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Expanding the 3-O-Sulfate Proteome—Enhanced Binding of 
Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its 
Activity

Bryan E. Thacker†,‡, Emylie Seamen†, Roger Lawrence†, Matthew W. Parker§, Yongmei Xu‖, 
Jian Liu‖, Craig W. Vander Kooi§, and Jeffrey D. Esko*,†,‡

†Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center

‡Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 
92093, United States

§Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of 
Kentucky, Lexington, Kentucky 40536, United States

‖Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University 
of North Carolina, Chapel Hill, North Carolina 27599, United States

Abstract

Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions 

between positively charged amino acid residues in the protein and negatively charged sulfate 

groups located at various positions along the polysaccharide chain. Although many heparin/

heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan 

sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the “3-O-sulfate 

proteome,” affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate 

engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera 

yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate 

modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and 

Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and 

axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan 

sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. 

Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 

from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth 
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cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was 

cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- 

and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of 

endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable 

method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate 

can modulate axonal growth cone collapse and endothelial cell sprouting.

Graphical abstract

Heparan sulfate is a polysulfated glycosaminoglycan found covalently attached to a small 

number of proteoglycan core proteins at the cell surface and in the extracellular matrix. Its 

high negative charge allows it to bind and influence the activity of numerous extracellular 

proteins, resulting in profound effects on cell proliferation, cell differentiation, 

developmental patterning, regeneration, hemostasis, lipid metabolism, immunity, and 

inflammation.1 To a large extent, binding of proteins depends on electrostatic interactions 

between negatively charged sulfate and carboxyl groups in the glycosaminoglycan with 

basic amino acid residues in the protein. The affinity of the interaction often depends on the 

degree of sulfation or specific subsets of sulfate groups. A small number of proteins require 

a specific spatial arrangement of the sulfate groups and uronic acids for selective, high 

affinity binding.2

The arrangement of sulfate groups and uronic acid epimers along the chain depends on the 

action of various enzymes that act during the assembly process, including four N-

acetylglucosamine N-deacetylase-N-sulfotransferases, three glucosaminyl 6-O-

sulfotransferases, a uronyl 2-O-sulfotransferase, and a uronyl C5-epimerase.3 A family of 

seven heparan sulfate 3-O-sulfotransferases (Hs3sts) installs sulfate groups at the C3 

position of glucosamine units.4 In spite of the large number of Hs3st isozymes, sulfation at 

the 3-O position is relatively rare compared to other modifications (e.g., N-sulfation and 6-

O-sulfation of glucosamine units and epimerization and 2-O-sulfation of uronic acids), 

varying from ~10% of glucosamines in Reichert’s membrane heparan sulfate to ~1% of 

glucos-amines in endothelial heparan sulfate to none in Chinese hamster ovary cells. The 

members of the Hs3st family act late in the biosynthetic pathway and thus depend on prior 

modification by the other sulfotransferases and epimerase.5,6 They also have different 

substrate specificities, resulting in placement of 3-O-sulfates in different structural contexts 

in the polysaccharide.3,4
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Although a very large number of heparan sulfate binding proteins have been described,7 few 

protein ligands have been shown to have a predilection to bind to 3-O-sulfated heparan 

sulfate.4 Hs3st1 and Hs3st5 can create sites with high affinity for antithrombin (AT).8,9 

Binding to AT induces a conformational change and potentiates its protease inhibitory 

activity by several orders of magnitude, rendering it a powerful anticoagulant. Although 

heparin has proven an invaluable therapeutic agent for preventing clotting and deep vein 

thrombosis, the functional significance of AT binding to tissue heparan sulfates remains 

unclear. Inactivation of Hs3st1, the primary 3-O-sulfotransferase responsible for the 

assembly of the AT binding sequence, does not cause disseminated coagulopathy but instead 

results in genetic background-specific lethality, intrauterine growth retardation, and 

blindness.10 The relevant protein–heparan sulfate interactions underlying these phenotypes 

are unknown. Hs3st2, −3a, −3b, −4, −5, and −6 can create the binding site for the Herpes 

Simplex Virus 1 glycoprotein D (gD), but presumably 3-O-sulfation catalyzed by these 

enzymes results in sequences that have other functions besides conferring susceptibility to 

infection.4 Other ligands that have been shown to prefer 3-O-sulfated heparan sulfate include 

fibroblast growth factor (FGF)7, the ectodomain of FGF receptor-(FGFR)1, cyclophilin B, 

and stabilin.11–13 Recent studies of kit+ progenitor cells in the salivary gland indicate that 3-

O-sulfate interactions stabilize FGF10/FGFR2b complexes,14 and genetic studies in 

zebrafish suggest that bone morphogenic protein 4 and FGF8 also prefer 3-O-sulfated 

heparan sulfate.15,16 3-O-Sulfation modulates various developmental and pathological 

processes, including stem cell differentiation, ciliogenesis, neuronal targeting, and tumor 

progression, but the proteins that bind to 3-O-sulfated sequences and participate in these 

processes remain largely unknown.15–19

In this article, we set out to create a general strategy to discover proteins whose binding to 

heparan sulfate is influenced by 3-O-sulfation, i.e., to expand the “3-O-sulfate proteome.” 

We took a classical approach based on affinity chromatography using novel heparan sulfate 

affinity matrices engineered with and without 3-O-sulfate groups. Fractionation of various 

animal sera led to the identification of several proteins not previously known to prefer 3-O-

sulfated heparan sulfate, including neuropilin-1 (NRP1), a protein that participates in 

vasculogenesis and axonal guidance.20–22 We validated the importance of 3-O-sulfation in 

NRP1-heparan sulfate interactions in various binding assays and by showing that NRP1-

dependent semaphorin-3a (Sema3a)-induced axonal growth cone collapse depends on the 

action of Hs3st2.

RESULTS AND DISCUSSION

Generation of Affinity Matrices Containing 3-O-Sulfated Heparan Sulfate

To discover proteins that exhibit preferential binding to 3-O-sulfated heparan sulfate, we 

developed an affinity chromatography strategy in which heparan sulfate lacking 3-O-sulfate 

groups was modified by recombinant Hs3sts and coupled to chromatography resin (Figure 

1a). Initial studies sought a reliable, inexpensive source of heparan sulfate that lacked 3-O-

sulfation and that would serve as a substrate for Hs3st1 (AT-type) and Hs3st2 (gD-type) as 

candidate 3-O-sulfotransferases. A survey of heparan sulfate from several mouse tissues and 

various cell lines by mass spectrometry revealed that most sources of heparan sulfate contain 
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3-O-sulfate groups. However, heparan sulfate from Chinese hamster ovary cells (CHO-K1) 

does not,23 including heparan sulfate derived from CHO-S cells grown to high density in 

serum-free suspension culture. Incubation of purified CHO-S heparan sulfate with 

recombinant Hs3st1 or Hs3st2 resulted in sulfation of the chains, indicating the presence of 

acceptor sites for these enzymes. Under saturating conditions with respect to enzyme 

concentration, Hs3st1 and Hs3st2 installed one 3-O-sulfate group for every 18 or 19 

glucosamine residues, respectively (Figure 1b and c). Size exclusion chromatography 

indicated that the average chain length was ~15 kDa (Figure 1d); thus the average extent of 

3-O-sulfation was ~1.6 sulfates per heparan sulfate chain leading to a ≤7% increase in 

overall sulfation of the chain given the sulfate content of CHO heparan sulfate (~0.8 sulfates/

disaccharide).24 By scaling the sulfotransferase reactions, milligram quantities of 3-O-

sulfated heparan sulfate were readily prepared.

Digestion with a combination of heparin lyases I, II, and III reduces heparan sulfate to 

disaccharide components, except for characteristically resistant 3-O-sulfate containing 

tetrasaccharides, which can be detected by liquid chromatography/mass spectrometry.25,26 

As expected, no 3-O-sulfated structures were found in unmodified CHO-S heparan sulfate, 

although strong signals were evident for several commonly occurring N-, 2-O-, and 6-O-

sulfate containing disaccharides (D0S0, D0A6, D2S0, D0S6, D2S6; Figure 1e, upper panel). 

Digestion of Hs3st1-modified heparan sulfate yielded a tetrasaccharide (D0A6-G0S3) 

characteristic of AT-type 3-O-sulfation (Figure 1e, middle panel).25 Analysis of Hs3st2-

modified heparan sulfate produced two gD-type disaccharides (D2S3, D2S9) and two 

tetrasaccharides (Tetra-A and Tetra-B) typical of gD-type sulfotransferases (Figure 1e, 

bottom panel).26

We next sought a chromatography resin that would allow high capacity binding with 

minimal background binding of protein. After multiple trials, we found that cyanogen 

bromide-activated Sepharose (CNBr-Sepharose) had the highest capacity to immobilize 

heparan sulfate (Supporting Information Figure 1a) reaching 2.8 mg of heparan sulfate per 

milliliter of beads (Supporting Information Figure 1b). This density is comparable to the 

extent of conjugation of commercial heparin-Sepharose (~4 mg mL–1 resin). AT passed over 

the affinity matrices in a buffer containing 0.2 M NaCl did not bind to unmodified heparan 

sulfate and appeared in the flow-through fraction (Figure 1f). In contrast, a portion of the 

input AT bound to resin containing Hs3st1-modified heparan sulfate and eluted with 0.5–1 

M NaCl, whereas only a small amount of material bound to Hs3st2-modified heparan sulfate 

under these conditions. Fibroblast growth factor 2 (FGF2) and the soluble form of the 

receptor for advanced glycation endproducts (RAGE), which are not known to depend on 3-

O-sulfation, bound to all three resins to a similar extent (Figure 1f). This finding was 

expected because the chains are identical except in the domains that underwent 3-O-

sulfation.

Identification of 3-O-Sulfate Dependent Proteins

To explore the utility of the columns for identification of novel binding proteins, we passed 

equal amounts of human, bovine, or mouse sera in parallel over the three affinity resins 

(Figure 2a) and washed the columns extensively with buffer containing 0.2 M NaCl to 
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remove weakly bound proteins and then with 1 M NaCl to elute strongly bound proteins. By 

silver staining, dozens of protein bands were evident in the high salt eluates, most of which 

appeared to be equally abundant in material eluted from each of the resins (Figure 2b–d). 

This result was expected because modification by Hs3st isozymes results in only occasional 

placement of 3-O-sulfate groups, with the remainder of the chain remaining unmodified and 

identical in all three preparations. One striking difference was a band at ~65 kDa (indicated 

by the asterisk), which was highly enriched from all three sera fractionated on the Hs3st1-

modified matrix and had the same molecular weight as AT. No additional proteins were 

detected by silver staining after washing the columns with 2 M NaCl. Western blot analysis 

of the high salt fraction obtained from mouse serum confirmed that AT bound preferentially 

to the Hs3st1 modified matrix (Figure 2b, lower panel).

Proteomic analysis of the material eluted with 1 M NaCl led to the identification of 

numerous proteins. The analysis was repeated multiple times using bovine (Supporting 

Information Table 1), mouse (Supporting Information Table 2), and human (Supporting 

Information Table 3) sera. Each sample yielded hundreds of peptides corresponding to 43–

175 distinct proteins, dependent on the source of serum. About half of the eluted proteins 

from human serum were known heparin/heparan-sulfate-binding proteins (Supporting 

Information Table 3);7 the remainder may be novel heparan sulfate binding proteins. As 

expected, peptides attributed to AT were enriched 5- to 51-fold in the eluates from Hs3st1-

modified resins compared to the control resin (Table 1).

A number of other proteins showed preferential enrichment on the 3-O-sulfated resins, based 

on spectral density of diagnostic peptides and a criterion of minimal enrichment by at least 

2.5-fold across multiple analyses. Both proteins of high and low abundance were considered 

as potential candidates as long as they were enriched on the 3-O-sulfated matrices. In this 

manner, we identified 12 novel 3-O-sulfate-dependent candidate proteins (Table 1). Six of 

these proteins are known heparin/heparan sulfate binding proteins, including amyloid beta 

A4, biglycan, clusterin, hyaluronan binding protein 2 (HABP2), mannose-binding protein C, 

and neuropilin-1 (NRP1).7 However, their preference for 3-O-sulfated heparan sulfate has 

not been noted previously. Interestingly, these proteins participate in a variety of 

developmental and physiological processes, including axonal guidance and angiogenesis 

(NRP1),27 Alzheimer’s disease (amyloid beta and clusterin),28,29 and coagulation (HABP2 

and factors V and XIII).30–32 In subsequent studies, we focused on NRP1 to validate affinity 

fractionation for identifying 3-O-sulfate-dependent ligands and to examine the functional 

implications of 3-O-sulfation for binding and biological activity.

NRP1 Interacts Preferentially with 3-O-Sulfated Heparan Sulfate

NRP1 is a type I transmembrane protein with an extracellular region composed of two 

complementary binding CUB domains (a1 and a2), two coagulation factor domains (b1 and 

b2), a MAM (meprin, A5, μ) domain (c1), a single membrane-spanning segment, and a short 

cytoplasmic tail. A heparin-binding site was previously mapped to the b1b2 domain by 

mutagenesis and demonstrated as essential for oligomerization induced by a mixture of 

heparin-derived tetradecasaccharides.33 The binding site, which may extend into the a1–a2 

domain,34 provides an electropositive surface potential that measures at least ~40 Å in 
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length and is long enough to accommodate a tetradecasaccharide.33 Binding to heparin 

induces oligomerization presumably by stabilizing the orientation of the b1b2 domains and 

exposure of an interface for NRP1 dimerization. The NRP1 signaling complex has been 

proposed to consist of a dimer of trimers containing NRP1/PlexinA/Sema3a in a 2:2:2 ratio 

based on a crystal structure of the ternary complex.35

To examine the interaction of NRP1 with heparan sulfate, the recombinant human NRP1-

b1b2 domain was passed through the affinity columns. NRP1-b1b2 bound poorly to 

unmodified heparan sulfate, eluting mostly in the flow-through fraction (Figure 2e). In 

contrast, a large portion of applied material bound to resin containing 3-O-sulfated heparan 

sulfate and eluted at 0.5 M NaCl with a minor portion eluting at 1 M NaCl (Figure 2e). 

Similar selective binding of intact NRP1 to 3-O-sulfated heparan sulfate was noted in serum 

samples fractionated on the resins (Figure 2f) and after application of recombinant NRP1-

b1b2 to heparan sulfates immobilized in 96-well plates (Figure 3a). At saturation, a similar 

amount of NRP1 bound to both Hs3st1 and Hs3st2 modified heparan sulfate, duplicating the 

results observed with the affinity resins. Assuming homogeneous single site binding, NRP1 

bound to Hs3st1 and Hs3st2 modified heparan sulfate with apparent Kd values of 14.7 nM 

and 12.4 nM, respectively. In contrast, saturable binding to heparan sulfate without 3-O-

sulfation did not occur. Similar experiments with AT demonstrated exclusive binding to 

Hs3st1 modified heparan sulfate with an apparent Kd = 2.4 nM (Figure 3b), whereas FGF2 

and RAGE bound similarly to all three types of heparan sulfate (Figures 3c and d).

To further investigate the interaction of NRP1 with heparan sulfate, we measured by 

differential scanning fluorimetry (DSF) the binding of NRP1-b1b2 to chemically defined 

chemoenzymatically synthesized oligosaccharides. DSF measures the association of a 

fluorescent dye to hydrophobic domains of proteins exposed by thermal denaturation. An 

increase in temperature required for denaturation, induced by ligand binding, reflects 

stabilization of the protein. Two dodecasaccharide ligands were tested (Figure 4a), one that 

lacks a 3-O-sulfate group (1) and a second that contains both an AT-type and a gD-type 3-O-

sulfate groups (2).36 The overall charge of these oligosaccharides is similar (−16 and −18, 

respectively). As shown in Figure 4b, the addition of 2 enhanced stabilization versus an 

unliganded control (ΔTm = 1.5 °C) and relative to the oligosaccharide lacking 3-O-sulfate (1; 

ΔTm = 0.7 °C). In contrast, sucrose octasulfate had no effect on NRP1 thermostability. These 

data show that NRP1 also preferentially engages 3-O-sulfated oligosaccharides in solution.

Finally, we examined binding of NRP1-b1b2 to heparan sulfates expressed as proteoglycans 

on the surface of animal cells. Under these conditions, NRP1-b1b2 bound to wildtype CHO-

K1 cells with an apparent Kd of 230 nM. Transfection of the cells with Hs3st1 or Hs3st2 

enhanced binding, yielding apparent Kd values of 125 nM and 37 nM, respectively (Figure 

5a). Control experiments showed preferential binding of AT to cells expressing Hs3st1, 

whereas FGF2 bound to all three cell lines independently of 3-O-sulfation (Figures 5b and 

c). In all cases, binding was dependent on heparan sulfate based on inhibition by heparin 

lyase digestion or lack of binding to a mutant CHO line lacking heparan sulfate37 (pgsD; 

Figures 5c and d). NRP1-b1b2 also bound to HeLa cells, which express HS3ST1, 

HS3ST3A1, HS3ST3B1, and HS3ST4 (Supporting Information Figure 2). Binding also 

depended on 3-O-sulfation based on a partial loss of binding after shRNA silencing of 
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HS3ST3A1 (Figure 5e). The ability of NRP1-b1b2 to bind to heparan sulfate expressed on 

cells (Figure 5) but not to immobilized heparan sulfate (Figure 3) may reflect differences in 

the way the heparan sulfate chains are presented. Nevertheless, all of the binding assays 

demonstrate a preference of NRP1 for 3-O-sulfated heparan sulfate.

3-O-Sulfation Impacts NRP1-dependent Activity

NRP1 is a coreceptor for plexinA expressed by neurons and plays an important role in 

axonal targeting and growth cone collapse induced by Semaphorin 3a (Sema3a), for example 

in dorsal root ganglia (DRG) neurons.20,21 DRG explants from E13.5 C57Bl/6 mouse 

embryos express Nrp1 mRNA21 as well three members of the Hs3st family, Hs3st1, Hs3st2, 

and Hs3st5 (Figure 6a). Overnight stimulation of DRG explants with nerve growth factor 

results in extension of axons from the explant (Figure 6b), and subsequent treatment of the 

explants with Sema3a induces collapse of the growth cones (Figure 6c). This process 

depends on NRP1 based on the ability of a monoclonal blocking antibody against the 

Sema3a-binding site on NRP1 to completely prevent collapse (P < 0.001, Figure 6d).38 An 

equal concentration of a polyclonal blocking antibody against NRP1 also inhibited collapse 

(P < 0.001, Figure 6d). Pretreatment of the explants with heparin lyase III, which cleaves 

heparan sulfate, reduced the sensitivity of the growth cones to Sema3a (P < 0.001, Figure 

6e). Inclusion of soluble heparin also attenuated the response of growth cones to Sema3a 

(Supporting Information Figure 3). Thus, growth cone collapse induced by Sema3a depends 

on NRP1 and is modulated by heparan sulfate.

To investigate the influence of 3-O-sulfation on NRP1-mediated growth cone collapse, we 

tested as antagonists the two chemoenzymatically synthesized dodecasaccharides described 

in Figure 4 (1, 2) and a third containing only AT-type 3-O-sulfation (3).36 Preincubation of 

the explants with each of the dodecasaccharides inhibited growth cone collapse, but the two 

3-O-sulfated dodecasaccharides were much more potent. The IC50 value for the control 

dodecasaccharide lacking 3-O-sulfate (1) was 7.9 μg/mL, whereas IC50 values of 2.4 and 0.6 

μg/mL were obtained for AT 3-O (3) and AT/gD 3-O (2) dodecasaccharides, respectively 

(Figure 6f).

Finally, we tested if genetic reduction of 3-O-sulfation affected NRP1-dependent growth 

cone collapse by derivation of DRGs from Hs3st2−/− E13.5 embryos.39 Quantification of 

Hs3st expression by qPCR confirmed gene dosage-dependent loss of Hs3st2 expression in 

DRGs and no compensatory increase in expression of other Hs3sts (Figure 6a). Notably, 

growth cone collapse was diminished in a gene dosage dependent manner when stimulated 

by 10 ng/mL Sema3a (P < 0.05; Figure 6g). The addition of Sema3a at a higher 

concentration (30 ng/mL) suppressed the impact of altering Hs3st2 expression, an effect that 

also occurs in other systems in which heparan sulfate acts as a coreceptor (e.g., FGF). 

Interestingly, inactivation of Hs3st1−/− did not attenuate growth cone collapse under these 

conditions, indicating different functional roles for these two genes in vivo (Figure 6h). 

Experiments with DRGs derived from compound Hs3st1−/− Hs3st2−/− mutants showed no 

additive effect over inactivation of Hs3st2−/− and confirmed this finding (Figure 6i). Hs3st5-

deficient mice have not yet been reported.
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The enhancing effect of 3-O-sulfation on growth cone collapse indicates that expression of 

Hs3sts in the DRG neuron “fine-tunes” the sensitivity of the growth cone to Sema3a, which 

is secreted by the surrounding ectoderm during development of the nervous system.40 On the 

basis of the data presented in Figure 6, we suggest that 3-O-sulfation in this context 

enhances the sensitivity of axons to Sema3a. Under strongly repulsive conditions, i.e. when 

the growth cone encounters a high concentration of Sema3a, repulsion becomes independent 

of 3-O-sulfation. However, as the concentration of Sema3a declines, the presence of the 3-

O-sulfated heparan sulfate on the neuron would ensure a robust repulsive response. Thus, the 

heparan sulfate chains might be part of the sensing system that ensures axon regression 

under conditions of low concentration of repulsive cues. This hypothesis predicts that 

differences in axonal guidance might occur in vivo in the absence of Hs3st expression, 

especially if Sema3a secretion is reduced, or by simultaneous reduction of Hs3st5 in 

addition to Hs3st2.

Finally, we also examined the impact of 3-O-sulfation on NRP1-dependent VEGF-A 

endothelial sprouting.41 Human umbilical vein endothelial cells (HUVEC) express NRP1 

and sprout from microcarrier beads in response to VEGF stimulation42 to form luminal 

structures. Heparin added with VEGF to HUVEC cultures inhibited the extent of endothelial 

sprouting in a dose-dependent manner (Figure 7a, open bars). Heparan sulfate was less 

potent (Figure 7a, black bars), but the inhibitory effect was enhanced through 3-O-sulfation, 

in particular by Hs3st2 (Figure 7a, blue bars). Treatment of the heparan sulfate preparations 

with heparin lyases prior to addition to the culture medium prevented inhibition (Figure 7b), 

excluding the possibility that a contaminant was responsible for the inhibition of sprouting.

In summary, we describe a simple technique for identifying novel heparan sulfate-binding 

proteins. Curiously, many of the candidate proteins that we identified did not exhibit an 

absolute preference for binding to “AT-type” or “gD-type” 3-O-sulfate groups unlike the 

classic protein ligands, antithrombin and glycoprotein gD, although some bias was noted 

(Table 1). This finding suggests that some ligands might bind promiscuously to 3-O-sulfated 

sequences, but we cannot exclude the possibility that the conditions used to produce the 

affinity matrices may contribute to this apparent promiscuity. Comparing the results of 

studies in CHO cells, DRG neurons, and HUVEC shows that the context in which the 3-O-

sulfate groups are expressed plays an important role in determining specificity. Nevertheless, 

the relative ease of producing heparan sulfate in cell culture, the ability to modify its 

structure enzymatically, and the ease of affinity chromatography expands the toolbox for 

studying this interesting modification of heparan sulfate.

METHODS

Methods and reagents are described in the Supporting Information.

Statistics

Data analysis was performed using Prism (GraphPad, version 5.0d). Nonlinear regression 

was used to fit curves and calculate apparent Kd and Bmax values. t tests and ANOVA with 

post hoc tests were used for growth cone collapse assays. P values less than 0.05 were 

considered significant.

Thacker et al. Page 8

ACS Chem Biol. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Construction and validation of 3-O-sulfated heparan sulfate affinity matrices. (a) Production 

scheme of affinity matrices containing Hs3st1 (HS3.1) or Hs3st2 (HS3.2) modified heparan 

sulfate from CHO-S conditioned medium. (b,c) Modification of CHO-S heparan sulfate by 

recombinant Hs3st1 (b) and Hs3st2 (c). The data shown are representative of four 

independent experiments. (d) Elution of CHO-S [35S]heparan sulfate from Sepharose 

CL-6B. The molecular weight (kDa) of polysaccharide standards is shown above the graph, 

as described previously.43 The chromatogram is representative of four independent heparan 

sulfate preparations. (e) Extracted ion current from LC/MS analysis of heparin lyase 

digestion products derived from the three preparations of heparan sulfate. Individual 

disaccharides are designated by the disaccharide structural code.44 3-O-sulfated species are 

labeled in red. (f) Fractionation of AT, FGF2, and RAGE on affinity matrices. The flow 

through (FT), 0.5, and 1 M NaCl fractions are shown by silver stain. Representative gels are 

shown.
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Figure 2. 
Fractionation of serum on affinity matrices. (a) Work flow for identification of 3-O-sulfate-

dependent ligands by affinity chromatography. (b,c,d) Elution profile of mouse (b), bovine 

(c), and human (d) sera from the affinity matrices. An asterisk shows the position of a band 

enriched on the HS3.1 column and migrating at a position appropriate for AT. Eluates were 

immunoblotted for AT (b, bottom) and NRP1 (f). Blots are shown with matching silver 

stains, which serve as the loading control. Representative data are shown from multiple 

experiments. (e) Elution profile of recombinant human NRP1 from the affinity matrices. The 

flow through (FT) and eluates (0.5 or 1 M NaCl) are shown. Data shown are representative 

of three independent experiments.
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Figure 3. 
Binding of NRP1 to 3-O-sulfated heparan sulfate. NRP1 (a), AT (b), FGF2 (c), or RAGE (d) 

binding to immobilized heparan sulfate. The data were analyzed by fitting the curves 

assuming a single binding site. The data shown are the average values from three 

independent experiments ± SEM.
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Figure 4. 
Synthetic 3-O-sulfated oligosaccharides. (a) Defined dodecasaccharides produced by 

chemoenzymatic synthesis.36 The three oligosaccharides are identical except for 3-O-sulfate 

groups (indicated by arrows). (b) Differential scanning fluorimetry of NRP1 incubated with 

3-O-sulfated oligosaccharides. Incubation of NRP1 with sucrose octasulfate (suc. oct.) 

served as a control. The mean ± SD of three replicates is reported (*P < 0.05 by one-way 

ANOVA with post hoc tests).
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Figure 5. 
Binding of NPR1 to the cell surface. (a) Binding of NRP1 to CHO-K1, Hs3st1-transduced 

(CHO3.1), and Hs3st2-transduced (CHO3.2) CHO cells. The apparent Kd and Bmax were 

calculated by fitting the data to a single saturable site, and the values are shown in the inset 

table ± SEM (n = 4). (b) Binding of 100 nM AT to CHO cell surface (n = 3; *P < 0.05 by 

one-way ANOVA with post hoc tests). (c,d) Binding of ~1 nM FGF2 (c) or 300 nM NRP1 

(d) to CHO cell surface after treatment with heparin lyase III or to CHO-pgsD cells (n = 3, 

*P < 0.05 by t test). (e) Binding of 300 mM NRP1 to the HeLa cell surface. shRNA 
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mediated knockdown was performed on heparan sulfate sulfotransferases (NDST1 and 

HS3ST3A1). Data represent duplicate measurements from two experiments.
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Figure 6. 
Axonal growth cone collapse modulated by 3-O-sulfation. (a) Expression of Hs3sts in 

mouse E13.5 dorsal root ganglion. E13.5 DRG were dissected from six mouse embryos of 

each genotype and Hs3st expression was analyzed by qRT-PCR. The average values are 

shown ± SEM (n = 3; *P < 0.05, **P < 0.01 by one-way ANOVA and post hoc tests). (b,c) 

Representative images of growth cones from E13.5 DRG explants before (b) and after (c) 

Sema3a-induced collapse. Scale bar is 10 μm. (d) Effect of NRP1 monoclonal and 

polyclonal blocking antibodies (10 μg mL−1) on growth cone collapse induced by Sema3a 

(30 ng mL−1). The values shown represent the average ± SEM (n = 3; ***P < 0.001 by one-

way ANOVA and post hoc tests). (e) Heparin lyase III treatment of cell surface heparan 

sulfate in growth cone collapse with Sema3a (30 ng mL−1). The values shown represent the 

average ± SEM (n = 3; ***P < 0.001 by one-way ANOVA and post hoc tests). (f) Effect of 

dodecasaccharides on Sema3a (30 ng mL−1) induced growth cone collapse. Dashed lines 

represent the extent of growth cone collapse stimulated by Sema3a in the absence of 

oligosaccharides (top) and in the absence of Sema3a (bottom). Data shown are the average 
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of two separate experiments performed in triplicate. (g) Sema3a-induced growth cone 

collapse in DRG from Hs3st2+/+ (n = 9), Hs3st2+/− (n = 11), and Hs3st2−/− (n = 10) 

embryos. (h) Sema3a-induced growth cone collapse in DRG from Hs3st1+/+ (n = 5), 

Hs3st1+/− (n = 10), and Hs3st1−/− (n = 2) embryos. Data from multiple litters, each of which 

had embryos of each genotype, were compiled to create the final data set shown in g and h. 

The differences between the genotypes were statistically significant by one-way ANOVA 

and post hoc tests (*P < 0.05). (i) Compounding mutations in Hs3st1 and Hs3st2 (n = 4) had 

no additive effect on growth cone collapse.
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Figure 7. 
Endothelial cell sprouting modulated by 3-O-sulfation. (a) Effect of soluble heparan sulfate 

or heparin on VEGF-induced endothelial cell sprouting. The values shown represent the 

average ± SEM (n = 2–4, **P ≤ 0.01 by one-way ANOVA and post hoc tests). The dotted 

lines show the extent of sprouting in the absence of added heparan sulfate (top) and in the 

absence of VEGF (bottom). (b) Degradation of heparan sulfate destroys the inhibitory 

activity of exogenous heparan sulfate. The values shown represent the average ± SEM (n = 

5–6).

Thacker et al. Page 20

ACS Chem Biol. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thacker et al. Page 21

Ta
b

le
 1

Sp
ec

tr
al

 D
en

si
ty

 o
f 

Se
ru

m
 3

-O
-S

ul
fa

te
 D

ep
en

de
nt

 C
an

di
da

te
 P

ro
te

in
s 

in
 A

ff
in

ity
 M

at
ri

x 
E

lu
at

es
a

pr
ot

ei
n 

na
m

e

bo
vi

ne
 1

bo
vi

ne
 2

m
ou

se
 1

m
ou

se
 2

hu
m

an
 1

H
S

H
S3

.1
H

S
H

S3
.1

H
S3

.2
H

S
H

S3
.1

H
S

H
S3

.1
H

S3
.2

H
S

H
S3

.1

am
yl

oi
d 

be
ta

 (
A

4)
 p

ro
te

in
 (

Q
6G

R
78

)
1 

(1
.7

)
3 

(4
.5

)
1 

(1
.4

)
1 

(1
.4

)

an
tit

hr
om

bi
n 

(Q
54

3J
5)

1 
(1

.9
)

51
 (

70
.5

)
7 

(1
6.

1)
37

 (
49

.7
)

17
 (

29
.9

)
9 

(2
3.

9)
23

1 
(7

8.
9)

4 
(8

.6
)

80
 (

55
.5

)
28

 (
40

.0
)

  7
 (

16
.6

)
12

4 
(6

1.
9)

bi
gl

yc
an

 (
Q

3T
N

Y
9)

  6
 (

23
.6

)
  8

 (
29

.8
)

2 
(5

.1
)

cl
us

te
ri

n 
(Q

54
9A

5)
1 

(3
.6

)
2 

(6
.2

)
5 

(8
.2

)
4 

(1
2.

1)
  3

 (
8.

5)
3 

(9
.4

)
6 

(1
8.

8)
1 

(5
.1

)
   

 8
 (

16
.0

)

co
ag

ul
at

io
n 

fa
ct

or
 V

 (
08

87
83

)
1 

(0
.5

)
1 

(0
.6

)
  4

 (
2.

4)

co
ag

ul
at

io
n 

fa
ct

or
 X

II
I 

(Q
8B

H
61

)
3 

(4
.2

)
  8

 (
12

.6
)

2 
(3

.4
)

5 
(8

.5
)

1 
(1

.2
)

de
co

ri
n 

(Q
3U

K
R

1)
1 

(4
.2

)
  4

 (
13

.3
)

1 
(4

.0
)

  3
 (

10
.2

)

hy
al

ur
on

an
-b

in
di

ng
 p

ro
te

in
 2

 (
Q

8K
0D

2)
1 

(1
.8

)
  7

 (
17

.7
)

13
 (

25
.8

)
  6

 (
12

.7
)

11
 (

21
.9

)
  1

 (
1.

8)

m
an

no
se

-b
in

di
ng

 p
ro

te
in

 C
 (

P4
13

17
)

1 
(4

.5
)

  3
 (

20
.5

)
1 

(4
.5

)
  3

 (
20

.5
)

ne
ur

op
ili

n 
1 

(Q
6P

A
R

3)
2 

(3
.6

)
  6

 (
10

.9
)

1 
(1

.6
)

3 
(5

.4
)

  2
 (

2.
9)

pu
ta

tiv
e 

un
ch

ar
ac

te
ri

ze
d 

pr
ot

ei
n 

(Q
9D

B
D

0)
3 

(5
.3

)
2 

(2
.9

)

se
rg

ly
ci

n 
(P

13
60

9)
  3

 (
19

.3
)

  7
 (

26
.0

)
14

 (
38

.2
)

18
 (

28
.3

)

sy
na

pt
ot

ag
m

in
-l

ik
e 

4 
(Q

54
9X

6)
  6

 (
11

.1
)

3 
(5

.3
)

a Pe
pt

id
e 

co
un

ts
 o

f 
3-

O
-s

ul
fa

te
 d

ep
en

de
nt

 c
an

di
da

te
 p

ro
te

in
s 

in
 a

ff
in

ity
 m

at
ri

x 
el

ua
te

s.
 T

he
 c

om
pi

le
d 

re
su

lts
 a

re
 s

ho
w

n 
fr

om
 m

ul
tip

le
 a

na
ly

se
s 

us
in

g 
bo

vi
ne

, m
ou

se
, a

nd
 h

um
an

 s
er

um
. T

he
 n

um
be

r 
of

 
pe

pt
id

es
 a

ttr
ib

ut
ed

 to
 e

ac
h 

pr
ot

ei
n 

w
ith

 g
re

at
er

 th
an

 9
5%

 c
on

fi
de

nc
e 

is
 d

is
pl

ay
ed

 f
or

 e
lu

at
es

 f
ro

m
 a

ff
in

ity
 m

at
ri

ce
s.

 T
he

 r
es

ul
tin

g 
pe

rc
en

ta
ge

 p
ro

te
in

 c
ov

er
ag

e 
is

 s
ho

w
n 

in
 p

ar
en

th
es

es
. E

m
pt

y 
bo

xe
s 

re
fl

ec
t 

sa
m

pl
es

 w
ith

 z
er

o 
pe

pt
id

es
 id

en
tif

ie
d.

 T
he

 a
cc

es
si

on
 n

um
be

r 
fo

r 
ea

ch
 p

ro
te

in
 in

 th
e 

m
ou

se
 s

er
um

 is
 d

is
pl

ay
ed

 w
ith

 th
e 

pr
ot

ei
n 

na
m

e.

ACS Chem Biol. Author manuscript; available in PMC 2017 May 31.


	Abstract
	Graphical abstract
	RESULTS AND DISCUSSION
	Generation of Affinity Matrices Containing 3-O-Sulfated Heparan Sulfate
	Identification of 3-O-Sulfate Dependent Proteins
	NRP1 Interacts Preferentially with 3-O-Sulfated Heparan Sulfate
	3-O-Sulfation Impacts NRP1-dependent Activity

	METHODS
	Statistics

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1



