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Global diversity, population stratification, and selection of 
human copy number variation
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Abstract

In order to explore the diversity and selective signatures of duplication and deletion human copy 

number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We 

observed that duplications exhibit fundamentally different population genetic and selective 

signatures than deletions and are more likely to be stratified between human populations. Through 

reconstruction of the ancestral human genome, we identify megabases of DNA lost in different 

human lineages and pinpoint large duplications that introgressed from the extinct Denisova 

lineage now found at high frequency exclusively in Oceanic populations. We find that the 

proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-

Africans than it is among African populations, but we conclude that this difference is likely due to 

unique aspects of non-African population history as opposed to differences in CNV load.

In the past decade, genome sequencing has provided insights into demography and 

migration patterns of human populations (1–4), ancient DNA (5–7), de novo mutation rates 

(8–10), and the relative deleteriousness and frequency of coding mutations (11, 12). Global 

human diversity, however, has only been partially sampled and the genetic architecture of 

many populations remains uncharacterized. To date, the majority of human diversity studies 

have focused on single nucleotide variants (SNVs) although copy number variants (CNVs) 

have contributed significantly to hominid evolution (13, 14), adaptation and disease (15–18). 

Much of the research into CNV diversity has been performed with SNP microarray and 

array comparative genomic hybridization (aCGH) platforms (19–22), which provide limited 

resolution. In addition, comparisons of population CNV diversity with heterogeneous 

discovery platforms may lead to spurious population-specific trends in CNV diversity (22, 

23). Although there are many other forms of structural variation (e.g., inversions or mobile 

element insertions) in this study, we focused on understanding the population genetics and 

normal pattern of copy number variation by deep sequencing a diverse panel of human 

genomes.
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Results

CNV discovery

We sequenced to high coverage a panel of 236 human genomes representing 125 diverse 

human populations from across the globe (Fig. 1 and table S2). Sequencing was performed 

to a mean genome coverage of 41-fold from libraries prepared using a standard PCR-free 

protocol on the HiSeq 2000 Illumina sequencing platform (24). The panel includes 

representation from a broad swathe of human diversity, including individuals from across 

Siberia, the Indian subcontinent, and Oceania. We also analyzed the high-coverage archaic 

Neanderthal (25) and Denisova (26) as well as three ancient human genomes to refine the 

evolutionary origin and timing of CNV differences (24). We applied a read-depth-based 

digital comparative genomic hybridization (dCGH) approach (13, 24) to discover 14,467 

autosomal CNVs and 545 X-linked CNVs among individuals relative to the reference 

genome (Table 1 and table S1), which we estimate provides breakpoint resolution to ~210 

bp (24). CNV calls were validated with SNP microarrays and a custom aCGH microarray 

that targeted all CNVs identified in 20 randomly selected individuals (24).

The median CNV size was 7,396 bp with 82.2% of events (n = 12,338) less than 25 kbp 

(24). CNVs mapping to segmental duplications were larger on average (median of 14.4 

kbp), than CNVs mapping to the unique portions of the genome (median of 6.2 kbp). Almost 

one-half of CNV base pairs mapped within previously annotated segmental duplications (a 

10-fold enrichment) (Table 1). In total, 217.1 Mbp (7.01%) of the human genome is variable 

due to CNVs in contrast to 33.8 Mbp (1.1%) due to single-nucleotide variation (Table 1). 

Deletions (loss of sequence) were less common (representing 85.6 Mbp or 2.77% of the 

genome) compared to duplications (gain of sequence, 136.1 Mbp or 4.4% of the genome). 

Furthermore, comparing our dataset with other studies of CNVs (21, 27) 67-73% of calls we 

report are unique to our study while we capture 68-77% of previously identified CNVs (24).

CNV diversity and selection

African populations are broadly distinguished from non-African populations by a principal 

component analysis (PCA) for either deletions (Fig. 2A and fig. S20) (24) or duplications 

(Fig. 2B). In this analysis, we limited the variants to bi-allelic deletions or bi-allelic 

duplications (diploid genotypes of 2, 3 or 4) to eliminate difficulty of inferring phase from 

multicopy CNVs. For deletions, PC1 (6.8% of the variance) and PC2 (3.94%) distinguish 

Africans, West Eurasians, East Asians and Oceanic populations. PC3 and PC4, describing 

2.8% and 2.0% of the total variance, cluster Papuans and populations of the Americas, 

respectively. Many other populations were predictably distributed along clines between 

these clusters (e.g., Northern Africans, Siberian, South Asian, Amerindian and indigenous 

peoples of Philippines and North Borneo). PCAs generated from SNVs showed similar 

patterns as those from deletions. Africans also show much greater heterozygosity (Fig. 2C 

and Table 2), for instance, ~25% more heterozygous bi-allelic deletions and more than a 

twofold difference when compared to Amerindians (θAfrican = 535 versus θAmericas = 209). 

The archaic Neanderthal and Denisova genomes form an out-group to all humans (24).
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Duplication heterozygosity and PCA in general show similar trends (Fig. 2D); albeit with far 

less definition. Interestingly, Oceanic populations, especially those from Papua New Guinea, 

Australia, and Bougainville showed the greatest separation on PC1 by duplication. Bi-allelic 

duplications appear somewhat less informative markers of human ancestry in contrast to 

SNVs, which provide the greatest resolution (e.g., SNV PCs 1-4 describe 5.8, 3.4, 2.6 and 

1.7% of the variance, respectively). This difference is also seen when comparing SNV and 

CNV heterozygosity (Fig. 2, E and F). While heterozygous bi-allelic deletions were strongly 

correlated (R = 0.88) with SNV heterozygosity, the correlation between SNVs and 

duplications was much weaker (R = 0.27). We compared this correlation for duplications 

located adjacent to segmental duplications (within or proximal 150 kbp) in contrast to those 

occurring in unique regions of the genome and therefore less likely to be subject to recurrent 

mutation. Heterozygous duplications occurring in unique regions were better correlated with 

heterozygous SNVs (r = 0.29) than those adjacent or within segmental duplications (r = 

0.17), though the difference was not significant (two-sided Williams’ test P < 0.1).

Studies of larger (>100 kbp) deletion and duplication events indicate that deletions are more 

deleterious than duplications (28). We reasoned that this may be reflected in the allele 

frequency spectrum (AFS) of normal genetic variation and compared the AFS of genic 

versus intergenic deletions and duplications for smaller events (Fig. 3, A and B). Genic 

deletions were significantly rarer than intergenic deletions (Wilcoxon rank sum test, P = 

1.84e-9), but genic duplications showed no such skew (Wilcoxon rank sum test, P = 0.181). 

Size also had a significant impact on the AFS of CNVs. Deletions increased in rarity as a 

function of size (F-test, P = 5.02e-11) (Fig. 3C), but only a nominally significant trend was 

observed for duplications (P = 0.031) (Fig. 3D). These data suggest that selection has shaped 

the extant diversity of deletions and duplications differently during human evolution.

Population stratification

As population stratification can be indicative of loci under adaptive selection, we calculated 

Vst statistics for each CNV among all pairs of continental population groups, a metric 

analogous to Fst (the fixation index) (29). Vst and Fst statistics compare the variance in allele 

frequencies between populations with Vst allowing comparison of multi-allelic or multicopy 

CNVs. We identified 1,036 stratified copy number variable loci (CNVRs with maximum 

population Vst > 0.2, ~10% of the total), 295 of which intersected the exons of genes and 

199 that exhibited extreme stratification (Vst > 0.5) (table S3). After correcting for copy 

number, duplicated loci were 1.8-fold more likely to be stratified than deletions. This 

finding is more remarkable in light of the fact that duplications were less discriminatory by 

PCA suggesting that a subset of multi-allelic duplicated CNVs show large allele frequency 

differences between different populations (see discussion below). The Vst of stratified 

duplicated CNVs was weakly correlated with the Fst of flanking SNVs (R2 = 0.03, P = 

3.27e-12) in contrast to deletions (R2 = 0.2, p < 2e-16). Stratified duplication loci, thus, are 

far less likely to be tagged by adjacent SNPs through linkage disequilibrium.

Many of the population-differentiated loci were multi-allelic and mapped to segmental 

duplications including the repeat domain of ANKRD36, and the DUF1220 domain of NBPF 

(24) (Table 3). Several of these population differences involve genes of medical 
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consequence, such as the multi-allelic duplication of CLPS, a pancreatic colipase involved in 

dietary metabolism of long chain triglyceride fatty acids (Fig. 4A). Increased expression in 

mouse models of this gene is negatively correlated with blood glucose levels (30). A 

duplication of the haptoglobin and haptoglobin-related (HP and HPR) genes expanded 

exclusively in Africa. The duplication has recently been associated with a possible 

protective effect against trypanosomiasis in Africa, though only copy 3 and 4 alleles were 

reported (31). We find this locus has further expanded to five and six copies in Esan, 

Gambian, Igbo, Mandenka, and Yoruban individuals (Fig. 4A). We also compared the 

location of our CNVs with disease loci identified by GWAS (32) and sites of potential 

positive selection (33). Although only a small fraction of our CNVs (1-6%) overlapped such 

functional annotation, we note that 21% of putative adaptive loci intersected with a CNV 

when compared to 6% of disease GWAS loci (table S4). Because many of the intervals are 

large, further refinement and investigation are needed to determine the significance of such 

overlaps.

Denisovan CNVs are retained and expanded in Oceanic populations

We further searched for highly stratified population-specific CNVs sharing alleles with the 

archaic Neanderthal and Denisovan individuals assessed in our study. While no 

Neanderthal-shared population-specific CNVs were identified, five Oceanic-specific CNVs 

were identified that shared the Denisova allele at high frequency (24). Papuan genomes have 

previously been reported to harbor 3-6% Denisovan admixture (6, 26). CNVs of putative 

Denisovan ancestry were at remarkably high frequency in Papuan individuals (all >0.2 allele 

frequency), with one ~9 kbp deletion lying 2 kbp upstream of the long noncoding RNA 

LINC00501, another 5 kbp duplication lying 8 kbp upstream of the METTL9 

methyltransferase gene, and a 73.5 kbp duplication intersecting the MIR548D2 and 

MIR548AA2 microRNAs (Fig. 4B).

We determined that the latter two are part of a larger composite segmental duplication that 

appears to have almost fixed among human Papuan–Bougainville genomes (AF = 0.84) but 

has not been observed in any other extant human population (Fig. 4, B and C). We noted 

three additional duplications proximal to this locus exhibiting strikingly correlated copy 

number, despite being separated by >1 Mbp in the reference genome (Fig. 4C) (24). We 

suggest that these constitute a single, larger (~225 kbp) complex duplication composed of 

different segmental duplications. Using discordantly mapping paired end reads, we resolved 

the organization of two duplication architectures not represented in the human reference 

(Fig. 4D). The first of which (architecture A/C) is present in all individuals assessed in this 

study (5,625 discordant paired-end reads supporting) but not in the human reference 

genome. The second (B/D) corresponds to the Denisova–Papuan-specific duplication and is 

only present in these individuals and the Denisova genome. 70 paralogous sequence variants 

(markers distinct to paralogous locus (34, 35)) distinguish the Papuan duplication of which 

65/70 (92.9%) were shared with the archaic Denisova genome. On the basis of single-

nucleotide divergence we estimate that the duplication emerged ~440 kya and rose to high 

frequency in Papuan (>0.80 AF) but not Australian genomes probably over the last 40,000 

years after introgression from Denisova (Fig. 4E). This duplication polymorphism represents 

the largest introgressed archaic hominin locus in modern humans.
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The ancestral human genome

The breadth of the dataset allowed us to reconstruct the structure and content of the ancestral 

human genome prior to human migration and subsequent gene loss. To identify ancestral 

sequences potentially lost by deletion, we identified a set of sequences present in 

chimpanzee and orangutan reference genomes but absent from the human reference genome 

(20,373 nonredundant loci corresponding to 40.7 Mbp of sequence). Of these, 9,666 (27.6 

Mbp) were unique (i.e., not composed of common repeats). Due to the inability to accurately 

genotype copy number for unique segments less than 500 bp by read-depth analysis, we 

limited our ancestral reconstruction to nonrepetitive sequences greater than this length 

threshold. While the majority represented deletions specifically lost in the human lineage 

since divergence from great apes (6,341 loci) or else reference genome artifacts (2,026 loci 

fixed-copy 2 in all individuals assessed, 6.2 Mbp), a small subset of these (n = 571 or 1.55 

Mbp) segregate as bi-allelic polymorphisms in human populations (Fig. 5A). As expected, 

Africans were more likely to show evidence of these ancestral sequences compared to non-

African populations, as the latter have experienced more population bottlenecks and thus 

retained less of the ancestral human diversity. A comparison to archaic genomes allowed us 

to identify sequences (50 loci or 104 kbp) that were present in Denisova or Neanderthal but 

lost in all contemporary humans as well as ancestral sequences present in all humans but not 

found in Denisova or Neanderthal (17 loci or 33.3 kbp).

No difference in the CNV load between Africans and non-Africans

The high coverage and uniformity allowed us to contrast putatively deleterious, exon-

removing CNVs among human populations, of interest in disease studies (36–38). In our 

callset we identified 2,437 CNVRs intersecting exons. The distribution of allele counts of 

these tended toward lower frequency events with, again, deletions more rare than 

duplications (Wilcoxon rank sum test, P = 1.25e-5). Collectively, individuals harbor a mean 

of 19.2 exon-intersecting deletions per genome (22.8 per diploid genome), with African 

individuals exhibiting, on average, a mean of 22.4 deletions compared to 18.6 in non-

Africans (26.1 and 22.1 per diploid genome, respectively), consistent with the increased 

diversity of African populations and consistent with data observed for loss-of-function 

SNVs ((12, 39), ~122 LoF SNVs in Africans versus ~104 in non-Africans).

While non-African individuals exhibited more homozygous deletion variants compared to 

Africans, among exon-intersecting deletions no such pattern was observed. Exon-

intersecting duplications were much more balanced with African populations showing only a 

slight excess when compared to non-Africans (98.4 versus 95.2 events per genome). Studies 

of SNVs have not found consistent evidence of difference in load between African 

compared to non-African populations (40–42). We compared the difference in load between 

African and non-African populations for deletions and duplications, respectively. Here, we 

defined the difference in load as the difference in the sum of derived allele frequencies 

between African and non-African populations, 

 where PAfr(i) is the derived allele frequency 

of a variant i. Prima facie Africans exhibited an apparent higher deletion load than non-
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African populations (Fig. 5B) (P = 0.0003, block bootstrap test), though only a nominal 

difference in the load of exonic deletions (P = 0.0482). Duplications showed no such effect.

We reasoned that this striking difference might potentially be driven by high-frequency 

derived alleles, absent from the human reference genome, which was enriched for clone 

libraries of non-African ancestry (5). Approaches that rely on identifying CNVs based on 

read placements to the reference genome would necessarily miss these CNVs, decreasing the 

number of variants identified in individuals more closely resembling the reference, i.e., non-

Africans. To test this hypothesis we incorporated the bi-allelic 571 non-repetitive human 

CNV loci described above. Copy numbers were estimated for these sequences in each of the 

individuals assessed by remapping raw reads against an ancestral human reference genome. 

As expected, the deletion allele of this sequence was at a high frequency (mean derived 

allele frequency, DAF = 0.58). After including these sequences we observed no difference in 

the CNV load between Africans and non-Africans (95% confidence interval −18.4 to 8.8 

load difference as defined above) (Fig. 5B) underscoring the importance of an unbiased 

human reference for such population genetic assessments.

Although we found no CNV or SNV load differences between populations, we examined 

whether the relative proportion of base pairs differing among individuals derived from 

CNVs versus SNVs showed any population-specific trends. We calculated the number of 

base pairs varying between all pairs of individuals assessed in our study contributed either 

from SNVs or from deletions calculating the DEL-bp/SNV-bp ratio. As expected, the 

number of base pairs differing between individuals by deletions or by SNVs independently 

was always higher among African individuals when compared to other populations. 

Surprisingly, the ratio of deletion-bp to SNV-bp was substantially higher within non-African 

populations (mean 1.27 compared to 1.14, Fig. 5, C and D). This relative increase in deleted 

base pairs was most pronounced among non-African populations, which have experienced 

more recent genetic bottlenecks (e.g., Siberian and Amerindian). Given the absence of a 

significant difference in the deletion load comparing African and non-African populations, 

there is no reason to believe that this finding is due to differences in the effectiveness of 

selection against deletions since the populations separated. However, selection places a 

downward pressure on the allele frequencies of both deletions and SNVs, with the pressure 

being stronger for deletions because the selection coefficients are stronger on average. As 

has been previously shown for SNVs, different allele frequency spectra for deletions in 

contrast to SNVs has the potential to interact with the differences in demographic history 

across populations—even without differences in the effectiveness of selection after 

population separation—to contribute to observed differences in the apportionment of genetic 

variation among human populations (41).

Discussion

While the mutational properties and selective signatures of SNVs have been explored 

extensively, similar analyses of CNVs have lagged behind. As a class, duplications show 

generally poor correlations with SNV density, have poor linkage disequilibrium to SNVs 

(43, 44), and are less informative as phylogenetic markers but are more likely to be stratified 

than deletions among human populations. This observation may be explained by the fact that 
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directly orientated duplications show a gradient of elevated mutation rates due to non-allelic 

homologous recombination and, as such, can change their copy number state more 

dynamically over short periods of time. This property also makes this class of variation, 

similar to highly mutable loci such as minisatellites (45), particularly susceptible to 

homoplasy— i.e., identity by state as opposed identity by descent. Deletions, in contrast, 

recapitulate most properties of SNVs because they are more likely to exhibit identity by 

descent as a result of single ancestral mutation event.

We have provided here sequencing data for the study of human diversity and utilize this 

resource to explore patterns of human CNV diversity at a fine scale of resolution (>1 kbp). 

As expected, human genomes differ more with respect to CNVs than SNVs and almost one-

half of these CNV differences map to regions of segmental duplication. Both deletion and 

duplication analyses consistently distinguish African, Oceanic, and Amerindian human 

populations. Africans show the greatest deletion and duplication diversity and have the 

lowest rate of fixed deletions with respect to ancestral human insertion sequences. Oceanic 

and Amerindian, in contrast, show greater CNV differentiation likely as a result of longer 

periods of genetic isolation and founder effects (46). Among the Oceanic, the Papuan–

Bougainville group stands out in sharing more derived CNV alleles in common with 

Denisova, including a massive interspersed duplication that rose to high frequency over a 

short period of time.

We find that duplications and deletions exhibit fundamentally different population-genetic 

properties. Duplications are subjected to weaker selective constraint and are four times more 

likely to affect genes than deletions (Table 1) indicating that they provide a larger target for 

adaptive selection. After controlling for reference genome biases, we find no difference in 

CNV load between human populations when measured on a per-genome basis which is what 

matters to disease risk assuming that CNVs act additively. However, we find that the 

proportion of human variation that can be ascribed to CNVs rather than to SNVs is greater 

among non-Africans than among Africans. The biological significance of this difference 

should be interpreted cautiously and will require association studies to determine its 

relevance to disease and other phenotypic differences.
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Fig. 1. Analysis of CNVs in several world populations
The geographical locations of the 125 human populations, including two archaic genomes, 

assessed in this study. Populations are colored by their continental population groups, and 

archaic individuals are indicated in black.
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Fig. 2. Population structure and CNV diversity
Principal component analysis (PCA) of individuals assessed in this study plotted for bi-

allelic deletions (A) and duplications (B) with colors and shapes representing continental 

and specific populations, respectively. Individuals are projected along the PC1 and PC2 

axes. The deletion (C) and duplication (D) heterozygosity plotted and grouped by 

continental population. The relationship between SNV heterozygosity and deletion (E) or 

duplication (F) heterozygosity is compared.
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Fig. 3. Selection on CNVs
Folded allele frequency spectra of exon-intersecting deletions (A) and duplications (B). 

While deletions intersecting exons are significantly rarer than intergenic deletions, exon-

intersecting duplications show no difference compared to intergenic duplications. The mean 

frequency of CNVs beyond a minimum size threshold is plotted for deletions (C) and 

duplications (D). A strong negative correlation between size and allele frequency is 

observed for deletions but less so for duplications.
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Fig. 4. Population-stratified CNVs and archaic introgression
(A) Four specific examples of population-stratified CNVs intersecting genes are shown, 

including LRRIQ3, the pancreatic collipase CLPS, the sperm head an acrosome formation 

gene DPY19L2, and the haptoglobin and haptoglobin-related genes HP and HPR. Dot-plots 

indicating the copy of the locus in each individual and pie charts with colors depicting the 

continental population distribution per copy number (see text for details and Figs. 1 and 2 

and dot plots for color scheme). (B) Predicted copy number on the basis of read-depth for a 

73.5 kbp duplication on chromosome 16. It is observed in the archaic Denisovan genome 
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and at 0.84 allele frequency in Papuan and Bougainville populations, yet absent from all 

other assessed populations. The duplication intersects two microRNAs. The orange arrow 

corresponds to the position and orientation of this duplication as further highlighted in (C) 

and (D). (C) A heatmap representation of a ~1 Mbp region of chromosome 16p12 

(chr16:21518638-22805719). Each row of the heatmap represents the estimated copy 

number in 1 kbp windows of a single individual across this locus. Genes, annotated 

segmental duplications, and arrows highlighting the size and orientation in the reference of 

the Denisova/Papuan-specific duplication locus (locus D) and three other duplicated loci (A, 

B, and C) of interest are shown below. (D) The structure of duplications A, B, C and D (as 

shown in 4C over the same locus) in the reference genome and the discordant paired-end 

read placements used to characterize two duplication structures. Structure A/C is found in all 

individuals, though not present in the reference genome, while structure B/D is only found 

in Papuan and Bougainville individuals indicating a large complex, duplication (~225 kbp) 

composed of different segmental duplications. Both the A/C and B/D duplication 

architectures exhibit inverted orientations compared to the reference. The number of reads in 

all Oceanic and non-Oceanic individuals supporting each structure are indicated. (E) 

Maximum likelihood tree of the 16p12 duplication locus (duplication D in 4B, 4C, and 4D) 

constructed from the locus in Orangutan, Denisova, the human reference and the inferred 

sequence of the Papuan duplication (24). All bootstrap values are 100%.
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Fig. 5. The ancestral human genome and CNV burden
(A) A heatmap of the allele frequency of 571 (1.55 Mbp) nonrepetitive sequences absent 

from the human reference genome yet segregating in at least one human population ordered 

in humans by a maximum likelihood tree (49). Four groups of interest are highlighted: G1 – 

ancestral sequences that have almost been completely lost from the human lineage, G2 – 

ancestral sequences that are largely fixed but rarely deleted (also absent in human 

reference), G3 – ancestral sequences that have become copy number variable since the 

divergence of humans and Neanderthals/Denisovans ~700 kya, and G4 – sequences 

potentially lost in Neanderthals and Denisovans since their divergence from humans. (B) 

The resulting distributions of 10,000 block-bootstrapped estimates of the difference in load 

between African (AFR) and non-African (nAFR) populations considering only the reference 

genome (GRCh37) and supplemented by sequence absent from the human reference genome 

(GRCh37 + NHP) included (see text for details). (C) Violin plots of the distribution of the 

ratio of deletion base pairs to SNV base pairs differing between every pair of African 

individuals (AFR-AFR), all pairs of non-African individuals (nAFR-nAFR) and every non-

African, African pair (nAFR-AFR). (D) Heatmap representation of the mean ratio of 

deletion to SNV base pairs differing between individuals from pairs of populations.
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Table 1
CNVs and SNVs broken down by their intersection with genomic region

The number of Mbp of exonic and segmentally duplicated CNVs reflects the amount of exonic and segmental 

duplication sequence affected, respectively, not the total sum of the intersecting CNVs.

Class Autosomal (Mbp) X chromosome
(Mbp) Exonic (Mbp) Segmentally

duplicated (Mbp)

Deletions 7,233 (78.99) 278 (6.61) 636 (0.32) 331 (8.47)

Duplications 7,234 (129.62) 267 (6.46) 2,093 (1.56) 4,462 (96.93)

Subtotal 14,467 (204.54) 545 (12.61) 2,729 (1.84) 4,793 (99.84)

SNVs 32,630,650 (32.63) 1,175,170 (1.18) 314,872 (0.31) 1,559,158 (1.56)

All 32,645,117 (237.17) 1,175,715 (13.79) 317,601 (2.15) 1,563,951 (101.4)
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Table 2
Summary statistics of bi-allelic CNV deletions versus SNVs by continental population 
group

Continental
population
group

n Segregating
SNVs

Segregating
CNVs

CNVs /
individual
(median)

Heterozygous
CNVs /
individual
(median)

Continental
population
group-
specific CNVs
(allele
count ≥2)

θCNV /
genome

West Eurasian (WEA) 58 13610715 1728 279.0 209.0 688 (89) 324.42

Oceanic (OCN) 21 9467426 1022 263.0 173.0 353 (84) 237.51

East Asian (EA) 45 17452049 1463 271.0 191.0 525 (59) 288.48

Siberian (SIB) 23 9644914 1102 285.0 205.0 214 (30) 250.74

South Asian (SA) 27 11308883 1405 279.0 208.0 418 (43) 308.32

Americas (AMR) 21 8127639 899 266.0 169.0 208 (25) 208.93

African (AFR) 41 21698517 2663 319.0 261.0 1772 (702) 534.97
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Table 3
CNVs differentiated between human populations

CNVs intersecting genes that show dramatic difference in copy number (as measured by Vst) between human 

populations (see Fig. 1 for definition of populations).

Locus Genes Vst
Copy
range Description

chr2:97849921-97899292 ANKRD36 0.49 (OCN-WEA) 30-41 Repeat domain expanded to 45 copies in Papuans.

chr1:144146792-144224420 NBPF 0.32 (AFR-EA) 185-271
Expansion of the DUF1220 repeat domain in Africans and 
Amerindians. Copy number associated with cognitive 
function and autism severity (47).

chr6:35749042-35767153 CLPS 0.29 (AMR-SA) 2-6
Pancreatic colipase involved in dietary metabolism of long 
chain triglyceride fatty acids. Increased expression is 
negatively correlated with blood glucose in mice (30).

chr16:72088031-72119241 HP, HPR 0.25 (AFR-WEA) 1-6
Haptoglobin and haptoglobin-related genes are expanded 
exclusively in Africa and associated with a possible 
protective effect against trypanosomiasis (31).

chr12:64011854-64015265 DPY19L2 0.32 (OCN-SA) 5-7

DPY genes are required for sperm head elongation and 
acrosome formation during spermatogenesis and DPY19L2 
homozygous deletions have been identified as a major 
cause of globozoospermia (48).

chr1:74648583-74664195 LRRIQ3 0.23 (AMR-WEA) 2-3 LRRIQ3 is duplicated exclusively in Siberian and 
Amerindian populations.

chr17:43692284-43708692 CRHR1 0.25 (EA-WEA) 4-7
Deletions of corticotropin-releasing hormone receptor 1 
result in reduced anxiety and neurotransmission 
impairments in mice (49).

chr5:150201231-150223428 IRGM promoter 0.25 (AFR-WEA) 0-2 The IRGM promoter CNV is a Crohn’s disease risk factor 
(50).

chr3:195771149-195776591 TFRC promoter 0.57 (AFR-EA) 0-2 Transferrin receptor is a cellular receptor for New World 
haemorrhagic fever arenaviruses (51).
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