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Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo

Qiang Henga,*, Hua Zhoub, Eric C. Chic

aDepartment of Statistics, North Carolina State University

bDepartments of Biostatistics and Computational Medicine, UCLA

cDepartment of Statistics, Rice University

Abstract

Proximal Markov Chain Monte Carlo is a novel construct that lies at the intersection of Bayesian 

computation and convex optimization, which helped popularize the use of nondifferentiable 

priors in Bayesian statistics. Existing formulations of proximal MCMC, however, require 

hyperparameters and regularization parameters to be prespecified. In this work, we extend the 

paradigm of proximal MCMC through introducing a novel new class of nondifferentiable priors 

called epigraph priors. As a proof of concept, we place trend filtering, which was originally a 

nonparametric regression problem, in a parametric setting to provide a posterior median fit along 

with credible intervals as measures of uncertainty. The key idea is to replace the nonsmooth 

term in the posterior density with its Moreau-Yosida envelope, which enables the application of 

the gradient-based MCMC sampler Hamiltonian Monte Carlo. The proposed method identifies 

the appropriate amount of smoothing in a data-driven way, thereby automating regularization 

parameter selection. Compared with conventional proximal MCMC methods, our method is 

mostly tuning free, achieving simultaneous calibration of the mean, scale and regularization 

parameters in a fully Bayesian framework.

Keywords

convex optimization; epigraphs; Moreau-Yosida envelope; Hamiltonian Monte Carlo; trend 
filtering

1 Introduction

When analyzing time series data, we are often interested in estimating a slowly varying 

underlying trend with desired properties such as smoothness and shape restrictions. 

Smoothness can be achieved by constraining the underlying trend to be piecewise 

polynomial, while shape restrictions such as monotonicity and convexity can be enforced 
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by linear inequality constraints. Let y ∈ ℝn denote an observed time series and β ∈ ℝn denote 

its underlying trend; then estimating β is commonly posed as the following constrained or 

penalized least squares problem

minimize
β ∈ ℝn

1
2 y − β

2

2

+ g(β), (1)

where g(β) is an indicator function encoding convex constraints or a nonsmooth penalty 

function inducing sparsity. Different choices of g(β) induce a variety of sequence 

approximation problems. Representative examples include isotonic regression (Barlow, 

1972), univariate convex regression (Groeneboom et al., 2008), nearly-isotonic regression 

(Tibshirani et al., 2011) and ℓ1-trend filtering (Steidl et al., 2006; Kim et al., 2009; 

Tibshirani et al., 2014).

As a nonparametric regression problem, the solution to (1) only produces a point estimate. If 

we are interested in uncertainty quantification, data-resampling techniques like the bootstrap 

(Efron and Tibshirani, 1994) can be adopted. The bootstrap, however, does not address 

the issue of regularization parameter selection. The bootstrap is only able to produce a 

confidence band with a given regularization parameter, which is often selected with cross 

validation.

To quantify uncertainty and automate regularization parameter selection, many have placed 

(1) in a Bayesian framework. Inspired by the Bayesian Lasso (Park and Casella, 2008), 

Roualdes (2015) first introduced Bayesian Trend Filtering (BTF), exploiting the Gaussian 

mixture representation of the Laplace prior. Independent from Rouadle’s work, Faulkner 

and Minin (2018) proposed a closely related smoothing method, Shrinkage Prior Markov 

Random Fields (SPMRFs), which places sparsity inducing shrinkage priors on the adjacent 

differences of the elements of β. In addition to the Laplace prior, Faulkner and Minin 

(2018) also investigated a more aggressive horseshoe prior (Carvalho et al., 2010), which 

demonstrated superior local adaptivity to abrupt changes or jumps. Recently, Kowal et al. 

(2019) proposed dynamic shrinkage processes (DSP) for Bayesian trend filtering with even 

stronger localized adaptivity to irregular features through modelling dependence between the 

local scale parameters.

The literature of Bayesian shape-restricted regression is vast and diverse. Early works 

include Bayesian isotonic regression with piecewise linear models (Neelon and Dunson, 

2004), Bayesian P-splines (Brezger and Steiner, 2008), Bayesian monotone regression 

with Bernstein polynomials (McKay Curtis and Ghosh, 2011). Two more recent methods 

are Bayesian shape-restricted splines (Meyer et al., 2011) and Bayesian shape-restricted 

regression using Gaussian process priors (Lenk and Choi, 2017), which can enforce both 

monotonicity and convexity.

Our approach to Bayesian trend filtering takes advantage of a relatively new Markov chain 

Monte Carlo (MCMC) sampling scheme in the Bayesian imaging literature, namely the 

proximal MCMC methods (Pereyra, 2016; Durmus et al., 2018; Pereyra et al., 2020). 

The current paradigm of proximal MCMC methods requires variance and regularization 

Heng et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2024 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters to be fixed and predetermined. In this work, we incorporate those parameters 

into posterior inference, leveraging the data itself to automatically determine the appropriate 

amount of smoothing. We present two applications of our proposed methodology, namely 

Proximal Bayesian Trend Filtering (PBTF) and Proximal Bayesian Shape-Restricted Trend 

Filtering (PBSRTF).

2 Background

We first review the nonparameteric function estimation with ℓ1-trend filtering as well as 

important concepts from convex optimization needed to develop our Bayesian trend filtering 

algorithms.

2.1 Nonparametric Estimation with ℓ1-trend filtering

Suppose that a time series y ∈ ℝn observed over a grid of time points x ∈ ℝn is the 

superposition of a smooth trend β ∈ ℝn and Gaussian noise ϵ N 0, σ2In , namely

yi = βi + ϵi, i = 1, 2, …, n, (2)

where the grid locations xi are strictly increasing, i.e., x1 < x2 < … < xn. For simplicity, we 

assume for now that a single measurement is observed at each grid point and the grid points 

are evenly spaced. We relax both assumptions later.

Kim et al. (2009) proposed ℓ1-trend filtering to estimate β with piecewise polynomial 

structure, by solving the following regularized least squares problem

minimize
β ∈ ℝn

1
2 y − β

2

2

+ α Dn
(k + 1)β 1, (3)

where α is a positive regularization parameter, Dn
(k + 1) ∈ ℝ(n − k − 1) × n is the discrete 

difference operator or matrix of order k + 1 and dimension n. To appreciate the effect of 

penalizing the ℓ1-norm of Dn
(k + 1)β, we explicitly write out the difference operator for k = 0,

Dn
(1) =

−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 … −1 1 0
0 0 … 0 −1 1

∈ ℝ(n − 1) × n .

When k = 0, the penalty term Dn
(1)β 1 = ∑i = 1

n − 1 |βi + 1 − βi ∣ is also known as the one-

dimensional total variation denoising penalty (Rudin et al., 1992; Steidl et al., 2006) 

in signal processing, or the fused lasso penalty (Tibshirani et al., 2005) in statistics. 

The penalty incentivizes recovery of piecewise constant solutions. Higher-order difference 

matrices are defined recursively as Dn
(k + 1) = Dn − k

(1) Dn
(k). Choosing order k = 1, 2, and 3

incentivizes the recovery of piecewise linear, quadratic and cubic solutions, respectively. 

Difference matrices of order higher than 4 are rarely of interest.
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To handle irregular grids, namely when the time points x ∈ ℝn are strictly increasing but 

possibly unevenly spaced, Tibshirani et al. (2014) proposed replacing Dn
(k + 1) with the adjusted 

difference matrix Dn
(x, k + 1). The first-order difference matrix remains the same, i.e. Dn

(x, 1) = Dn
(1); 

for k ≥ 1 the adjusted difference operators are now defined as

Dn
(x, k + 1) = Dn − k

(x, 1)diag k
xk + 1 − x1

, …, k
xn − xn − k

Dn
(x, k) for k = 1, 2, …

Note when x1 = 1, x2 = 2, …, xn = n, the adjusted difference matrix Dn
(x, k + 1) coincides with 

Dn
(k + 1).

A variety of iterative and non-iterative algorithms have been proposed to compute a solution 

to (3). The ones that are relevant to this work are the dynamic programming algorithm by 

Johnson (2013) and the ADMM algorithm by Ramdas and Tibshirani (2016). Remarkably, 

the dynamic programming approach can solve (3) exactly in O(n) steps for k = 0. Building 

on top of the dynamic programming algorithm, the ADMM algorithm solves (3) iteratively 

for k = 1, 2, and 3.

As discussed in Kim et al. (2009), adding additional shape restrictions to ℓ1-trend filtering 

is straightforward. For example, one might require the underlying trend to be monotone-

increasing. The isotonic ℓ1-trend filtering problem is formulated as

minimize
β ∈ ℝn

1
2 y − β

2

2
+ α Dn

(x, k + 1)β 1 subject to β1 ≤ β2 ≤ … ≤ βn.

The monotonicity constraint β1 ≤ β2 ≤ … ≤ βn can be written compactly as Dn
(1)β ≥ 0, where ≥ 

represents elementwise inequality.

In addition to monotonicity, another common shape restriction is convexity. The underlying 

trend β is convex if

β2 − β1

x2 − x1
≤ β3 − β2

x3 − x2
≤ … ≤ βn − βn − 1

xn − xn − 1
, (4)

which can be written compactly as Dn
(x, 2)β ≥ 0.

For the rest of this paper, we will work with the general case where we may have mulitple 

observations per grid point. We assume that observations yij come from the model

yij = β xi + ϵij, ϵij ∼i . i . d . N 0, σ2 , i = 1, 2, …, n, j = 1, 2, …, wi, (5)

where β(x) is the underlying trend function that we seek to estimate and wi is the number of 

observations at a particular grid location xi. We assume that the underlying function β(x) has 

piecewise polynomial structure. Allowing multiple observations at a given grid location is 

useful as real data is often discrete.
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2.2 Relevant Concepts from Convex Optimization

We next review concepts from convex optimization central to our proposed framework, 

specifically projection and proximal mappings which are the algorithmic primitives that we 

will use to build our Bayesian trend filtering methods.

In convex analysis, the indicator function ιA(β) of a set A ⊂ ℝn takes on the value of 0 

when β ∈ A and the value of +∞ when β ∉ A. The familiar 0–1 indicator function ιA(β), 
which takes on the value of 1 when β ∈ A and 0 when β ∉ A is an invertible transformation 

the indicator function from convex analysis, namely ιA(β) = exp −ιA(β) . The projection of a 

point β onto a set A, denoted by PA(β), is a point in A that is closest in Euclidean distance to 

β.

PA(β) = argmin
η ∈ A

η − β
2

.

The projection PA(β) exists and is unique when A is closed and convex,.

The proximal map of the function g is the following operator

proxg(β) = argmin
η ∈ ℝn

g(η) + 1
2 β − η

2

2
.

An additional positive parameter λ is often added to control proximity,

proxλg(β) = argmin
η ∈ ℝn

g(η) + 1
2λ β − η

2

2
.

Following the notation in prior proximal MCMC papers, we write proxλg(β) as proxg
λ(β).

When g is an indicator function of a set A, the proximal operator is the projection onto 

A. Consequently, proximal maps generalize projection operations. Proximal maps play 

an important role in modern machine learning due to the fact that many nonsmooth 

penalties often have unique proximal mappings that either have explicit formulas or can 

be computed efficiently. In this work, we take advantage of two such proximal mappings, 

namely the proximal maps of β 1 and Dn
(1)β 1. The proximal map of β 1 is the celebrated 

soft-threshold operator

proxg
λ(β)i =

βi βi ≤ λ
sgn βi βi − λ + ∣ βi ∣ > λ, (6)

while the proximal map of Dn
(1)β 1 is the solution to the fused Lasso problem (Tibshirani et 

al., 2005):
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proxg
λ(β) = argmin

η ∈ ℝn
1
2 β − η

2

2

+ λ Dn
(1)η , (7)

which can be solved exactly in linear time via dynamic programming (Johnson, 2013). We 

use these two proximal maps as a subroutine to perform a key computation, namely the 

epigraph projection, which we will describe later.

The λ-Moreau-Yosida envelope of a function g is given by

gλ(β) = min
η ∈ ℝn

g(η) + 1
2λ η − β

2

2
.

The envelope function gλ has several important properties. First, gλ is convex when g is 

convex. Second, gλ is always differentiable even if g is not, and its gradient can be expressed 

in terms of the proximal map of λg, namely

∇gλ(β) = 1
λ β − proxg

λ(β) .

Moreover, ∇gλ is λ−1-Lipschitz since proximal operators are firmly nonexpansive 

(Combettes and Pesquet, 2011). Finally and perhaps most importantly, gλ converges 

pointwise to g as λ tends to 0 (Rockafellar and Wets, 2009). In short, we see that the 

Moreau-Yosida envelope of a nonsmooth function g is a Lipschitz-differentiable, arbitrarily 

close approximation to g. In this work, we will rely on the Moreau-Yosida envelope of 

indicator functions. Since the proximal map of an indicator function ιℰ(β) is the projection 

Pℰ(β), its Moreau-Yosida envelope is gλ(β) = 1
2λ β − Pℰ(β) 2

2, where β − Pℰ(β) 2 is also 

denoted as dℰ(β), namely the distance of β to ℰ.

The Moreau-Yosida approximation is the key technical ingredient behind the proximal 

MCMC framework of Durmus et al. (2018) which our algorithmic framework extends. We 

next review their prior formulation of the proximal MCMC method.

3 Proximal MCMC

Many modern machine learning applications employ log-concave models of the form

π(β) ∝ exp − U(β) and U(β) = f(β) + g(β), (8)

where f is a Lipschitz-differentiable convex negative log-likelihood function and g is a 

lower-semicontinuous convex penalty function that shrinks the estimator towards some 

desired prior structure. The model in (2) that underlies the ℓ1-trend-filtering problem is an 

example of such a log-concave model, where
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f(β) = 1
2σ2 y − β

2

2
and g(β) = α Dn

(k + 1)β 1.

Note that if we absorb σ2 into the regularization parameter α, then computing the maximum 

a posteriori (MAP) estimate of β in this log-concave model is equivalent to solving the 

nonparameteric problem (3).

Given such a log-concave model, we may wish to facilitate uncertainty quantification and 

posterior inference by computing posterior samples. Unfortunately, while there are many 

scalable methods for computing the MAP estimate of β, for example the Split-Bregman 

(Goldstein and Osher, 2009) and Chambolle-Pock (Chambolle and Pock, 2011) algorithms, 

sampling from the posterior distribution (8) is not as straightforward. Conventional high-

dimensional MCMC algorithms, such as the unadjusted Langevin algorithm (ULA) (Roberts 

et al., 1996), Metropolis-adjusted Langevin algorithm (MALA) (Rossky et al., 1978; Roberts 

et al., 1996), Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), rely on gradient 

mappings that in turn require U to be Lipschitz-differentiable or at least differentiable. These 

differentiability requirements can be extremely limiting, as they rule out many commonly 

used nonsmooth penalty functions g.

To make efficient high-dimensional MCMC algorithms applicable for nonsmooth U, 

Pereyra (2016) proposed replacing U with a Lipschitz-differentiable approximation, namely 

the λ-Moreau-Yosida envelope of U, and then employing MALA to sample from the 

derived surrogate density (Px-MALA). Durmus et al. (2018) proposed a slightly different 

strategy with the Moreau-Yosida regularized Unadjusted Langevin Algorithm (MYULA), by 

replacing g with its Moreau-Yosida approximation gλ in (8) to obtain the surrogate density

πλ(β) ∝ exp −f(β) − gλ(β) . (9)

Under additional assumptions on g, the surrogate density (9) is proper and converges to the 

original density (8) in total-variation norm (Durmus et al., 2018). Moreover, if g is Lipschitz, 

then the total-variation norm of (8) and (9) is bounded linearly in λ. The MYULA algorithm 

simply applies ULA to the surrogate density (9):

βl + 1 = 1 − γ
λ βl − γ ∇f βl + γ

λproxg
λ βl + 2γζl + 1, (10)

where ζl + 1 is n-dimensional Brownian motion and γ is the step size of ULA. A Metropolis-

Hastings correction step can be added to remove the asymptotic bias associated with 

Euler-Maruyama discretization that is common to Langevin algorithms. An extension of the 

MYULA algorithm is to combine several gradient evaluations to accelerate its convergence 

(SK-ROCK) (Pereyra et al., 2020). The recent review paper Durmus et al. (2022) provides 

an overview for proximal MCMC methods and their applications in imaging inverse 

problems.
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A hallmark application of proximal MCMC is Bayesian image deblurring, where β is a 

high-dimensional latent image, f is the negative log-likelihood that models blurring and 

additive Gaussian noise that together corrupt the latent image, and g is a total variation 

penalty that incentivizes the recovery of a latent image with sharp edges (Durmus et al., 

2018; Pereyra et al., 2020; Durmus et al., 2022). In this context, the posterior of interest is

π(β ∣ y) ∝ exp − y − Hβ 2
2

2σ2 − αTV(β) , (11)

where H is a blur operator, TV(β) is the total-variation semi-norm of β (Chambolle, 2004), 

y is the corrupted image signal we observe, σ2 is the noise variance, and α is a positive 

regularization parameter that trades off the emphasis between data fit and smoothness in the 

estimated image. In the framework of Durmus et al. (2018) and Pereyra et al. (2020), the 

variance σ2 and the regularization parameter α need to be manually selected by an expert or 

determined by an empirical Bayesian method (Vidal et al., 2020; De Bortoli et al., 2020). In 

this work, we propose to use a new construct that we refer to as epigraph priors and HMC 

sampling to incorporate σ2 and α into posterior inference in the context of Bayesian trend 

filtering. Consequently, this work demonstrates how proximal MCMC can be applied as a 

statistical methodology in a unified and complete Bayesian framework. Figure 1 illustrates 

four examples of posterior fits using our fully Bayesian proximal MCMC method for trend 

filtering.

4 Proximal Bayesian Trend Filtering

Our key methodological innovation that enables extending the proximal MCMC framework 

to a fully Bayesian one is the use of epigraph indicator functions to encode our structure-

inducing prior. Prior proximal MCMC methods typically replace a nonsmooth penalty 

g(β) = αℎ(β) with its Moreau envelope in the posterior. The proximal operator is then 

evaluated as

proxg
λ(β) = proxℎ

λα(β),

where the proximal operator of ℎ can be computed with an efficient off-the-shelf algorithm. 

The gradient of gλ(β) can then be computed as β − proxg
λ(β) /λ, which is a well-known 

fact about Moreau envelopes. However, the regularization parameter α is viewed as a 

hyperparameter in gλ and needs to be determined prior to MCMC sampling. Although 

an empirical Bayesian method (Vidal et al., 2020; De Bortoli et al., 2020) can be used to 

estimate the appropriate α and σ2, a fully Bayesian treatment is desirable since it may have 

better precision due to being able to account for the uncertainty of α and σ2.

To incorporate α into posterior inference, an important concept in convex analysis, epigraph, 

comes in handy. The epigraph of a regularization function g is the set

ℰ = (β, α) ∈ ℝn × ℝ:g(β) ≤ α .
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The Moreau-Yosida envelope of ιℰ(β, α) is 1
2λdℰ

2 (β, α), which is jointly differentiable in β

and α. The gradient of 1
2λdℰ

2 (β, α) is simply (β, α) − Pℰ(β, α)
λ , where Pℰ denotes projection 

on to ℰ. Figure 2 provides a visualization of the envelope function 1
2λdℰ

2 (β, α) when 

ℰ = (β, α) ∈ ℝ2: β ≤ α  and λ = 0.01. Using 1
2λdℰ

2 (β, α) as our prior regularization term, 

we can further place hyperpriors on α, σ2 and achieve fully Bayesian inference within 

the proximal MCMC framework. Computing with these priors relies on projection onto 

epigraphs which we describe next.

4.1 Projection Onto Epigraph

Projection onto the epigraph of g depends on the proximal mapping of g (see Theorem 6.36 

of Beck (2017)), namely

Pepi (g)(β, α) =
(β, α) g(β) ≤ α
proxg

λ*(β), α + λ* g(β) > α,

where λ* is root of the auxiliary function

F(λ) = g proxg
λ(β) − λ − α .

When proxg
λ(β) can be computed easily, we can compute the root λ* of the function F(λ)

using a simple bisection procedure.

We will need to perform projections onto two sets: the epigraph of the ℓ1-norm

ℰ1 = (β, α) ∈ ℝn × ℝ+ + : β 1 ≤ α ,

and the epigraph of Dn
(l)β 1

ℰ2 = (β, α) ∈ ℝn × ℝ+ + : Dn
(1)β 1 ≤ α .

Since the proximal maps of β 1 and Dn
(1)β 1 can be computed in linear time, projections 

onto ℰ1 and ℰ2 can be done efficiently. For projection onto ℰ1, we set the initial bisection 

interval to be 0, λmax  where λmax = β ∞ is the smallest value of λ such that proxλ‖ · ‖1(β) = 0. 

For projection onto ℰ2, we set the initial bisection interval to be 0, λmax  where

λmax = Dn
(1) Dn

(1) ⊤ −1
Dn

(1)β
∞

,

is the smallest value of λ such that the solution to (7) is a multiple of the all ones vector. 

It is easy to verify that F(0) > 0 when (β, α) ∉ epi(g) and F λmax < 0 so that the root of the 

auxiliary function is guaranteed to lie within 0, λmax .
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In a manner akin to Ramdas and Tibshirani (2016), projecting onto ℰ2 instead of projecting 

onto ℰ1 alleviates numerical issues associated with solving an ill-conditioned linear system, 

since it enables us to work with a transformation matrix that is one “order” lower. We will 

elaborate on this claim in Section 4.2.

4.2 Priors for Proximal Bayesian Trend Filtering

To obtain posterior trends with approximate piecewise polynomial structure, we place a 

constrained “flat” prior on β to induce sparsity and regularity, namely

π(β ∣ α) ∝ α−(n − k − 1)exp −ιℰ(β, α) , (13)

where

ℰ = (β, α) ∈ ℝn × ℝ+ + : Dn
(x, k + 1)β 1 ≤ α .

Note that implicitly α must be positive in (13) and all our subsequent equations. The term 

α−(n − k − 1) reflects the fact that we are constraining Dn
(x, k + 1)β to an (n − k − 1)-dimensional 

ℓ1-norm ball, which has volume proportional to αn − k − 1. To complete the model 

specification, we need to place additional priors on σ2 and α. For σ2, the standard inverse 

Gamma prior IG(s, r) suffices as the parameters s and r minimally influence the posterior for 

small values. In contrast, some care is warranted for choosing the prior for α. Ideally, we 

seek a prior that cancels the term α−(n − k − 1) to ensure a proper surrogate posterior density.

A natural strategy is to use a Gamma prior, which achieves the goal of cancelling out 

α−(n − k − 1). Placing a Γ(n − k, μ) prior on α, the joint prior on (β, α) becomes

π(β, α) ∝ exp −ιℰ(β, α) − μα . (14)

Choosing a Gamma prior, however, requires us to choose large μ values to impose a 

meaningful amount of shrinkage, which makes Γ(n − k, μ) an informative prior since its 

variance is (n − k)/μ2. In that case selecting an appropriate μ becomes challenging and 

stymies our goal of operating within a fully Bayesian framework.

Given these challenges with a Gamma prior, we propose using a beta-prime prior. A beta-

prime distribution, denoted as β′ s1, s2 , has density

π(α) ∝ αs1 − 1(1 + α)−s1 − s2 .

If we place a β′ n − k, s2  prior on α, the joint prior for (β, α) becomes

π(β, α) ∝ exp −ιℰ(β, α) − n − k + s2 log(1 + α) . (15)
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A β′ s1, s2  distribution has mean s1
s2 − 1  and variance s1 s1 + s2 − 1

s2 − 2 s2 − 1 2 . Consequently when s2 is 

relatively small, the prior has high variance and becomes uninformative. What makes this 

prior setup preferred over the one induced by the Gamma prior in (14) is that even when s2

is small, we still have − n − k + s2 log(1 + α) as a strong penalty to impose a useful measure 

of shrinkage. Therefore the beta-prime prior is better than the Gamma prior in terms of 

hyperparameter sensitivity. Nonetheless, we will revisit using the Gamma prior later as it is 

better suited for our second application PBSRTF. Why that is the case will be discussed in 

Section 4.3.

Placing an IG(s, r) prior on σ2 and a β′ n − k, s2  prior on α, our full posterior density reads

π β, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp −

∑i = 1
n ∑j = 1

wi yij − βi
2 + 2r

2σ2

−ιℰ(β, α) − n − k + s2 log(1 + α) ,
(16)

where m = ∑i = 1
n wi is the total number of observations. We can rewrite (16) in a vectorized 

format

π β, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − (y − β)⊤W (y − β) + SSE + 2r

2σ2

−ιℰ(β, α) − n − k + s2 log(1 + α) ,
(17)

where

y = y1., y2, , …, yn .
⊤,

W = diag w1, w2, …, wn ,

SSE = ∑
i = 1

n
∑

j = 1

wi
yij − yi .

2 .

There is no simple algorithm for projection onto ℰ when k ≥ 1. To take advantage of the 

epigraph projection algorithms described in Section 4.1, we consider the reparameterization 

θ = T1β where

T1 =
I(k + 1) × n

Dn
(x, k + 1) , (18)

and I(k + 1) × n is the matrix obtained by taking the first k + 1 rows of a n-by-n identity matrix. 

In other words, we have θ[1: (k + 1)] = β[1: (k + 1)] and θ[(k + 2)n] = Dn
(x, k + 1)β. To better visualize the 
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reparameterization technique, we explicitly write out the reparameterization scheme for 

xi = i, i = 1, 2, …, n and k = 1,

θ1

θ2

θ3

θ4

⋮
θn

=

1 0 0 0 ⋯ 0 0 0
0 1 0 0 ⋯ 0 0 0
1 −2 1 0 ⋯ 0 0 0
0 1 −2 1 ⋯ 0 0 0
⋮
0 0 0 0 ⋯ 1 −2 1

β1

β2

β3

β4

⋮
βn

.

Note that the transformation matrix T1 is a lower-triangular banded matrix with k + 2 non-

zero diagonals. This means that given θ, we can retrieve β in O(n(k + 2)) operations using a 

banded forward-solve step. The reparameterized posterior is

π θ, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − y − T1

−1θ ⊤W y − T1
−1θ + SSE + 2r

2σ2

− ιℰ1′(θ, α) − n − k + s2 log(1 + α) ,
(19)

where

ℰ1
′ = (θ, α) ∈ ℝn × ℝ+ + : θ[(k + 2):n] 1 ≤ α .

Replacing ιℰ1′ (θ, α) with its Moreau-Yosida envelope, we arrive at a smooth surrogate 

posterior

πλ θ, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − y − T1

−1θ ⊤W y − T1
−1θ + SSE + 2r

2σ2

− 1
2λdℰ1′

2 (θ, α) − n − k + s2 log(1 + α) ,
(20)

Projection onto ℰ1′ can be accomplished by applying the ℓ1-norm epigraph projection 

process described in Section 4.1 to θ[(k + 2):n]. Working with this reparameterization raises 

some potential computational challenges, however. When evaluating the function value and 

calculating the gradient of (20), we need to solve two linear systems, namely T1
−1θ and 

T1
−TW y − T1

−1θ . As n and k increases, the condition number of T1 increases, leading to 

numerical instability in the HMC sampler. To alleviate this numerical issue, we can use 

the projection onto the epigraph of Dn
(1)β 1, described in Section 4.1. Borrowing the idea 

of Ramdas and Tibshirani (2016), we consider another reparameterization scheme θ = T2β
where

T2 = diag k
xk + 1 − x1

, …, k
xn − xn − k

Dn
(x, k − 1) . (21)
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The reparameterized density is now

π θ, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − y − T2

−1θ ⊤W y − T2
−1θ + SSE + 2r

2σ2

− ιℰ′2(θ, α) − n − k + s2 log(1 + α) ,
(22)

where

ℰ′2 = (θ, α) ∈ ℝn × ℝ+ + : Dn − k
(1) θ[(k + 1):n] 1 ≤ α .

Similarly, projection onto ℰ′ can be achieved by applying the Dn
(1)β 1 epigraph projection 

process to θ[(k + 1):n]. The advantage of using T2 as the reparameterization scheme is that the 

“order” of T2 is one below that of T1, so that solving the linear systems becomes more 

numerically stable. When n and k are relatively small, however, using T2 requires solving (7), 

which is more expensive than (6). Table 1 summarizes the approximate cutoffs of when to 

use T1 and when to use T2, based on our empirical studies. Table 1 does not include k = 0
and k = 3, since Faulkner and Minin (2018) demonstrated that the shrinkage property of the 

Laplace prior struggles to capture abrupt jumps of piecewise constant underlying trends, 

resulting in a posterior fit that is too wiggly. Our prior set up is analogous to the Laplace 

prior, so that our method runs into the same issue. Meanwhile, when k = 3, even T2 is 

extremely ill-conditioned and the HMC sampler is hampered from exploring the parameter 

space meaningfully. Therefore, we focus on the case where k = 1 (piecewise linear) and 

k = 2 (piecewise quadratic).

Using T2 as the reparameterization matrix mitigates but does not eliminate the ill-

conditioning issue. As n increases, it becomes more difficult for the HMC sampler to 

sufficiently explore the parameter space due to numerical instability. We will introduce a 

data preprocessing technique called thinning in Section 5.2 as an alternative strategy to make 

PBTF applicable for long sequences with large n.

Replacing ιℰ′2(θ, α) with its Moreau-Yosida envelope, the surrogate posterior is now

πλ θ, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − y − T2

−1θ ⊤W y − T2
−1θ + SSE + 2r

2σ2

− 1
2λdℰ′2

2 (θ, α) − n − k + s2 log(1 + α) .
(23)

Notice that (20) and (23) are now differentiable functions of θ, σ2, α  on ℝn × ℝ+ + × ℝ+ + .

For notational simplicity, in the rest of the manuscript we will use π θ, σ2, α ∣ y  to refer to 

both (19) and (22), πλ θ, σ2, α ∣ y  to refer to and (20) and (23), and T, ℰ′  to refer to T1, ℰ′1
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and T2, ℰ′2 . We overload notation in this way since proofs and statements about these two 

surrogate densities are essentially the same.

4.3 Adding Shape-Restrictions

Proximal MCMC presents a simple alternative framework to traditional Bayesian 

hierarchical models that can easily construct priors that encode multiple structural 

constraints. Similar to nonparameteric isotonic trend filtering (Kim et al. (2009); Ramdas 

and Tibshirani (2016)), adding shape restrictions into our framework is as straightforward 

as imposing linear inequalities. For instance, if we believe that the underlying trend is 

monontone increasing, we can enforce monotonicity by refining the epigraph set ℰ with a 

monotonicity constraint as follows

S = (β, α) ∈ ℝ × ℝ+ + : Dn
(x, k + 1)β 1 ≤ α, Dn

(1)β ≥ 0 .

In addition to monotonicity, convexity can be encoded by the linear inequalities in (4). 

By replacing ≥ with ≤, we get monotone decreasing and concave restrictions. Combining 

monotonicity and convexity is as simple as imposing two sets of linear inequalities. 

Therefore, our framework can model eight types of shape restrictions, namely increasing, 

decreasing, convex, concave, increasing-convex, increasing-concave, decreasing-convex and 

decreasing-concave. Lower or upper bounds on β can also be enforced if warranted or 

desired.

Figure 3 illustrates examples of posterior fits using both versions of our fully Bayesian 

proximal MCMC method for trend filtering with and without shape-restrictions. For proof 

of concept, projection onto S can be achieved by any quadratic programming solver. We 

report the results using the Gurobi solver and leave for future work developing customized 

algorithms for potentially greater scalability.

As alluded to earlier, for PBSRTF we consider a joint prior on (β, α) that employs a Gamma 

prior on α

π(β, α) ∝ exp −ιS(β, α) − μα . (24)

The joint prior in (24) is almost identical to the one in (14); we simply replaced ℰ with 

S, where shape restrictions are also present. There are several reasons to revisit a Gamma 

prior on α. First, we can no longer interpret S as an ℓ1-norm ball so that it is unclear what 

the normalizing constant should be; contrast this to the non shape-restricted case where the 

normalizing constant is α−(n − k − 1). In fact, using α−(n − k − 1) as the normalizing constant 

for PBSRTF results in too much shrinkage. Second, there are numerical challenges that 

make the sampler using the beta-prime prior typically slower overall. We discuss these 

challenges in the supplementary materials. Finally, issues of the posterior being sensitive to 

the choice of μ, as we highlighted in Section 4.2, are no longer prohibitively acute as in the 

non shape-restricted case. In the case of PBSRTF, shape restrictions impose a helpful dose of 

regularization on β, therefore blunting the influence of our choice of μ.
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Using an inverse Gamma IG(s, r) as the prior for σ2 and (24) as the prior for (β, α), our full 

posterior density for PBSRTF is

π β, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − (y − β)⊤W(y − β) + SSE + 2r

2σ2 − ιS(β, α

) − μα .
(25)

Replacing ιS(β, α) with its Moreau-Yosida envelope, results in the surrogate posterior

πλ β, σ2, α ∣ y ∝ σ2 − m
2 − s − 1exp − (y − β)⊤W(y − β) + SSE + 2r

2σ2 − 1
2λdS

2

(β, α) − μα .
(26)

Again, (26) is a differentiable function of β, σ2, α  on ℝn × ℝ+ + × ℝ+ + . Neither (23) nor (26) 

is log-concave, however, so that Langevin algorithms are no longer suitable for MCMC 

sampling. Therefore, we turn to Hamiltonian Monte Carlo as our sampling engine.

4.4 Properties of the Surrogate Posteriors

We conclude this section, with two theorems that justify the practice of replacing the 

nonsmooth part of the posterior by its Moreau-Yosida envelope. The proofs are provided in 

the supplementary materials.

Theorem 4.1.—The surrogate posterior densities (20), (23) and (26) are proper, i.e.,

∫
ℝn∫ℝ+ +

∫ℝ+ +
πλ θ, σ2, α ∣ y dθdσ2dα < + ∞,

and

∫
ℝn∫ℝ+ +

∫ℝ+ +
πλ β, σ2, α ∣ y dβdσ2dα < + ∞ .

Theorem 4.2.—The surrogate posterior densities (20), (23) and (26) converges to the 
original nonsmooth densities (19), (22) and (25) in total-variation norm as λ 0, i.e.,

lim
λ 0

∫
ℝn∫ℝ+ +

∫ℝ+ +
πλ θ, σ2, α ∣ y − π θ, σ2, α ∣ y dθdσ2dα = 0,

and

lim
λ 0

∫
ℝn∫ℝ+ +

∫ℝ+ +
πλ β, σ2, α ∣ y − π β, σ2, α ∣ y dβdσ2dα = 0.
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Theorem 4.2 assures us that the surrogate density can approximate the original posterior 

density arbitrarily well by choosing a small enough λ. This is consistent with our 

experiments where we observe that the posterior fit is visually smooth once λ is sufficiently 

small. Note that λ should not be chosen to be too small, however, as doing so will lead to 

numerical instability since gradient evaluations involve division by λ. We discuss how to 

properly choose λ for the two different applications in in the supplementary materials. In 

practise, we recommend using the default parameters in our software.

5 Posterior Computation

5.1 HMC Sampling

We apply Hamiltonian Monte Carlo (HMC) to sample from the smoothed surrogate full 

posterior densities (20), (23) and (26). Software for the proposed method is available at 

https://github.com/qhengncsu/ProxBTF.jl. We implement our method with DynamicHMC.jl 
package in the Julia computing environment. According to its documentation, the package 

implements a variant of the “No-U-Turn Sampler” (NUTS) of Hoffman and Gelman (2014), 

as described in Betancourt (2017). We direct readers to Betancourt (2017) for an accessible 

exposition on the algorithmic details of the sampling scheme. Since the NUTS algorithm 

operates on an unrestricted domain, we reparameterize σ2 as elogσ2
 and α as elogα to model 

the two positive parameters.

For PBTF, evaluating the function-gradient pair at any given location requires O(n)
operations. While using Gurobi as a black box solver obscures the computational complexity 

of PBSRTF, we observe empirically that the computation time of PBSRTF also scales 

linearly with grid length n. This is likely due to the fact that Gurobi can effectively exploit 

the sparse matrices in our problem set up.

5.2 Thinning

As discussed in Section 4.2, PBTF may encounter numerical difficulties that accompany 

solving ill-conditioned linear systems. While the difference epigraph projection technique 

alleviates the ill-conditioning issue, it can not eliminate it; as n increases, eventually the 

condition number of T2 will eventually become problematic.

Another technique we propose to mitigate the ill-conditioning issue is thinning, which is 

similar to the thinning practice in R package glmgen Ramdas and Tibshirani (2016). We first 

split the range of x into intervals of equal length. Grid locations within the same interval 

are merged into a single new grid location, which is a weighted average of the original grid 

locations with weights being the numbers of observations. The data points xi, yij  are then 

horizontally shifted to the merged grid locations. After HMC sampling, if we are interested 

in the posterior median and confidence limits at the original grid locations, we can recover 

them through interpolation. We provide an illustration of thinning in the supplementary 

materials.
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6 Numerical Experiments

We compare the empirical performance of PBTF with Shrinkage Prior Markov Random 

Fields (SPMRFs) by Faulkner and Minin (2018) and Dynamic Shrinkage Processes (DSP) 

by Kowal et al. (2019). We note that DSP can be considered as an extention of SPMRFs 

and the software of DSP1 in fact contains an implementation of the hierarchical models 

described in Faulkner and Minin (2018). Moreover, DSP uses customized Gibbs samplers 

which in practice are more efficient than the HMC sampler used by SPMRFs, thus we 

primarily use the software of DSP in our experiments. In Table 2, BTF-BL (Bayesian Lasso 

prior or Laplace prior) and BTF-HS (horseshoe prior) correspond to the models presented 

in Faulkner and Minin (2018) while BTF-DHS (dynamic horseshoe prior) corresponds to 

the model presented in Kowal et al. (2019). To investigate the relative strengths of different 

approaches, we selected four underlying trends, namely piecewise linear, smooth trend, 

sinusoid, and piecewise quadratic/cubic. We assess the precision of each method with mean 

absolute deviation (MAD), frequentist coverage probability (CP), and mean credible interval 

width (MCIW). We also include the total CPU time (TCPU), effective sample size of the 

slowest component (min. ESS) and multivariate effective sample size (MESS) (Vats et al., 

2019) as measures of sampling efficiency. The detailed definitions of the summary statistics 

are given in the supplementary materials.

Following Faulkner and Minin (2018) and Kowal et al. (2019), we used evenly spaced 

grid locations of 1, 2, …, 100  and designed the underlying trends to have an approximate 

standard deviation of 9. We added two levels of Gaussian noise (σ = 3.0 and σ = 4.5) to the 

underlying trends, generating 50 noisy sequences for each combination of trend and noise 

level. For DSP, we used the default parameters, ran an initial burn-in of 1000 iterations 

followed by 2500 posterior draws. For PBTF, we set s2 to be n = 10, ran the default 

warm-up stage in DynamicHMC.jl and made another 2500 posterior draws. Table 2 shows 

the summary statistics for different methods averaged over 50 generated sequences with 

σ = 3.0. The results for noise level σ = 4.5 can be found in the supplementary materials, 

which exhibits a similar pattern.

The last three trends, namely smooth trend, sinuoid and piecewise quadratic/cubic are 

better approximated by piecewise quadratic functions. However, in Table 2 we only report 

the results of DSP using k = 1. This is partly because the software of DSP does not 

contain an option to fit models with k = 2. That being said, the software of SPMRFs2 

does offer an option to fit models with k = 2. Nevertheless, for the last three trends, 

when going from k = 1 to k = 2, SPMRFs overall suffers a decrease in MAD and CP 

in contrary to one’s expectation. These additional simulation results can be found in the 

supplementary materials. SPMRFs’ worse performance with k = 2, despite the underlying 

trends being better approximated by piecewise quadratic functions, may be attributed to the 

fact that it is inherently harder to sample from higher-order trend filtering models. In our 

framework, third-order PBTF alleviates part of that difficulty through leveraging the fused 

1 https://github.com/drkowal/dsp 
2 https://github.com/jrfaulkner/spmrf 
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lasso subroutine, providing the best MAD and the narrowest confidence bands for the last 

three trends while maintaining ideal coverage probability.

BTF-HS achieves higher precision than BTF-BL and PBTF for piecewise linear trend, 

demonstrating stronger adaptivity to abrupt turns. This is attributed to the superior shrinkage 

properties of global-local priors like the horseshoe prior. Unfortunately, nonparametric 

analogues of the horseshoe prior are nonconvex, for example, smoothly clipped absolute 

deviation (SCAD) penalty (Fan and Li, 2001) and minimax concave penalty (MCP) 

(Zhang, 2010). Projection onto the epigraph of a nonconvex function is generally nontrivial. 

Therefore, it is not immediately obvious how to replicate the horseshoe prior’s shrinkage 

property in our framework and presents an interesting avenue for future work. BTF-DHS 

achieved even better precision than BTF-HS for piecewise linear trend through modelling 

dependence between the local scale parameters. However, we also see that it will behave 

slightly worse than BTF-HS when modelling smooth underlying trends.

We note that DSP only applies to data on an evenly spaced grid. The framework of SPMRFs 

is extended to unevenly spaced grids for k = 0 and k = 1 in Faulkner and Minin (2018) using 

methods based on integrated Wiener processes. However, Faulkner and Minin (2018) did not 

further pursue the same for k = 2 due to its complexity. PBTF, on the other hand, naturally 

handles unevenly spaced grids for k = 1, 2 due to using the adjusted difference matrix Dn
(x, k + 1)

in its prior. In this section, we employed an evenly spaced grid 1, 2, …, n  in pursuit of 

simplicity and conformity. The real data analysis in Section 7 and the thinning example 

in the supplementary materials are both examples of third-order PBTF being applied to 

unevenly spaced grids.

7 Real Data Example

We apply PBTF and PBSRTF to the Munich dataset as a real data example. We focus on two 

variables in the dataset, with the response being rent per square meter in Munich, Germany, 

and the covariate being floor space in square meters. The dataset was first analysed by 

Rue and Held (2005) using Gaussian Markov Random Fields. Faulkner and Minin (2018) 

analyzed this data as an illustration of SPMRFs being applied on an unevenly spaced grid. 

The dataset has 2035 observations in total and the covariate floor space has 134 distinct 

values. Other than second-order and third-order PBTF models, we also present second-order 

PBSRTF model fits with “decreasing” and “decreasing-convex” as shape restrictions. In the 

former case, we model the assumption that rent per square meter decreases as floor space 

increases. In the latter case, we model an additional diminishing returns effect.

We used S2 = 2 × 134 for PBTF and set μ = 4.0 for PBSRTF to promote a bit more 

regularity. Figure 4 shows the posterior fits of the four different models. All four models 

captured an overall decreasing trend. It is notable that the confidence bands are narrower 

over intermediate values of floor space, which is expected as there are more data points over 

this range of floor spaces. Third-order PBTF produced a more variable posterior median and 

a wider confidence band than second-order PBTF, suggesting that third-order PBTF models 

exhibit more adaptivity but may be prone to overfitting. We notice that posterior fits with 

shape restrictions have much narrower confidence bands compared with their unconstrained 
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counterparts. This is because the shape restrictions introduce additional regularization that 

further reduces variance.

8 Discussion

In this work, we introduced a new proximal MCMC methodology, which incorporates the 

variance parameter σ2 and the regularization parameter α into posterior inference. The key 

to extending the conventional proximal MCMC paradigm to a fully Bayesian one is to use 

epigraph priors to induce sparsity and regularity. By substituting the nonsmooth components 

of the posterior with its Moreau-Yosida envelope, we can work with a differentiable 

surrogate density, on which HMC is be applied for efficient MCMC sampling.

As a proof of concept, we explored the application of the proposed methodology in Bayesian 

trend filtering. Compared with existing Bayesian trend filtering methods, our approach 

achieves higher precision for underlying trends that are better approximated by piecewise 

quadratic functions. To demonstrate the flexibility of our framework, we also explored 

incorporating shape restrictions like monotonicity and convexity.

Although we focused on Bayesian trend filtering in this work, the strategy of combining an 

epigraph prior with proximal MCMC readily applies to other types of nonsmooth estimation 

problems. For example, modern optimization extensively utilizes nuclear norms to induce 

low-rank structure, therefore a Bayesian version of low-rank matrix completion based on 

projection onto the epigraph of nuclear norm is an interesting future venue. It is also of great 

appeal to venture beyond convex penalties and constraints for greater modelling power in 

structured regression problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example posterior fits for PBTF with noise level σ = 3. The standard deviation of the 

underlying trends is 9, thus the signal-to-noise ratio is 3. Plots show data points (green dots), 

posterior median (blue solid lines), 95% Bayesian credible intervals (light blue bands) and 

true trends (red dashed lines).
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Fig. 2. 

A visualization of the distance function 1
2λdℰ

2 (β, α) when ℰ = (β, α) ∈ ℝ2: | β | ≤ α  and 

λ = 0.01.

Heng et al. Page 23

J Comput Graph Stat. Author manuscript; available in PMC 2024 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Example posterior fits for PBTF and PBSRTF with noise level σ = 1. The top row shows 

posterior fits of PBTF, and the bottom row shows posterior fits of PBSRTF. From left 

to right, the enforced shape restrictions are increasing, convex, increasing-convex and 

increasing-concave.
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Fig. 4. 
Posterior fits on Munich dataset. Plots show data points (green dots), posterior median (blue 

solid lines), and 95% Bayesian credible intervals (light blue bands).
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Table 1

Choice of reparameterization scheme for different n and k.

n ≤ 200 200 < n ≤ 1000 n > 1000
k = 1 T1 T2 thinning needed

k = 2 T2 thinning needed thinning needed
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Table 2

Summary statistics for DSP and PBTF, averaged over 50 generated sequences at noise level σ = 3.

True Trend Method MAD (s.d.) MCIW CP TCPU(s) min. ESS MESS

Piece. Linear BTF-BL 0.87 (0.18) 4.3 0.95 12 2271 4018

BTF-HS 0.73 (0.19) 3.7 0.95 7 1368 3275

BTF-DHS 0.70 (0.18) 3.7 0.95 17 880 3120

PBTF (k = 1) 0.82 (0.17) 3.9 0.94 70 1902 2037

Smooth Trend BTF-BL 0.98 (0.16) 5.1 0.96 12 1674 2440

BTF-HS 1.00 (0.15) 5.1 0.95 7 973 2491

BTF-DHS 1.02 (0.15) 5.1 0.95 17 150 1893

PBTF (k = 2) 0.87 (0.16) 4.3 0.95 896 857 2684

Sinusoid BTF-BL 0.80 (0.14) 4.6 0.97 12 2080 4120

BTF-HS 0.83 (0.14) 4.7 0.97 7 1203 2340

BTF-DHS 0.86 (0.14) 4.8 0.97 17 260 1884

PBTF (k = 2) 0.70 (0.14) 3.9 0.97 927 1207 3686

Piece. Quad./Cubic BTF-BL 0.77 (0.12) 4.3 0.97 12 845 4223

BTF-HS 0.78 (0.15) 4.1 0.96 7 378 2585

BTF-DHS 0.82 (0.15) 4.2 0.95 17 180 2190

PBTF (k = 2) 0.70 (0.13) 3.8 0.96 931 1439 3326
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