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A large body of published work shows that proton (hydro-
gen 1 [1H]) magnetic resonance (MR) spectroscopy has 
evolved from a research tool into a clinical neuroimaging 
modality. Herein, the authors present a summary of brain 
disorders in which MR spectroscopy has an impact on pa-
tient management, together with a critical consideration 
of common data acquisition and processing procedures. 
The article documents the impact of 1H MR spectroscopy 
in the clinical evaluation of disorders of the central nervous 
system. The clinical usefulness of 1H MR spectroscopy has 
been established for brain neoplasms, neonatal and pe-
diatric disorders (hypoxia-ischemia, inherited metabolic 
diseases, and traumatic brain injury), demyelinating dis-
orders, and infectious brain lesions. The growing list of 
disorders for which 1H MR spectroscopy may contribute 
to patient management extends to neurodegenerative dis-
eases, epilepsy, and stroke. To facilitate expanded clini-
cal acceptance and standardization of MR spectroscopy 
methodology, guidelines are provided for data acquisition 
and analysis, quality assessment, and interpretation. Fi-
nally, the authors offer recommendations to expedite the 
use of robust MR spectroscopy methodology in the clinical 
setting, including incorporation of technical advances on 
clinical units.
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resulting in improved outcomes. This 
consensus article has been produced by 
an international group of imaging sci-
entists, neuroradiologists, neurologists, 
oncologists, and clinical neuroscientists 
from universities and MR vendors to 
document the impact of 1H MR spec-
troscopy in the clinical evaluation of 
disorders of the CNS. The MR Spec-
troscopy Consensus Group was formed 
from October 2011 to April 2012. The 
group drafted and finalized the manu-
script jointly through e-mail correspon-
dence and teleconferences with the 
group members and by means of two 
special interest group meetings held in 
connection to the 20th Scientific Meet-
ing of the International Society for Mag-
netic Resonance in Medicine in May 
2012 and the 21st Scientific Meeting of 
the International Society for Magnetic 
Resonance in Medicine in April 2013.

1H MR Spectrum of the Brain: 
Metabolites and Their Biomarker 
Potential

MR spectroscopy provides a very dif-
ferent basic “readout” than MR imag-
ing, namely a spectrum rather than an 

techniques were developed. These early 
localization techniques included point-
resolved spectroscopy (PRESS) (1,2) 
and stimulated echo acquisition mode 
(STEAM) (3), methods that are now 
widely used in clinical MR spectroscopy 
applications.

Preliminary studies revealed large 
differences in metabolite levels in acute 
stroke (4), chronic multiple sclerosis 
(5), and brain tumors compared with 
healthy brain (6). Although this work 
stimulated a surge of interest in 1H MR 
spectroscopy for diagnosing and assess-
ing CNS disorders during the early days 
of the “Decade of the Brain” (1990–
1999), many suboptimal patient studies 
(7) and the lack of consistent guidelines 
have led to a situation where, 20 years 
later, MR spectroscopy is still consid-
ered an “investigational technique” by 
some medical professionals and health 
care organizations. However, the ability 
to make an early, noninvasive diagnosis 
or to increase confidence in a suspected 
diagnosis is highly valued by patients 
and clinicians alike. As a result, an 
increasing number of imaging centers 
are incorporating MR spectroscopy into 
their clinical protocols for brain exam-
inations in selected patients. To facili-
tate expanded use of MR spectroscopy 
in the clinical setting, this consensus 
statement encourages standardization 
of data acquisition, analysis, and re-
porting of results.

When assessing the impact of im-
aging techniques on health care (8), 
it is recommended that six criteria be 
evaluated: (a) technical feasibility, (b) 
diagnostic accuracy, (c) diagnostic im-
pact, (d) therapeutic impact, (e) impact 
on outcome, and (f) societal impact (9). 
Although MR spectroscopy certainly 
fulfills the first two criteria, only a few 
studies have demonstrated that it has 
a wide impact on differential diagno-
sis, patient treatment, and outcome 
and none have measured the societal 
impact (ie, cost-benefit analysis) (8). 
Thus, it remains a challenge and task of 
high priority for the MR spectroscopy 
community to focus on studies that 
will quantify the extent to which MR 
spectroscopy improves diagnosis and 
leads to changes in patient treatment 

S ince the inception of magnetic 
resonance (MR) imaging in the 
1980s, its employment in the 

diagnostic evaluation of the central 
nervous system (CNS) has had a ma-
jor impact on patient management. 
With the advent of 1.5-T whole-body 
magnets, imaging of the CNS with un-
precedented detail became possible 
by using the proton (hydrogen 1 [1H]) 
signal of water. Complementary to 
structural MR imaging, 1H MR spec-
troscopy has become an attractive ap-
proach with which to assess the levels 
of metabolites in normal and diseased 
CNS, especially as image-controlled, 
localized MR spectroscopy acquisition 

Essentials

 n Hydrogen 1 (1H) MR spectros-
copy is complementary to MR 
imaging and adds clinically rele-
vant information about metabo-
lites in common brain 
abnormalities.

 n MR spectroscopy is clinic-ready 
for diagnostic, prognostic, and 
treatment assessment of brain 
tumors, various neonatal and 
pediatric disorders (hypoxia-isch-
emia, inherited metabolic dis-
eases, and traumatic brain 
injury), demyelinating disorders, 
and infectious brain lesions; it is 
expected to contribute to patient 
management in neurodegenera-
tive disorders, epilepsy, and 
stroke.

 n Provided that spectra are 
acquired reproducibly with a 
protocol that adheres to quality 
standards, clinical MR spectros-
copy can be performed success-
fully at either 1.5 or 3.0 T.

 n MR spectroscopy data acquisition 
and processing procedures must 
be harmonized across vendors 
for expanded clinical acceptance, 
as lack of standardization and 
quality assurance of MR spec-
troscopy data acquisition and 
analysis methods is a current 
impediment to widespread clin-
ical use.

Published online
10.1148/radiol.13130531 Content code: 

Radiology 2014; 270:658–679

Abbreviations:
CNS = central nervous system
Cr = creatine
Gln = glutamine
Glu = glutamate
Lac = lactate
mIns = myo-inositol
NAA = N-acetylaspartate
PRESS = point-resolved spectroscopy
SNR = signal-to-noise ratio
STEAM = stimulated echo acquisition mode
tCho = total choline
tCr = total creatine
TE = echo time
tNAA = NAA + N-acetylaspartylglutamate 
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quantified at all clinical magnetic field 
strengths and at almost all practical TEs 
up to 280 msec (19,20). At 1.5 T and 
short TEs (25–35 msec for PRESS, 20 
msec or shorter for STEAM), mIns and 
combined Glu and Gln can also be quan-
tified (21). At field strengths of 3.0 T and 
higher, additional metabolites are de-
tected at short TEs (eg, g-aminobutyric 
acid and glutathione) and the separation 
of Glu and Gln is feasible (22,23). Up 
to 18 metabolites can be quantified at 
short TEs and field strengths of 7.0 or 
9.4 T (23–25).

A subset of the metabolites detect-
able by using MR spectroscopy may 
serve as biomarkers in the context of 
physiologic and pathologic states. For 
at least one MR spectroscopy–detected 
metabolite, NAA, evidence from cell 
(26), ex vivo brain (27), and histologic 
studies (28) show unequivocally that, in 
the mature CNS, NAA is present only 
in neurons, axons, and dendrites—not 
in glial cells. Together with 1H MR spec-
troscopy results of human brain ex vivo 
specimens (29) and in vivo data (30), 
these observations make a strong case 
that NAA is a biomarker for neuronal 
integrity. In addition, NAA levels may 
reflect mitochondrial (dys)function 
(31). tNAA (comprised primarily of 
NAA, with a small contribution from 
N-acetylaspartylglutamate) is therefore 
commonly used as a positive or negative 
in vivo biomarker either for the pres-
ence of viable neurons or the assess-
ment of parenchymal damage. Elevated 
mIns is generally considered a marker 
for gliosis (32,33), and high tCho may 
be a marker for cellular proliferation, 
increased membrane turnover, or in-
flammation (13,29,34,35). Elevated Lac 
is indicative of anaerobic glycolysis and 
may be considered an unspecific MR 
spectroscopy biomarker for several ab-
normalities (36,37).

MR Spectroscopy of CNS Disorders

Neurologic diseases affect as many as 1 
billion people worldwide and are a major 
cause of disability and human suffering. 
Diagnosis is often complex, and the time 
window for effective therapy may be 
limited. MR imaging, with its excellent 

neuronal metabolite NAA, the glial me-
tabolite mIns, choline-containing com-
pounds such as glycerophosphocholine 
and phosphocholine, neurotransmitters 
Glu and g-aminobutyric acid, antioxi-
dants glutathione and ascorbate, and 
other important metabolites such as Cr, 
phosphocreatine, Gln, and lactate (Lac) 
(10,11). Additional metabolites arise in 
specific clinical conditions, such as suc-
cinate and acetate in abscesses (12), 
lipids in various abnormalities (13,14), 
and even exogenous substances that 
cross the blood-brain barrier, such as 
propylene glycol after administration of 
some parenteral preparations (15) and 
ethanol after at least moderate alcohol 
consumption (16).

The number of quantifiable me-
tabolites depends on the chosen pulse 
sequence and parameters, as well as the 
spectral resolution and signal-to-noise 
ratio (SNR), which are affected by many 
factors including the static magnetic field 
strength, quality of B0 field homogeneity, 
and radiofrequency coil used (17,18). 
The major singlet resonances originat-
ing from total MR spectroscopy–visible 
NAA (tNAA) (ie, NAA + N-acetylaspar-
tylglutamate), tCr (ie, Cr + phosphocre-
atine), and tCho (ie, primarily phospho-
choline + glycerophosphocholine) can be 

image (Fig 1). Although MR images are 
conventionally displayed as gray-scale 
images that radiologists interpret by 
means of visual inspection of signal in-
tensities and geometric structures, the 
MR spectrum consists of resonances 
or peaks that represent signal inten-
sities as a function of frequency (com-
monly expressed as parts per million, 
a relative, magnetic field–independent 
frequency scale). Spectra are obtained 
either from one selected brain region 
in the case of single-voxel spectroscopy 
or from multiple brain regions in the 
case of MR spectroscopic imaging. The 
spectral data format has no antecedent 
in radiology, as MR images do in radio-
graphic films, which may be one of the 
reasons for the relatively slow accep-
tance of MR spectroscopy in the clinical 
imaging community. Nevertheless, cur-
rently available analysis methods can 
help automatically and reliably quantify 
MR spectra in the clinical setting.

In vivo 1H MR spectroscopy focuses 
on carbon-bound protons in the 1–5 
ppm range of the chemical shift scale 
(Fig 1) and can depict metabolites that 
are present at high enough concentra-
tions (within the micromoles per gram 
range) and mobile on the MR spec-
troscopy time scale. These include the 

Figure 1

Figure 1: 1H MR spectrum acquired at 3.0 T from a volume of interest 
in occipital lobe (20 3 20 3 20 mm3, T1-weighted axial image) of healthy 
subject with the STEAM sequence (repetition time msec/echo time [TE] msec 
= 5000/8; 128 repetitions). tNAA = total N-acetylaspartate (NAA), tCr = total 
creatine (Cr), tCho = total choline, Glu = glutamate, Gln = glutamine, mIns = 
myo-inositol, MM = macromolecules.
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subtypes of gliomas with isocitrate 
dehydrogenase mutations, an example 
of molecular fingerprinting in vivo, on 
the basis of levels of 2-hydroxyglutarate 
(47). Few studies compared the diag-
nostic accuracy of MR spectroscopy 
with that of conventional MR imag-
ing, but one study established added 
value for a decision support system 
constructed from multicenter data. 
Namely, 1H MR spectroscopy data im-
proved low- and high-grade tumor pre-
diction relative to MR imaging alone; 
the area under the receiver operating 
characteristic curve for low-grade tu-
mors was 0.93 for MR imaging plus 
MR spectroscopy versus 0.81 for MR 
imaging alone, and the area under the 
receiver operating characteristic curve 
for high-grade tumors was 0.93 for MR 
imaging plus MR spectroscopy versus 
0.85 for MR imaging alone (48). Ele-
vated tCho along with decreased tNAA 
is typically regarded as a diagnostic 
feature of brain tumors (13) (Fig 2).  
In addition, the prominent signal at 
1.3 ppm, which arises from lipids pre-
sent in cytoplasmic droplets associated 
with necrosis or hypoxia, is generally 
associated with higher grade and poor 
survival (49–51) (Fig 2). Conversely, 
nonneoplastic lesions such as abscesses 
and tuberculomas often demonstrate 
elevated amino acids and lipids (52). 
Other metabolites observed in brain 
neoplasms include taurine in primitive 
neuroectodermal tumor (53), alanine 
in meningiomas (13), and glycine in 
high-grade pediatric tumors (54). If bi-
opsy is needed for diagnosis, the tCho/
tNAA ratio can help differentiate areas 
of solid tumor with the highest cell den-
sity from edema (55,56). The detection 
of an increased tCho/tNAA ratio in the 
peritumoral region further reflects tu-
mor invasiveness and can thus be used 
to differentiate high-grade gliomas from 
brain metastases that exhibit a near-
normal spectrum in the peritumoral re-
gion (57,58). MR spectroscopy has also 
been shown to have a decisive role in 
the diagnosis of low-grade versus high-
grade tumors, as well as in the diag-
nosis of metastasis versus high-grade 
tumors, as part of a diagnostic work-up 
that includes conventional MR imaging 

Although it plays a central role in the 
clinical management of patients with 
brain tumors, MR imaging alone can-
not provide the answer to many impor-
tant clinical questions. These include 
differentiating tumor from other focal 
lesions (giant demyelinating plaques, 
encephalitis), obtaining a definitive 
diagnosis of atypical ring-enhancing 
focal lesions (ie, high-grade gliomas, 
metastasis, lymphoma, and abscess), 
identifying the optimal biopsy sites in 
heterogeneous gliomas, monitoring the 
response to treatment, and differentiat-
ing between treatment-induced changes 
and recurrent tumor. MR spectroscopy 
can provide information in all of these 
key clinical areas, and it is increas-
ingly being used as an adjunct to MR 
imaging.

The earliest reports in human brain 
tumors (6), together with work in ex 
vivo specimens (39,40) and cancer cells 
(41), demonstrated that MR spectros-
copy offers great potential for noninva-
sive assessment of brain neoplasms. For 
example, MR spectroscopy in conjunc-
tion with perfusion imaging provided a 
sensitivity of 72% and a specificity of 
92% in the differentiation of tumors 
from nonneoplastic lesions (42). Simi-
larly, a sensitivity of 93% and a speci-
ficity of 60% were achieved when using 
these two methods for identifying high- 
versus low-grade gliomas, a substantial 
improvement in sensitivity over that 
with conventional MR imaging (43).

Large multicenter studies have de-
termined the accuracy of single-voxel 
MR spectroscopy with pattern recogni-
tion algorithms for diagnosing brain tu-
mor histology and grade (44–46). Short 
TE MR spectroscopy gives an accuracy 
of approximately 90% for all pairwise 
comparisons of the main adult tumor 
types (meningiomas, low-grade glioma, 
glioblastoma multiforme, metastases) 
except for glioblastoma multiforme ver-
sus metastasis, where the accuracy was 
78% (44,46). Combining short and long 
TE MR spectroscopy gives a diagnostic 
accuracy for the main childhood brain 
tumor types (pilocytic astrocytoma, 
medulloblastoma, and ependymoma) 
of 98% (45). More recently, MR spec-
troscopy helped identify molecular 

soft-tissue contrast, is commonly the 
modality of choice for the detection of 
brain lesions. The morphologic details 
and the sensitivity to changes in content 
and physical properties of water are ex-
quisite. However, conventional MR im-
aging is not able to depict changes in cell 
density, cell type, or biochemical compo-
sition—all of which can be investigated 
with MR spectroscopy. Furthermore, le-
sions of different underlying pathophys-
iology often manifest with a similar MR 
imaging appearance. Accordingly, MR 
imaging and MR spectroscopy are com-
plementary tools for diagnosing disease 
and monitoring disease progression and 
response to therapy.

In the next sections, we will first 
report on the clinical impact of 1H MR 
spectroscopy in the evaluation of dis-
eases in which it has already been dem-
onstrated to be valuable and next on the 
potential clinical utility of MR spectros-
copy in disorders where substantial re-
search activity has occurred in the past 
2 decades with consistent results across 
laboratories. The breakdown is based on 
(a) the demonstration of improved diag-
nostic accuracy of MR spectroscopy over 
other commonly used clinical imaging 
modalities, (b) the presence of disease-
linked specific metabolites in the 1H MR 
spectrum, and (c) the demonstration 
of reduced need for invasive diagnostic 
procedures. In general, the “patient-
ready” applications involve large disease 
effects detectable in an individual MR 
spectrum, whereas disorders for which 
1H MR spectroscopy is expected to con-
tribute to future patient management 
involve subtle spectroscopic changes 
that are more challenging to detect in 
individual cases. Table 1 summarizes the 
CNS disorder entities that are covered 
herein and lists metabolites of interest 
for these disorders.

Neurologic Diseases in Which 1H MR 
Spectroscopy Is Valuable for Clinical 
Decision Making

Brain Tumors
Clinical decision making in neuro-on-
cology is achieved by a multidisciplin-
ary team combining information from 
many sources, including MR imaging. 
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(67), sometimes even despite apparent 
homogeneous imaging characteristics. 
It is common to find low-grade oligo-
dendrogliomas with malignant imag-
ing features, nonenhancing high-grade 
gliomas with benign imaging features, 
and focal areas of malignancy in low-
grade gliomas. In low-grade gliomas, 
detection of areas with infiltrative tu-
mor cells (close or distant to the main 
mass) is very important as these can 
be the primary sites of tumor recur-
rence. Delineation of tumor infiltration 
is an essential part of (a) preoperative 
decision making, (b) intraoperative 
MR imaging–guided resections, and 
(c) postoperative follow-up and appli-
cation of additional therapies (post-
surgery radiation and/or chemother-
apy). MR spectroscopy was shown to 
spatially correlate with histologic type 
and grade and to reflect heterogene-
ity in brain tumors before surgery: 
A tCho/tNAA ratio greater than 2, a 
Lac/tNAA ratio greater than 0.25, and 
the presence of lipid at MR spectro-
scopic imaging with a long TE (144 
msec) are characteristics of a high-
grade tumor, allowing demarcation 

TE MR spectroscopic imaging has been 
used to identify regions of more aggres-
sive phenotype within a heterogeneous 
gliobastoma multiforme to improve 
gamma knife radiosurgery (64).

For neurosurgical treatment plan-
ning, MR spectroscopy plays a role in 
differentiating areas of tumor from 
benign processes and, together with 
other MR imaging methods, in estab-
lishing their relationship to key nor-
mal brain structures (56), particularly 
in gliomas. Infiltrative gliomas extend 
well beyond the T2-defined main tumor 
bulk. One study reported that the MR 
spectroscopy–defined abnormal area 
was an average of 24% larger than 
that delineated by T2 hyperintensity 
and confirmed the accuracy of an ele-
vated tCho/tNAA ratio with histologic 
and immunohistochemistry findings 
for tumor cells (65). Another study 
demonstrated increased mIns and Gln 
levels in the contralateral hemisphere 
of patients with untreated gliobastoma 
multiforme, a finding that was indic-
ative of early neoplastic infiltration 
(66). In addition, gliomas of all grades 
may have intratumoral heterogeneity 

with gadolinium and diffusion-weighted 
and perfusion MR imaging (59).

MR spectroscopy may be used to 
determine prognosis and to guide treat-
ment planning in oncology patients 
when surgery is not indicated, such as 
in diffuse brainstem gliomas and intra-
medullary tumors in the spinal cord 
(60). A tCho/tNAA peak amplitude ra-
tio of at least 2.1 (either at single-voxel 
spectroscopy with a TE of 144 or 270 
msec or at MR spectroscopic imaging 
with a TE of 280 msec) was found prog-
nostic of unfavorable outcome in pedi-
atric diffuse pontine gliomas (61). Prog-
nostic MR spectroscopy markers are 
important for treatment stratification 
and can help identify patients who need 
more intensive treatment from the out-
set for some tumor types (47,62,63). 
These include the detection of 2-hy-
droxyglutarate in isocitrate dehydroge-
nase-1 mutated gliomas (47), citrate 
in proliferating pediatric astrocytomas 
(62), and highly MR spectroscopy–visi-
ble saturated lipids with elevated scyllo-
inositol and low glutamine in high-risk 
pediatric brain tumors (64). A tCho/
tNAA ratio of more than 2.1 at long 

Figure 2

Figure 2: MR spectroscopy of astrocytomas. Average (solid line) and standard deviation (shaded area) 1H MR spectra (1.5 T, STEAM or PRESS, 2000/30, 128–256 
repetitions per spectrum included in average) in World Health Organization (a) grade II (n = 14) and (b) grade IV (n = 42) astrocytomas. Characteristically elevated 
tCho/tCr ratio and absence of tNAA is apparent in both tumor spectra compared with that from normal brain (see Fig 1). Lac in low-grade tumor may be the result of 
hypoxia and/or a metabolic shift toward glycolysis, as is commonplace in cancer. In high-grade tumor, large macromolecule (MM) and lipid (Lip) signals (at chemical 
shifts 2.0, 1.3, and 0.9 ppm) are associated with necrosis. Glx = combination of Glu and Gln. (Reprinted, with permission, from reference 49.)
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persistence of high Lac is associated 
with poor outcome (77). MR spectros-
copy can be used as a means to assess 
treatment efficacy of hypothermia, a 
proven neuroprotective treatment for 
perinatal asphyxia (78).

Although rare, inherited metabolic 
disorders are a significant disease entity 
in neuropediatrics. Clinical symptoms in 
certain inherited metabolic diseases are 
due to the accumulation of metabolites 
that are either neurotoxic or interfere 
with normal function. If the accumulating 
substance is visible at MR spectroscopy, 
its presence or elevation in the spectrum 
can be used for diagnosis. MR spec-
troscopy has proved clinically useful in 
neonates suspected of having metabolic 
disorders (79–81) owing to the unique 
ability to noninvasively detect the meta-
bolic defect in vivo (82–85). For example, 
the presence of pyruvate (plus Lac and/
or alanine) and succinate are early indi-
cators of pyruvate and succinate dehydro-
genase complex deficiencies, respectively 
(79,86–88). Detection of elevated gly-
cine, in particular at long TEs, is clinically 
diagnostic in nonketotic hyperglycinemia 
(82), although intracerebral hemorrhage 
presents a confound in the interpretation 
of high glycine levels (89). A grossly ele-
vated tNAA level is a diagnostic hallmark 
of Canavan disease (90).

In other inherited diseases, the 
reduction of metabolites owing to 

contrast MR imaging was reported to 
have 100% positive and negative predic-
tive values for discriminating posttreat-
ment change, which is more accurate 
than both conventional MR imaging 
(positive predictive value, 50%) and fluo-
rine 18 deoxyglucose positron emission 
tomography (PET) (positive predictive 
value, 67%; negative predictive value, 
60%) (72). However, dynamic suscep-
tibility contrast MR imaging showed a 
substantial false-positive rate, which was 
not the case with MR spectroscopy—
a finding that points to an incremental 
value of MR spectroscopy in separating 
tumor recurrence and posttreatment in-
jury (72).

In summary, MR spectroscopy adds 
diagnostic and prognostic benefits to 
MR imaging and aids in treatment plan-
ning and monitoring of brain cancers.

Pediatric Disorders: Hypoxia-Ischemia, 
Inherited Metabolic Diseases, and 
Traumatic Brain Injury
1H MR spectroscopy was used for pe-
diatric brain imaging as early as 1990–
1991 (73–75), and it is part of routine 
imaging protocols in many specialized 
academic health centers and children’s 
hospitals. For the newborn infant, 
quantitative assessment of cerebral 
Lac due to hypoxia-ischemia is one of 
the earliest imaging signs indicative of 
clinical brain injury (37,76) (Fig 4), and 

of brain parenchyma adjacent to MR 
imaging–delineated tumor (56). In ad-
dition, recent intraoperative 1H MR 
spectroscopy at 3.0 T helped differen-
tiate tumor from a nontumoral abnor-
mality, as indicated by a high tCho/tCr 
ratio and the presence of Lac, in 57% 
of suspected cases and had a positive 
effect on surgical success and patient 
outcome (68).

MR spectroscopy can help avoid the 
incorrect diagnosis of tumor progres-
sion, which can lead to inappropriate 
surgery, other treatment, and patient 
distress in cases of posttreatment-in-
duced changes that are ambiguous at 
conventional MR imaging. For exam-
ple, the tCho/tNAA ratio was shown to 
reliably differentiate recurrent glioma 
from postradiation injury (69) (Fig 3).  
Similarly, MR spectroscopy (tCho/
water), either alone or in combination 
with conventional MR imaging, can fur-
ther contribute to the assessment of 
response to anticancer treatment (70). 
MR spectroscopy (tCho/tCr and tCho/
tNAA) and dynamic susceptibility con-
trast MR imaging in isolation showed 
diagnostic accuracy of 84.6% and 86%, 
respectively; the accuracy increased to 
93.3% when combined data were used 
for tumor regrowth and posttreatment 
injury (71). MR spectroscopy (tNAA/
tCho ratio and tCho concentration) in 
combination with dynamic susceptibility 

Figure 3

Figure 3: 1H MR spectroscopy in glioblastomas. Contrast-enhanced T1-weighted MR images and MR spectroscopy grid (3.0 T, PRESS, 1700/30, three 
repetitions, section thickness = 20 mm, matrix size = 16 3 16, total acquisition time = 6 minutes 46 seconds) are shown together with representative spectra 
from voxels in contrast-enhancing areas. (a) Image and spectrum from patient with recurrent gliobastoma multiforme exhibits elevated tCho/tCr ratio as well as 
elevated lipid (Lip) and Lac levels. (b) Image and spectrum from histologically proven case of postradiation injury exhibits markedly elevated lipid (Lip) and Lac 
levels along with normal-appearing tCho/tCr ratio.
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For effective clinical management, ob-
jective means to evaluate long-term 
outcome are required, especially for 
comatose patients. In a cohort of chil-
dren with traumatic brain injury, a 
regression model, incorporating age, 
initial Glasgow coma scale, and pres-
ence of retinal hemorrhage and sup-
plemented with tNAA/tCr ratio and 
MR spectroscopy–visible Lac within 
the 1st month after incidence, was 
shown to differentiate between good 
and poor outcomes (102). In pediat-
ric near-drowning accidents, an MR 
spectroscopy index based on tNAA, 
Lac, and combined Glu and Gln was 
shown to correctly differentiate be-
tween good and poor outcomes—
with no false-positive results (103). 
These data support the clinical utility 
of MR spectroscopy in combination 

More minor changes in single or 
multiple metabolites require care-
ful quantification of the MR spectra 
and comparison with well-established 
normal values. It is quite challenging 
to obtain these data in the pediatric 
population owing to limitations associ-
ated with imaging healthy children, but 
they are particularly crucial because 
of developmental changes in metabo-
lite levels (98). This challenge can be 
overcome by using normative data from 
children who undergo MR imaging and 
spectroscopy for the investigation of 
suspected neurologic conditions. This 
approach has proved useful in Hunter 
syndrome, a mucopolysaccoroidosis 
(99), and propionic acidaemia (100).

Traumatic brain injury is a major 
cause of disability and death among 
children younger than 14 years (101). 

decreased synthesis or transport can be 
detected with MR spectroscopy. An ab-
sent or severely reduced tCr level pre-
sents a limited differential diagnosis of 
three underlying genetic defects (91): 
The lowest tCr levels are observed in 
untreated children with a Cr synthesis 
defect (guanidinoacetate methyltrans-
ferase or arginine:glycine amidinotrans-
ferase deficiency), and treatment leads 
to at least partial normalization of cere-
bral tCr (92,93) (Fig 5). In males with 
a Cr-transporter deficiency, brain tCr 
concentrations are reduced by four- to 
fivefold compared with that in healthy 
control subjects. These patients do not 
benefit from Cr therapy either with or 
without additional arginine and glycine 
(94,95). The absence of tNAA owing 
to a defect in NAA synthesis (96) has 
been described in a case study (97).

Figure 4

Figure 4: 1H MR spectroscopy in early assessment of perinatal hypoxia-ischemia in the newborn. MR imaging was performed 
(a–c) 12 hours and (d, e) 10 days after perinatal asphyxia. (a) Axial T2-weighted image shows no signal abnormalities, 
whereas (b) spectrum (1.5 T, PRESS, 1500/288, 192 repetitions) obtained from the right basal ganglia shows markedly 
increased Lac resonance with preserved tNAA, tCr, and tCho resonances. (c) Diffusion-weighted image (echo-planar imaging; 
30 directions; b value, 700 sec/mm2) with axial apparent diffusion coefficient map shows no diffusion abnormalities. (d) Axial 
T2-weighted images show areas of high (white arrows) and low (black arrows) signal intensity in putamen and thalamus, 
representing clear ischemohemorrhagic lesions. (e) Axial proton density images demonstrate prominent detection of lesion’s 
extension. (Reprinted, with permission, from reference 76.)
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an elevated tCho/tCr ratio, normal 
or reduced tNAA/tCr ratio (35), and 
elevated macromolecular signals, pos-
sibly arising from myelin breakdown 
products (114). The tNAA/tCr ratio in 
the normal-appearing white matter of 
patients with varying clinical presenta-
tions helps differentiate patients from 
healthy control subjects (115,116) and 
inversely correlates with disability 
scores—especially at an early stage 
(117). In addition, the tCho/tCr ratio 
is elevated in normal-appearing white 
matter months before lesions become 
detectable at conventional MR imaging 
(118). These observations underscore 
the ability of MR spectroscopy to char-
acterize white matter abnormality in 
evolving multiple sclerosis (119). In 
addition, increasing evidence for gray 
matter involvement in multiple sclero-
sis (120) provides motivation to study 
these lesions with MR spectroscopy as 
well (113). Finally, MR spectroscopic 
imaging might play an important role 
in the differential diagnosis of multi-
ple sclerosis, with acute disseminated 
encephalomyelitis showing recovery of 
tNAA signal losses as a favorable prog-
nostic sign (121).

Focal Lesions Caused by Infectious 
Agents
Brain infections can be life threaten-
ing and, hence, require an early diag-
nosis for optimal clinical management. 
Definitive laboratory diagnostic tests 
can be time consuming, thus delaying 
therapy. MR spectroscopy is valuable in 
the differential diagnosis of intracranial 
ring-enhancing lesions. When a ring-
enhancing mass lesion manifests with 
nonspecific clinical and conventional 
MR imaging features, 1H MR spectros-
copy can help confirm the definitive 
diagnosis of pyogenic abscess and pro-
vide information about the type of in-
fective agent (12,122). Demonstration 
of succinate, acetate, alanine, leucine, 
isoleucine, and valine are considered 
specific for pyogenic abscess (Fig 7)—
even in the absence of reduced diffu-
sivity at MR imaging. Similarly, para-
sitic cysts contain succinate and acetate 
in the absence of amino acids, which 
helps differentiate them from anaerobic 

follow-up is an indication for treatment 
with hematopoietic stem cell transplan-
tation (Fig 6). Hematopoietic stem cell 
transplantation performed before sub-
stantial tissue degeneration as assessed 
with tNAA results in clinical stabilization 
(108). In patients who are newly diag-
nosed with juvenile or adult metachro-
matic leukodystrophy, a combination of 
MR imaging and MR spectroscopy can 
be used to judge the state of brain tissue 
inflammation (109,110). Although mIns 
is typically increased even in the early 
stages of metachromatic leukodystro-
phy, as long as tNAA is still within the 
normal range, hematopoietic stem cell 
transplantation is indicated (111,112).

The clinical use of MR spectros-
copy in multiple sclerosis, an acquired 
demyelinating disease, remains limited 
despite the various insights into disease 
pathology that it has offered as well as 
its ability to assess the burden of ax-
onal damage (113). MR spectroscopy 
of chronic multiple sclerosis plaques 
in white matter shows a consistently 
reduced tNAA/tCr ratio (5,35) and, 
sometimes, an elevated tCho/tCr ra-
tio (35). Spectra from plaques un-
dergoing active inflammation show 

with clinical measures for predicting 
outcome.

Demyelinating Diseases
MR spectroscopy plays an important 
role alone (104) or in addition to other 
semiquantitative MR techniques (105) 
in the differential diagnosis of heredi-
tary leukoencephalopathies. MR spec-
troscopy provides valuable information 
about tissue pathophysiology for at 
least three different metabolic profiles: 
(a) hypomyelination, (b) white matter 
rarefaction, and (c) demyelination, 
which were differentiated with tCho/
tCr and tNAA/tCr ratios in a study of 
70 children (104).

Hematopoietic stem cell transplan-
tation is currently the only treatment 
option for inherited demyelinating dis-
orders such as X-linked adrenoleukodys-
trophy, metachromatic leukodystrophy, 
and globoid cell leukodystrophy (106). 
MR spectroscopy is used to monitor the 
onset of demyelination in neurologically 
asymptomatic patients with X-linked ad-
renoleukodystrophy with high genotypic 
variability (14,32,107). Interval elevation 
of mIns/tNAA and tCho/tNAA ratios 
in normal-appearing white matter at 

Figure 5

Figure 5: 1H MR spectroscopy of neurometabolic disorder. (a, b) White matter spectra (1.5 T, PRESS MR 
spectroscopic imaging, 3000/30, six weighted averages, nominal voxel size = 10 3 10 3 15 mm3) in girl 
with guanidinoacetate methyltransferase deficiency before treatment at age 3 years 2 months (a) and after 
3.5 months of treatment with oral creatine supplementation (b). Resonance from creatine-containing metab-
olites (tCr) returned to normal in this region as well as in other investigated brain areas.
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typically localized to the region(s) af-
fected by the degenerative process 
(124,125). The tNAA levels reflect 
pathologic severity (33,126) (Fig 8) 
and correlate with clinical measures in 
cross-sectional studies (127,128). Con-
sistently, tNAA/tCr tends to be lower in 
subjects with mild cognitive impairment 
who convert to dementia compared 
with those who remain stable (129). 
Therefore, the tNAA/tCr ratio or tNAA 
concentration may be a valuable prog-
nostic indicator of disease progression, 
either alone or in combination with vol-
umetric measurements (130).

Other 1H MR spectroscopy chang-
es associated with neurodegenera-
tion include a decreased Glu level 
(128,131,132), an elevated tCho level 
(125), and an elevated mIns level 
(132,133). The elevation in mIns may 
be associated with glial or microglial 
activation, a characteristic feature of 
these diseases (134). An elevated mIns 
level appears early in dementia, pre-
ceding the decrease in tNAA concen-
tration (Fig 8), atrophy, and associated 
neuronal loss and cognitive impair-
ment, as demonstrated in presymp-
tomatic carriers for familial Alzheimer 
disease (135) and in patients with 
frontotemporal lobar degeneration 
mutations (136).

1H MR spectroscopy may also be 
used to monitor treatment response 
in neurodegenerative diseases. For ex-
ample, a transient increase in tNAA 
concentration was associated with 
short-term functional response dur-
ing donepezil treatment in Alzheimer 
disease, suggesting that tNAA also re-
flects functional integrity and recovery 
(137). Other studies have shown a de-
creased mIns/tCr ratio following done-
pezil treatment (138) and an increased 
Glu level after galantamine treatment 
for Alzheimer disease (139).

Epilepsy
Epilepsy is a common disorder, with a 
prevalence of 0.5%–1.0% worldwide. 
The specific etiology underlying the sei-
zures can be variable, with 60%–70% of 
all patients responding to medications 
(140,141). Surgical intervention can be 
effective in the remaining 30%–40% of 

Neurologic Diseases in Which 1H 
MR Spectroscopy May Contribute to 
Patient Management

Neurodegenerative Diseases

Neurodegenerative diseases such as 
Alzheimer disease, Parkinson disease, 
Huntington disease, amyotrophic lateral 
sclerosis, and spinocerebellar ataxias 
are debilitating conditions that result 
in progressive neuronal degeneration 
and death. The characteristic feature of 
neurodegenerative diseases at 1H MR 
spectroscopy is a decrease in tNAA, 

abscesses (122,123). MR spectroscopy 
helps in the differentiation of tubercu-
loma with solid caseation from other 
nontuberculous lesions that have a sim-
ilar appearance at conventional MR im-
aging. In vivo 1H MR spectroscopy from 
tuberculous abscess shows only Lac and 
lipid signals and is devoid of cytosolic 
amino acids. Magnetization transfer ra-
tio MR imaging and amino acid signals 
in 1H MR spectroscopy help differenti-
ate pyogenic from tuberculous abscess 
(12). MR spectroscopy therefore plays 
a role in the diagnosis and clinical man-
agement of focal brain infections.

Figure 6

Figure 6: Single-voxel 1H MR spectroscopy shows progression of disease in boy with X-linked adreno-
leukodystrophy. At baseline, T2-weighted signal abnormalities on conventional MR image are seen only in 
posterior third of centrum semiovale, and spectrum (4.0 T, STEAM, 4500/5, 64 repetitions) is normal. One 
year later, MR image shows progression of T2 signal abnormalities in middle third of centrum semiovale. 
Spectrum in anterior third of centrum semiovale already shows increased choline (tCho) and mIns in associa-
tion with tNAA signal loss. As predicted with the spectrum at 1 year, MR image obtained 2 years later shows 
further progression of signal changes, with spectrum showing further mIns signal increase and tNAA loss. 
Also note progressive changes in Glu/Gln ratio and accumulation of mobile lipids (Lip) plus Lac at 1- and 
2-year follow-up.
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acid in patients with epilepsy at ultra-
high field strengths (150).

The most common abnormality in 
temporal lobe epilepsy is mesial tempo-
ral sclerosis, which may often be effec-
tively treated with unilateral temporal 
lobectomy. Multimodal evaluation, which 
involves scalp or intracranial electro-
encephalography, conventional MR im-
aging, and/or metabolic imaging with 
PET, is commonly used to lateralize the 
epileptogenic zone in mesial temporal 
sclerosis. A meta-analysis of 1H MR spec-
troscopy literature comprising 22 studies 

means of invasive electroencephalo-
graphic measurements.

Given the close physiologic relation-
ship between brain function and metab-
olism (144), MR spectroscopy has been 
extensively used to better understand 
and localize human epilepsy (145,146). 
Abnormalities in tNAA concentration 
and the tNAA/tCr ratio have been use-
ful for detecting injured brain in the sei-
zure onset focus (145–149). MR spec-
troscopic imaging measures have also 
been extended to neurotransmitters, 
for example, to assess g-aminobutyric 

patients (142,143). In the more com-
mon type of focal epilepsy, surgical 
outcomes are improved if the region 
of seizure onset can be clearly defined 
(142,143). Conventional MR imaging 
can accurately localize the seizure on-
set region, for example, by identifying 
unilateral hippocampal atrophy or mal-
formations of cortical development. 
However, MR imaging may often be 
negative or ambiguous (eg, bilateral in-
volvement) and, in some cases, lesions 
seen at MR imaging may not match 
the focus of seizure onset identified by 

Figure 7

Figure 7: 1H MR spectroscopy of pyogenic abscess in cerebellum. (a) Axial T2-weighted image shows well-defined 
hyperintense lesion with hypointense wall. (b) Axial T1-weighted image shows hypointense lesion with isointense wall. 
(c) Diffusion-weighted image shows restricted diffusion in lesion. (d) Postcontrast T1-weighted image shows ring 
enhancement. (e) In vivo 1H-MR spectrum (3.0 T, PRESS, 3000/144, 128 repetitions) from center of lesion shows 
resonances of amino acids (AA, 0.9 ppm), lipid (Lip) and Lac (1.3 ppm), alanine (Ala, 1.5 ppm), acetate (Ac, 1.9 ppm), 
and succinate (Suc, 2.4 ppm). The resonances from alanine, Lac, and amino acids are inverted at the TE used owing to 
J evolution.
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may also have value for the assessment 
of epilepsy in children, with a low tNAA 
concentration serving as an important in-
dex of disease state (154).

Acute Stroke and Brain Ischemia
Overall, MR imaging plays a limited role 
in decision making for clinical manage-
ment of patients with acute stroke, 

with no abnormality at conventional MR 
imaging or in those with a bilateral epilep-
togenic zone on electroencephalographic 
recordings. However, MR spectroscopy 
is still considered a research tool in the 
context of surgical planning for epilepsy 
(151). This picture may change when 3.0-
T (152) or higher field MR systems (153) 
are more widely used. MR spectroscopy 

(19 performed with 1.5-T units) indicates 
that ipsilateral MR spectroscopy abnor-
mality is associated with good outcome 
following surgery (151). Decreased 
tNAA/tCr and/or tNAA/(tCr + tCho) 
ratios were the most common MR spec-
troscopy indexes for epileptogenic zone. 
MR spectroscopy may offer potential in 
presurgical decision making in patients 

Figure 8

Figure 8: 1H MR spectroscopic findings at different pathologic and clinical stages of Alzheimer disease. Top panel: 
Antemortem 1H MR spectroscopic findings in posterior cingulate gyrus voxel (T1-weighted midsagittal image) are 
associated with postmortem pathologic diagnosis of Alzheimer disease (low, intermediate, and high likelihood). For each 
pathologic diagnosis, plot shows individual values, a box plot of the distribution, and estimated mean and 95% confi-
dence interval for the mean. A strong association is observed with tNAA/mIns ratio (R 2 = 0.40; P , .001). (Reprinted, 
with permission, from reference 33.) Bottom panel: Examples of 1H MR spectra (1.5 T, PRESS, 2000/30, 128 repetitions) 
in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are compared with that from a cognitively 
normal subject (control). mIns is elevated as an early marker of subsequent neurodegenerative changes in patient with 
mild cognitive impairment. tNAA is decreased and mIns is further elevated in patient with Alzheimer disease.
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Therefore, quantitative metabolite data 
for tNAA and Lac are of value for evalu-
ating the nature of ischemia and predict-
ing risk for new ischemic events (161).

Technical Considerations

Data Acquisition
Any application of MR spectroscopy 
to a clinical question starts with the 
decision about a pulse sequence and 
parameters. In general, this choice 
is dictated by the disease (Table 2). 
When the affected brain region is well 
defined, single-voxel spectroscopy is the 
preferred method and provides robust 
metabolite quantification in the se-
lected volume of interest, whereas MR 
spectroscopic imaging is the method 
of choice in diseases where the focal 
point of pathology is unclear, if there 
are multiple lesions, or if the lesions 
are heterogeneous. For example, MR 
spectroscopic imaging is advantageous 
in the accurate evaluation of tissue 
status in localization-related epilepsy 
(Table 1) and in the investigation of the 
heterogeneity of large tumors (67). In 

The concentration of tNAA in brain pa-
renchyma after ischemia (158) and in 
chronic infarction may even decrease 
below the level of detection with in vivo 
1H MR spectroscopy (4). Measurement 
of tNAA levels could influence patient 
management; severely decreased tNAA 
appears to be related to clinical stroke 
syndrome and more extensive infarc-
tion, both indexes of poor clinical out-
come (36). A decrease in tNAA on fol-
low-up MR spectroscopy data has been 
associated with ongoing ischemia and 
progressing infarction (159).

Lac is another metabolite with po-
tential value for clinical evaluation in 
stroke. Lac is the end product of non-
oxidative glucose consumption and is 
commonly considered as a signature 
of hypoxia and/or ischemia. Elevated 
Lac in the core of ischemic tissue cor-
relates with final infarct size and clini-
cal outcome (159). The presence of Lac 
with a concomitant reduction in tNAA 
was observed in large infarcts with poor 
outcome (36). Lac levels that are per-
sistently elevated for weeks in infarcted 
brain parenchyma have been associated 
with inflammatory macrophages (160). 

usually because of a lack of immediate 
availability of the imaging unit and of 
patient-related MR imaging safety in-
formation. The decision to thrombolyse 
or to apply any other form of therapeu-
tic intervention in the hyperacute phase 
is based on clinical grounds and exclu-
sively involves computed tomography 
to rule out either brain hemorrhage or 
very large ischemic lesions, which usu-
ally have unfavorable outcomes (155). 
Diffusion-weighted and perfusion MR 
imaging are superior imaging tech-
niques for detecting acute ischemia and 
highlight the penumbra, but they are 
rarely used outside of specialized acute 
stroke clinics that have rapid access to 
MR imaging. Similarly, 1H MR spectros-
copy offers great potential after the hy-
peracute phase of stroke (beyond 4.5 
hours) to assess several key character-
istics of ischemic brain for prognostic 
purposes, such as severity of ischemia 
and neuronal dysfunction and damage.

Preclinical work has shown that 
tNAA decreases in ischemic brain pa-
renchyma in a linear fashion for the first 
6 hours, followed by a slower decrease 
for the subsequent 24 hours (156,157). 

Table 2

Guidelines for Choosing Single- or Multivoxel MR Spectroscopy (MR Spectroscopic Imaging)

Technique When to Choose Technique Advantages Disadvantages

Single-voxel spectroscopy Single focal lesion or diffuse disease;  
  to answer a single question (eg, tumor  

vs abscess); complement to  
MR spectroscopic imaging in focal  
lesion (eg, short TE single-voxel  
spectroscopy to complement long  
TE MR spectroscopic imaging);  
in areas of interest close to skull or  
difficult to obtain an acceptable shim

Acquisition parameters optimized for  
  volume of interest result in high data  

quality; fast (~2–5 min) if large voxel  
size (eg, 6–8 mL) is chosen; automatic  
water reference acquisition standard on  
most clinical units; data acquisition can be  
aborted and limited dataset can usually still  
be used; voxel boundaries generally better  
defined than with MR spectroscopic imaging

Selected volume is large and block shaped;  
  region of interest must be placed  

accurately at time of investigation; no  
information on spatial heterogeneity of  
lesion and “normal” brain regions; time  
consuming if multiple locations are to  
be measured

MR spectroscopic imaging 
 
 
 
 
 
 
 
 
 
 

Undefined, multiple, or heterogeneous  
  lesions; comparison of brain regions  

in time-efficient manner; diffuse  
disease (if reliable short TE  
MR spectroscopic imaging with  
quantification is available) 
 
 
 
 
 

Information on tissue heterogeneity; data  
  format compatible with conventional  

MR imaging (spectroscopic image display  
integrates with other imaging modalities);  
larger anatomic coverage; smaller voxel  
volumes (~1 mL and below) are typically  
used to assess metabolite distributions;  
retrospective selection of region of interest  
within the investigated volume 
 
 

More exacting system criteria necessary to  
  minimize spectral loss due to insufficient 

lipid and water suppression (shim over  
large volumes worse than in single- 
voxel spectroscopy); longer acquisition  
times when using conventional  
encoding (~6–30 min depending  
on resolution); water reference  
for quantification adds substantial  
acquisition time; more experience  
is needed to plan MR spectroscopic  
imaging
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can be used for visual inspection of 
spectra and basic quantification of 
metabolite ratios. In addition, off-line 
postprocessing tools (165) and sophis-
ticated quantification packages such as 
LCModel (166) are widely used. These 
packages provide quantitative error 
estimates for metabolite quantifica-
tion (eg, Cramér-Rao lower bounds), 
with which the reliability of metabo-
lite concentrations can be assessed 
(see Appendix E1 [online] for recom-
mended criteria). The availability of 
error estimates is an important re-
quirement for clinical decision making 
when using quantitative MR spectros-
copy measures; therefore, vendors of 
clinical imaging units are encouraged 
to implement more robust, U.S. Food 
and Drug Administration–approved 
MR spectroscopy analysis packages 
that provide such quantitative error 
estimates.

For clinical use, single-voxel spec-
troscopy data can be reported numeri-
cally as metabolite concentrations or as 
ratios, ideally supplemented with visual-
ization of volume of interest placement 
(167). On the other hand, information 
from two- or three-dimensional MR 
spectroscopic imaging must be made 
available to the clinician in a quick and 
easy image format to incorporate into 
the clinical routine. In addition, imple-
mentation of MR spectroscopy into 
picture archiving and communication 
systems is recommended to facilitate 
easy access to MR spectroscopy data in 
the standard work environment.

Reproducibility and Clinical Translation
Ultimately, test-retest reproducibility 
of measured metabolite levels deter-
mines the utility of MR spectroscopy 
for disease assessment. To be of clin-
ical value, experimental and biologic 
variability in the quantified metabo-
lite levels must be smaller than their 
changes caused by disease. Test-retest 
coefficients of variance reported at 1.5 
and 3.0 T (168–173) show improved ac-
curacy for several metabolites at higher 
fields and shorter TEs. Test-retest co-
efficients of variance of 6% or less are 
achievable for five metabolites (tNAA, 
tCr, tCho, mIns, Glu) with single-voxel 

potential gains in SNR and spectral res-
olution, it is important to note that field 
strength is not the sole determinant of 
the information content of spectra. In 
fact, a spectrum obtained at 1.5 T with 
a protocol adhering to spectral quality 
standards (Appendix E1 [online], Fig 9)  
provides more reliable metabolite in-
formation than a poor-quality spectrum 
obtained at 3.0 T. Overall, clinical MR 
spectroscopy can be successfully per-
formed at either 1.5 or 3.0 T for the 
majority of applications. Although the 
potential gains at magnetic fields higher 
than 3.0 T for clinical MR spectroscopy 
are still being assessed, significant im-
provements in spectral and spatial reso-
lution at 7.0 T have been reported. For 
example, previously inaccessible alter-
ations in low-concentration metabolites 
may be uncovered at 7.0 T (162). For 
MR spectroscopic imaging, the nominal 
spatial resolution can be reduced to 
0.14 mL at 7.0 T (163).

Finally, the importance of spec-
tral quality generated with the chosen 
pulse sequence, parameters, and field 
strength cannot be underestimated. For 
reliable clinical decision making based 
on MR spectroscopy data, obtaining 
high-quality, artifact-free spectra is cru-
cial. The sources and forms of artifacts 
in MR spectra have been reviewed in 
detail (164) and are summarized in Ap-
pendix E1 (online). The detection of 
such artifacts and exclusion of spectra 
based on predefined quality criteria re-
lies on the human expert in most ap-
plications of single-voxel spectroscopy, 
whereas automated quality assessment 
of MR spectroscopic imaging data is 
preferred. A practical guide to deter-
mine whether a spectrum is adequate 
for clinical use is provided in Figure 
9. Further considerations regarding 
the choices for clinical MR spectros-
copy data acquisition, including pulse 
sequence, parameters, field strength, 
and radiofrequency coils, as well as 
recommendations for spectral quality 
assessments, are detailed in Appendix 
E1 (online).

Data Analysis and Reporting
All clinical imaging units provide MR 
spectroscopy analysis software, which 

many abnormalities, single-voxel spec-
troscopy and MR spectroscopic imaging 
can be used in combination; for exam-
ple, MR spectroscopic imaging to first 
identify the lesion location and single-
voxel spectroscopy to quantify metabo-
lites that can be reliably obtained from 
high-quality, short TE spectra in the 
identified lesion (Table 1).

All of the major clinical MR imaging 
vendors provide MR spectroscopy pro-
tocols, primarily with use of the basic 
PRESS (1,2) and STEAM (3) sequences 
(Table 1). In addition, other state-of-
the-art single-voxel spectroscopy and 
MR spectroscopic imaging sequences, 
which offer various advantages over the 
basic STEAM and PRESS sequences, 
have been implemented on some clin-
ical platforms (Appendix E1 [online]).

Which field strength is optimal for 
a particular clinical application of MR 
spectroscopy is another important ques-
tion for the practicing neuroradiologist 
and clinical trialist. Although 3.0 T is 
becoming the preferred platform over 
1.5-T for MR spectroscopy owing to 

Figure 9

Figure 9:  Minimum technical requirements 
to ensure that a 1H MR spectrum is clinically 
interpretable. SNR is calculated from a nonapodized 
spectrum by using maximum height of largest 
signal (typically tNAA) divided by standard deviation 
of noise. Note that these SNR limits are given only 
for visual assessment of spectra for ratio changes 
in major metabolites or for presence or absence 
of metabolites such as Lac. Higher SNR levels are 
necessary for reliable quantification of metabolites. 
FWHM = full width at half maximum.
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that identical and optimized acquisition 
protocols and calibration schemes are 
used (Fig 10).

When it is desired to use clini-
cal MR spectroscopy data to make 
decisions affecting management, it is 
essential that an adequate cohort of 
subjects has been studied such that the 
classifier used is robust in terms of both 
sensitivity and specificity. Recommend-
ed cohort size will depend somewhat 
on the nature of the data, but anything 
less than several hundred subjects, both 
healthy subjects and those with the 
condition of interest, would not yield 
a classifier that would be certified for 
use by a regulatory agency. A detailed 
discussion of these issues has appeared 
recently (176,177).

In addition, validation of MR spec-
troscopy biomarkers for clinical use 
requires their incorporation in robust 
prospective multicenter clinical trials, 
where patient selection and treatment 
meets prespecified criteria and the sta-
tistical methodology is set before the 
trial commences. This requires careful 
MR spectroscopy protocol design that 
can be adhered to at all the participat-
ing centers. In addition, effective, real-
time quality control measures must be 
put in place to ensure that data that 
need to be discarded are kept to a min-
imum to avoid bias and ensure general-
izability of the results.

Appendix E1 (online) highlights 
further recommendations to facilitate 
translation of MR spectroscopy to rou-
tine use in the clinical environment, 
including steps that must be taken for 
integration with clinical imaging and for 
quality management in single- and mul-
tisite studies (Fig 10) and a discussion 
on reimbursement issues, a frequently 
cited impediment to the widespread 
use of clinical MR spectroscopy.

Conclusions and Recommendations

In conclusion, MR spectroscopy is used 
worldwide as an adjunct to MR imaging 
in several common neurologic diseases, 
including brain neoplasms, inherited 
metabolic disorders, demyelinating 
disorders, and infective focal lesions. 
The spectrum of disorders for which 

(172,173). Importantly, standard clin-
ical hardware generates reproducible 
MR spectroscopy data from the human 
brain in a multicenter setting provided 

spectroscopy at 3.0 T (174), and coef-
ficients of variance less than 10% were 
reported for tNAA, tCr, tCho, and mIns 
with MR spectroscopic imaging at 3.0 T 

Figure 10

Figure 10: Comparison of MR spectral quality at multiple sites. 1H MR spectra were acquired at three 
different sites from cerebellar volume of interest (10 3 25 3 25 mm3, as shown on T1-weighted midsagittal 
image) in three healthy individuals. Spectra were obtained with 3.0-T MR unit (Tim Trio; Siemens Healthcare, 
Erlangen, Germany) with same acquisition protocol (fast automatic shimming technique by mapping along 
projections, or FASTMAP, semi-LASER [localization by adiabatic selective refocusing] [175], 5000/28, 64 
repetitions). (Spectrum from Hôpital de la Salpêtrière courtesy of Fanny Mochel, MD, PhD.) MGH = Mas-
sachusetts General Hospital.
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MR spectroscopy will be clinically used 
is likely to expand; potential examples 
include neurodegenerative diseases 
and epilepsy. The standardization of 
MR spectroscopy data acquisition and 
analysis techniques for clinical use is 
encouraged, along with the publication 
of normative data obtained with these 
techniques. Multicenter trials are en-
couraged to establish the utility of MR 
spectroscopy in large enough sample 
sizes to definitively establish the value 
of MR spectroscopy in specific clinical 
applications. Where possible, these 
should include assessment of the im-
pact on clinical outcome and economic 
benefit. Clinical imaging centers spe-
cializing in combined use of MR imag-
ing and spectroscopy should be estab-
lished in all major clinical neurologic 
centers that offer standardized MR 
spectroscopy procedures for improved 
patient management. Manufacturers 
of MR units and third-party companies 
(eg, vendors of analysis software) are 
encouraged to continue to develop their 
products to incorporate recent techni-
cal advances, to obtain U.S. Food and 
Drug Administration approval for clin-
ical use, and to provide products with 
manufacturer-independent standard-
ized outputs.
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