq is that it cannot map protein-DNA interactions genome-
wide in single cells. Long-read sequencers require a lot of input DNA, only a tiny 
fraction of which actually gets sequenced, and DNA methylation marks cannot 
currently be amplified. Thus, DiMeLo-seq, for now, is a bulk sequencing method only. 
To address this, it may be possible to convert these marks into mutated bases then 
amplify long, barcoded DNA from single cells (Yibin Liu et al. 2020). It may also be 
possible to develop methods to copy methylation marks to newly replicated DNA 
strands, mimicking the process of epigenetic inheritance that occurs in vivo. As 
nanopore sequencing technologies continue to advance, it may also be possible to 
sequence tiny amounts of unamplified DNA in the near future. DiMeLo-seq can also 
feasibly be extended to map RNA-DNA interactions and DNA-DNA interactions. To do 
so, we first need to explore the trans methylation activity of DiMeLo-seq with carefully 
controlled experiments. 
 
Overall, it is my hope that µDamID and DiMeLo-seq will prove to be useful research 
tools that enable biologists to probe new fundamental questions about genome 
regulation and chromatin biology, and I hope they inspire further technology 
development towards these aims. 
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Appendix 1: Key Resources Table for uDamID 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Bacterial and Virus Strains   
dam-/dcm- Competent E. Coli New England Biolabs Cat#C2925I 
Chemicals, Peptides, and 
Recombinant Proteins   
DMEM with GlutaMAX Gibco Cat#10566-016 
Pen Strep Gibco Cat#15140-122 
FBS (Seradigm Select Grade) Avantor Cat#89510-186 
FuGene HD Promega Cat#E2311 
Shield-1 Ligand Takara Bio USA, Inc. Cat#632189 
TrypLE Select Gibco Cat#12563-011 
SU-8 2025 negative 
photoresist Microchem SU-8 2025 
AZ 40XT-11D positive 
photoresist 

Integrated Micro 
Materials AZ40XT-11D 

PDMS 
Momentive Performance 
Materials RTV615A 

Trichloromethylsilane Millipore Sigma Cat#M85301-5G 
Pluronic F-127 Millipore Sigma Cat#P2443 
Proteinase K New England Biolabs Cat#P8107S 
common salts & detergents: 
KCl, MgCl2, NaCl, TRIS-HCl, 
TRIS acetate, magnesium 
acetate, potassium acetate, 
sodium acetate, EDTA, 
Tween-20, IGEPAL Various Various 
T4 DNA ligase and T4 ligase 
buffer New England Biolabs Cat#M0202S 
DpnI and CutSmart buffer New England Biolabs Cat#R0176S 
Takara Advantage 2 PCR Kit Takara Bio USA, Inc. Cat#639207 
DpnII and DpnII Buffer New England Biolabs Cat#R0543S 
DNeasy Blood & Tissue Kit Qiagen Cat#69504 
QIAquick PCR Purification Kit Qiagen Cat#28104 
RNeasy Mini Kit with 
QIAshredder Qiagen Cat#74104 
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AMPure XP magnetic SPRI 
beads Beckman Coulter Cat#A63880 
Monarch PCR & DNA 
Cleanup Kit New England Biolabs Cat#T1030S 
solvents: SU-8 developer, AZ 
300MIF developer, molecular 
biology grade 100% ethanol, 
IPA, acetone Various Various 
RNase A Qiagen Cat#19101 
Critical Commercial Assays   
Qubit dsDNA HS Assay Kit ThermoFisher Scientific Cat#Q32851 
TapeStation D5000 HS 
Ladder, Reagents, and 
ScreenTape Agilent 

Cat#5067-5594, 
Cat#5067-5593, 
Cat#5067-5592 

NEBNext Ultra II DNA Library 
Prep Kit for Illumina New England Biolabs Cat#E7645 
NEBnext Ultra II FS DNA 
Library Prep Kit for Illumina New England Biolabs Cat#E7805 
NEBNext Ultra II RNA Library 
Prep Kit for Illumina New England Biolabs Cat#E7770S 
NEBNext Poly(A) mRNA 
Magnetic Isolation Module New England Biolabs Cat#E7490S 
Deposited Data   
KBM-7 bulk RNA-seq Essletzbichler et al., 2014 SRA: SRP044391 
KBM-7 single-cell DamID Kind et al., 2015 GEO: GSE69423 
HEK293T cell bulk & single-
cell DamID sequencing reads 
and bulk RNA-seq reads this study GEO: GSE156150 

HEK293T cell raw images this study 

available on 
FigShare: https://doi.or
g/10.6084/m9.figshare
.12798158 

Experimental Models: Cell 
Lines   

HEK293T cells ATCC 
Cat#CRL-3216; 
RRID:CVCL_0063 

Oligonucleotides   

https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib13
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib23
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69423
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156150
https://doi.org/10.6084/m9.figshare.12798158
https://doi.org/10.6084/m9.figshare.12798158
https://doi.org/10.6084/m9.figshare.12798158
https://doi.org/10.6084/m9.figshare.12798158
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AdRt: CTAATACGACTCACTA
TAGGGCAGCGTGGT 

Integrated DNA 
Technologies CustomOrder 

CGCGGCCGAGGA   

AdRb: TCCTCGGCCG 
Integrated DNA 
Technologies CustomOrder 

AdR_PCR: 
NNNNGTGGTCGCGGCCGA
GGATC 

Integrated DNA 
Technologies CustomOrder 

NEBNext Multiplex Oligos for 
Illumina (96 Unique Dual 
Index Primer Pairs) New England Biolabs Cat#E6440S 
Recombinant DNA   

plasmid: DD-DamV133A-
LMNB1-IRES2-mCherry 

this study (modified from 
a gift from Bas van 
Steensel) 

Deposited to Addgene 
(#159599), sequence 
also on 
GitHub https://github.c
om/altemose/microDa
mID 

plasmid: DD-DamV133A-
IRES2-mCherry 

this study (modified from 
a gift from Bas van 
Steensel) 

Deposited to Addgene 
(#159600), sequence 
also on 
GitHub https://github.c
om/altemose/microDa
mID 

plasmid: DD-DamWT-
LMNB1-IRES2-mCherry 

this study (modified from 
a gift from Bas van 
Steensel) 

Deposited to Addgene 
(#159601), sequence 
also on 
GitHub https://github.c
om/altemose/microDa
mID 

plasmid: DD-DamWT-IRES2-
mCherry 

this study (modified from 
a gift from Bas van 
Steensel) 

Deposited to Addgene 
(#159602), sequence 
also on 
GitHub https://github.c
om/altemose/microDa
mID 

plasmid: DD-DamV133A-
tdTomato-LMNB1 

this study (modified from 
a gift from Bas van 
Steensel) 

Deposited to Addgene 
(#159604), sequence 
also on 

https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
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GitHub https://github.c
om/altemose/microDa
mID 

plasmid: m6A-Tracer gift from Bas van Steensel Kind et al., 2013 

plasmid: m6A-Tracer-NES this study 

Deposited to Addgene 
(#159607), sequence 
also on 
GitHub https://github.c
om/altemose/microDa
mID 

Software and Algorithms   
trimmomatic v0.39 Bolger et al., 2014 N/A 
Salmon Patro et al., 2017 N/A 
limma (R package) Ritchie et al., 2015 N/A 
BWA-MEM v0.7.15-r1140 Li, 2013 N/A 
samtools v1.9 Li et al., 2009 N/A 
bedtools v2.28 Quinlan and Hall, 2010 N/A 
DESeq2 Love et al., 2014 N/A 

R (v4.0.0) 
The R Project for 
Statistical Computing N/A 

Additional R 
packages: ggplot2 (v3.3.0), 
gplots (v3.0.3), colorRamps 
(v2.3), reshape2 (v1.4.4), 
ggextra (v0.9), poisbinom 
(v1.0.1), SDMTools (v1.1-
221.1), spatstat (v1.59-0), 
magick (v2.0) 

CRAN & Bioconductor 
repositories N/A 

Wash U Epigenome Browser Li et al., 2019 N/A 

In-house code for file parsing 
(bash, perl, & python) and 
data analysis (python & R) this study 

All code is available on 
this study’s GitHub 
repository: https://gith
ub.com/altemose/micr
oDamID 

Other   
10 cm diameter, 500 μm thick 
test-grade silicon wafers University Wafer Cat#452 

https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib24
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib5
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib35
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib39
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib28
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib29
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib37
https://www.sciencedirect.com/science/article/pii/S2405471220303264#bib30
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
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Photomasks (25400 DPI) CAD/Art Services 

Design files are 
available on this 
study’s GitHub 
repository: https://gith
ub.com/altemose/micr
oDamID 

Gold SEAL 48x65 mm No.1 
coverglass ThermoFisher Scientific Cat#3335 
PEEK tubing (0.25 mm ID, 
0.8 mm OD) IDEX Corporation Cat#1581 
Gel loading tips Cole-Parmer Cat#UX-25713-12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID
https://github.com/altemose/microDamID


 137 

Appendix 2: Full DiMeLo-seq Protocol 

Prepared by Annie Maslan. An updated version of this protocol can be found at 
streetslab.com 

Materials 
• HEPES-KOH, 1 M, pH 7.5 (BBH-75-K) 
• NaCl, 5 M (59222C-500ML) 
• Spermidine, 6.4 M (S0266-5G) 
• Roche cOmplete tablet -EDTA (11873580001) 
• BSA (A6003-25G) 
• Digitonin (300410-250MG) 
• Tween-20 (P7949-100ML) 
• KCl (PX1405-1) 
• EDTA, 0.5 M, pH 8.0 (Invitrogen 15575-038) 
• EGTA, 0.5 M, pH 8.0 (Fisher 50-255-956) 
• SAM, 32 mM (NEB B9003S)  
• PFA, 16% (if fixing) (EMS 15710) 
• Glycine (if fixing) (BP381-1) 
• Eppendorf DNA LoBind tubes, 1.5 ml (022431021) 
• Wide bore 200 µl and 1000 µl tips (e.g. USA Scientific 1011-8810, VWR 89049-168) 
• pA-Hia5  
• Primary antibody for protein target of interest, from species compatible with pA (e.g. 

ab16048) 
• Secondary antibody for IF QC (e.g. ab3554) 
• Trypan Blue (T10282) 
• Monarch Genomic DNA Purification Kit (T3010S) 
• Qubit dsDNA BR Assay Kit (Q32850) 
• Agencourt AMPure XP beads (A63881) 
• Blunt/TA Ligase Master Mix (NEB M0367S) 
• NEBNext quick ligation module (NEB E6056S) 
• NEBNext End Repair dA-tailing Module (NEB E7546S) 
• NEBNext FFPE DNA repair kit (NEB M6630S) 
• Ligation Sequencing Kit (ON SQK-LSK109) 
• Native Barcoding Expansion 1-12 (ON EXP-NBD104) 
• Native Barcoding Expansion 13-24 (ON EXP-NBD114) 
• Flow Cell Wash Kit (ON EXP-WSH004) 
• Flow cells (ON FLO-MIN106D) 
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Timeline 
Day 1: Perform in situ targeted methylation and DNA extraction 
Day 2: Perform library preparation and start sequencing 
Day 2-4: sequence 

Perform in situ targeted methylation and DNA extraction 

Reagent preparation 
Prepare all reagents fresh and keep on ice. Syringe filter all solutions through a 0.2 µM filter. 

1. 5% digitonin solution 
Solubilize digitonin in preheated 95 °C Milli-Q water to create a 5% digitonin solution (e.g. 
10mg/200µl).  

2. Wash buffer 
 

component amount concentration 

HEPES-KOH, 1 M, pH 7.5 1 ml 20 mM 

NaCl, 5 M 1.5 ml 150 mM 

Spermidine, 6.4 M 3.91 µl 0.5 mM 

Roche Complete tablet -EDTA 1 tablet - 

BSA 50 mg 0.1% 

H2O up to 50 ml - 

3. Dig-Wash buffer 
Add 0.02% digitonin to wash buffer. For example, add 20 µl of 5% digitonin solution to 5 ml 
wash buffer.   

4. Tween-Wash buffer 
Add 0.1% Tween-20 to wash buffer. For example, add 50 µl Tween-20 to 50 ml wash buffer. 

5. Activation buffer 
Create the activation buffer but wait to add SAM until the activation step.  
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component amount concentration 

Tris, pH 8.0 1 M 750 μl 15 mM 

NaCl 5 M 150 μl 15 mM 

KCl 1 M 3 mL 60 mM 

EDTA, pH 8.0 0.5 M 100 μl 1 mM 

EGTA, pH 8.0 0.5 M 50 μl 0.5 mM 

Spermidine, 6.4 M 3.91μl 0.5 mM 

BSA 50 mg 0.1% 

H2O up to 50 mL  - 

SAM, 32 mM (add at activation step) 800 µM 

Protocol 

General notes 
• All spins are at 4 °C for 3 minutes at 500 x g. 
• To prevent nuclei from lining the side of the tube, break all spins into two parts: 2 

minutes with the tube hinge facing inward, followed by 1 minute with the tube hinge 
facing outward.  

• Use wide bore tips when working with nuclei. 
• Do not use Triton (0.1%) or NP-40. Both appear to dramatically reduce methylation 

activity.  
• The best digitonin concentration may vary by cell type. For HEK293T, GM12878, 

HG002, and Hap1 cells, 0.02% works well. You can test different concentrations of 
digitonin and verify permeabilization and nuclear integrity by Trypan blue staining. 
For example, you may try 0.02% to 0.1% digitonin. 

• We use Tween to reduce hydrophilic non-specific interactions and BSA to reduce 
hydrophobic non-specific interactions. We’ve also found BSA at the activation step 
significantly increases methylation activity as well. 

• The best primary antibody concentration may vary by protein target of interest. A 1:50 
dilution works well for targeting LMNB1 and is likely a good starting point for most 
antibodies. 

• A secondary antibody binding step following primary antibody binding and before 
pA-Hia5 binding reduced total methylation and specificity. Including a secondary 
antibody binding step is not recommended. 
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(Optional fixation) 
1. Resuspend cells in PBS. 
2. Add PFA to 0.1% (e.g. 6.2 µl of 16% PFA to 1 ml cells) for 2 minutes while gently 

vortexing. 
3. Add 1.25 M glycine (sterile; 0.938 g in 10 ml) to twice the molar concentration of PFA 

to stop the crosslinking (e.g. 60 µl of 1.25 M glycine to 1 ml) 
4. Centrifuge 3 minutes at 500 x g at 4 °C and remove the supernatant 
5. Resuspend the fixed cells in Dig-Wash buffer (A. Nuclear isolation, step 3). 

A. Nuclear isolation 
1. Prepare cells (1M-5M per condition) 
2. Wash cells in PBS. Spin and remove supernatant. 
3. Resuspend cells in 1 ml Dig-Wash buffer. Incubate for 5 minutes on ice. 
4. Split nuclei suspension into separate tubes for each condition. 
5. Spin and remove supernatant. 

 
QC: Check permeabilization was successful by taking 1 µl of the nuclei following the 5-minute 
incubation on ice, diluting to 10 µl with PBS, and staining with Trypan Blue. Alternatively, fix 
with 1% PFA for 2 minutes at room temperature and wash with Tween-Wash. Spin and 
remove supernatant. Resuspend in fluoromount with 1:500 Hoechst. 

B. Primary antibody binding 
1. Gently resolve each pellet in 200 µl Tween-Wash containing primary antibody at 1:50. 
2. Place on rotator at 4 °C for ~2 hr. 
3. Spin and remove supernatant. 
4. Wash twice with 0.95 ml Tween-Wash. For each wash, gently and completely resolve 

the pellet. This may take pipetting up and down ~10 times. Following resuspension, 
place on rotator at 4 °C for 5 minutes before spinning down. 

C. pA-Hia5 binding 
1. Gently resolve pellet in 200 µl Tween-Wash containing 200 nM pA-Hia5. See protein 

quantification protocol below.  
2. Place on rotator at room temperature for ~1 hr. 
3. Spin and remove supernatant. 
4. Wash with 0.95 ml Tween-Wash. For each wash, gently and completely resolve the 

pellet. Following resuspension, place on rotator at 4 °C for 5 minutes before spinning 
down. 

 
Protein quantification protocol: 

1. Thaw protein from -80 °C at room temperature and then move to ice immediately. 
2. Spin at 4 °C for 10 minutes at 10,000 x g or higher. 
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3. Transfer supernatant to a new tube. 
4. Use Qubit with 2 µl sample volume to quantify protein. 

 
QC:  

1. Add 1.6 µl of 16% PFA to 25 µl of nuclei in Tween-Wash (taken from the 0.95 ml final 
wash) for 1% total PFA concentration. 

2. Incubate at room temperature for 5 minutes. 
3. Add 975 µl of Tween-Wash to stop the fixation by dilution. 
4. Add 1 µl secondary antibody. 
5. Put on rotator for 30 minutes at room temperature, protected from light. 
6. Wash 2 times (or just once). Pellet likely will not be visible. 
7. Resuspend in mounting media after last wash. Use as little as possible, ideally 5 µl. 
8. Put 5 µl on a slide, make sure there are no bubbles, and put on a coverslip. 
9. Seal with nail polish along the edges. 
10. Image or put at -20 °C once the nail polish has dried. 

D. Activation 
1. Gently resolve pellet in 100 µl of Activation Buffer per sample. Be sure to add SAM to 

800 µM to the activation buffer at this step! 
2. Incubate at 37 °C for 30 minutes. 
3. Spin and remove supernatant. 
4. Resuspend in 100 µl cold PBS. 

 
QC: Check nuclei by Trypan blue staining to determine recovery and check integrity of nuclei 
if desired. 

E. DNA extraction 
Use the Monarch Genomic DNA Purification Kit. Follow protocol for genomic DNA isolation 
using cell lysis buffer. Include RNase A. NB. If fixation was performed, be sure to do the 56 °C 
incubation for lysis for 1 hour (not just 5 minutes) to reverse crosslinks. Perform two elutions: 
100 µl and then 35 µl. Quantify DNA yield by Qubit dsDNA BR Assay Kit. Concentrate by 
speedvac if necessary for 3 µg DNA in 48 µl for input to library prep. 

Perform library preparation and start the sequencing run 
Follow Nanopore protocol for Native Barcoding Ligation Kit with the following modifications: 

1. Load ~3 µg DNA into end repair. 
2. Incubate for 10 minutes at 20 °C for end repair instead of 5 minutes. 
3. Load ~ 1 µg of end repaired DNA into barcode ligation. 
4. Double the ligation incubation time to at least 20 minutes. 
5. Elute in 18 µl instead of 26 µl following barcode ligation reaction cleanup to allow for 

more material to be loaded into the final ligation. 
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6. Load ~3 µg of pooled barcoded material into the final ligation. If needed, concentrate 
using speedvac to be able to load 3 µg into the final ligation. 

7. Double the ligation incubation time to at least 20 minutes.  
8. Make sure to use LFB (NOT ethanol) for the final cleanup. 
9. Perform final elution in 13 µl EB. Take out 1 µl to dilute 1:5 for quantification by Qubit 

(and size distribution analysis by TapeStation / Bioanalyzer if desired). 
10. Load ~1 µg of DNA onto the sequencer.  
11. Bubbles will absolutely destroy pores and ruin runs; mix and spin down all flush/wash 

solutions really well to eliminate bubbles. 
12. The Flow Cell Wash Kit can increase the throughput per flowcell with <1% carryover of 

pre-wash barcodes. 
13. Spiking in more library + SQB + LB during a run, without a wash step, can also 

increase pore occupancy if it is low.  
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