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ABSTRACT OF THE THESIS 

 

An Equivalent Circuit Model for Tunable Bandpass Filters Based on Ferromagnetic Resonance 
 

by 

 

Qian Gao 

Master of Science in Electrical & Computer Engineering  

University of California, Los Angeles, 2021  

Professor Yuanxun Wang, Chair 

 

An equivalent circuit model for transmission line loaded thin film ferrimagnetic material is proposed, 

which can be utilized to synthesize the bandpass filters. Theoretical derivation based on Landau-

Lifshitz-Gilbert (LLG) equation and Kittel’s equation is applied to model thin film ferrite as a parallel 

RLC resonator, whose resonant frequency is determined by the ferromagnetic resonance (FMR) 

frequency. The transmission line loaded thin film ferrite structure is simulated and the resultant 

impedances match with that obtained from equivalent circuit model by tuning the effective thickness 

of the ferrite. The ferrite resonators are utilized to construct the 3rd order bandpass filters at FMR 

frequency. The filter center frequency tunability is realized by changing the magnetic bias field 

strength while the relative bandwidth tuning is realized by changing the coupling coefficients. The 

BaFe12O19 (BaM) ferrite is considered, whose internal anisotropy magnetic field is able to increase 

the FMR frequency to millimeter wave band. The effects of ferrite thickness, conductor width and 

transmission line structure are included.  
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CHAPTER 1 

Introduction 

Microwave magnetic devices have had a major impact on the development of microwave technology. 

Specifically, the microwave band pass and band stop filters play important roles in RF transmitter 

and receiver circuits to select the desired signal frequency range and to suppress the noise. 

Specifically, magnetic notch filters have been fabricated based on the ferromagnetic resonance (FMR) 

absorption and magnetostatic wave excitation. The anisotropy magnetic field inside the hexaferrite 

is able to increase the filter operation frequency up to millimeter wave band, making the magnetic 

filter a promising candidate for the construction of bandpass or bandstop filters. However, there has 

no equivalent circuit model developed to delineate the interaction between the spin waves and the 

RF signals in the form of EM waves, making it difficult to synthesize the desired filter response. 

1.1    Background and Motivation  
 
Ferrimagnets having low RF loss are used in multiple passive microwave components. Ever since 

the demonstration of microwave Faraday rotation in ferrites by Hogan in 1952, a diverse range of 

microwave magnetic devices were investigated and developed, many of which have found critical 

applications in military and civilian arenas. Examples include circulators, isolators, phase shifters, 

filters, signal-to-noise enhancers and frequency selective limiters operating in a wide range of 

frequencies (1–100 GHz) [14][15]. However, many intrinsic operation mechanisms remain unclear, 

and the physics based equivalent circuit models are also lacked. H Cui et al. proposed a nonlinear 

circuit model for frequency-selective limiters that is able to predict the frequency selectivity behavior, 

time delay and nonlinear insertion loss that match with actual measurements [1]. Motivated by this 
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model, this work utilized the linear equivalent model for ferromagnetic resonance (FMR) to 

synthesize the bandpass filter. 

 

1.2    Millimeter Wave Band Stop Filter Based on Ferromagnetic Resonance 
 
Young-Yeal Song et al. demonstrated a hexagonal ferrite mm-wave filter that is based on a BaFe12O19 

(BaM) slab with in-plane anisotropy [2]. Figure 1.2.1 (a) is a schematic diagram of the device 

structure. A BaM hexagonal ferrite thin slab is positioned on top of a stripline structure, with its in-

plane 𝑐	axis along the stripline. An external static magnetic field 𝐻 is applied parallel to the 𝑐 axis. 

The microwave magnetic field ℎ produced by the stripline is to a large degree in the plane of the 

BaM slab and perpendicular to the 𝑐 axis. The BaM slab has an in-plane uniaxial anisotropy field of 

17 𝑘𝑂𝑒. Figure 1.1.1 (b) shows the relationship between theoretical FMR frequency versus biasing 

field according to Kittel’s equation [4]: 

𝜔! = 𝜇"𝛾%(𝐻 + 𝐻# + (𝑁$ −𝑁%)𝑀&)(𝐻 + 𝐻# + -𝑁' −𝑁%.𝑀&)                            (1.2.1) 

, where 𝜇"𝛾 = 2𝜋 × (.*+,%
-./

, 𝑁$ = 0.54, 	𝑁' = 0.16, 	𝑁% = 0.3, 4𝜋𝑀& = 4.3	𝑘𝐺. The high anisotropy field 

𝐻# facilitates high operation frequency with not so large biasing field. In addition, by virtue of the 

high anisotropy field, the FMR frequency has a linear relation with the static biasing field. The 

tunability of bandstop filter center frequency is achieved by changing the biasing field. 
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(a)                                                                                              (b) 

Figure 1.2.1 (a) Schematic of BaM ferrite-based notch filter [2] (b) FMR frequency versus biasing field for BaM ferrite 

 
Figure 1.2.2 (a) Transmission coefficient vs frequency profile for H=2186 Oe (b) Transmission profiles for ten 

different fields [2] 

 
Figure 1.2.3 (a) Upper curve: transmission profile for the strip line structure only; Lower curve: transmission profile for 

the BaM slab/strip line structure under a field of 1982 Oe. (b) Difference between the lower and upper transmission 
profiles in (a). [2] 

Figure 1.2.2 (a) demonstrates a band-stop response at 52.5 GHz, while Figure 1.2.2 (b) indicates that, 

through a change in the biasing field, one can shift the stop band over a frequency range. The band 

stop notches match with the theoretical FMR frequency that was calculated earlier. This confirms 

that the observed notch responses originate from the FMR absorption in the BaM slab. Figure 1.2.3 

indicates that the maximum relative rejection is about 27 dB and the insertion loss of BaM slab is 

about 7 dB, which can be further minimized by better fabrication technique. 

1.3    Millimeter Wave Band Stop Filter Based on Magnetostatic Wave Excitation 
 
In addition to FMR absorption, Lu Lei et al. utilized magnetostatic wave excitation to construct notch 

filter [3]. The transmission line structure changed from stripline to co-planer waveguide (CPW) line 

because the alternating magnetic field produced by the CPW signal line is spatially nonuniform. And 
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this nonuniform field excites MSW modes in the BaM film, which is a kind of surface spin wave that 

propagates along the width direction. When width is small, confined MSWs are excited. The 

excitation of such modes leads to a low output power in a certain frequency range, namely, the band-

stop filtering response, as shown in Figure 1.3.1. In addition, the MSW frequencies are higher than 

FMR frequency. The experimental filter notches frequencies agree with the theoretical MSW 

frequencies.  

 

Figure 1.3.1 Diagram of a BaM notch filter and Transmission profiles for ten different fields [3] 

 
1.4    Thesis Outline 
 
In this work, an equivalent circuit model for magnetic bandpass filter is proposed. The theoretical 

derivation of the circuit model parameters is included in Chapter 2. The full wave (HFSS) and circuit 

(ADS) simulation results are presented and compared in Chapter 3. The match between the two sets 

of results validates the feasibility of the circuit model. In Chapter 4, the influences of several design 

parameters are discussed, including the ferrimagnetic material anisotropy field, ferrite thickness, 

conductor widths and transmission line structures. Chapter 5 concludes the thesis and points out 

future research directions. 
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CHAPTER 2 

Equivalent Circuit Model of Tunable Bandpass Filter Based on FMR 

In this chapter, we first introduce the ferromagnetic resonance (FMR) for ferrite material and 

calculate the FMR frequency for thin film ferrite based on Kittel’s equation. Afterwards, the thin film 

ferrite is modeled as a parallel RLC resonator whose resonant frequency is the same as FMR 

frequency. In order to induce FMR, time varying magnetic field, i.e., RF field is generated by the 

transmission line structure. And the transmission line inductance is added to the previous circuit 

model. Finally, the transmission line loaded ferrite resonator is used to construct the 3rd order band 

pass filter. 

2.1    Ferromagnetic Resonance of Thin Film Ferrite 
 
In free space, the magnetic field intensity 𝐻--⃗  is related with magnetic flux density 𝐵-⃗  by the 

constitution relation: 

𝐵>⃗ = 𝜇"𝐻>>⃗                                                                           (2.1.1) 

, where 𝜇! = 4𝜋 × 10"#𝐻/𝑚 is the permeability of free space. However, in magnetic material, the 

application of external magnetic field 𝐻>>⃗  will change the polarization of the magnetic dipole. 

Depending on the reaction to the external field, magnetic material can be classified into various 

categories: paramagnetic, diamagnetic, ferromagnetic and ferrimagnetic. In the following discussion, 

we will limit our interest to ferrimagnetic material, in which the induced magnetic moment will align 

with the external magnetic field and increase the total magnetic flux in the material, as shown in 

Figure 2.1.1. In addition, the ‘ferrite’ is short for ferrimagnetic material. 
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Figure 2.1. 1 The influence of external magnetic field on the magnetic dipole in ferrimagnetic material [16] 

When a magnetic bias field 𝐻!----⃗ = �̂�𝐻! is present, a torque will be exerted on the magnetic dipole: 

𝑇-⃗ = 𝑚--⃗ × 𝐵!----⃗ = 𝜇!𝑚--⃗ × 𝐻!----⃗ = −𝜇!𝛾𝑠 × 𝐻!----⃗                                 (2.1.2) 

And torque is equal to the time rate of change of angular momentum: 

𝑇-⃗ = $%⃗
$'
= "(

)
$*+++⃗
$'
= 𝜇!𝑚--⃗ × 𝐻!----⃗                                             (2.1.3) 

Hence, the equation of motion for the magnetic dipole moment can be solved: 

$*+++⃗
$'
= −𝜇!𝛾𝑚--⃗ × 𝐻!----⃗                                                             (2.1.4) 

Equation (2.1.4) can be decomposed into three scalar equations to solve for magnetization 𝑚--⃗ =

𝑚,𝑥> + 𝑚-𝑦> + 𝑚.�̂�. And the solutions are: 

𝑚, = 𝐴𝑐𝑜𝑠(𝜔/𝑡),𝑚- = 𝐴𝑠𝑖𝑛(𝜔/𝑡), 	𝜔! = 𝜇!𝛾𝐻!                               (2.1.5) 

, where 𝜔! is called the Larmor precession frequency. 
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(a)                                                          (b)  

Figure 2.1. 2 (a) Spin magnetic dipole and angular momentum vectors for a spinning electron (b) Magnetic moment of 
a ferrimagnetic material versus bias field 𝐻! [4] 

The precession angle 𝜃 between 𝑚--⃗  and 𝑧 axis is given by 

𝑠𝑖𝑛𝜃 =
0*"#1*$#

|*+++⃗ |
= 3

|*+++⃗ |
                                                        (2.1.6) 

Equation (2.1.5) indicates that 𝑚--⃗  traces a circular path on the 𝑥𝑦 plane, and the precession frequency 

is 𝜔" . In the absence of damping force, the magnetic dipole will precess about 𝐻!  indefinitely. 

However, in reality, the damping force will cause 𝑚--⃗  to spiral in and finally align with 𝐻! [4].  

Figure 2.1.1 (b) shows the relation between total magnetic moment in the ferrite versus the applied 

bias field. When the field strength increases, more magnetic dipole will be aligned, so the total 

magnetic moment will increase, until all the magnetic moments are aligned, and the ferrite is said to 

be magnetically saturated. 𝑀% is the saturation magnetization, depending on the material properties. 
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When an additional small AC (microwave) magnetic field is added, it will interact with the 

magnetically saturated material and cause a forced precession of dipole moment at the frequency 

governed by the applied AC field. Let 𝐻--⃗  be the applied AC field, the total magnetic field is: 

𝐻'----⃗ = 𝐻!�̂� + 𝐻--⃗ = 𝐻!�̂� + 𝐻,𝑥> + 𝐻-𝑦> + 𝐻.�̂�                                     (2.1.7) 

, where |𝐻|------⃗ ≪ 𝐻!. The total magnetization in the ferrite material is given by 

𝑀'-----⃗ = 𝑀%�̂� + 𝑀--⃗ = 𝑀%�̂� + 𝑀,𝑥> + 𝑀-𝑦> + 𝑀.�̂�                                  (2.1.8) 

And according LLG equation, $4%
+++++⃗

$'
= −𝜇!𝛾𝑀'-----⃗ × 𝐻'----⃗ . Substituting (2.1.7) and (2.1.8) to the LLG 

equation and assuming AC 𝐻--⃗  field has 𝑒56'  time dependence, 𝑀--⃗  and 𝐻--⃗  is related by the 

susceptibility tensor 𝜒: 

𝑀--⃗ = [𝜒]𝐻--⃗ = P
𝜒,, 𝜒,- 0
𝜒-, 𝜒-- 0
0 0 0

Q𝐻--⃗                                               (2.1.9) 

, where 𝜒,, = 𝜒-- =
6&6'
6&#"6#

, 𝜒,- = −𝜒-, =
566'
6&#"6#

, 𝜔! = 𝜇!𝛾𝐻!, 𝜔* = 𝜇!𝛾𝑀%. 

The magnetic flux density 𝐵 and magnetic field intensity 𝐻 is related: 

𝐵-⃗ = 𝜇!R𝑀--⃗ + 𝐻--⃗ S = [𝜇]𝐻--⃗                                                (2.1.10) 

Substituting (2.1.9) to (2.1.10), then the permeability tensor is derived to be 

[𝜇] = 𝜇!([𝑈] + [𝜒]) = P
𝜇 𝑗𝜅 0
−𝑗𝜅 𝜇 0
0 0 𝜇!

Q                                    (2.1.11) 
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, where 𝜇 = 𝜇!(1 + 𝜒,,) = 𝜇! W1 +
6&6'
6&#"6#

X , 𝜅 = −𝑗𝜇!𝜒,- =
7&66'
6&#"6#

. 

The physical meaning of permeability tensor [𝜇] is that it relates the AC magnetic field intensity with 

the induced magnetization in the ferrite material. Notably, from (2.1.9), when the AC field frequency 

𝜔 is equal to the Larmor precession frequency 𝜔!, the denominator of the susceptibilities will vanish, 

indicating infinite induced magnetization. Of course, this will not happen in real world with loss 

present. However, this phenomenon is called gyromagnetic resonance or ferromagnetic resonance 

(FMR). And the FMR frequency is equal to the Larmor precession frequency 𝜔" in infinite large 

ferrite samples. For a finite-sized ferrite sample, the FMR frequency is altered by the demagnetization 

factors, and is given by Kittel’s equation [5]: 

𝜔8 = Y(𝜔! + 𝜔*𝑁,)(𝜔! + 𝜔*𝑁-)                                         (2.1.12) 

, where 𝑁,,	𝑁- is the demagnetization factors. 

2.2    Equivalent Circuit Model for Thin Film Ferrite 
 

 

Figure 2.2.1: Diagram of thin film ferrite biased in z direction 

In electrical circuits, RLC resonators can be used to characterize the resonant behavior in mechanical 

systems when two types of energy interact with each other. In ferrite material, the precession motion 
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of the magnetic dipole is analogies to the pendulum oscillation, where the magnetic energy and 

electric energy interact with each other during oscillation. At the highest position, the kinetic energy 

stored in the pendulum is zero, and the electric energy stored in the magnetic dipole is zero. At the 

lowest state of pendulum oscillation, the potential energy stored in the pendulum system is zero, and 

the magnetic energy stored in the magnetic dipole is zero, since the magnetic dipole is cutting the 

magnetic field lines at the largest speed, creating electric potential. The power loss in ferrite material 

is also present during magnetic moment precession, corresponding to the resistance in the RLC 

resonator. So intuitively, the magnetic dipole motion can be modeled by an RLC resonator, and the 

detailed derivation is attached below. 

Figure 2.2.1 is the diagram of a thin film ferrite material, where the static bias magnetic field is 

applied in plane in 𝑧 direction, and the AC magnetic field is perpendicular to the bias direction. The 

ferrite material thickness is assumed to be much smaller than the ferrite length and width and a 

complete demagnetization in thickness direction can be assumed, i.e., 𝑁- = 1. 

According to (2.1.9), 

𝑀, = 𝜒,,𝐻, + 𝜒,-𝐻-                                                       (2.2.1) 

𝑀- = 𝜒-,𝐻, + 𝜒--𝐻-                                                       (2.2.2) 

𝐻, = 𝐻,9 = 𝐻8: , 	𝐻- = 𝐻-9 −𝑀-	                                         (2.2.3) 

Note that (2.2.3) is valid since 𝑁- = 1 is assumed. Substituting (2.2.3) to (2.2.1) and (2.2.2), 

𝑀, =
;""1;"";$$";"$;$"

(1;$$
𝐻,9 +

;"$
(1;$$

𝐻-9                                   (2.2.4) 
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𝑀- =
;$"

(1;$$
𝐻,9 +

;$$
(1;$$

𝐻-9                                               (2.2.5) 

(2.2.4) and (2.2.5) give the relation between induced magnetization and the external applied magnetic 

field, influenced by the demagnetization factors. Hence, the effective susceptibilities can be defined: 

𝑀, = 𝜒,,9::𝐻,9 + 𝜒,-9::𝐻-9                                           (2.2.6) 

𝑀- = 𝜒-,9::𝐻,9 + 𝜒--9::𝐻-9                                           (2.2.7) 

Compare (2.2.6) with (2.2.4), then 

𝜒,,9:: =
;""1;"";$$";"$;$"

(1;$$
                                             (2.2.8) 

Substituting the expressions of 𝜒,,,	𝜒,-, 𝜒-,, and 𝜒--,  

𝜒,,9:: =
6'
6&

6(#

6(#"6#
                                                    (2.2.9) 

, where 𝜔8 = Y𝜔!(𝜔! + 𝜔*) is the resonant frequency of thin film ferrite calculated using Kittel’s 

equation. 

Similar to the RLC resonator, loss in the system can be included by making the resonant frequency 

complex: 

𝜔8< = (𝜔! + 𝑗𝛼𝜔)(𝜔* + 𝜔! + 𝑗𝛼𝜔)                                (2.2.10) 

, where 𝛼 is the Gilbert damping constant, depending on the type of ferrite material. 

The impedance of the ferrite material can be derived from the external susceptibility: 
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𝑍9=_:988?'9 = 𝑗𝜔𝜇!𝜒,,9::
@$
A

                                       (2.2.11) 

Substituting (2.2.9) (2.2.10) to (2.2.11) and ignoring higher orders of 𝛼, the ferrite impedance can be 

mapped to the impedance of a parallel RLC resonator, where 𝑍"#$_& =
'

0
12(

0
3452()*$+

 and 

𝐶* = 6&
6(#7&6'

× A
@$

                                                            (2.2.12) 

𝐿* = 7&6'
6&

× @$
A

                                                                (2.2.13) 

𝑅* = 7&6'6(#

B(<6&16')6&
× @$

A
                                                         (2.2.14) 

2.3    Equivalent Circuit Model for Transmission Line Loaded Ferrite 
 

 
 

(a)                                                                                              (b) 

Figure 2.3.1: (a) Lumped elements model of transmission line [4] (b) Equivalent circuit model of transmission line 
loaded ferrite material with 𝐿! representing shortened transmission line inductance [17] 

 
In reality, the AC magnetic field exerted on the ferrite material is usually provided by the 

transmission line that guides the electromagnetic wave propagation. Hence, the parasitic of 

transmission line parameters must be taken into account to model the structure accurately. Figure 

2.3.1(a) is the lumped elements model of transmission line, where 𝑅 ,𝐿, 𝐺, 𝐶  are the resistance, 
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inductance, conductance, and capacitance per unit length, respectively. Based on this equivalent 

circuit model, the input impedance of the transmission line with arbitrary load impedance 𝑍E can be 

derived. Specifically, when 𝑍E = 0, which means the transmission line is shortened at one end, the 

input impedance can be simplified: 

𝑍FE = 𝑗𝑍/ tan 𝛽𝑙                                                                (2.3.1) 

, where 𝛽 is the propagation constant along the transmission line, 𝑙 is the length of transmission line, 

and 𝑍! is the characteristic impedance of the transmission line. When the length is much smaller than 

the wavelength, i.e., 𝛽𝑙 ≪ G
<
, tan 𝛽𝑙 ≈ 𝛽𝑙. And 𝑍FE has a linear relationship with operating frequency, 

which can be viewed as a single inductor with equivalent inductance: 

𝐿FE =
H&
I
× 𝑙                                                                    (2.3.2) 

Hence, when the bias field is applied perpendicular to the RF magnetic field generated by the 

transmission line, as shown in Figure 2.3.2, the total magnetic flux in the RF field direction will be 

greater with ferrite present, as indicated by (2.2.11). Hence, the transmission line inductor should 

have a series connection with the parallel RLC resonator representing such physics, as shown in 

Figure 2.3.1 (b), which is the equivalent circuit model of transmission line loaded ferrite structure 

when the transmission line length is much smaller than the EM wave wavelength and is shortened at 

one end. 
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Figure 2.3.2: Schematic of transmission line loaded ferrite material 

2.4    Equivalent Circuit Model for Bandpass Filter 
 
Bandpass filters can be synthesized using the insertion loss method and implemented with the short-

circuited transmission line stubs, as indicated in Figure 2.4.1 [4]. Quarter-wavelength sections of line 

between the stubs act as admittance inverters to effectively convert alternate shunt resonators to series 

resonators. The characteristic impedances of the shunt short-circuited transmission line stubs is given 

by: 

𝑍/J =
GH&K
LM)

                                                                 (2.4.1) 

, where 𝑍!  is the characteristic impedance of the quarter-wavelength sections, Δ = 6#"6*
6&

 is the 

fractional bandwidth of the filter, and 𝑔J is the low-pass prototype values. 



 15 

  

Figure 2.4.1: Bandpass filters using shunt transmission line resonators [4] 

Afterwards, the short-circuited transmission line stubs are mapped to the parallel LC resonators, 

because it will be later represented by the circuit model of ferrite resonators, as shown in Figure 2.4.2. 

The input impedance of the short-circuited quarter wavelength transmission line near center 

frequency is: 

𝑍𝑖𝑛1 = 𝑗𝑍!𝑡𝑎𝑛𝜃 =
"5H&

'NJ	(+,-#-&
)
≈ "5H&

	(+,-#-&
)
	                                          (2.4.2) 

And the input impedance of the LC resonator near center frequency is: 

𝑍𝑖𝑛2 = (
*

.-/&
156P&

= 56E&6&#

(6&16)(6&"6)
                                                (2.4.3) 

, where 𝜔 = 𝜔! + 𝛥𝜔 and 𝛥𝜔 is some small deviation from center frequency. Equating 𝑍𝑖𝑛1 with 

𝑍𝑖𝑛2, the 𝐿! and 𝐶! are found: 

𝐿! =
LH&
G6&

, 	𝐶! =
G

LH&6&
                                                       (2.4.4) 



 16 

 

Figure 2.4.2: The equivalence of short-circuited quarter wavelength transmission line and parallel LC resonator [18] 

 
Thus, the design procedure for bandpass filter is systematic. Firstly, the bandpass filter can be 

synthesized using the conventional coupled transmission line structure with the design equation 

given by (2.4.1). Afterwards, the shunt transmission line resonators are represented by the parallel 

LC resonators, and the desired LC values are calculated using (2.4.4). The ferrite resonator is used 

to construct these LC resonators, and the ferrite dimensions as well as the bias magnetic field strength 

can be derived using (2.2.12) to (2.2.14). In this way, the bandpass filter based on ferromagnetic 

resonance is synthesized. And the filter center frequency tuning can be easily implemented by 

changing bias magnetic field strength, as indicated in (2.1.9). 

 

Figure 2.4.3: Equivalent circuit model for 3rd order bandpass filter using transmission line loaded ferrite resonators 
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The final equivalent circuit model of a 3rd order bandpass filter is shown in Figure 2.4.3. The 

𝑅*, 𝐿*,	and 𝐶* represent ferrite resonators whose resonant frequency (FMR frequency) is the same 

as the bandpass filter center frequency. 𝐿/(, 𝐿/< , and 𝐿/Q  represent transmission line inductances 

given by (2.3.2). Since the effect of transmission line inductances are not included in the previous 

filter synthesize, the series 𝐶/(, 𝐶/<, and 𝐶/Q are added to cancel their effect to form series resonances 

at filter center frequency. However, the effect of 𝐿/(, 𝐿/< , and 𝐿/Q  will become obvious when 

moving farer away from center frequency, which will be discussed in more details in the next two 

chapters. 
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CHAPTER 3 

Design and Simulation of Tunable Bandpass Filters Based on FMR 

In this chapter, we explain the detailed procedures of tunable bandpass filter synthesis using the 

proposed equivalent circuit model in Chapter 2. Firstly, the transmission line loaded ferrite structure 

is built in Ansys high-frequency structure simulator (HFSS) to facilitate full wave simulation for 

input impedances and resonance frequencies. Afterwards, the simulated S parameters are extracted 

and imported to Advanced Design System (ADS) to compare with the S parameters got from the 

circuit model. The close match between the two sets of results demonstrates the validity of the 

proposed circuit model. Afterwards, bandpass filter synthesis is performed using three resonators and 

the corresponding ferrite physical dimensions are derived. Finally, the bandpass filter center 

frequency tuning and relative bandwidth tuning are shown. 

3.1   Construction of Stripline Loaded Ferrite in HFSS 
 

 
 

Figure 3.1.1: Modeling of stripline loaded ferrite in HFSS 
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Figure 3.1.1 illustrates the physical structure of the transmission line loaded ferrite resonator in HFSS. 

Specifically, stripline structure is exploited to provide the RF magnetic field that is perpendicular to 

the bias magnetic field. The comparison of stripline structure and microstrip line structure is included 

in Chapter 4. Compared with microstrip line structure, the stripline has the ground planes on both 

top and bottom. Thus, when two pieces of thin film ferrite materials are inserted between the center 

metal conductor and the ground planes, the RF magnetic field distribution is uniform across the ferrite 

material, exciting the ferromagnetic resonance (FMR) mode, which is the 0th  order spin wave mode 

[5]. Otherwise, higher order spin wave modes may be excited, which is not included in the proposed 

circuit model. 

The choice of transmission line lengths, widths, and substrate thicknesses are optimized with respect 

to the frequency of operation. Since high frequency up to 30 GHz is considered, the corresponding 

wavelength is 

𝜆 = R
:
= Q×(!0

Q!×(!1
𝑚 = 0.01𝑚                                                  (3.1.1) 

, when air acts as the substrate. Hence, in order to use a single inductor to represent the transmission 

line, the length of the line should be  smaller than (
(!
𝜆 = 1	𝑚𝑚. In this project, the length of the line 

varies between 0.1	𝑚𝑚 to 0.2	𝑚𝑚 to satisfy this requirement. And the transmission line inductance 

can be calculated from (2.3.1) and (2.3.2) and can be compared with the actual simulated results.  

The width of transmission line is also an important parameter to optimize. On the one hand, the larger 

the width, the smaller the characteristic impedance of the transmission line itself, causing smaller 

transmission line inductance which is desirable since transmission line inductance is a parasitic in 

the ferrite resonators. On the other hand, larger widths will result in smaller ferrite inductance since 
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𝐿* = 7&6'
6&

× @$
A

 from (2.2.13). Thus, the width should be optimized to give a largest ratio between 

𝐿* and 𝐿FE. 

The substrates are filled entirely with ferrite material which has the thickness of 10 um. Thinner 

ferrite is required since the previous derivation assumed a complete demagnetization in the thickness 

direction. However, the ferrite can’t be arbitrarily thin as well in order to give a reasonable 𝐿* value. 

 

 
Figure 3.1.2: Real part of input impedances when sweeping bias magnetic field (plus internal anisotropy field) from 

70000 A/m to 1400000 A/m with step 80000 A/m 

 
Figure 3.1.2 shows the real part of input impedances when sweeping bias magnetic field from 70000 

A/m to 1400000 A/m with step 80000 A/m. When the other end of transmission line is shorted, the 

input impedance is: 

𝑍?J = 𝑍FE + 𝑍:988?'9 = 𝑗𝜔𝐿FE +
(

*
2'

1 *
.-/'

156P'
                              (3.1.2) 

And at FMR frequency when (
56E'

+ 𝑗𝜔𝐶* = 0, the real part on 𝑍?J will reach the maximum. Hence, 

FMR frequencies can be extracted from the input impedances plot from HFSS. Figure 3.1.3 shows 
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the comparison between simulated FMR frequencies and theoretical FMR frequency given by 

Kittel’s equation. The close match between the two indicates that FMR mode is excited in the ferrite 

material and the 10um thickness is thin enough to be considered thin film ferrite whose resonance 

frequency is given by 𝜔8 = Y𝜔!(𝜔! + 𝜔*) from (2.2.9). 

 

 
Figure 3.1.3: Comparison between simulated FMR frequency and theoretical FMR frequencies  

 
3.2   Mapping HFSS results to equivalent circuit models 
 
From the full wave simulation results got from HFSS, the validity of the proposed circuit model is 

tested. Figure 3.2.1 shows the simulation schematic in ADS to generate the input impedances plots 

for both cases. The SnP device represents the S parameter exported from HFSS. The upper circuit 

model is the proposed transmission line loaded ferrite resonator, where a parallel RLC resonator is 

in series with the transmission line inductance denoted as 𝐿6.  
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Figure 3.2.1: Simulation schematic in ADS to optimize the transmission line inductance and effective thickness of the 
ferrite material 

 
The parameters used to construct the circuit model are those used in the full wave simulation like 

bias magnetic field strength, length, width of the transmission line, magnetic saturation of the ferrite 

material, etc. The 𝑟, 𝑙, 𝑐 values are calculated from the equations (2.2.12) to (2.2.14). Specifically, a 

type of hexaferrite, 𝐵N𝑀  is considered here, with 4𝜋𝑀% = 4.3	𝑘𝐺  and damping constant 𝛼 =

0.007	(measured at 60 GHz). The addition of bias field and its internal anisotropy magnetic field is 

17500	𝑂𝑒, which gives the FMR frequency of 40 GHz: 

𝜔8 = 𝜇!𝛾p(𝐻 + 𝐻N + (𝑁, − 𝑁.)𝑀%)(𝐻 + 𝐻N + R𝑁- − 𝑁.S𝑀%)                  (3.2.1) 

, where 𝑁, = 0, 	𝑁- = 0, 	𝑁. = 1 when z is the thickness direction.  

However, to get a close match between the HFSS results and ADS circuit model results, the thickness 

of the ferrite has to be optimized. This is because the previous derivation of ferrite resonator assumed 
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the magnetic spins inside the ferrite precess uniformly with the addition of external magnetic fields. 

Whereas in the actual device structure, the RF magnetic field provided by the stripline is not strictly 

uniform along the thickness direction of the ferrite. In other words, even though the actual thickness 

of the ferrite is 10 um, the effective thickness will be less than 10 um, when the length and width of 

the ferrite are chosen to be the same as transmission line length and width, respectively. In order to 

represent the active part of the ferrite material, the optimization tool in ADS is used, whose goals are 

to minimize the difference between HFSS results and ADS results by tuning the effective thickness 

of ferrite: 

𝐺𝑜𝑎𝑙	1 = min	(𝑟𝑒𝑎𝑙(𝑍(((𝐻𝐹𝑆𝑆)) − 𝑟𝑒𝑎𝑙(𝑍(((𝐴𝐷𝑆)))				                      (3.2.2) 

𝐺𝑜𝑎𝑙	2 = min	(𝑖𝑚𝑎𝑔(𝑍(((𝐻𝐹𝑆𝑆)) − 𝑖𝑚𝑎𝑔(𝑍(((𝐴𝐷𝑆)))                        (3.2.3) 

Figure 3.2.2 shows the comparison between HFSS results (blue curves) and ADS results (red curves) 

for both 𝑟𝑒𝑎𝑙(𝑍(() and 𝑖𝑚𝑎𝑔(𝑍((). The close match between the two sets of results demonstrates 

the feasibility of the proposed circuit model.  

Table 3.2.1 summarize the optimized parameters for different lengths of the transmission line 

structure. Since the constitution of bandpass filters require multiple resonators with different reactive 

components values, these parameters are saved for future reference to do the filter synthesis. 
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Figure 3.2.2: Comparison between HFSS results (blue curves) and ADS results (red curves) 

 

Table 3.2.1: Summary of circuit parameters and optimization results 

3.3   Bandpass Filter Synthesis and Simulation 
 
There are several ways to do the filter design and synthesis. The insertion loss method, specifically, 

allows a high degree of control over the filter passband and stopband as well as the phase 

characteristics. Figure 3.3.1 illustrates the process of filter design with insertion loss method. The 

detailed procedure can be found in [4] and [6]. In this project, two kinds of bandpass filters are 

considered: bandpass filter using transmission line coupled resonators and bandpass filter using 

capacitively coupled resonators. 

Bias H_ferrite length d_optimized Lo(TL) Lm Cm Rm

Ho+Ha=
17500 

Oe

10um+10um
(width=0.1m
m)

0.1mm 3.4701517um 0.0055 nH 1.5245 pH 10.38 pF 27.07 Ohm

0.12mm 3.591654um 0.006 nH 1.8934 pH 8.3572pF 33.62 Ohm

0.144mm 3.591654um 0.0075 nH 2.2563 pH 7.0131 pF 40.06 Ohm

0.16mm 3.591654um 0.009 nH 2.5246 pH 6.2679 pF 44.83 Ohm
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Figure 3.3.1: The process of filter design by the insertion loss method [4] 

3.3.1 Bandpass Filter Using Transmission Line Coupled Resonators 
 
In chapter 2.4, the filter structure using transmission line coupled resonators has been discussed 

briefly. Here we will extend this procedure and include simulation results. Figure 3.3.1.1 shows the 

synthesized filter parameters with 5% relative bandwidth at 40.05 GHz. The transfer response is set 

to be equal ripple. The 𝐿(,	𝐿<,	𝐿Q,	𝐶(,	𝐶<,	𝐶Q values are calculated from (2.4.4). The coupling quarter 

wavelength transmission line has the characteristic impedance of 12.52 Ohm which is also the system 

reference impedance. The reason why the reference impedance is not the standard 50 Ohm is that it 

is affected by the ferrite resonators. With the current design structure, it’s easier to synthesize the 

filter in lower impedances systems. Such limitations can be overcome when the physical dimension 

of the ferrite as well as the loading transmission line become more diverse. 

 

Figure 3.3.1.1: Original bandpass filter structure  
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Figure 3.3.1.2 extends from Figure 3.3.1.1 by replacing the ideal 𝐿𝐶 resonators with the actual 𝑅𝐿𝐶 

resonators where the resistance represents the loss in the ferrite material. Note that the 𝑅𝐿𝐶 values 

are the optimized results as discussed previously. 𝐿/(, 𝐿/< and 𝐿/Q represents the transmission line 

inductances, which, when compared with Figure 3.3.1.1, are the parasitic that are not considered 

during filter synthesis. Hence, the series 𝐶/(, 𝐶/< and 𝐶/Q are added to counteract their effects by 

forming series resonances at FMR frequency which is also the filter center frequency. 

 

Figure 3.3.1.2: Bandpass filter structure with the equivalent circuit model of transmission line loaded ferrite resonators  

 
In Figure 3.3.1.3, the equivalent circuits of transmission line loaded ferrite resonators are further 

replaced by the actual S parameter simulation results from HFSS. Generally, the three resonators 

should have different reactive components values to construct a 3rd order filter. However, since the 

equal ripple filter is considered here, the first and the third resonators are essentially the same, 

corresponding to the transmission line length of 0.1 mm (which is also the length of ferrite material). 

And the second SnP device corresponds to the S parameter simulated from the structure when the 

length of transmission line is 0.144 mm. Actually, after the optimization process to find the effective 

thickness of the ferrite material, the ferrite A
$_9::

 can be viewed as a constant. And the adjustment of 
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inductances and capacitances in ferrite resonators can be done easily by changing the length of ferrite, 

according to (2.2.12) to (2.2.14). This will make the filter synthesis following a systematic way. 

 

Figure 3.3.1.3: Bandpass filter structure with the SnP devices representing actual simulation results from HFSS 

 
Figure 3.3.1.4 summarized the simulation results for the above three circuit schematics. The red curve 

represents the ideal filter response without any loss in passband. The blue curve is the filter response 

generated from the equivalent circuit model in Figure 3.3.1.2 and the pink curve is the filter response 

generated from HFSS S parameters. The filter center frequency is 40.05 GHz. This figure 

demonstrates the effectiveness of the proposed equivalent circuit model approach to synthesize the 

3rd order bandpass filter. In addition, the close match between the pink curve and red curve indicates 

that the optimization is quite accurate. Compared with the ideal filter, the 5 dB in-band attenuation 

comes from the loss in the ferrite material. However, when the frequency is far away from the 

passband, the transmission characteristic will rise again due to the existence of transmission line 

inductances. The additional capacitors are only capable of eliminating their influence near the center 
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frequency. Of course, such phenomenon can be minimized by better transmission line design and 

using other methods to eliminate their effects. 

  

Figure 3.3.1.4: Simulation results: red curve: ideal filter response without loss in passband; Blue curve: filter response 
generated from the equivalent circuit model; Pink curve: filter response generated from HFSS s parameters 

 
3.3.2 Bandpass Filter Using Capacitively Coupled Resonators 
 
A related type of bandpass filter exploits capacitively coupled resonators and is often referred to as 

ceramic resonator filters when made from coaxial line with ceramic materials. The design procedure 

of such filters can be understood from Figure 3.3.2.1, which starts from the general bandpass filter 

schematic with admittance inverters, i.e., 𝐽!( , 𝐽(< , etc. In the previous structure, the admittance 

inverters are quarter wavelength transmission lines. Here, on the other hand, the admittance inverters 

are implemented with 𝜋 networks. 𝐶(<, (−𝐶(<), and (−𝐶(<) are the example of one unit of 𝜋 network. 

Note that even though the negative capacitances are used here, which, of course, don’t exist in nature, 

they will be later absorbed by the rest of the circuits.  
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Figure 3.3.2.1: Equivalent circuit for the bandpass filter. (a) A general bandpass filter circuit using shunt resonators 
with admittance inverters. (b) Replacement of admittance inverters with the circuit implementation. (c) After 

combining shunt capacitor elements. [4] 

 
Using the analysis in [4], the admittance inverter constants can be derived as: 

𝑍!𝐽!( = p G∆
LM*

                                                           (3.3.2.1) 

𝑍!𝐽J,J1( =
G∆

LVM)M)3*
                                                      (3.3.2.2) 

𝑍!𝐽W,W1( = p G∆
LM4M43*

                                                      (3.3.2.3) 

, where ∆  is the relative bandwidth, 𝑔J  is the lowpass filter prototype constants and 𝑍!  is the 

reference impedance. Similarly, the coupling capacitor values in Figure 3.3.2.1 (b) can be found as: 

𝐶!( =
X&*

6&V("(H&X&*)#
                                                    (3.3.2.4) 
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𝐶J,J1( =
X),)3*
6&

                                                       (3.3.2.5) 

𝐶W,W1( =
X4,43*

6&0("(H&X4,43*)#
                                                 (3.3.2.6) 

Note that the end capacitors are treated differently than the internal elements.  

Afterwards, the negative capacitors are combined with the larger capacitors in the LC resonators as 

shown in Figure 3.3.2.1 (c). Thus, the effective resonator capacitor values are given by: 

𝐶JY = 𝐶J + ∆𝐶J = 𝐶J − 𝐶J"(,J − 𝐶J,J1(                            (3.3.2.7) 

, where ∆𝐶J represents the change in the resonator capacitance caused by the parallel addition of the 

inverter elements. 

Figure 3.3.2.2 shows the original filter schematic built directly from Figure 3.3.2.1 (b) with center 

frequency of 34.85 GHz, 5% relative bandwidth and equal ripple response. The lumped elements 

values are calculated from the equations above. Note that in this step, the transmission line 

inductances of ferrite resonators are not included. 

Figure 3.3.2.3 extends from Figure 3.3.2.2 by adding transmission line inductances 𝐿/  and the 

corresponding resonate capacitance 𝐶/. As before, the cancellation of 𝐿/ is only effect around the 

center frequency.  
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Figure 3.3.2.2: Original bandpass filter structure  

 

 

Figure 3.3.2.3: Bandpass filter structure with the equivalent circuit model of transmission line loaded ferrite resonators  

 
Then, the problem arises as to how to absorb the negative capacitances into the rest of circuits. For 

this project, the negative capacitors 𝑑𝑒𝑙𝑡𝑎_𝐶(, 𝑑𝑒𝑙𝑡𝑎_𝐶<, and 𝑑𝑒𝑙𝑡𝑎_𝐶Q are combined directly with 

the ferrite capacitor 𝐶*. This is not accurate, since the addition of transmission line inductances is 

not considered. However, there are other ways of integration such as the technique illustrated in [7], 

which may be the future research objective. 
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After absorbing the negative capacitances, the ferrites should resonate at higher frequencies than the 

filter operation (center) frequency. And since the 𝑑𝑒𝑙𝑡𝑎_𝐶(, 𝑑𝑒𝑙𝑡𝑎_𝐶<, and 𝑑𝑒𝑙𝑡𝑎_𝐶Q are not the same, 

the FMR frequencies for each ferrite resonators are different as well. Figure 3.3.2.4 shows the design 

parameters from HFSS, where the first and third resonators are biased at 984000	𝐴/𝑚 while the 

second resonator is biased at 878500	𝐴/𝑚.  

 

Figure 3.3.2.4: Bandpass filter structure with the SnP devices representing actual simulation results from HFSS 

 
Figure 3.3.2.5 summarized the simulation results of filter transfer characteristics. The red curve is 

the original filter response (Figure 3.3.2.2). The blue curve is filter response generated from the 

equivalent circuit model in Figure 3.3.2.3 and the pink curve is the filter response generated from 

HFSS S parameters in Figure 3.3.2.4. The distortion of the pink curve is caused by the extra 

transmission line inductances. 
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Figure 3.3.2.5: Simulation results: red curve: original filter response; Blue curve: filter response generated from the 
equivalent circuit model; Pink curve: filter response generated from HFSS s parameters 

 
3.3.3 Summary and Comparison 
 
Compared with the transmission line coupled filters, the capacitively coupled filters have the 

advantage that the filter relative bandwidth can be easily tuned by changing the coupling capacitances, 

as indicated in (3.3.2.4) to (3.3.2.6). However, the drawback is that the FMR frequency is different 

than the operation frequency for each unit of ferrite material, which may be hard to implement in 

reality. 

Figure 3.3.3.1 summarized the filter center frequency tunability by changing the bias magnetic field 

strength. The filter structure is based on coupled transmission lines.  
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Figure 3.3.3.1: Summary of filter tunability 
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CHAPTER 4 

Design Considerations and Discussion on Physical Parameters 

In this Chapter, several design considerations are taken into account and the effects of them on the 

filter characteristics are included. First of all, the internal anisotropy of the specific kind of 

ferrimagnetic material, hexaferrite is illustrated, which makes it possible to raise FMR frequency to 

millimeter wave band and facilitate filter design at higher frequencies. Afterwards, the effects of 

ferrite thickness, transmission line structures and conductor widths are included. In the HFSS device 

layout and in actual experiment, these are important parameters to optimize. To conclude, stripline 

structure sandwiched with ferrites less than 20 um thick is suitable to excite FMR mode. 

4.1 Effect of Ferrimagnetic Material Anisotropy 
 
As stated in Chapter 2 and Chapter 3, the internal anisotropy field inside some kinds of ferrite 

material is capable of increasing the FMR frequency without the need to apply extremely large static 

magnetic bias field, i.e., up to 10	𝐾𝑂𝑒, which requires large permanent magnets. In fact, depending 

on the magnetization direction relative to the principal axes of the crystal, an additional energy, 

anisotropy energy, may be present in ferrimagnetic crystals [11][12]. Such anisotropy magnetic field 

will add additional torque on the magnetic spin: 

𝑇N----⃗ = 𝜇!𝑀--⃗ × 𝐻N-----⃗                                                                (4.1.1) 

, where 𝐻N is the effective anisotropy field. As a result, the resonance condition is modified by this 

magnetic anisotropy field and is given by (3.2.1): 𝜔8 =

𝜇!𝛾p(𝐻 + 𝐻N + (𝑁, − 𝑁.)𝑀%)(𝐻 + 𝐻N + R𝑁- − 𝑁.S𝑀%).  
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An important observation is that ferromagnetic resonance can be observed in ferrites having nonzero 

anisotropy even if there is no external magnetic bias field, which is the self-bias phenomenon. 

Generally speaking, microwave ferrites refer to the entire family of iron oxides which include spinels, 

garnets, hexaferrites, and orthoferrites, as presented in Table 4.1.1.  Specifically, hexagonal ferrites, 

or hexaferrites, usually have larger magnetic anisotropy field strength 𝐻N  compared with spinel 

ferrite and garnet ferrite. And many attempts have been made to improve the magnetic properties of 

hexaferrites by doping and substitutions within their complex structure. The M-type hexaferrite, i.e., 

𝐵N𝐹𝑒(<𝑂(Z, or 𝐵N𝑀 in short, have been exploited in various applications such as permanent magnets, 

plastoferrites, injection-molded pieces, microwave devices, and magnetic recording media [12][13]. 

The previous discussions in Chapter 2 and 3 are also based on 𝐵N𝑀 ferrite with magnetic anisotropy 

field of 17	𝐾𝑂𝑒, magnetization saturation of 4300 Gauss and damping constant 0.007 measure at 60 

GHz [2].  

However, it is worth noticing that the proposed equivalent circuit models for transmission line loaded 

ferrite materials and the corresponding filter circuits are not limited to hexaferrite or any particular 

type of ferrite. In fact, the anisotropy field can be viewed as the addition to static magnetic bias field 

during the simulation in HFSS. And different material properties can be adjusted accordingly to get 

a best representation of the experimental results.  
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Table 4.1.1: Crystal and physical properties of some ferrites [11] 

 
4.2 Effect of Ferrite Thickness 
 
As discussed in Chapter 2, the FMR frequency is affected by the ferrite dimensions and the 

demagnetization factors in 𝑥, 𝑦, 𝑧 directions. The general equation to calculate FMR frequency is 

given by (4.2.1), and Figure 4.2.1 illustrates the relation between 𝑓8 and 𝑁. when 𝑧 is the thickness 

direction and 𝑁, = 𝑁- =
("W6
<

. From the plot, it’s obvious that with 𝑁. decreasing, the theoretical 

FMR frequency will decrease. However, the previous discussion in Chapter 2 to derive the equivalent 

impedances of ferrite resonator is based on the assumption that 𝑁. = 1, and (4.2.1) will reduce to 

(4.2.2) since 𝑁, = 𝑁- = 0.  

As a result, to satisfy such assumption, the thickness of the ferrite in the actual physical model can’t 

be too large. Actually, simulation results of resonant frequencies versus different ferrite thickness 

indicate that such assumption will hold valid as long as the ferrite is equal to or less than 20 um thick. 
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Given that design constraint, the corresponding thickness can be optimized as discussed in Chapter 

3. 

𝜔8 = 𝜇!𝛾p(𝐻 + 𝐻N + (𝑁. − 𝑁,)𝑀%)(𝐻 + 𝐻N + R𝑁- − 𝑁,S𝑀%)                    (4.2.1) 

𝜔8(𝑡ℎ𝑖𝑛	𝑓𝑖𝑙𝑚) = 𝜇!𝛾Y(𝐻 + 𝐻N +𝑀%)(𝐻 + 𝐻N)                          (4.2.2) 

 

 
Figure 4.2.1: Theoretical FMR frequency versus demagnetization factor in z (thickness) direction 

 
4.3 Effect of Transmission Line Structure 
 
The FMR can be viewed as the lowest order of spin wave when all the magnetic spin unit inside the 

ferrite material precess uniformly around the static magnetic field bias direction at the frequency 

dominated by the RF magnetic field. Apart from the FMR mode, multiple spin wave modes can 

propagate inside the ferrite material like magnetostatic modes and exchange dominated spin wave 

modes [8]. The former can be viewed as electromagnetic waves affected by the permeability tensor 

during propagation in the ferrite material. And numerous non-reciprocal devices have been made by 
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virtue of the nature of anisotropy and non-reciprocal properties of the ferrite material, such as 

magnetic circulators [9][10]. The latter, on the other hand, becomes dominate when the propagation 

constant 𝑘 of the spin waves becomes larger, typically in the range of 10#~10[/𝑚. The large 𝑘 

corresponds to smaller wavelength compared with the ferrite material dimension, indicating that the 

magnetic spins will no longer precess uniformly and in phase within the material. The exchange 

magnetic field between neighboring spins can be quantitively described by the exchange coefficient, 

usually referred by 𝜆9,. Such mechanism can be incorporated into our existing equivalent circuit 

model by adding exchange inductors between the neighboring RLC resonators to recover the original 

spin wave dispersion curve. The detailed analysis is included in the paper [1]. 

Hence, due to the complexity and diversity of spin wave modes, it is critical to ensure that the FMR 

mode is excited rather than other modes that are not represented using the circuit model. And that 

requires the proper selection of transmission line structure to provide uniform RF magnetic field to 

the ferrite material. Figure 4.3.1 shows the comparison between the electric field lines for both 

microstrip line and stripline structure in HFSS. When the center conductor is sandwiched by two 

pieces of ferrite materials, the stripline structure is more desirable, because there are two grounds 

placed on top and bottom side. As a result, the two ferrite films are excited simultaneously and 

uniformly. In fact, the stripline structure has been exploited in experiment in [2] to excite the FMR 

mode successfully. 
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Figure 4.3.1: Electric field strength line visualization for microstrip line and stripline structure in HFSS 

 
Figure 4.3.2 and Figure 4.3.3 further confirm the advantage of stripline structure by comparing the 

optimization results of the input impedances. For both cases, the red lines represent the real parts and 

imaginary parts of the input impedances obtained from our proposed equivalent circuit models. The 

blue curves in Figure 4.3.2 represent the HFSS simulation results for microstrip line structure. It’s 

obvious that at the frequencies higher than 40 GHz, there remain some discrepancies of the two sets 

of results. And this is due to higher order spin wave modes at higher than FMR frequency range that 

are not predicted by the circuit model. Compared with microstrip line case, Figure 4.3.3 has a much 

better fit, indicating that the stripline structure is more suitable to generate FMR mode. And the 

previous filter simulation results are also generated with stripline structure.  
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Figure 4.3.2: Optimization results for input impedances. The red curves represent the circuit model results and the blue 
curves represent the HFSS results for microstrip line structure 

 

 

Figure 4.3.3: Optimization results for input impedances. The red curves represent the circuit model results and the blue 
curves represent the HFSS results for stripline structure 

 
Apart from microstrip line and stripline structure, co-planer waveguide (CPW) structure has also been 

experimented. However, the intrinsic nonuniform field distribution of CPW line is not suitable to excite 

FMR mode as well. In fact, paper [3] utilized CPW structure to excite confined magnetostatic waves. 

 
4.4 Effect of Conductor Width 
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The conductor width will affect the characteristic impedances of the transmission line structures and 

the corresponding transmission line inductance. And it will also change the ferrite inductance 

according to equation (2.2.13). To achieve the maximum ratio of ferrite inductance versus TL 

inductance, i.e., E'
E&

, the conductor widths are swept from 0.08	𝑚𝑚 to 0.18	𝑚𝑚, as shown in Figure 

4.4.1. The width of 0.1	𝑚𝑚  will give the highest E'
E&

 ratio and is thus adopted in the previous 

simulation parameter setups. Note that even at this point, the ferrite inductance is smaller than 

transmission line inductance because of the high operation frequency that increase 𝜔/  on the 

denominator of the 𝐿*  expression. This also explains the reason why the transmission line 

inductances will have such large effect on the final filter response.  

 
 

Figure 4.4.1: The relation between 7!
7"

 versus different conductor widths for stripline structure (left) and microstrip line 
structure (right) 
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CHAPTER 5 

Conclusion and Future Work 

In conclusion, this work proposed an equivalent circuit model for tunable band pass filters based on 

ferromagnetic resonance, which is used to synthesize the 3rd order band pass filters. In addition, the 

full wave simulation results match with the results obtained from the equivalent circuit model, which 

provide a validation to the operating principle of the proposed bandpass filter. The hexaferrite is 

considered in the simulation, whose internal magnetic anisotropy field is able to increase the FMR 

frequency as well as the filter operation frequency up to millimeter wave range. Having said that, the 

proposed circuit model is not restricted to hexaferrite, but can be generalized to any type of thin film 

ferrite material with the known magnetization saturation, damping constant and physical dimensions. 

In fact, the high operation frequency will make it obvious the transmission line inductances, whose 

effects need to be minimized by better circuit design. 

In this work, the operation frequency range of this circuit model is around 30 GHz to 50 GHz. Further 

increase in the operation frequency will need larger magnetic bias field. In addition, the lumped 

circuit model for stripline will become less accurate when the electromagnetic wave wavelength 

becomes shorter compared with the actual length of stripline. In such case, a single inductor is not 

sufficient to represent the transmission line unit and multiple sections of LC ladder networks are 

needed. Theoretical derivation of the distributed lumped element values can be found in [19]. 

Another consideration of transmission line modeling at higher frequencies is that the radiation effect 

may become obvious so that there will be radiation resistance associated with circuit models. 

Future work includes modeling the internal nonlinearity of ferrimagnetic materials to predict large 

signal behavior, since the power handling of the ferrite-based filters have been a bottleneck for 
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research. In addition, apart from the FMR mode, the spin wave propagation in ferrites need a proper 

circuit modeling when the excitation becomes nonuniform. That is to say, the spin units are no longer 

precessing uniformly within the medium, and there will be exchange coupling between neighboring 

spins. Such coupling will enable the spin wave propagation frequency higher than the FMR 

frequency, which is the exchange spin waves. And the magnetostatic waves, which is another kind 

of spin wave, may be represented by the circuit models as well to give a better fit to the full wave 

simulation results. 
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