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 1 

ABSTRACT 1 

Introduction: Humans and viruses have co-evolved for millennia resulting in a complex host genetic 2 

architecture. Understanding the genetic mechanisms of immune response to viral infection provides insight 3 

into disease etiology and therapeutic opportunities.  4 

Methods: We conducted a comprehensive study including genome-wide and transcriptome-wide 5 

association analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 6 

antigens for 16 viruses using serological data from 7924 European ancestry participants in the UK Biobank 7 

cohort.  8 

Results: Signals in human leukocyte antigen (HLA) class II region dominated the landscape of viral 9 

antibody response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited 10 

pleiotropic effects across viral families. We identified specific amino acid (AA) residues that are associated 11 

with seroreactivity, the strongest associations presented in a range of AA positions within  DRb1  at 12 

positions 11, 13, 71, and 74 for Epstein-Barr Virus (EBV), Varicella Zoster Virus (VZV), Human Herpes 13 

virus 7, (HHV7) and Merkel cell polyomavirus (MCV).  Genome-wide association analyses discovered 7 14 

novel genetic loci outside the HLA associated with viral antibody response (P<5.0´10-8), including FUT2 15 

(19q13.33) for human polyomavirus BK (BKV), STING1 (5q31.2) for MCV, as well as CXCR5 (11q23.3) 16 

and TBKBP1 (17q21.32) for HHV7. Transcriptome-wide association analyses identified 114 genes 17 

associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P=5.0×10-15 18 

(MCV), NTN5: P=1.1×10-9 (BKV), and P2RY13: P=1.1×10-8 EBV nuclear antigen. We also demonstrated 19 

pleiotropy between viral response genes and complex diseases; from autoimmune disorders to cancer to 20 

neurodegenerative and psychiatric conditions.  21 

Conclusions: Our study confirms the importance of the HLA region in host response to viral infection and 22 

elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.   23 
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 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 8, 2020. .https://doi.org/10.1101/2020.05.01.20088054doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.01.20088054
http://creativecommons.org/licenses/by-nc/4.0/


 3 

INTRODUCTION 28 

Viruses have been infecting cells for a half a billion years1. During our extensive co-evolution viruses have 29 

exerted significant selective pressure on humans and vice versa; overtly during fatal outbreaks, and covertly 30 

through cryptic immune interaction when a pathogen remains latent. The recent pandemic of severe acute 31 

respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the paramount public health need to 32 

understand human genetic variation in response to viral challenge. Clinical variation in COVID-19 severity 33 

and symptomatic presentation may be due to differences host genetic factors relating to immune response2. 34 

Furthermore, many common infections are cryptically associated with a variety of complex illnesses, 35 

especially those with an immunologic component, from cancer to autoimmune and neurologic conditions3-36 

5. Despite their broad health relevance, few large-scale genome-wide association studies (GWAS) have 37 

been conducted on serological response phenotypes6-10. Understanding the genetic architecture of 38 

immunologic response to viruses may therefore provide new insight into etiologic mechanisms of diverse 39 

complex diseases. 40 

Several common viruses exert a robust cell mediated and humoral immune response that bi-directionally 41 

modulate the balance between latent and lytic infection. Studies have demonstrated a strong heritable 42 

component (32-48%) of antibody response11 and identified associations between host polymorphisms in 43 

genes relating to cell entry, cytokine production, and immune response and a variety of viruses12. The 44 

predominance of previously reported associations with have implicated genetic variants in human leucocyte 45 

antigen (HLA) class I and II genes in the modulation of immune response to diverse viral antigens7,13.  46 

In this study we utilize data from the UK Biobank (UKB) cohort14 to evaluate the relationship between host 47 

genetics and immunoglobulin G antibody response to 28 antigens for 16 viruses. Immunoglobulin G (IgG) 48 

antibody is the most common antibody in blood, which serves as a stable biomarker of lifetime exposure to 49 

common viruses. High levels of specific IgG’s can be the result of chronic infection, while low levels may 50 

indicate poor immunity. Viruses assayed in the UKB multiplex serology panel were previously chosen based 51 

on putative links to chronic diseases including cancer, autoimmune, and neurodegenerative conditions15. 52 

We conduct integrative genome-wide and transcriptome-wide analyses of antibody response and positivity 53 
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to viral antigens (Figure 1), which elucidate novel genetic underpinnings of viral infection and immune 54 

response.  55 

METHODS 56 

Study Population and Phenotypes 57 

The UK Biobank (UKB) is a population-based prospective cohort of over 500,000 individuals aged 40-69 58 

years at enrollment in 2006-2010 who completed extensive questionnaires, physical assessments, and 59 

provided blood samples14. Analyses were restricted to individuals of predominantly European ancestry 60 

based on self-report and after excluding samples with any of the first two genetic ancestry principal 61 

components (PCs) outside of 5 standard deviations (SD) of the population mean (Supplementary Figure 62 

1). We removed samples with discordant self-reported and genetic sex, samples with call rates <97% or 63 

heterozygosity >5 SD from the mean, and one sample from each pair of first-degree relatives identified 64 

using KING16.  65 

Of the 413,810 European ancestry individuals available for analysis, a total of 7948 had serological 66 

measures. A multiplex serology panel (IgG) was performed over a 2-week period using previously 67 

developed methods17,18 that have been successfully applied in epidemiological studies7,19. Details of the 68 

serology methods and assay validation performance are described in Mentzer et al.15 Briefly, multiplex 69 

serology was performed using a bead-based glutathione S-transferase (GST) capture assay with 70 

glutathione-casein coated fluorescence-labelled polystyrene beads and pathogen-specific GST-X-tag 71 

fusion proteins as antigens15. Each antigen was loaded onto a distinct bead set and the beads were 72 

simultaneously presented to primary serum antibodies at serum dilution 1:100015. Immunocomplexes were 73 

quantified using a Luminex 200 flow cytometer, which produced Median Fluorescence Intensities (MFI) for 74 

each antigen. The serology assay showed adequate performance, with a median coefficient of variation 75 

(CV) of 17% across all antigens and 3.5% among seropositive samples only15. 76 

Genome-Wide Association Analysis 77 

We evaluated the relationship between genetic variants across the genome and serological phenotypes 78 

using PLINK 2.0 (October 2017 version). Participants were genotyped on the Affymetrix Axiom UK Biobank 79 
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array (89%) or the UK BiLEVE array (11%)14 with genome-wide imputation performed using the Haplotype 80 

Reference Consortium data and the merged UK10K and 1000 Genomes phase 3 reference panels14. We 81 

excluded variants out of Hardy-Weinberg equilibrium at p<1´10-5, call rate <95% (alternate allele dosage 82 

within 0.1 of the nearest hard call to be non-missing), imputation quality INFO<0.30, and MAF<0.01.  83 

Seropositivity for each antigen was determined using established cut-offs based on prior validation work15. 84 

The primary GWAS focused on continuous phenotypes (MFI values), which measure the magnitude of 85 

antibody response, also referred to as seroreactivity. These analyses were conducted among seropositive 86 

individuals only for antigens with seroprevalence of ³20% (n=1500) based on 80% power to detect only 87 

common variants with large effect sizes at this sample size (Supplementary Figure 2). MFI values were 88 

transformed to standardized, normally distributed z-scores using ordered quantile normalization20.   89 

Seroreactivity GWAS was conducted using linear regression with adjustment for age at enrollment, sex, 90 

body-mass index (BMI), socioeconomic status (Townsend deprivation index), the presence of any 91 

autoimmune and/or inflammatory conditions, genotyping array, serology assay date, quality control flag 92 

indicating sample spillover or an extra freeze/thaw cycle, and the top 10 genetic ancestry principal 93 

components (PC’s). Autoimmune and chronic inflammatory conditions were identified using the following 94 

primary and secondary diagnostic ICD-10 codes (E10, M00-03, M05-M14, M32, L20-L30, L40, G35, K50-95 

52, K58, G61) in Hospital Episode Statistics. Individuals diagnosed with any immunodeficiency (ICD-10 96 

D80-89, n=24) were excluded from all analyses.  97 

For all antigens with at least 100 seropositive (or seronegative for pathogens with ubiquitous exposure) 98 

individuals, GWAS of discrete seropositivity phenotypes was undertaken using logistic regression, adjusting 99 

for the same covariates listed above.  100 

The functional relevance of the lead GWAS loci for antibody response was assessed using in-silico 101 

functional annotation analyses based on Combined Annotation Dependent Depletion (CADD)21 scores and 102 

RegulomeDB 2.022, and by leveraging external datasets, such as GTEx v8, DICE (Database of Immune 103 

Cell Expression)23, and the Human Plasma Proteome Atlas24,25.  104 

 105 
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 6 

Cross-Trait Associations with Disease 106 

We explored pleiotropic associations between lead variants influencing antibody levels and several chronic 107 

diseases with known or hypothesized viral risk factors. Associations with selected cancers were obtained 108 

from a cancer pleiotropy meta-analysis of the UK Biobank and Genetic Epidemiology Research on Aging 109 

cohorts26. Summary statistics for the schizophrenia GWAS of 33,640 cases and 43,456 controls by Lam et 110 

al.27 were downloaded from the Psychiatric Genomics Consortium. Association p-values were obtained 111 

from the National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site for the GWAS by 112 

Jun et al.28, which included 17,536 cases and 53,711 controls. Associations with p<7.3×10-4 were 113 

considered statistically significant after correction for the number of variants and phenotypes tested. 114 

HLA Regional Analysis 115 

For phenotypes displaying a genome-wide significant signal in the HLA region, independent association 116 

signals were ascertained using two complementary approaches: clumping and conditional analysis. 117 

Clumping is a post-processing step applied to GWAS summary statistics to identify independent association 118 

signals by grouping variants based on LD within specific windows. Clumping was performed on all variants 119 

with P<5´10-8 for each phenotype, as well as across phenotypes. Clumps were formed around index 120 

variants with the lowest p-value and all other variants with LD r2>0.05 within a ±500 kb window were 121 

considered non-independent and assigned to that variant’s clump. 122 

Next, we conducted conditional analyses using a forward stepwise strategy to identify statistically 123 

independent signals within each type of variant (SNP/indel or classical HLA allele). Unlike clumping, 124 

conditional analyses involve fitting a new model that includes specific variants as covariates, thereby 125 

directly accounting for LD and providing association estimates that are adjusted for other relevant SNP 126 

effects. A total of 38,655 SNPs/indels on chromosome 6 (29,600,000 – 33,200,000 bp) were extracted to 127 

conduct regional analyses. Classical HLA alleles were imputed for UKB participants at 4-digit resolution 128 

using the HLA*IMP:02 algorithm14, with modified settings to accommodate the addition of diverse samples 129 

from population reference panels described by Motyer et al.29. Details of the HLA imputation procedure are 130 

described in UKB Resource 182. Imputed dosages were available for 362 classical alleles in 11 genes: 131 
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HLA-A, HLA-B, and HLA-C (class I); HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQA1, HLA-132 

DQB1, HLA-DPA1, and HLA-DPB1 (class II). Allele names with “99:01” for DRB3/4/5, which denote copy 133 

number absence, were renamed as “00:00” to avoid confusion with traditional HLA nomenclature. We also 134 

used SNP2HLA30 to impute HLA alleles and corresponding amino acid sequences at a four-digit resolution 135 

in HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 using the Type 136 

1 Diabetes Genetics Consortium (T1DGC) reference panel comprised of 2,767 unrelated individuals of 137 

European descent. T1DGC was also among several reference datasets used by HLA*IMP:02. 138 

Analyses were restricted to common HLA alleles and amino acid sequences (frequency ³ 0.01) with 139 

imputation quality scores >0.30, for a total of 1081 markers (101 alleles + 980 amino acid residues). Linear 140 

regression models were adjusted for the same set of covariates as the GWAS. Associations for each marker 141 

were considered statistically significant if P<4.6×10-5 based on Bonferroni correction for 1081 tests. 142 

For each antigen response phenotype, we identified SNPs/indels or classical HLA alleles with the lowest 143 

p-value, among variants that achieved Bonferroni-significant associations (P<4.6×10-5), and performed 144 

forward iterative conditional regression to identify other independent signals, until no associations with a 145 

conditional p-value (Pcond)<5×10-8 remained. We also assessed the independence of associations across 146 

different types of genetic variants by including conditionally independent HLA alleles as covariates in the 147 

SNP-based analysis.  148 

For amino acid positions with >2 possible residues (alleles), we applied the haplotype omnibus test to obtain 149 

an overall p-value for jointly testing all possible substitutions at that specific position. The omnibus test was 150 

applied to all amino acid residues at a given position, even if not all substitutions achieved the Bonferroni-151 

corrected threshold (P<4.6×10-5) in the single-marker analysis. The frequency of amino acid substitutions 152 

at specific HLA alleles was determined using European ancestry reference populations part of the Allele 153 

Frequency Net Database (AFND 2020)31. 154 

 155 

 156 

 157 
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Transcriptome-Wide Association Analysis 158 

Gene transcription levels were imputed and analyzed using the MetaXcan approach32, applied to GWAS 159 

summary statistics for quantitative antigen phenotypes. For imputation, we used biologically informed 160 

MASHR-M prediction models33 based on GTEx v8 with effect sizes computed using MASHR (Multivariate 161 

Adaptive Shrinkage in R)34 for variants fine-mapped with DAP-G (Deterministic Approximation of 162 

Posteriors)35,36. An advantage of this approach is that MASHR effect sizes are smoothed by taking 163 

advantage of the correlation in cis-eQTL effects across tissues. For each antigen, we performed a 164 

transcriptome-wide association study (TWAS) using gene expression levels in whole blood. Statistically 165 

significant associations for each gene were determined based on Bonferroni correction for the number of 166 

genes tested. 167 

We also examined gene expression profiles in tissues that represent known infection targets or related 168 

pathologies. Human herpesviruses and polyomaviruses are neurotropic and have been implicated in 169 

several neurological conditions37,38, therefore we considered gene expression in the frontal cortex. For 170 

Epstein-Barr virus (EBV) antigens additional models included EBV-transformed lymphocytes. Merkel cell 171 

polyomavirus (MCV) is a known cause of Merkel cell carcinoma39, a rare but aggressive type of skin cancer, 172 

therefore we examined transcriptomic profiles in skin tissues for MCV only.  173 

Pathways represented by genes associated with antibody response to viral antigens were summarized by 174 

conducting enrichment analysis using curated Reactome gene sets and by examining protein interaction 175 

networks using the STRING database40. Significantly associated TWAS genes were grouped by virus family 176 

(herpesviruses vs. polyomaviruses) and specificity of association (multiple antigens vs. single antigen).  177 

RESULTS 178 

A random sample of the participants representative of the full UKB cohort was assayed using a multiplex 179 

serology panel15. We analyzed data from 7924 participants of predominantly European ancestry, described 180 

in Supplementary Table 1. Approximately 90% of individuals were seropositive for herpes family viruses 181 

with ubiquitous exposure: EBV (EBV EA-D: 86.2% to ZEBRA: 91.2%), Human Herpesvirus 7 (HHV7 182 

94.8%), and Varicella Zoster Virus (VZV 92.3%). Seroprevalence was somewhat lower for cytomegalovirus 183 
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(CMV), ranging between 56.5% (CMV pp28) and 63.3% (CMV pp52), and Herpes Simplex virus-1 (HSV1 184 

69.3%). Human polyomavirus BKV was more prevalent (95.3%) compared to other polyomaviruses, Merkel 185 

cell polyoma virus (MCV 66.1%) and polyomavirus JC (JCV) (56.6%). Less common infections included 186 

HSV-2 (15.2%), HPV16 (E6 and E7 oncoproteins: 4.7%), HPV18 (2.4%), Human T-cell lymphotropic virus 187 

type 1 (HTLV1, 1.6%), Hepatitis B (HBV, 1.6%), and Hepatitis C (HCV, 0.3%).  188 

Genetic Determinants of Response to Viral Infection  189 

Results from our GWAS of antibody response phenotypes were dominated by signals in the HLA region, 190 

which were detected for all EBV antigens (EA-D, EBNA, p18, ZEBRA), CMV pp52, HSV1, HHV7, VZV, JCV 191 

and MCV (Table 1; Supplementary Figure 3). Most of the top-ranking HLA variants for each antigen were 192 

independent of those for other antigens based on r2 but not D′ (Supplementary Figure 4). Exceptions were 193 

moderate LD between lead variants for EBV ZEBRA and HSV1 (r2=0.45), EBV EBNA and JCV (r2=0.45), 194 

and HHV7 and MCV (r2=0.44). However, based on the complex LD structure and effect sizes, we cannot 195 

rule out that these linked to rare haplotypes. Outside of the HLA region, genome-wide significant 196 

associations with seroreactivity were detected for: MCV at 3p24.3 (rs776170649, LOC339862: P=1.7´10-197 

8) and 5q31.2 (rs7444313, TMEM173 (also known as STING1): P=2.4´10-15); BKV at 19q13.3 (rs681343, 198 

FUT2: P=4.7´10-15) (Figure 2); EBV EBNA at 3q25.1 (rs67886110, MED12L: P=1.3´10-9); HHV-7 at 199 

11q23.3 (rs75438046, CXCR5: P=1.3´10-8) and 17q21.3 (rs1808192, TBKBP1: P=9.8´10-9); and HSV-1 at 200 

10q23.3 (rs11203123: P=3.9´10-8). However, the loci outside of HLA identified for HHV7 and HSV1 were 201 

not statistically significant considering a more stringent significance threshold corrected for the number of 202 

seroreactivity phenotypes tested (P < 5.0´10-8/16 = 3.1´10-9). 203 

GWAS of discrete seropositivity phenotypes identified associations in HLA for EBV EA-D (rs2395192: 204 

OR=0.66, P=4.0´10-19), EBV EBNA (rs9268848: OR=1.60, P=1.2´10-18), EBV ZEBRA (rs17211342: 0.63, 205 

P=1.6´10-15), VZV (rs3096688: OR=0.70, P=3.7´10-8), JCV (rs9271147: OR=0.54, P=1.3´10-42), and MCV 206 

(rs17613347: OR=0.61, P=1.2´10-26) (Supplementary Figure 2; Supplementary Table 3). An association 207 

with susceptibility to MCV infection was also observed at 5q31.2 (rs1193730215, ECSCR: OR=1.26, 208 

P=7.2´10-9), with high LD (r2=0.95) between seroreactivity and seropositivity lead variants.  209 
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Several genome-wide significant associations were observed for antigens with <20% seroprevalence, 210 

which were not included in the GWAS of antibody response due to inadequate sample size 211 

(Supplementary Table 3). Infection susceptibility variants were identified for HSV2 in 17p13.2 (rs2116443: 212 

OR=1.28, P=4.5´10-8; ITGAE); HPV16 E6 and E7 oncoproteins in 6p21.32 (rs601148: OR=0.60, P=3.3´10-213 

9; HLA-DRB1) and 19q12 (rs144341759: OR=0.383, P=4.0´10-8; CTC-448F2.6); and HPV18 in 14q24.3 214 

(rs4243652: OR=3.13, P=7.0´10-10). Associations were also detected for Kaposi's sarcoma-associated 215 

herpesvirus (KSHV), HTLV1, HBV and HCV, including a variant in the MERTK oncogene (HCV Core 216 

rs199913364: OR=0.25, P=1.2´10-8). After correcting for 28 serostatus phenotypes tested (P<1.8´10-9), 217 

the only statistically significant associations remained for EBV EA-D (rs2395192), EBV EBNA (rs9268848), 218 

EBV ZEBRA (rs17211342), JCV (rs9271147), MCV (rs17613347), and HPV18 (rs4243652). 219 

Functional Characterization of GWAS Findings 220 

In-silico functional analyses of the lead 17 GWAS variants identified enrichment for multiple regulatory 221 

elements (summarized in Supplementary Table 4). Three variants were predicted to be in the top 10% of 222 

deleterious substitutions in GRCh37 based on CADD scores >10: rs776170649 (MCV, CADD=15.61), 223 

rs139299944 (HHV7, CADD=12.15), and rs9271525 (JCV, CADD=10.73). Another HHV7-associated 224 

variant, rs1808192 (RegulomeDB rank: 1f), an eQTL and sQTL for TBKBP1, mapped to 44 functional 225 

elements for multiple transcription factors, including IKZF1, a critical regulator of lymphoid differentiation 226 

frequently mutated in B-cell malignancies.  227 

Eleven sentinel variants were eQTLs and 8 were splicing QTLs in GTEx, with significant (FDR<0.05) effects 228 

across multiple genes and tissues (Supplementary Figure 5). The most common eQTL and sQTL targets 229 

included HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRB1, and HLA-DRB6. Outside of HLA, 230 

rs681343 (BKV), a synonymous FUT2 variant was an eQTL for 8 genes, including FUT2 and NTN5. MCV 231 

variant in 5q31.2, rs7444313, was an eQTL for 7 genes, with concurrent sQTL effects on TMEM173, also 232 

known as STING1 (stimulator of interferon response cGAMP interactor 1) and CXXC5. Gene expression 233 

profiles in immune cell populations from DICE23 identified several cell-type specific effects that were not 234 

observed in GTEx. An association with HLA-DQB1 expression in CD4+ TH2 cells was observed for 235 
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rs9273325, 6:31486158_GT_G was an eQTL for ATP6V1G2 in naïve CD4+ T cells, and rs1130420 236 

influenced the expression of 8 HLA class II genes in naïve B-cells and CD4+ TH17 cells.  237 

We identified 7 significant (p<5.0´10-8) protein quantitative trait loci (pQTL) for 38 proteins (Supplementary 238 

Table 5). Most of the pQTL targets were components of the adaptive immune response, such as the 239 

complement system (C4, CFB), chemokines (CCL15, CCL25), and defensin processing (Beta-defensin 19, 240 

Trypsin-3). The greatest number and diversity of pQTL targets (n=16) was observed for rs681343, including 241 

BPIFB1, which plays a role in antimicrobial response in oral and nasal mucosa41; FUT3, which catalyzes 242 

the last step of Lewis antigen biosynthesis; and FGF19, part of the PI3K/Akt/MAPK signaling cascade that 243 

is dysregulated in cancer and neurodegenerative diseases42.  244 

Cross-trait associations with disease outcomes 245 

To contextualize the relevance of genetic loci involved in infection response, we explored associations with 246 

selected cancers, schizophrenia, and that have a known or suspected viral etiology (Supplementary Table 247 

6). The strongest secondary signal was observed for rs9273325 (HLA-DQB1), which was negatively 248 

associated with VZV antibody response and positively associated with schizophrenia susceptibility 249 

(OR=1.13, P=4.3´10-15). Other significant (Bonferroni P<7.4´10-4) associations with schizophrenia were 250 

detected for HSV1 (rs1130420: OR=1.06, P=1.8´10-5), EBV EA-D (rs2647006: OR=0.96, P=2.7´10-4),  JCV 251 

(rs9271525: OR=1.06, P=6.8´10-5) and BKV (rs681343: OR=0.96, P=2.5´10-4), with the latter being the 252 

only pleiotropic signal outside of HLA. Inverse associations with hematologic cancers were observed for 253 

HSV1 (rs1130420: OR=0.89, P=3.5´10-6), VZV (rs9273325: OR=0.88, P=4.4´10-5), and EBV EBNA 254 

(rs9269233: OR=0.88, P=2.7´10-4) variants. HSV1 antibody response was also linked to Alzheimer’s 255 

disease (rs1130420: P=1.2´10-4). 256 

Regional HLA Associations 257 

Associations within the HLA region were refined by identifying independent (LD r2<0.05 within ±500kb) 258 

index variants with P<5.0´10-8 for each antigen response phenotype (Supplementary Table 7). Clumping 259 

seropositivity associations with respect to lead antibody response variants did not retain any loci, 260 
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suggesting non-independence in signals for infection and reactivity for the same antigen. For this reason, 261 

all subsequent analyses focus on seroreactivity phenotypes. Clumping across phenotypes to assess the 262 

independence of HLA associations for different antigens identified 40 independent index variants: EBV 263 

EBNA (12), VZV (11), EBV ZEBRA (8), EBV p18 (5), MCV (3), and EBV EA-D (1) (Supplementary Table 264 

9). No LD clumps were anchored by variants detected for CMV pp52, HHV7, HSV1, or JCV, suggesting 265 

that the HLA signals for these antigens are captured by lead loci for other phenotypes. The largest region 266 

with the lowest p-value was anchored by rs9274728 (P=4.7´10-67) near HLA-DQB1, originally detected for 267 

EBV ZEBRA. Of the 11 VZV-associated variants, the largest clump was formed around rs4990036 268 

(P=4.5´10-26) in HLA-B.  269 

Iterative conditional analyses adjusting for the HLA SNP/indel with the lowest p-value were performed until 270 

no variants remained with Pcond<5.0´10-8. Additional independent variants were identified for EBV EBNA 271 

(rs139299944, rs6457711, rs9273358, rs28414666, rs3097671), EBV ZEBRA (rs2904758, rs35683320, 272 

rs1383258), EBV p18 (rs6917363, rs9271325, rs66479476), and MCV (rs148584120, rs4148874) (Figure 273 

3; Supplementary Table 8). For CMV pp52, HHV7, HSV1, JCV, and VZV, the regional HLA signal was 274 

captured by the top GWAS variant (Figure 2; Supplementary Table 8). 275 

Next, we tested 101 classical HLA alleles and performed analogous iterative conditional analyses for 276 

significantly associated variants (P<4.6´10-5). To help with the interpretation of our results, we depict the 277 

LD structure for HLA alleles in class II genes in Supplementary Figure 5. Significant associations across 278 

viruses were predominantly observed for class II HLA alleles. Five statistically independent signals were 279 

identified for antibody response to EBV ZEBRA (DRB4*00:00: β=-0.246, P=1.4´10-46; DQB1*04:02: 280 

βcond=0.504, Pcond=1.0´10-19; DRB1*04:04: βcond=0.376, Pcond=1.1´10-18; DQA1*02:01: βcond=0.187, 281 

Pcond=1.1´10-10, A*03:01: βcond=0.129, Pcond=1.9´10-8) (Figure 3; Supplementary Table 11).  DRB4*00:00 282 

represents copy number absence, which co-occurs with DRB1*04 and DRB1*07 alleles43. This is consistent 283 

with the magnitude and direction of unconditional associations observed for DRB1*07:01 (β=0.251, 284 

P=1.3´10-26) and DRB4*04:01 (β=0.293, P=7.9´10-22). Five conditionally independent alleles were also 285 

identified for EBV EBNA: DRB5*00:00: β=-0.246, P=8.7´10-30; DRB3*02:02: bcond=0.276, Pcond=6.8´10-30; 286 

DQB1*02:01: bcond=-0.164, Pcond=3.6´10-12; DRB4*00:00: b=0.176, Pcond=8.3´10-17; DPB1*03:01: bcond=-287 
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0.220, Pcond=4.7´10-14 (Figure 3; Supplementary Table 11). DRB5*00:00 denotes a copy number deletion 288 

that sits on an common haplotype comprised of DRB1*15:01, DQB1*06:02, DQA1*01:0243, which may also 289 

include DRB5*01:0144 (Supplementary Figure 6). The presence of the DRB1*15:01-DQB1*06:02-290 

DQA1*01:02 haplotype was associated with increased EBV EBNA seroreactivity (β=0.330, P=2.5´10-28). 291 

Fewer independent alleles were observed for EBV p18 (DRB5*00:00: b=-0.210, P=1.7´10-22; DRB1*04:04: 292 

bcond=0.357, Pcond=1.3´10-18) (Figure 3; Supplementary Tables 12).  293 

DQB1*02:01 was the only independently associated allele for EBV EA-D (b=-0.154, P=8.4´10-11) and HSV1 294 

(b=0.145, P=2.8´10-8), although its effects were in opposite directions for each antigen (Supplementary 295 

Table 13). For VZV, associations with 16 classical alleles were accounted for by DRB1*03:01 (b=0.236, 296 

P=7.3´10-26). JCV shared the same lead allele as EBV EBNA and EBV p18 (DRB5*00:00: b=0.350, 297 

P=1.2´10-21) (Supplementary Table 13). Four conditionally independent signals were identified for MCV 298 

(DQA1*01:01: b=0.215, P=1.1´10-15; DRB1*04:04: bcond=-0.362, Pcond=3.0´10-11; A*29:02: bcond=-0.350, 299 

P=1.0´10-11; DRB1*15:01: bcond=-0.203, P=3.7´10-12) (Figure 3; Supplementary Table 14). Lastly, we 300 

integrated associations across variant types by including conditionally independent HLA alleles as 301 

covariates in the SNP-based analysis. With the exception of EBV antigens and HHV7, classical HLA alleles 302 

captured all genome-wide significant SNP signals (Supplementary Figure 7). 303 

Finally, we tested 980 HLA amino acid substitutions (Supplementary Tables 15-24), followed by omnibus 304 

haplotype tests at each position that had a significant amino acid and more than two possible alleles. The 305 

strongest allele-specific and haplotype associations were found at different positions in the same protein 306 

for EBV p18 (DRb1 Ala -17: β=-0.194, P=1.0´10-21; DRb1 (13): Pomni=4.6´10-22), MCV (DQb1 Leu-26: β=-307 

0.173, P=7.0´10-18; DQb1 (125): Pomni=2.0´10-17), HHV7 (DQb1 His-30: β=-0.111, P=1.2´10-8; DQb1 (57): 308 

Pomni=5.6´10-9), and HHV6 IE1B at (DRb1 Ile-67: β=0.131, P=1.6´10-8; DRb1 (13): Pomni=1.1´10-5).  309 

The strongest residue-specific and haplotype associations mapped to the same amino acid position for four 310 

phenotypes: EBV ZEBRA (Supplementary Table 18), HHV6 IE1A (Supplementary Table 19), HSV1 311 

(Supplementary Table 21), and JCV (Supplementary Table 23). Amino acid residues at DQα1 (175) were 312 

associated with antibody response to EBV ZEBRA (Glu: β=0.279, P=1.1´10-61; Pomni=8.3´10-62). Glu-175 is 313 
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present in DQA1*02:01 (P=4.9´10-27), DQA1*03:01 (P=1.3´10-16), DQA1*04:01 (P=1.9´10-12), and seems 314 

to better summarize the EBV ZEBRA signal at this locus. Substitutions in DRb1 (96) contained the strongest 315 

predictors of JCV seroreactivity (His or Tyr: β=0.325, P=1.6´10-25; Pomni=7.7´10-23). His-96/Tyr-96 are in 316 

high LD (r2=0.92) with DRB5*00:00, the top JCV-associated allele. However, this might mask the signal for 317 

Gln-96 (β=-0.310, P=9.0´10-23), which is part of the DRB1*15:01 sequence (β=-0.309, P=9.0´10-21; LD 318 

r2=0.94). The lead signal for HSV1 mapped to DQb1 (57) (Ala: β=0.123, P=2.2´10-10; Pomni=6.5´10-9), which 319 

aligns with the association for the lead HSV1-allele DQB1*02:01.   320 

For EBV EBNA the strongest haplotype association was in DRb1 (37) (Pomni=1.1´10-55), while the residue 321 

with the lowest p-value was DQb1 Ala-57 (β=-0.237, P=1.4´10-42) (Supplementary Table 16). Ala-57 maps 322 

to multiple DQB1 alleles and achieved a stronger signal for EBV EBNA than any classical HLA allele. Asp-323 

9 in HLA-B showed the strongest association with antibody response to EBV EA-D (β=-0.146, P=1.8´10-9; 324 

Supplementary Table 15) and VZV (β=0.237, P=9.7´10-25; Supplementary Table 22). This amino acid 325 

sequence is part of B*08:01, which had analogous effects on both phenotypes (EBV EA-D: β=-0.144, 326 

P=2.7´10-9; VZV: β=0.238, P=4.7´10-25). Haplotypes with the lowest overall p-values were found in DQb1 327 

(71) for VZV (Pomni=9.8´10-19) and DRb1 (11) for EBV EA-D (Pomni=1.7´10-10). 328 

TWAS of Genes Involved in Antibody Response 329 

Based on known targets of infection or related pathologies, we considered expression in the frontal cortex 330 

(Supplementary Table 25), EBV-transformed lymphocytes for EBV antigens (Supplementary Table 26), 331 

and skin for MCV (Supplementary Table 27). Concordance across tissues was summarized using Venn 332 

diagrams (Figure 4; Supplementary Figure 8). TWAS identified 114 genes significantly associated 333 

(PTWAS<4.2×10-6) with antibody response in at least one tissue, 54 of which were associated with a single 334 

phenotype, while 60 influenced seroreactivity to multiple antigens. We also include results for 87 additional 335 

suggestively (PTWAS<4.2×10-5) associated genes.  336 

The TWAS results included a predominance of associations in HLA class II genes. Some of the strongest 337 

overall associations were observed for HLA-DRB5 (EBV ZEBRA: Pcortex=4.2×10-45) and HLA-DRB1 (EBV 338 

EBNA: Pcortex=6.7×10-39; EBV ZEBRA: Pcortex=3.3×10-33; JCV: Pcortex=6.5×10-14; EBV p18: Pcortex=2.2×10-12). 339 
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Increased expression of HLA-DQB2 was positively associated with antibody response to EBV ZEBRA 340 

(Pblood=7.6×10-19), JCV (Pblood=9.9×10-10), VZV (Pblood=7.0×10-9), HHV7 (Pblood=7.3×10-8), and HSV1 341 

(Pblood=3.3×10-7), but negatively associated with EBV EBNA (Pblood=3.6×10-34) and EBV p18 (Pblood=2.1×10-342 

8), in a consistent manner across tissues. The opposite was observed for HLA-DQB1, with positive effects 343 

on EBV EBNA and EBV p18 and inverse associations with EBV ZEBRA, JCV, VZV, HHV7, and HSV1. 344 

The TWAS analyses also identified a number of significant associations in the HLA class III region that 345 

were not detected in other analyses. The top-ranking VZV associated gene was APOM (Pblood=7.5×10-27, 346 

Pcortex=1.1´10-25). Interestingly, opposite directions of effect were observed for C4A and C4B gene 347 

expression. Increased C4A expression was positively associated with all EBV antigens (Supplementary 348 

Table 26), but negatively associated with VZV (Pblood=2.3×10-24) and HSV1 (Pcortex=1.8×10-5) antibody levels 349 

(Supplementary Table 25). On the other hand, increased C4B expression was inversely associated with 350 

EBV phenotypes, but positively associated with VZV (Pblood=8.1×10-25) and HSV1 (Pblood=1.1×10-5). A similar 351 

pattern was also observed for CYP21A2 and C2, with positive effects on antibody response to VZV and 352 

HSV1, and negative effects for all EBV antigens. Other novel TWAS findings were detected for HHV7 in 353 

22q13.2 (CTA-223H9.9: PTWAS=2.5×10-6; CSDC2: PTWAS=3.0×10-6; TEF: PTWAS=3.1×10-6) and 1q31.2 354 

(RGS1: PTWAS=3.3×10-6).  355 

The TWAS recapitulated several GWAS-identified loci: 3q25.1 for EBV EBNA (P2RY13: Pcortex=1.1×10-8; 356 

P2RY12: Pblood=3.3×10-8) and 19q13.33 for BKV (FUT2: PTWAS=8.1×10-13; NTN5: PTWAS=1.1×10-9). 357 

Transcriptomic profiles in skin tissues provided supporting evidence for the role of multiple genes in 5q31.2 358 

in modulating MCV antibody response (Figure 4; Supplementary Table 27). The strongest signal was 359 

observed in for ECSCR (skin sun unexposed: PTWAS=5.0×10-15; skin sun exposed: PTWAS=4.2×10-13), 360 

followed by PROB1 (sun unexposed: PTWAS=1.5×10-11). ECSCR expression was also associated based on 361 

expression in the frontal cortex, while PROB1 exhibited a significant, but attenuated effect in whole blood. 362 

VWA7 was the only gene associated across all four tissues for MCV and was also associated with antibody 363 

response to several EBV antigens. 364 

Comparison of results for seroreactivity and seropositivity revealed a number of genes implicated in both 365 

steps of the infection process (Supplementary Table 28). Associations with HLA DQA and DQB genes in 366 
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whole blood and HLA-DRB genes in the frontal cortex were observed for EBV antigens, JCV, and MCV. 367 

For MCV, the strongest seropositivity signals were observed for HLA class III genes AGER (Pcortex=9.0×10-368 

21) and EHMT2 (Pblood=5.8×10-18), which were also among the top-ranking genes for seroreactivity. 369 

Increased ECSCR expression conferred an increased susceptibility to MCV infection (Pcortex=1.8×10-8), 370 

mirroring its effect on seroreactivity. In contrast to antibody response, no significant associations with any 371 

HLA genes were observed for VZV seropositivity. 372 

Analyses using the Reactome database identified significant (qFDR<0.05) enrichment for TWAS-identified 373 

genes in pathways involved in initiating antiviral responses, such as MHC class II antigen presentation, 374 

TCR signaling, and interferon (IFN) signaling (Supplementary Figure 9). Pathways unique to 375 

herpesviruses included folding, assembly and peptide loading of class I MHC (q=3.2×10-7) and initial 376 

triggering of complement (q=9.8×10-3). Polyomaviruses were associated with the non-canonical nuclear 377 

factor (NF)-kB pathway activated by tumor necrosis factor (TNF) superfamily (q=1.9×10-3).  378 

DISCUSSION 379 

We performed genome-wide and transcriptome-wide association studies for serological phenotypes for 16 380 

common viruses in a well-characterized, population-based cohort. We discovered novel genetic 381 

determinants of viral antibody response beyond the HLA region for BKV, MCV, HHV7, EBV EBNA. 382 

Consistent with previous studies7,8 we detected strong signals for immune response to diverse viral antigens 383 

in the HLA region, with a predominance of associations observed for alleles and amino acids in HLA-DRB1 384 

and HLA-DQB1, as well as transcriptome-level associations for multiple class II and III HLA genes. Taken 385 

together, the findings of this work provide a resource for further understanding the complex interplay 386 

between viruses and the human genome, as well as a first step towards understanding genetic 387 

determinants of reactivity to common infections.  388 

One of our main findings is the discovery of 5q31.2 as a susceptibility locus for MCV infection and MCV 389 

antibody response, implicating two main genes: TMEM173 (or STING1) and ECSCR. The former encodes 390 

STING (stimulator of interferon genes), an endoplasmic reticulum (ER) protein that controls the transcription 391 

of host defense genes and plays a critical role in response to DNA and RNA viruses45. STING is activated 392 
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by cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor that mounts a response to invading 393 

pathogens by inducing IFN1 and NF-kB signalling46,47. Polyomaviruses penetrate the ER membrane during 394 

cell entry, a process that may be unique to this viral family48, which may trigger STING signaling in a distinct 395 

manner from other viruses48. Multiple cancer-causing viruses, such as KSHV, HBV, and HPV18, encode 396 

oncoproteins that disrupt cGAS-STING activity, which illustrates the evolutionary pressure on DNA tumor 397 

viruses to develop functions against this pathway and its importance in carcinogenesis46. Furthermore, 398 

cGAS-STING activation has been shown to trigger antitumor T-cell responses, a mechanism that can be 399 

leveraged by targeted immunotherapies 49-51. Several studies suggest STING agonists may be effective 400 

against tumors resistant to PD-1 blockade, as well as promising adjuvants in cancer vaccines52-54.  401 

ECSCR expression in skin and brain tissues was associated with MCV antibody response and infection. 402 

This gene encodes an endothelial cell-specific chemotaxis regulator, which plays a role in angiogenesis 403 

and apoptosis55. ECSCR is a negative regulator of PI3K/Akt signaling by enhancing membrane localization 404 

of PTEN and operates in tandem with VEGFR-2 and other receptor tyrosine kinases56. In addition to 5q31.2, 405 

another novel MCV seroreactivity associated region was identified in 3p24.3, anchored by rs776170649, 406 

which has been linked to platelet phenotypes57. These findings align with a role of platelet activation in 407 

defense against infections via degranulation-mediated release of chemokines and β-defensin58.  408 

Genetic variation within Fucosyltransferase 2 (FUT2) has been studied extensively in the context of human 409 

infections; however, its effect on BKV seroreactivity is novel. Homozygotes for the nonsense mutation 410 

(rs601338 G>A) that inactivates the FUT2 enzyme are unable to secrete ABO(H) histo-blood group 411 

antigens or express them on mucosal surfaces59,60. The allele which confers increased BKV antibody 412 

response (rs681343-T) is in LD (r2=1.00) with rs601338-A, the non-secretor allele, which confers resistance 413 

to norovirus61,62, rotavirus63, H. pylori64, childhood ear infection, mumps, and common colds13. However, 414 

increased susceptibility to other pathogens, such as meningococcus and pneumococcus65 has also been 415 

observed in non-secretors. Isolating the underlying mechanisms for BKV response is challenging because 416 

FUT2 is a pleiotropic locus associated with diverse phenotypes, including autoimmune and inflammatory 417 

conditions66,67, serum lipids68, B vitamins60,69, alcohol consumption70, and even certain cancers71. In addition 418 

to FUT2 in 19q13.33, NTN5 (netrin 5) suggests a possible link between BKV and neurological conditions. 419 
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NTN5 is primarily expressed in neuroproliferative areas, suggesting a role in adult neurogenesis, which is 420 

dysregulated in glioblastoma and Alzheimer’s disease72,73.  421 

We also report the first GWAS of serological phenotypes for HHV7. Genetic determinants of HHV7 antibody 422 

response in 6p21.32 were predominantly localized in HLA-DQA1 and HLA-DQB1, with associations similar 423 

to other herpesviruses. In 11q23.3, rs75438046 maps to the 3′ UTR of CXCR5, which controls viral infection 424 

in B-cell follicles74, and BCL9L, a translocation target in acute lymphoblastic leukemia75 and transcriptional 425 

activator of the Wnt/β-catenin cancer signaling pathway76. In 17q21.32, TBKBP1 encodes an adaptor 426 

protein that binds to TBK1 and is part of the TNF/NF-kB interaction network, where it regulates immune 427 

responses to infectious triggers, such as IFN1 signaling77. Interestingly, a protein interactome map recently 428 

revealed that SARS-CoV-2 nonstructural protein 13 (Nsp13) includes TBK1-TBKBP1 among its targets 78. 429 

Other functions of the TBK1-TBKBP1 axis relate to tumor growth and immunosuppression through induction 430 

of PD-L179.  431 

Several additional genes involved in HHV7 immune response were identified in TWAS. TEF in 22q13.2 is 432 

an apoptotic regulator of hematopoietic progenitors with tumor promoting effects mediated by inhibition of 433 

G1/S cell cycle transition and Akt/FOXO signaling80. RGS1 in 1q31.2 has been linked to multiple 434 

autoimmune diseases, including multiple sclerosis81, as well as poor prognosis in melanoma and diffuse 435 

large B cell lymphoma mediated by inactivation of Akt/ERK82,83. 436 

Other genes outside of the HLA region associated with viral infection response were detected for EBV 437 

EBNA in 3q25.1. The lead variant (rs67886110) is an eQTL for MED12L and P2RY12 genes, which have 438 

been linked to neurodegenerative conditions84,85. P2RY12 and P2RY13, identified in TWAS, are purinergic 439 

receptor genes that regulate microglia homeostasis and have been implicated in Alzheimer’s susceptibility 440 

via inflammatory and neurotrophic mechanisms85. 441 

Considering genetic variation within the HLA region, our results confirm its pivotal role at the interface of 442 

host pathogen interactions and highlight the extensive sharing of HLA variants that mediate these 443 

interactions across virus families and antigens. Genes in this region code for cell-surface proteins that 444 

facilitate antigenic peptide presentation to immune cells that regulate responses to invading pathogens. 445 
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This region is critical for adaptive immune response but also has significant overlap with susceptibility 446 

alleles for autoimmune diseases. We identified 40 independent SNPs/indels associated with EBV (EBNA, 447 

EA-D, VCA p18, and ZEBRA), VZV, and MCV antibody response that accounted for all significant HLA 448 

associations for other phenotypes. Of the 14 conditionally independent, genome-wide significant classical 449 

alleles identified for 10 antigens, 7 were associated with multiple phenotypes. The most commonly shared 450 

HLA alleles were DRB5*00:00, DRB1*04:04, an known  rheumatoid arthritis risk allele86, and DQB1*02:01, 451 

associated with celiac disease risk87. Copy number deletion represented by DRB5*00:00 may itself have a 452 

functional role in altering response by the absence of these alleles. DRB5*00:00 also summarizes signals 453 

from multiple HLA loci, including the extended DRB5*01:01-DRB1*15:01-DQB1*06:02-DQA1*01:02 454 

haplotype that has been implicated in the etiology of multiple autoimmune diseases and EBV EBNA IgG 455 

levels. DRB1*15:01-DQB1*06:02-DQA1*01:02 is protective for type 1 diabetes88, while DRB5*01:01-456 

DRB15:01 confers the strongest risk for developing multiple sclerosis81. Amino acid residues in DRβ1 at 457 

positions 11, 13, 71, and 74 and in DQβ1 codon 57 represent established susceptibility loci for rheumatoid 458 

arthritis89, type 1 diabetes90, and multiple sclerosis91 that exhibited strong associations with IgG levels for 459 

EBV, HHV7, VZV, JCV, and MCV antigens, and in some cases harbored the top signal of all HLA variants. 460 

Further research is needed to delineate shared genetic pathways that invoke autoimmunity and influence 461 

viral response.  462 

Despite the predominance of association in HLA class II, several notable associations in HLA class I were 463 

detected. A*29:02 conferred reduced MCV seroreactivity and its sequence overlaps with amino acid 464 

residues in the A α1 domain (Thr-9, Leu-62, Gln-63, Asn-77, and Met-97) that were also significantly 465 

associated with decreased MCV antibody response. This is consistent with downregulation of MHC I as a 466 

potential mechanism through which Merkel cell tumors evade immune surveillance92. The strongest 467 

residue-specific signal for EBV EA-D and VZV mapped to B-Asp-9, which is located in the peptide binding 468 

groove and tags the B*08:01 allele, part of the HLA 8.1 ancestral haplotype. There is extensive evidence 469 

linking HLA 8.1, and B*08:01 specifically, with autoimmune diseases93 and certain cancers94,95, which may 470 

be attributed to its high cell-surface stability and increased probability of CD8+ T cell activation.  471 
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Comparison with other studies of host genetics and viral infection susceptibility shows that our results align 472 

with previously reported findings7-9,96 (Supplementary Table 29). We replicated most associations from 473 

two of the largest GWAS of humoral immune response in European ancestry subjects by Hammer et al.7 474 

(n=2363) and Scepanovic et al.8 (n=1000), including HLA SNPs, alleles, amino acids, and haplotypes linked 475 

to EBV EBNA IgG, MCV IgG and serostatus, and JCV serostatus. We also replicated two HLA-DRB1 476 

variants (rs477515, rs2854275) associated with EBV EBNA antibody levels in a Mexican American 477 

population9. GWAS of HPV16 L1 replicated a variant previously linked to HPV8 seropositivity (rs9357152, 478 

P=0.008)6. Some of our findings contrast with Tian et al 13, although we confirmed selected associations, 479 

such as A*02:01 (shingles) with VZV (P=4.1´10-8) and rs2596465 (mononucleosis) with EBV EBNA 480 

(P=3.3´10-9) and EBV p18 (P=1.0´10-12). These differences may be partly accounted for by self-reported 481 

disease status in Tian et al. which is likely to reflect symptom severity and may be an imprecise indicator 482 

of infection with certain viruses or the magnitude of antibody response to infection.  483 

One of the most striking findings in SNP-based HLA analyses was the genome-wide significant association 484 

between rs9273325, index VZV antibody response variant, and risk of schizophrenia. Previous 485 

epidemiologic and serologic studies have linked infections to schizophrenia, although the underlying 486 

mechanisms remain to be elucidated97.  Viruses are plausible etiologic candidates for schizophrenia due to 487 

their ability to invade the central nervous system and disrupt neurodevelopmental processes by targeting 488 

specific neurons, as well as the potential for latent infection to negatively impact plasticity and neurogenesis 489 

via pro-inflammatory and aberrant immune signaling97,98. These observations are consistent with the 490 

established role the HLA region, including HLA-DQB1, in schizophrenia etiology99,100, and is further 491 

supported by previously reported associations for rs9273325 with blood cell traits57 and immunoglobulin A 492 

deficiency101, as well as its role as an eQTL for HLA-DQB1 in CD4+ T2h cells. Schizophrenia susceptibility 493 

alleles DRB1*03:0199, DQB1*02:01, and B*08:01 were also the top three alleles associated with VZV 494 

antibody response in the unconditional analysis. Enhanced complement activity has been proposed as the 495 

mechanism mediating the synaptic loss and excessive pruning which is a hallmark of schizophrenia 496 

pathophysiology102. Complement component 4 (C4) alleles were found to increase risk of schizophrenia 497 

proportionally to their effect on increasing C4A expression in brain tissue102. Using gene expression models 498 

in whole blood and the frontal cortex we demonstrated that increased C4A expression is negatively 499 
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associated with VZV antibody response. We also observed associations with C4A and C4B in EBV and 500 

HSV-1, but not other viruses. Taken together, these findings delineate a potential mechanism through which 501 

aberrant immune response to VZV infection, and potentially HSV-1 and EBV, may increase susceptibility 502 

to schizophrenia. However, cautious interpretation is warranted due to significant pleiotropy between HLA 503 

loci associated with viral infection and broad immune function. 504 

Several limitations of this work should be noted. First, the UK Biobank is unrepresentative of the general 505 

UK population due to low participation resulting in healthy volunteer bias103. However, since the observed 506 

pattern of seroprevalence is consistent with previously published estimates15 we believe the impact of this 507 

bias is likely to be minimal on genetic associations with serological phenotypes. Second, our analyses were 508 

restricted to participants of European ancestry due to limited serology data for other ancestries, which limits 509 

the generalizability of our findings to diverse populations. Third, we were unable to conduct formal statistical 510 

replication of novel GWAS and TWAS signals in an independent sample due to the lack of such a 511 

population. Nevertheless, our successful replication of multiple previously reported variants and, combined 512 

with the observation that newly discovered genes and variants are part of essential adaptive and innate 513 

immunity pathways, support the credibility of our findings. Lastly, we also stress caution in the interpretation 514 

of GWAS results for non-ubiquitous pathogens, such as HBV, HCV, and HPV, due to a lack of information 515 

on exposure, as well as low numbers of seropositive individuals.  516 

Our study also has distinct advantages. The large sample size of the UK Biobank facilitated more powerful 517 

genetic association analyses than previous studies, particularly in a population-based cohort unselected for 518 

disease status. Our detailed HLA analysis shows independent effects of specific HLA alleles and pleiotropic 519 

effects across multiple viruses. Analyses of genetic associations in external datasets further demonstrate 520 

a connection between host genetic factors influencing immune response to infection and susceptibility to 521 

cancers and neurological conditions.  522 

The results of this work highlight widespread genetic pleiotropy between pathways involved in regulating 523 

humoral immune response to novel and common viruses, as well as complex diseases. The complex 524 

evolutionary relationship between viruses and humans is not dictated simply by infection and acute 525 

sickness, it is a complex nuanced architecture of initial challenge tempered with tolerance of viral latency 526 
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over time. Yet it is that architecture that is evolutionarily optimized to maximize fitness early in life, the result 527 

of which may be increased risk for complex diseases later in life. Understanding this complex interplay 528 

through both targeted association studies and functional investigations between host genetic factors and 529 

immune response has implications for complex disease etiology and may facilitate the discovery of novel 530 

therapeutics in a wide range of diseases.   531 
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DATA AVAILABILITY 532 

The UK Biobank in an open access resource, available at https://www.ukbiobank.ac.uk/researchers/. 533 

This research was conducted with approved access to UK Biobank data under application number 534 
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Database of HLA allele frequencies and amino acid substitutions: 541 
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Table 1: Lead genome-wide significant variants (P<5.0´10-8) for continuous antibody response phenotypes for antigens with at least 20% seroprevalence. 

Antigen N Chr Position Variant 
Alleles 

EAF Beta2 (SE) P Function Nearest Gene 
Effect Other 

CMV  pp52 5000 6 32301427 rs115378818 C T 0.978 0.633 (0.095) 2.9´10-11 intronic TSBP1 
EBV  EA-D 6806 6 32665840 rs34825357 T TC 0.409 -0.114 (0.017) 2.0´10-11 intergenic MTCO3P1 

EBV  EBNA 7003 
3 151114852 rs67886110* G T 0.596 0.103 (0.017) 1.3´10-9 intronic MED12L 
6 32451762 rs9269233 A C 0.249 0.315 (0.019) 3.5´10-61 intergenic HLA-DRB9 

EBV  VCA p18 7492 6 31486158 6:31486158 GT G 0.245 0.197 (0.018) 7.1´10-27 intergenic PPIAP9 
EBV  ZEBRA 7197 6 32637772 rs9274728 A G 0.718 -0.315 (0.018) 4.7´10-67 intergenic HLA-DQB1 
HHV6 IE1A 6077 7 139985625  rs2429218  T C 0.615 0.106 (0.019) 1.4´10-8 downstream RP5-1136G2.1 

HHV7  U14 7481 
6 32602665 rs139299944 C CT 0.655 0.114 (0.017) 1.5´10-11 intronic HLA-DQA1 
11 118767564 rs75438046 G A 0.970 0.280 (0.049) 1.3´10-8 3'-UTR CXCR5 / BCL9L 
17 45794706 rs1808192 A G 0.331 -0.099 (0.017) 9.8´10-9 intergenic TBKBP1 

HSV1  1gG 5468 
6 32627852 rs1130420 G A 0.583 -0.122 (0.019) 2.5´10-10 3'-UTR HLA-DQB1 
10 91189187 rs11203123* A C 0.988 0.512 (0.093) 3.9´10-8 intergenic SLC16A12 

VZV  gE/Ig1 7289 6 32623193 rs9273325 G A 0.831 -0.232 (0.021) 8.2´10-28 intergenic HLA-DQB1 
BKV  VP1 7523 19 49206462 rs681343 C T 0.491 -0.125 (0.016) 4.7´10-15 synonymous FUT2 
JCV VP1 4471 6 32589842 rs9271525 G A 0.163 -0.318 (0.031) 3.9´10-24 intergenic HLA-DQA1 

MCV VP1 5219 
3 18238783 rs776170649 CT C 0.790 -0.134 (0.024) 1.7´10-8 intergenic LOC339862 
5 138865423 rs7444313 G A 0.263 0.169 (0.021) 2.4´10-15 intergenic TMEM173 
6 32429277 rs9268847 A G 0.750 -0.195 (0.022) 2.4´10-19 intronic HLA-DRB9 

 
1 VZV antigens gE and gI were co-loaded onto the same Luminex bead set 
2 Regression coefficients were estimated per 1 standard deviation increase in normalized MFI value z-scores with adjustment for age at enrollment, sex, body mass 

index, socioeconomic status (Townsend deprivation index), the presence of any autoimmune conditions, genotyping array, serology assay date, quality control flag 
and the top 10 genetic ancestry principal components 

* Multi-allelic variants: rs67886110 (G/T and G/C) and rs11203123 (A/C and A/AC) 
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Figure 1:  Flow chart describing the main serological phenotypes and association analyses  
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Figure 3. Sample of four Manhattan plots showing associations between immune response strength and SNPs in the
Major Histocompatibility Complex (MHC). The MHC (peaks within orange boxes) is a set of genes encoding proteins
that enable the immune system to distinguish self from non-self. These genes have well-established associations with
immune response.

(MFI)
Figure 2. Distribution of immune response to Human Polyomavirus BKV (PBKV) in 7,944 adults of European
ancestry. Immune response strength is measured using Multiplex Serology. Higher median fluorescent intensity
(MFI) indicates higher antibody titer in an individual’s serum and stronger immune response. If immune response
strength exceeds 250 MFI (orange line), an individual is considered PBKV seropositive and is inferred to be infected
with PBKV. 95.2% of the sample is PBKV seropositive.

Results
•Found associated SNPs for 17 antigens against 10 pathogens
•99 independent (R2 < 0.05), significant (𝑃 < 5 × 10−8) SNPs
•47 of these SNPs lie within genes (45 distinct genes)
•Many of these genes are also associated with autoimmunity, inflammation,
and vaccine response1,2

•Across all 22 antigens there were 45 independent, significant SNPs in the
MHC (Figure 3)
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Figure 5. The soluble A&B antigen synthesis pathway, which is dependent on the FUT2 gene product
α1,2fucosyltransferase. FUT2 has two Mendelian alleles: a dominant, functional enzyme (+), and a recessive,
nonfunctional enzyme (-). FUT2(-/-) individuals (who have two nonfunctional gene copies) represent 20% of Europeans
and are called non-secretors. This is because, without a functional enzyme, they are unable to secrete A and B blood group
antigens into bodily fluids such as saliva and serum. Recent work has shown that non-secretors are highly resistant to
norovirus infection3.

Histo-Blood Group Antigens

Conclusions & Future Directions
•Different genes are associated with different antibodies.
•Some of these genes could elucidate the biological mechanisms underlying
immune system interaction with specific pathogens.
•Future work could explore the genetic basis of pathogen-induced cancers &
immune response, the biological function of immune-response-associated
genes, and personalized prevention (vaccines) & intervention (drug targets)
strategies.

Figure 4. Manhattan plot of SNPs
associated with immune response to
Human Polyomavirus BKV (PBKV).
This analysis used a sample of 7,349
individuals infected with PBKV. The
lead SNP, rs681343, is a nonsense
mutation in the gene FUT2. The FUT2
gene creates an enzyme required for
the soluble A & B antigen synthesis
pathway (Figure 5). Our lead SNP is in
perfect linkage disequilibrium with a
common nonsense mutation which
results in a nonfunctional enzyme.
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Figure 1. Simulated data for illustration of GWAS method. Each point
represents an individual; x-axis is their genotype at a specific SNP; y-
axis is their immune response strength. Here, P represents the
statistical significance of the slope, 𝛽1. 5 × 10−8 is the genome-wide
significance threshold.

In a Genome-Wide Association Study (GWAS), we fit
linear regression models to identify the single-
nucleotide polymorphisms (SNPs) most strongly
associated with immune response strength (Figure 1).

A SNP is a single base pair, like the blue rectangles
here: At this SNP, an individual can have
0, 1, or 2 copies of the dark blue allele ( ).

Our linear regression models use this information (G,
for genotype) to predict y, the strength of immune
response, in an equation such as this one:

We include covariates such as age to account for
variation in y due to non-genetic factors.

𝑦 = 𝛽0 + 𝜷𝟏 × G ∈ 0, 1, 2 + 𝛽Age × Age +⋯+ 𝜖

What is a GWAS?

• The 22 antigens we analyze target 12 viral, bacterial, and parasitic
pathogens that are established risk factors for cancer and cardiovascular
or neurodegenerative diseases.

UK Biobank Data 

N=7,944

~9 million SNPS (maf >0.01)

Covariates: Age (40-69 years), sex, body 
mass index, etc.

Antibody Levels: 22 antibodies for which 
>20% of study was seropositive 

Data & Methods
•Immune response strength (amount of antibody
produced in response to infection) varies between
individuals (Figure 2).
•Understanding the genetics of variability in immune
response strength can yield insights into pathogen-
induced disease etiology, potential drug targets, and
the biological mechanisms of immune response.

Background

JC VP1 Antigen for 
Human Polyomavirus JCV

Maike Morrison1, Dr. Linda Kachuri2, Dr. Sara Rashkin2, Dr. John Witte2

maike.morrison@utexas.edu
1Department of Mathematics, The University of Texas at Austin
2Department of Biostatistics and Epidemiology, The University of California San Francisco

Genome-Wide Association Study of Immune Response to Twelve Common Pathogens

ZEBRA Antigen for         
Epstein-Barr Virus

gE/gI Antigen for 
Varicella Zoster Virus

pp52 Antigen for 
Human Cytomegalovirus

Figure 3. Sample of four Manhattan plots showing associations between immune response strength and SNPs in the
Major Histocompatibility Complex (MHC). The MHC (peaks within orange boxes) is a set of genes encoding proteins
that enable the immune system to distinguish self from non-self. These genes have well-established associations with
immune response.

(MFI)
Figure 2. Distribution of immune response to Human Polyomavirus BKV (PBKV) in 7,944 adults of European
ancestry. Immune response strength is measured using Multiplex Serology. Higher median fluorescent intensity
(MFI) indicates higher antibody titer in an individual’s serum and stronger immune response. If immune response
strength exceeds 250 MFI (orange line), an individual is considered PBKV seropositive and is inferred to be infected
with PBKV. 95.2% of the sample is PBKV seropositive.

Results
•Found associated SNPs for 17 antigens against 10 pathogens
•99 independent (R2 < 0.05), significant (𝑃 < 5 × 10−8) SNPs
•47 of these SNPs lie within genes (45 distinct genes)
•Many of these genes are also associated with autoimmunity, inflammation,
and vaccine response1,2

•Across all 22 antigens there were 45 independent, significant SNPs in the
MHC (Figure 3)
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Figure 5. The soluble A&B antigen synthesis pathway, which is dependent on the FUT2 gene product
α1,2fucosyltransferase. FUT2 has two Mendelian alleles: a dominant, functional enzyme (+), and a recessive,
nonfunctional enzyme (-). FUT2(-/-) individuals (who have two nonfunctional gene copies) represent 20% of Europeans
and are called non-secretors. This is because, without a functional enzyme, they are unable to secrete A and B blood group
antigens into bodily fluids such as saliva and serum. Recent work has shown that non-secretors are highly resistant to
norovirus infection3.
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Conclusions & Future Directions
•Different genes are associated with different antibodies.
•Some of these genes could elucidate the biological mechanisms underlying
immune system interaction with specific pathogens.
•Future work could explore the genetic basis of pathogen-induced cancers &
immune response, the biological function of immune-response-associated
genes, and personalized prevention (vaccines) & intervention (drug targets)
strategies.

Figure 4. Manhattan plot of SNPs
associated with immune response to
Human Polyomavirus BKV (PBKV).
This analysis used a sample of 7,349
individuals infected with PBKV. The
lead SNP, rs681343, is a nonsense
mutation in the gene FUT2. The FUT2
gene creates an enzyme required for
the soluble A & B antigen synthesis
pathway (Figure 5). Our lead SNP is in
perfect linkage disequilibrium with a
common nonsense mutation which
results in a nonfunctional enzyme.
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In a Genome-Wide Association Study (GWAS), we fit
linear regression models to identify the single-
nucleotide polymorphisms (SNPs) most strongly
associated with immune response strength (Figure 1).

A SNP is a single base pair, like the blue rectangles
here: At this SNP, an individual can have
0, 1, or 2 copies of the dark blue allele ( ).

Our linear regression models use this information (G,
for genotype) to predict y, the strength of immune
response, in an equation such as this one:

We include covariates such as age to account for
variation in y due to non-genetic factors.

𝑦 = 𝛽0 + 𝜷𝟏 × G ∈ 0, 1, 2 + 𝛽Age × Age +⋯+ 𝜖

What is a GWAS?

• The 22 antigens we analyze target 12 viral, bacterial, and parasitic
pathogens that are established risk factors for cancer and cardiovascular
or neurodegenerative diseases.

UK Biobank Data 

N=7,944

~9 million SNPS (maf >0.01)

Covariates: Age (40-69 years), sex, body 
mass index, etc.

Antibody Levels: 22 antibodies for which 
>20% of study was seropositive 

Data & Methods
•Immune response strength (amount of antibody
produced in response to infection) varies between
individuals (Figure 2).
•Understanding the genetics of variability in immune
response strength can yield insights into pathogen-
induced disease etiology, potential drug targets, and
the biological mechanisms of immune response.
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Figure 1. Simulated data for illustration of GWAS method. Each point
represents an individual; x-axis is their genotype at a specific SNP; y-
axis is their immune response strength. Here, P represents the
statistical significance of the slope, 𝛽1. 5 × 10−8 is the genome-wide
significance threshold.

In a Genome-Wide Association Study (GWAS), we fit
linear regression models to identify the single-
nucleotide polymorphisms (SNPs) most strongly
associated with immune response strength (Figure 1).

A SNP is a single base pair, like the blue rectangles
here: At this SNP, an individual can have
0, 1, or 2 copies of the dark blue allele ( ).

Our linear regression models use this information (G,
for genotype) to predict y, the strength of immune
response, in an equation such as this one:

We include covariates such as age to account for
variation in y due to non-genetic factors.

𝑦 = 𝛽0 + 𝜷𝟏 × G ∈ 0, 1, 2 + 𝛽Age × Age +⋯+ 𝜖

What is a GWAS?

• The 22 antigens we analyze target 12 viral, bacterial, and parasitic
pathogens that are established risk factors for cancer and cardiovascular
or neurodegenerative diseases.

UK Biobank Data 

N=7,944

~9 million SNPS (maf >0.01)

Covariates: Age (40-69 years), sex, body 
mass index, etc.

Antibody Levels: 22 antibodies for which 
>20% of study was seropositive 

Data & Methods
•Immune response strength (amount of antibody
produced in response to infection) varies between
individuals (Figure 2).
•Understanding the genetics of variability in immune
response strength can yield insights into pathogen-
induced disease etiology, potential drug targets, and
the biological mechanisms of immune response.
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Figure 3. Sample of four Manhattan plots showing associations between immune response strength and SNPs in the
Major Histocompatibility Complex (MHC). The MHC (peaks within orange boxes) is a set of genes encoding proteins
that enable the immune system to distinguish self from non-self. These genes have well-established associations with
immune response.

(MFI)
Figure 2. Distribution of immune response to Human Polyomavirus BKV (PBKV) in 7,944 adults of European
ancestry. Immune response strength is measured using Multiplex Serology. Higher median fluorescent intensity
(MFI) indicates higher antibody titer in an individual’s serum and stronger immune response. If immune response
strength exceeds 250 MFI (orange line), an individual is considered PBKV seropositive and is inferred to be infected
with PBKV. 95.2% of the sample is PBKV seropositive.

Results
•Found associated SNPs for 17 antigens against 10 pathogens
•99 independent (R2 < 0.05), significant (𝑃 < 5 × 10−8) SNPs
•47 of these SNPs lie within genes (45 distinct genes)
•Many of these genes are also associated with autoimmunity, inflammation,
and vaccine response1,2

•Across all 22 antigens there were 45 independent, significant SNPs in the
MHC (Figure 3)

FUT2(+/+) or (+/-) 
functional 
α1,2fucosyltransferase 
enzyme

Norovirus
Susceptibility

Figure 5. The soluble A&B antigen synthesis pathway, which is dependent on the FUT2 gene product
α1,2fucosyltransferase. FUT2 has two Mendelian alleles: a dominant, functional enzyme (+), and a recessive,
nonfunctional enzyme (-). FUT2(-/-) individuals (who have two nonfunctional gene copies) represent 20% of Europeans
and are called non-secretors. This is because, without a functional enzyme, they are unable to secrete A and B blood group
antigens into bodily fluids such as saliva and serum. Recent work has shown that non-secretors are highly resistant to
norovirus infection3.

Histo-Blood Group Antigens

Conclusions & Future Directions
•Different genes are associated with different antibodies.
•Some of these genes could elucidate the biological mechanisms underlying
immune system interaction with specific pathogens.
•Future work could explore the genetic basis of pathogen-induced cancers &
immune response, the biological function of immune-response-associated
genes, and personalized prevention (vaccines) & intervention (drug targets)
strategies.

Figure 4. Manhattan plot of SNPs
associated with immune response to
Human Polyomavirus BKV (PBKV).
This analysis used a sample of 7,349
individuals infected with PBKV. The
lead SNP, rs681343, is a nonsense
mutation in the gene FUT2. The FUT2
gene creates an enzyme required for
the soluble A & B antigen synthesis
pathway (Figure 5). Our lead SNP is in
perfect linkage disequilibrium with a
common nonsense mutation which
results in a nonfunctional enzyme.

rs681343
FUT2

𝜷 = −386.5𝟑
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Figure 1. Simulated data for illustration of GWAS method. Each point
represents an individual; x-axis is their genotype at a specific SNP; y-
axis is their immune response strength. Here, P represents the
statistical significance of the slope, 𝛽1. 5 × 10−8 is the genome-wide
significance threshold.

In a Genome-Wide Association Study (GWAS), we fit
linear regression models to identify the single-
nucleotide polymorphisms (SNPs) most strongly
associated with immune response strength (Figure 1).

A SNP is a single base pair, like the blue rectangles
here: At this SNP, an individual can have
0, 1, or 2 copies of the dark blue allele ( ).

Our linear regression models use this information (G,
for genotype) to predict y, the strength of immune
response, in an equation such as this one:

We include covariates such as age to account for
variation in y due to non-genetic factors.

𝑦 = 𝛽0 + 𝜷𝟏 × G ∈ 0, 1, 2 + 𝛽Age × Age +⋯+ 𝜖

What is a GWAS?

• The 22 antigens we analyze target 12 viral, bacterial, and parasitic
pathogens that are established risk factors for cancer and cardiovascular
or neurodegenerative diseases.

UK Biobank Data 

N=7,944

~9 million SNPS (maf >0.01)

Covariates: Age (40-69 years), sex, body 
mass index, etc.

Antibody Levels: 22 antibodies for which 
>20% of study was seropositive 

Data & Methods
•Immune response strength (amount of antibody
produced in response to infection) varies between
individuals (Figure 2).
•Understanding the genetics of variability in immune
response strength can yield insights into pathogen-
induced disease etiology, potential drug targets, and
the biological mechanisms of immune response.
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Figure 2: Results from genome-wide and regional association analyses of continuous antibody response 
phenotypes (MFI z-scores) among individuals seropositive for human polyomaviruses BKV, JCV, and 
Merkel cell (MCV). The lower two panels depict the association signal and linkage disequilibrium (LD) 
structure in the HLA region for JCV and MCV.  
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Figure 3: Regional association plots for conditionally independent HLA genetic variants that were significantly 
(P<5.0´10-8, solid black line) associated with each continuous antibody response phenotype. The suggestive 
significance threshold corresponds to P<1.0´10-6 (dotted black line). 
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Figure 4: Conditionally independent classical HLA alleles significantly (Pcond<5.0´10-8, solid line) associated with 
each continuous antibody response phenotype. Only classical alleles that surpassed the Bonferroni-corrected 
significance threshold (P<4.6´10-5, dotted line) were included in conditional analyses. 
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Figure 5: TWAS associations with continuous antigen response phenotypes. Two Manhattan plots depicting the 
transcriptome-wide associations for genes with a positive direction of effect (increased expression leads to higher 
antibody response) and genes with a negative direction of effect (increased expression is associated with a reduced 
antibody response).  
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