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ABSTRACT

We compare several wavelet�based coders in the encoding of still images� Two image quality metrics are used
in our comparative study� a perception�based� quantitative picture quality scale and the conventional distortion
measure� peak signal�to�noise ratio� Coders are evaluated in the rate�distortion sense� The e�ects of di�erent
wavelets� quantizers� and encoders are assessed individually� Two representative wavelets� three quantizers� three
encoders� and the combinations of these components are compared� Our results provide insight into the design
issues of optimizing wavelet coders� as well as a good reference for application developers to choose from an
increasingly large family of wavelet coders for their applications�

Subject terms� wavelets� wavelet transform� image coding and compression� image quality� distortion measure�

� INTRODUCTION

Research in wavelet image coding since the late ����s has explored various aspects of wavelet image coders�����

Today� this 	eld continues to grow at a rapid pace
 reports on new coders and variations of the existing ones
are appearing constantly at conferences and in journals� Despite the widespread interest in wavelet coders� there
has been no comprehensive and comparative study of the performance of various wavelet coders using a suitable
distortion measure� This makes it di�cult to consider optimum designs or to choose from an increasingly large
family of wavelet coders for speci	c applications� We were thus motivated to perform a comparative study of
wavelet coders�

Our comparative study is con	ned to still images and is based on rate�distortion measures� A common
expectation about wavelet image coders is that they produce subjectively better quality images than the standard
Joint Photographic Experts Group �JPEG
 coder� This is a well�recognized fact� at least for images encoded at low
bit rates� However� an objective evaluation must rely on some quantitative distortion measure� The traditional
distortion measure� the mean square error �MSE
� has long been recognized as inadequate because of its low
correlation with human visual perception� It is particularly inappropriate to use the MSE for evaluating wavelet
coders� which are largely motivated by the properties of the human visual system �HVS
��� We chose to use
a perception�based� quantitative distortion measure� called the picture quality scale �PQS
� in addition to the
commonly used peak signal�to�noise ratio �PSNR
 which is based on MSE� The PQS has been developed in the
past few years for evaluating the quality of compressed images� It combines various perceived distortions in
image coders into a single quantitative measure and it correlates well with the subjective evaluation quanti	ed
by a mean opinion score �MOS
� In previous research� the JPEG image coder� along with one subband and one
wavelet coder� was studied extensively using the PQS���

The design of a wavelet image coder can be divided into three parts� wavelet and related representations�
quantization strategies� and error�free encoding techniques� In each part� one has freedom to choose from a pool
of candidates and this choice will ultimately a�ect the coder performance� Therefore� it is necessary to evaluate
each choice independently� i�e�� with the other parts of the coder 	xed� The number of such combinations can be
prohibitively large� even after we eliminate some apparently unreasonable choices� so that in this paper� while we
review a large number of possible choices for each decision� we present our comparative results using two wavelets�
three quantizers� and three encoders on two test images�

The rest of paper is organized as follows� Sec� � reviews the family of wavelet image coders by examining
di�erent choices of wavelets� quantizers� and encoders
 Sec� � introduces the PQS� a perceptual distortion measure
we adopt in our study in addition to PSNR
 Sec� � presents experimental results of coder comparisons and some
comments
 Sec� � concludes the paper�

� FAMILY OF WAVELET IMAGE CODERS

In this section� we review the family of wavelet image coders by examining the options we have for wavelet
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representations� quantizers� and encoders� Generally speaking� a wavelet image coder can be made by selecting
a wavelet representation� a set of quantizers� and an error�free encoder� However� an arbitrary combination of
the three parts does not always make sense in practice� We will point this out as we encounter such situations�
Given the abundant literature in wavelet image coding and for the purpose of this paper� we do not intend to
give full technical descriptions of wavelet representations� quantizers� and encoders� This section is only a survey
of the parts that can be used to build wavelet coders� references are provided for those who desire more details�
We realize� however� that our survey can hardly be complete in such a fast developing technical area�

��� Wavelet Representations

Wavelet representations di�er in their choice of wavelets� We discuss a few general types of wavelets and the
associated representations in the context of image coding� We consider only separable ��D wavelets which are
completely determined by corresponding ��D wavelets and scaling functions�

����� Orthogonal wavelets

These are the family of wavelets that generate orthonormal bases of L��Rn�� Among them the most important
ones to image coding are compactly supported orthogonal wavelets� In the discrete wavelet transform �DWT��
compactly supported wavelets correspond to 	nite impulse response �FIR� 	lters and thus lead to e
cient im�
plementations� A systematic way of constructing compactly supported wavelets was developed by Daubechies���

and a fast algorithm for computing a DWT was given by Mallat�� Two popular families of compactly supported
wavelets are the Daubechies wavelets�� and Coifman wavelets� or Coi�ets��� Each family is parameterized by
an integer that is proportional to the length of the wavelet 	lter� For compactly supported wavelets� the length
of a wavelet 	lter is related to the degree of smoothness and regularity of the wavelet� which in turn can a�ect
the coding performance� However� studies���� have found that for 	lter lengths greater than � or �
� the gain in
compression performance is nominal and not worth the additional computational cost�

A major disadvantage of compactly supported orthogonal wavelets is their asymmetry� This property trans�
lates into nonlinear phase in the associated FIR 	lters� In computing a DWT using nonlinear phase wavelet 	lters
and 	nite�length data� a periodic �wraparound� extension is often used� This may cause artifacts at the borders
of the wavelet subbands� These artifacts can be avoided if we use linear�phase wavelet 	lters and a ��ip�over�
data extension�� Symmetry in wavelets and their associated 	lters can be obtained only if one is willing to give
up either compact support or orthogonality of wavelets �except for the Haar wavelet�� The use of noncompactly
supported orthogonal wavelets such as the Lemarie�Battle wavelet in image coding has been demonstrated��

However� such a choice adds computational burden and is not economic in a hardware implementation of the
coder� For example� although the coe
cients of the Lemarie�Battle wavelet decay at an exponential rate� we
found that �
 coe
cients �one side� are needed to achieve a reconstruction accuracy to six signi	cant 	gures� If
we want both symmetry and compact support in wavelets� we are led to biorthogonal wavelets�

����� Biorthogonal wavelets

The reason for using biorthogonal wavelets is mostly for their symmetry� The price we pay for this is small
as far as image coding is concerned� When using biorthogonal wavelets� the quadrature 	lters �QF� we use to
compute a DWT are no longer an orthogonal pair� They are� however� orthogonal to another QF pair that we use
to compute the inverse DWT� The perfect reconstruction property is preserved� and Mallat�s fast algorithm can
still be used� There are also systematic ways of constructing compactly supported biorthogonal wavelets��� One
can choose� for example� to build 	lters with similar or dissimilar lengths for decomposition and reconstruction�
or which are nearly orthogonal�� Since there is little extra cost associated with biorthogonal wavelets� they are
adopted in several wavelet image coders���� A recent study by Villasenor� Bellzer� and Liao�� compared a large
number of biorthogonal wavelet 	lters� Although the advantages of using linear phase biorthogonal 	lters in
image coding have been conjectured��� a previous study by Rioul�� did not clearly support them�

�



����� Wavelet packets

Coifman� Meyer� Quake� and Wickerhauser�� introduced wavelet packets as a generalized family of multireso�
lution orthogonal or biorthogonal bases that includes wavelets� A family of wavelet packet bases can be generated
by the same QF pair that generate the wavelet� Extensive coverage of this topic can be found in a book by Wick�
erhauser��� From subband coding point of view� any subtree sharing the same root with the full subband tree
corresponds to an orthogonal or biorthogonal representation using a speci�c member of the wavelet packet bases
generated by a QF pair� Clearly� one can choose from this rich family a �best� basis by some criterion� Coifman
and Wickerhauser� developed entropy�based algorithms for best basis selection� Their algorithm converges to
a minimum�entropy basis� Note that the �entropy� in Coifman and Wickerhauser�s algorithm is a measure of
energy compaction of a vector� Another algorithm for determining the best basis in a rate�distortion sense was
developed by Ramchandran and Vetterli��� If one is concerned primarily with lossy compression� the best basis
that minimizes the total distortion for a given bit rate seems to be preferable to Coifman�s minimum�entropy
basis� The rationale for using a best wavelet packet basis is that it is at least as good as �if not better than� the
wavelet basis for the chosen cost functional� However� there is certain cost to pay for using wavelet packets� First�
extra bits are needed to encode the basis structure� Second� the resulting image coder becomes nonsymmetric in
encoding and decoding	 the encoder is slower because it needs to search for the best basis� which is more expensive
computationally�

����� Multiwavelets

Recently� multiwavelets have been studied and used for image coding� Multiwavelets denote multiple wavelets
whose dilations and translations collectively generate an orthogonal basis of L��Rn�� Compared with single
wavelets� orthogonal multiwavelets can be shorter� with more vanishing moments� and symmetric������ An appli�
cation of two wavelets to image coding was recently reported��� To compute a discrete multiwavelet transform
�DMWT� on a scalar function� data are fed through a multirate pre�lter bank followed by a multirate vector
�lter bank��� Here the pre�lter bank can be viewed as a device �vectorizing� the scalar function before passing it
to a multirate vector �lter bank� The latter stage is an instance of vector transforms�����	 More speci�cally� it is
a discrete vector�valued wavelet transform�
 similar to vector subband analysis� Vector subband coding �VSC��
and more generally� vector transform coding �VTC�� have been developed recently independent of wavelets������

The idea behind these developments is to match vector transforms with vector quantization techniques for best
performance� Recent results suggest that this is a very promising approach to image coding��� It seems natural�
then� to adopt vector quantization in multiwavelet transform coders� and to design matching pre� and post�lter
banks as well as the vector �lter banks�

����� Zero�crossings and local maxima of wavelet transforms

Under certain conditions� an image can be e
ectively represented by the zero crossings of the wavelet trans�
form�� or local maxima of the wavelet transform modulus��� When wavelets are carefully chosen as a smoothed
gradient operator� the zero crossings and local maxima of corresponding wavelet transforms can be interpreted
as �multiscale edges�� Generally speaking� a nonorthogonal wavelet is required for this purpose and the resulting
wavelet transform of the image is oversampled in space before the extraction of the zero crossings and local
maxima� Image coding using zero crossings and local maxima was demonstrated by Mallat�� and Mallat and
Zhong��� The latter was re�ned by Froment and Mallat�� and linked to the �second�generation image coding
techniques��� that use image features such as contours� as coding primitives� A more recent coding system along
this line was developed by Croft and Robinson��� These feature�based image coding systems usually require
nonconventional quantization and encoding techniques� For example� in the wavelet local maxima representation�
coding performance would be better if quantization were done on the chains of local maxima �edge contours�
instead of individual local maxima��� The quantized chains of wavelet local maxima can then be encoded with a
contour coder���
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��� Quantization Techniques

����� Scalar quantization �SQ�

Suppose we have decomposed an image to N dyadic scales using a wavelet transform or wavelet packet
transform� either orthogonal or biorthogonal� This will yield �N�� subbands in the wavelet case and a maximum
of �N subbands in the wavelet packet case� Since the variance of each subband is generally di�erent� we need to
design a quantizer for each subband� If we assume the encoder employed at the later stage uses variable�length
codewords� we are led to consider only uniform quantizers��� In this case the design of a uniform scalar quantizer
boils down to the choice of a quantizer step size for each subband� A simple but rather arbitrary design could be
to start with some step size q�� and decrease it by a factor of � for all three oriented subbands as one goes to the
next coarser scale� The lowest subband is often 	nely quantized using the smallest possible step size� The step
size q� can be determined by matching the averaged entropy of all quantized subbands to the given total bit rate�
This design is obviously nonoptimal� but works satisfactorily in practice� as evidenced by the EPIC software���

To increase compressibility� quantizers for higher subbands often have a dead zone that maps small coe
cients
�mostly due to noise� to zero��� More sophisticated quantizer designs can take into account the characteristics of
the HVS� or an optimally allocated bit budget for each subband� Lewis and Knowles� designed an HVS�adapted
quantizer that takes into account the HVS
s spectral response� noise sensitivity in background luminance� and
texture masking� If the bit budget has been allocated for each subband� then an entropy�constrained optimum
quantizer can be designed��� The problem of optimal bit allocation in the context of wavelet image coding has
been addressed in several papers����	
��

����� Vector quantization �VQ�

Vector quantization is a generalization of scalar quantization in which vectors� or blocks� of pixels are quantized
instead of the pixels themselves� The general optimality of VQ over SQ was discussed by Gersho and Gray���

To apply VQ to wavelet image coding� the common approach is still to consider each subband individually� In
the work of Antonini� Barlaud� Mathieu� and Daubechies�� a subcodebook is generated for each subband� and a
multiresolution codebook is obtained by assembling all subcodebooks� Senoo and Girod�� compared several VQ
algorithms for subband image coding and concluded that entropy�constrained VQ gives the best performance�
and that lattice VQ performs only slightly worse� but with a much simpler implementation� Since subbands
are a hierarchical organization of oriented frequency bands� it is intuitive to consider quantizing a vector whose
elements span subbands of the same orientation� This idea� however� does not lead to a new form of VQ� it leads
to a new quantization strategy� referred to as space quantization�

����� Space versus frequency quantization

We refer to the technique of designing quantizers� either scalar or vector� for each individual subband as
�frequency quantization� since each subband corresponds to a di�erent frequency range� Since wavelet repre�
sentations have both scale �frequency� and space contents� spatial grouping of data and quantization is possible�
However� this is somewhat beyond the scope of conventional quantizer design because the number of samples
corresponding to the same location in the same orientation is decreased by a factor of � as we move from 	ne
to coarse scale subbands� Shapiro�� designed an elegant method� called the embedded zerotree wavelet algorithm
�EZW�� to turn this di
culty into an advantage� Quantization is done by successive approximation across the
subbands with the same orientation� This results in an e
cient data structure for encoding zero and nonzero
quantized values� More recently� studies on joint space�frequency quantization����� have attempted to fully exploit
the space�frequency characteristics of wavelet representations�
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��� Error�Free Encoding Techniques

����� Hu�man code and run�length encoding

Although not an actual encoding technique� band based Shannon entropy is commonly used in the evaluation
of coding performance� A simple encoding technique results if Hu�man codes are designed for each band� Care
must be exercised� however� to ensure that accurate statistics are used to design these codes� One can design a
universal code based on an ensemble of typical images or explicitly transmit the Hu�man codes� along with the
compressed image data� to the decoder� For highly skewed sources� such as quantized wavelet transformed images�
Hu�man codes are known to be very ine�cient� However� if the most probable symbols �zeros� are removed from
the source and encoded separately� little spatial correlation remains among the nonzero values� which can then
be encoded e�ciently� Commonly� run�length encoding the abundance of zeros� when combined with Hu�man
encoding of the nonzero values� produces good results����

����� Arithmetic Code�

Adaptive arithmetic codes start with no information about the image and implicitly transmit the model to the
decoder in the compressed data stream� Therefore� they are free from the statistical ensemble issues associated
with the design of Hu�man codes� Binary arithmetic codes� such as the Q�code and QM�code��� are more
computationally e�cient than their multialphabet counterparts��� but require a mapping from the quantized
coe�cients to a sequence of binary decisions� A simple technique� which is similar to the run�length encoding
discussed above� proves to be very bene�cial� The locations of the nonzero pixels are speci�ed by encoding a
binary activity mask �all nonzero values are set to �� with standard binary image compression techniques� such
as the Joint Bi�level Image Experts Group �JBIG� coder� after which the nonzero pixels are mapped through
a balanced binary tree and encoded� Using this color shrinking�� based technique� we often obtain bit rates
less than the Shannon entropy �based on independent pixels� due to the signi�cant spatial correlation between
the zeros in a wavelet�transformed image� An alternative� e�cient representation of the zeros in the source is
exploited by Shapiro	s zerotree�� coder�

� PICTURE QUALITY SCALE

Research into the psychophysics of human visual perception has revealed that the HVS is not equally sensitive
to various types of distortion in an image� This directly a�ects the perceived image quality� The PQS is based
on quantitative measures of several distortion factors� Because these distortion factors are correlated� a principal
component analysis is done to transform them into uncorrelated 
sources of errors�� and dominant sources are
identi�ed� These errors are then mapped to a PQS value by a model which was obtained from a linear regression
analysis with the mean opinion score�

��� Distortion Factors

The current version of the PQS includes �ve distortion factors of which the �rst two are derived from random
errors and the last three from structural errors� Here we give only a description of these distortion factors�
Formulas for computing the actual numerical measures are detailed in two references��������� Perceptual distortion
measures depend on the viewing distance that here is assumed to be four times the picture height�

Distortion factor F� is a weighted di�erence between the original and the compressed images� The weighting
function adopted is the International Radio Consultative Committee �CCIR� television noise weighting standard�

Distortion factor F� is also a weighted di�erence between the original and the compressed images� The
weighting function is from a model of the HVS� In addition� an indicator function is included to account for the
perceptual threshold of visibility�

�



Table �� Covariance matrix of Fi Table �� Scales of the MOS

F� F� F� F� F�

F� ���� ���� ���� ���� ����
F� ���� ���� ���� ���� ����
F� ���� ���� ���� ���� ��		
F� ���� ���� ���� ���� ����
F� ���� ���� ��		 ���� ����

Grading Scales Impairment
� Imperceptible

 Perceptible� but not annoying
� Slightly annoying
� Annoying
� Very annoying

Distortion factor F� re�ects the end
of
block disturbances� The HVS is quite sensitive to linear and structured
error features in images� In block coders� the error image contains discontinuities at the end of blocks� which
explains perceived blocking artifacts in the compressed image�

Distortion factor F� accounts for general correlated errors� Errors with strong correlation are more perceptible
than random patterns� The error image having strong correlation suggests more apparent distortion in the image
to human viewers than accounted for by the magnitude of the errors�

Distortion factor F� is a measure of the large errors that occur for most coders in the vicinity of high contrast
transitions �edges�� Two psychophysical e�ects occur in the vicinity of high contrast edges� On the one hand� the
visibility of noise and errors decreases� this is referred to as visual masking� On the other hand� the visibility of
misalignments increases�

��� Principal Component Representation of Distortion Measures

Because the distortion factors fFig��i�� are correlated� a principal component analysis is performed to decor

relate the distortion measures and identify the dominant sources� This is done for a test set of distorted images
obtained from representative coders� Table � lists a covariance matrix of fFig� CF � It was computed from a set of
�
 distorted images obtained by encoding two reference images with transform and DPCM coders for a range of
quality� The two reference images are �Hairband� and �Church� speci�ed by the Institute of Television Engineers
�ITE� of Japan� Our experiments with a large number of other images indicated that this estimate of CF is
quite robust� its elements have no signi�cant changes for di�erent test images� An eigen analysis on CF gave
the transform matrix that decorrelates fFig� It was found out that among the �ve eigenvalues of CF the three
largest ones account for �	� of the total error energy� Therefore� the three eigenvectors corresponding to the
three largest eigenvalues can be chosen to transform fFig into a principal component representation� fZig��i���

��� Formation of the PQS

Since the various distortion factors collectively contribute to the overall perceived image quality� we seek a
functional model mapping the distortion factors or measures to a single quality scale� the PQS� This model can
be experimentally determined by studying the functional relationship between the distortion measures and the
MOS� a �ve scale subjective ranking of image quality in terms of perceived distortions that are described in Table
���� The simplest model is a linear one in which the PQS is expressed as a linear combination of uncorrelated
principal distortion measures� fZig� that is�

PQS � b� �
�X

i��

biZi

where fbig��i�� are the partial regression coe�cients obtained by multiple linear regression of fZig against the
MOS��������� Nonlinear models have also been studied that employ neural networks to compute the PQS������
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For the aforementioned set of �� distorted images� the MOS values were obtained from an experiment involving
nine observers under the conditions speci�ed by the CCIR��� The observers were allowed to give half scale scores�
A multiple linear regression analysis of fZig against the MOS gave b� � ������ b� � �	�	�
� b� � �������
b� � �	����� with the correlation coe
cient R � 	���� Our extensive experiments indicate that PQS di�erentiates
images encoded at the same signal�to noise ratio �SNR�� in accordance with the assessment of image quality by
human observers�

� RESULTS AND REMARKS

��� About the Experiment

In this section we present some results from our comparative study of several wavelet coders� The comparison
is in the rate�distortion sense where the distortion is measured by both PQS and PSNR� Two popular test
images� �Lena� and �Barbara�� both �������� were used in the experiment� A total of ��	 encoded images were
compared� representing a combination of two wavelets� three quantizers� and three encoders� plus the EZW coder�
for coding the two test images at �	 bit rates ranging uniformly from 	�� to ��	 bits�pixel� The two wavelets
used are the orthogonal� ��tap wavelet of Daubechies �D���� and the biorthogonal� �
��� wavelet of Barlaud
�B
������� The motivation for choosing these two speci�c wavelets for our comparative study is explained in the
next section� All wavelet transforms are computed for four dyadic scales� resulting in �� subbands� All three
quantizers are scalar quantizers� the �rst is the nonoptimized quantizer �Q�� described in Sec� ���� the second is
the HVS�adapted quantizer �Q�� of Lewis and Knowles�� the third is an entropy�constrained quantizer �Q�� in
which a bit budget is optimally allocated to each subband and used as a constraint in the quantizer design� we have
used the optimum bit allocation scheme of Chen� Itoh� and Hashimoto�� with a uniform Laplacian rate�distortion
model��� All three encoders are band based� i�e�� each band is processed separately� They are a simple Hu�man
encoder �E��� run�length encoded zeros plus Hu�man encoded nonzero values �E��� and the activity mask based
technique discussed in Sec� ���� where we QM�encode the mask using a ��pixel spatial predictive context and
the nonzero values using binary tree decomposition �E��� In addition� we tested the EZW coder with the B
�
wavelet� tree�structured spatial quantization� and adaptive arithmetic encoding�

The results are computed� organized� and presented in several ways� In assessing the choice of wavelets and
quantizers� we use the computed entropy H of a quantized wavelet representation as the bit rate� assuming we
have an ideal entropy encoder� In the coding experiment� we adjusted the quantizers so that the entropy of a
quantized wavelet�transformed image matches �within 	�		� error bound� the target nominal bit rate� The two
wavelets fB
��D�g are compared for �xed quantizers and the three quantizers fQ��Q��Q�g are compared for �xed
wavelets� To compare the three encoders fE��E��E�g� we encode images quantized at the nominal bit rates H�
compute the actual output bit rates� and then plot them against H �which is the lower bound on bit rate if the
pixels are independent�� Finally� we compare the overall performance of a few coders synthesized from di�erent
choices of wavelets� quantizers� and encoders� We do this by plotting PQS and PSNR versus actual bit rates for
each assembled coder� Owing to the large amount of data� we use both tables and graphs to present our results�

��� Comparison of Two Wavelets

In theory� we have a large number of candidates from the families of orthogonal and biorthogonal wavelets
that can be used for image coding� In practice� designers often focus on a small number of candidates� We have
chosen two commonly used wavelet �lters for our comparative study� B
� and D�� one from each family� These
�lters are comparable in length �� taps on average� and represent a good tradeo� among smoothness� regularity�
and computational cost� A recent study by Villasenor� Bellzer� and Liao�	 rated B
� �rst for overall performance
among a large number of biorthogonal wavelet �lters� Therefore� although we cannot make conclusive comparisons
between orthogonal and biorthogonal wavelets� we feel that our comparison of B
� and D� is representative�

Fig� � contains four plots comparing B
� with D� for quantizer Q�� Similar results are found for quantizers
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Q� and Q�� we tabulate these results in Tables � and �� In all cases B�� leads D� in both PQS and PSNR for
a large portion of our test bit rate range� For a given bit rate� the lead of B�� over D� can be as much as 	���
PQS or ��
 dB� From another point of view� using B�� one can save as much as approximately 	�
 bits�pixel
for a given PQS or PSNR value� Note that the �lters of B�� and D� have similar lengths� the advantage of the
former over the latter is clear in this experiment�

��� Comparison of Three Quantizers

Fig� 
 compares our three quantizers for wavelet B��� Again� numerical results can be found in Tables � and
� for both B�� and D�� We see little di
erence between the three quantizers if we look at the PSNR plots in
Fig� 
 or compare the corresponding �gures in Tables � and �� The PQS comparisons� however� tell a di
erent
story� We �nd that Q
 is best in most cases� For low bit rates� Q
 is sometimes slightly outmatched by one of
the other quantizers� At higher rates� the dominance of Q
 increases to as much as 	��� PQS for �Barbara�� The
relationship between Q� and Q� in PQS seems image dependent� With its PQS values close to those of Q
� Q�
clearly outperforms Q� for �Lena�� but the competition appears tied for �Barbara�� In Figs� � and �� we give a
visual comparison of compressed�decompressed images by the three quantizers at the nominal bit rate �entropy�
of 	�� bits�pixel� Examination of these images reveals that Q
 results in better visual quality� which agrees with
the PQS ratings� Recall that Q
 is an HVS�adapted quantizer� Its advantage is not obvious at all from PSNR
values� The PQS con�rms the value of the HVS�adapted quantization�

We observe that the nonoptimized quantizer Q� performs quite well� This is not surprising because the step
sizes of Q� are not completely arbitrary� The variances of wavelet coe�cients in subbands are generally unequal�
A rule of thumb based on equal quantization MSE in each subband suggests that the bits allocated to the subband
should be proportional to the logarithm of its variance� This implies that the number of quantization levels should
be proportional to the variance� and in the case of uniform quantization� the quantizer step size should be inversely
proportional to the variance� For many images� the variances of subbands increased in going from �ne to coarse
scales� The step sizes of Q� are based upon such an observation� they would be near optimal if the variances in
oriented subbands increased by a factor of 
 from �ne to coarse scales� From another point of view� Q� can be
shown to be optimal if the wavelet coe�cients in each subband are uniformly distributed���

��� Comparison of Three Encoders

Fig� � shows the output bit rates of three encoders versus computed entropies for �Lena� and �Barbara��
Similar results were observed for all wavelets and quantizers� therefore we averaged the results across wavelets
and quantizers to produce the composite results shown in Fig� �� For reference� all results including nonaveraged
output bit rates from three encoders for �Lena� and �Barbara� are tabulated in Tables � to �	�

In each plot of Fig� � we also draw a line of unit slope where the output bit rate equals the entropy� As
expected� the simple Hu
man encoder �E�� always gives a bit rate higher than the entropy� especially at low
bit rates where there are a large number of zeros� i�e�� when the source is highly skewed� When combined with
run�length encoding of the zeros �E
�� the results are much better� and only slightly worse than our best� the
activity mask based technique� We must point out� though� that our Hu
man code results are image speci�c and
do not include the overhead of transmitting �� �one per subband� Hu
man codes to the decoder� Therefore� the
bit rates for E� and E
 in Fig� � are lower bounds on the rate of a more realistic code� We did not compute the
cost of transmitting the Hu
man codes or consider the design of a generic Hu
man code based on an appropriate
ensemble of images because the results for code E� are better and do not ignore any hidden costs� We observe that
the bit rates for E� are consistently lower than the �independent pixel� entropy� which may appear counterintuitive
to some� but is correct since we are exploiting spatial dependencies in the source which are not re�ected in the
entropy computation� Note that by using E� we can obtain bit rates as much as 	�
� bits�pixel below the entropy
for �Barbara�� or 	�� bits�pixel for �Lena�� We declare E� the winner�

�



��� Comparison of Wavelet Coders

We now compare a few complete wavelet image coders synthesized from di�erent wavelets� quantizers� and
encoders� A combination of �the best� gives the B���Q��E	 for both �Lena� and �Barbara�� We also present D
�
Q��E� and D
�Q��E	 for both test images� These coders along with the EZW coder are compared in Fig� �� We
see that for both �Lena� and �Barbara�� B���Q��E	 is the winner by PQS for most bit rates� with EZW winning
at high bit rates� By PSNR� B���Q��E	 still wins for �Barbara�� but loses to EZW by a small margin for �Lena��
Note that the scalloped behavior of the EZW performance curve is due to the use of a 
xed value �M � ���� for
the minimum slice threshold in Shapiro�s algorithm��� To obtain the best results� a costly optimization of this
parameter would be required at each bit rate� Also observed from Fig� �� the simple Hu�man encoder yields�
clearly� the poorest coder for both test images and by both PQS and PSNR� The performance di�erence between
the best �B���Q��E	� and the worst �D
�Q��E�� coders can be as large as ��� in PQS or � dB in PSNR for
�Barbara�� Of course� an intelligent designer would not choose such a code� Our results only indicate how bad
such a brute force design can be� The only di�erence between coders D
�Q��E	 and B���Q��E	 is the choice of
wavelets� As such� the orthogonal wavelet based coder� D
�Q��E	� performs slightly worse than the biorthogonal
wavelet based coder� B���Q��E	� In Fig� �� we give a visual comparison of �Lena� coded at approximate ����
bits�pixel by B���Q��E	� D
�Q��E	� and the EZW coders� Note that at this rate� the image quality is so low
that the PQS values fall out of the valid range� The PSNR 
gures� however� are indicative in this case�

Coders representing other combinations can also be synthesized� Their performance can be evaluated by
combining columns in Table 	 or � with columns in Tables ����� or ��
���� for �Lena� and �Barbara�� respectively�
For example� to examine the performance of coder B���Q��E� for �Lena�� we look up and plot columns � and
� in Table 	 against column 	 in Table �� Since we have plotted the best and worst overall cases in Fig� �� we
expect all other combinations to produce results between that of B���Q��E	 and D
�Q��E��

��� Remarks

Earlier� we reported some comparative results using only PQS for �Lena� and �Barbara� of lower resolution
���� � ������� The results presented here appear to be generally consistent with our previous results� though
there are slight di�erences�

The purpose of our comparative study is not to simply rank a number of coders� We hope to 
nd out why
a coder is good or bad and how to make a good coder� The EZW coder is� in our mind� the state�of�the�art
technique in wavelet image coding� The fact that we can make a coder that comes close to or is even better
than the EZW coder just by assembling available techniques testi
es to the value of good synthesis in wavelet
coder design� Our results clearly show that all parts �representation� quantization� and error�free encoding�
are important in designing wavelet coders� Since wavelets were introduced to image coding� there has been
considerable research looking for better wavelets� The close and good performance of D
�Q��E	 and B���Q��E	
in our study suggests that the e�ect of di�erent wavelets �of similar 
lter lengths� may be less signi
cant than
that of quantizers and encoders� We have evaluated three representative scalar quantizers� Among them the
HVS�adapted quantizer is particularly attractive� because after all� most compressed images are intended for
human viewers upon decompression� We have not included the large family of vector quantizers here� We felt
that they warrant another comparative study� Naturally� multiwavelets can be included in such a study�

The e�ciency of error�free encoders is another important issue� The shift of curves �except EZW� from the
nominal bit rate range in Fig� � indicates the performance gain or loss due to encoder e�ciency� We have shown
that a good encoder �e�g�� E	� can achieve a bit rate lower than the �independent pixel� entropy� making the curve
shift to the right in Fig� �� On the other hand� an ine�cient encoder �E�� produces a bit rate much higher than
the entropy� making the curve shift to the left� The key to a good encoder is to exploit dependency between pixels�
This in turn calls for a good data structure organizing wavelet transformed data� Comparing EZW with B���Q��
E	� we found that both exploit dependencies between the quantized coe�cients� which allows them to achieve
bit rates below the entropy� The di�erence is that the EZW exploits both intra� and interband dependencies by
encoding the zerotrees while B���Q��E	 exploits more intraband dependency by encoding the activity masks� In

�



additional� the EZW coder is a good example of intelligent organization of data for quantization and encoding�

The PQS quanti�es some perceptual characteristics of a coder that can not be revealed by the PSNR� see� e�g��
quantizer comparisons in Sec� ���� This makes the PQS an attractive alternative to PSNR as a distortion measure�
However� the PQS is a relatively coarse scale that has only �ve de�ned levels� So although the computation can
give PQS values between these levels �e�g� ���� and ���	� their perceptual meanings are not well de�ned� This
re
ects the fact that the PQS is constructed by regression with MOS� which is a ��level grading scale� A 
��
resolution on MOS scale would mean that �
 grading levels are meaningful� Perhaps few human observers can
do such a �ne grading� Thus to improve the �perceptual resolution� of the PQS� we need to map it to other
perceptual metrics� We also note that the PQS versus entropy �or bit rate	 curves are relatively 
at at high bit
rates but become increasingly steep at low bit rates and can fall out of the valid range to become meaningless�
This re
ects the nonlinearity in perception� That is� human observers have certain tolerance for moderately
distorted images� Once the distortion becomes annoying� the perceived image quality falls rapidly� The lesson
to the designers then is to make a coder that maximizes the bit rate range in which the PQS curve is above the
knee�

� CONCLUSION

We have presented some results from a comparative study of di�erent wavelet image coders using a perception�
based picture quality scale as well as the traditional PSNR� While our study cannot cover all the aspects of wavelet
coder design� we believe that the comparisons we made are highly representative� These results can provide a
reference by which application developers can choose a good wavelet coder for their applications� as well as shed
some light on the design of wavelet coders� Our work shows that an excellent wavelet coder can result from a
careful synthesis of existing techniques of wavelet representation� quantization� and error�free encoding� All three
parts play a role in making a good coder� Exploiting the dependency of quantized coe�cients� including zeros� is
an e�ective way to boost the overall performance of a wavelet coder� Quantizers designed with considerations of
the characteristics of HVS are very attractive� their advantages can be quanti�ed when an appropriate distortion
measure is used� The e�ect of variations between asymmetric orthogonal and symmetric biorthogonal wavelets is
also noticeable� but seems less signi�cant when compared with the other two factors� Finally� our study testi�es
to the necessity of perception�based quality metrics such as the PQS for coder evaluation� The approach we take
here is certainly not limited to evaluation of wavelet coders�

� ACKNOWLEDGMENT

We would like to thank A� Kris Huber of Utah State University for providing us with his implementation of
the EZW coder� We also acknowledge support of the UC Micro Program� Hewlett�Packard� Lockheed� and Paci�c
Bell�

� REFERENCES

��� S� G� Mallat� �A theory of multiresolution signal decomposition� the wavelet representation�� IEEE Trans�

Pattern Anal� and Machine Intell�� vol� PAMI���� pp� �������� July �����

��� W� R� Zettler� J� Hu�man� and D� C� P� Linden� �Application of compactly supported wavelets to image
compression�� Proceedings of SPIE� Image Processing Algorithms and Applications� vol� ����� pp� ��
���
�
���
�

��� R� A� DeVore� B� Jawerth� and B� J� Lucier� �Image compression through wavelet transform coding�� IEEE

Trans� on Information Theory� vol� ��� pp� �������� Mar� �����

��� R� R� Coifman and M� V� Wickerhauser� �Entropy�based algorithms for best basis selection�� IEEE Trans�

Infor� Theory� vol� ��� pp� �������� Mar� �����

�




��� M� Antonini� M� Barlaud� P� Mathieu� and I Daubechies� �Image coding using wavelet transform�� IEEE

Trans� on Image Processing� vol� �� pp� �	�
��	� Apr� �����

��� J� N� Bradley� C� M Brislawn� and T� Hopper� �The FBI wavelet
scalar quantization standard for grayscale
�ngerprint image compression�� Proc� of SPIE� Visual Info� Proc� II� vol� ����� pp� ���
�	�� �����

��� A� S� Lewis and G� Knowles� �Image compression using the �
D wavelet transform�� IEEE Trans� on Image

Processing� vol� �� pp� ���
��	� Apr� �����

��� M� Ohta� M� Yano� and T� Nishitani� �Wavelet picture coding with transform coding approach�� IEICE

Trans� Fundamentals� vol� E��
A� pp� ���
���� July �����

��� C� K� Cheong� K� Aizawa� T� Saito� and M� Hatori� �Subband image coding with biorthogonal wavelets��
IEICE Trans� Fundamentals� vol� E��
A� pp� ���
���� July �����

��	� K� Ramchandran and M� Vetterli� �Best wavelet packet bases in a rate
distortion sense�� IEEE Trans� Image

Processing� vol� �� pp� ��	
���� Apr� �����

���� J� M� Shapiro� �Embedded image coding using zerotrees of wavelet coe�cients�� IEEE Trans� on Signal

Proc�� vol� ��� pp� ����
����� Dec� �����

���� S� G� Mallat and S� Zhong� �Characterization of signals from multiscale edges�� IEEE Trans� Pattern Anal�

and Machine Intell�� vol� PAMI
��� pp� ��	
���� July �����

���� S� G� Mallat� �Multifrequency channel decomposition of images and wavelet models�� IEEE Trans� Acoust�

Speech and Signal Proc�� vol� ��� pp� �	��
���	� Dec� �����

���� V� R� Algazi� Y� Kato� M� Miyahara� and K� Kotani� �Comparison of image coding techniques with a Picture
Quality Scale�� Proceedings of SPIE� Applications of Digital Image Processing XV� vol� ����� pp� �����	��
�����

���� I� Daubechies� �Orthonormal bases of compactly supported wavelets�� Comm� Pure Appl� Math�� vol� ��� pp�
�	�
���� �����

���� I� Daubechies� �Orthonormal bases of compactly supported wavelets II� Variations on a theme�� SIAM J�

Math� Anal�� vol� ��� pp� ���
���� Mar� �����

���� O� Rioul� �On the choice of �wavelet� �lters for still image compression�� Proceedings of ICASSP���� vol� V�
pp� ��	
���� �����

���� A� Cohen� I� Daubechies� and J�
C� Feauveau� �Biorthogonal bases of compactly supported wavelets�� Comm�
Pure Appl� Math�� vol� ��� pp� ���
�		� �����

���� J� D� Villasenor� B� Bellzer� and J� Liao� �Wavelet �lter evaluation for image compression�� IEEE Trans� on

Image Processing� vol� �� No� �� pp� �	��
�	�	� Aug� �����

��	� I� Daubechies� Ten Lectures on Wavelets� SIAM� Philadelphia� PA� �����

���� R� R� Coifman� Y� Meyer� S� R� Quake� and M� V� Wickerhauser� �Signal processing and compression with
wavelet packets�� in Proc� of Intl� Conf� on Wavelet Applications� Toulouse� France� �
�� June ����� pp���
���

���� M� V� Wickerhauser� Adapted Wavelet Analysis from Theory to Software� A K Peters� Wellesley� MA� �����

���� P� R� Massopust� J� S� Geronimo� and D� P� Hardin� �Fractal functions and wavelet expansions based on
several scaling functions�� Journal of approximation theory� v� ��� no� �� pp� ���
�	�� Sept� �����

���� G� Strang and V� Strela� �Orthogonal multiwavelets with vanishing moments�� Optical Engineering� v� ���
No� �� pp� ��	�
��	�� July �����

��



���� P� N� Heller� V� Strela� G� Strang� P� Topiwala� C� Heil and L� S� Hills� �Multiwavelet �lter banks for data
compression�� in IEEE Symp� on Circuits and Systems� pp� 	
��
�� 	����

���� X��G� Xia� J� S� Geronimo� D� P� Harding� and B� W� Suter� �Design of pre�lters for discrete multiwavelet
transform�� in IEEE Trans� Signal Proc�� ��� ��
��� 	����

��
� W� Li� �Vector transform and image coding�� IEEE Trans� Circuits and Syst� for Video Tech�� vol� 	� pp�
��
���
� Dec� 	��	�

���� W� Li� �On vector transformation�� IEEE Trans� Signal Proc�� vol� �	� pp� �		���	��� Nov� 	����

���� X��G� Xia and B� W� Suter� �Vector�valued wavelets and vector �lter banks�� in IEEE Trans� Signal Proc��
��� ���
	�� 	����

���� W� Li and Y��Q� Zhang� �A study of vector transform coding of subband decomposed images�� IEEE Trans�

Circuits and Syst� for Video Tech�� vol� �� Aug� 	����

��	� W� Li and Y��Q� Zhang� �Vector�based signal processing and quantization for image and video compression��
Proc� of IEEE� vol� ��� no� �� pp� �	
����� Feb� 	����

���� S� G� Mallat� �Zero�crossings of a wavelet transform�� IEEE Trans� Inform� Theory� vol� IT��
� pp� 	�	��	����
July 	��	�

���� S� G� Mallat and S� Zhong� �Compact image coding from multiscale edges�� in Proc� Intl� Conf� Acoust�

Speech and Signal Proc�� Toronto� May 	��	�

���� J� Froment and S� Mallat� �Second generation compact image coding with wavelets�� in Wavelet� A Tutorial

in Theory and Applications� C�K� Chui� Ed�� Academic Press� San Diego� 	����

���� M� Kunt� A� Ikonomopoulos and M� Kocher� �Second�generation image�coding techniques�� Proc� of IEEE�
vol� 
�� pp� �����
�� April� 	����

���� L� H� Croft and J� A� Robinson� �Subband image coding using watershed and watercourse lines of the wavelet
transform�� IEEE Trans� Image Proc�� vol� �� pp� 
���

�� Nov� 	����

��
� S� Carlsson� �Sketch based coding of grey level images�� Signal Processing� vol� 	�� pp� �
���� 	����

���� A� K� Jain� Fundamentals of Digital Image Processing� Prentice�Hall� Englewood Cli�s� NJ� 	����

���� E� P� Simoncelli and E� H� Adelson� �E�cient Pyramid Image Coder �EPIC��� a public domain software
available from URL� ftp���whitechapel�media�mit�edu�pub�epic�epic�tar�Z

���� M� Vetterli and J� Kova�cevi�c� Wavelets and Subband Coding� Englewood Cli�s� NJ� Prentice Hall PTR� 	����

��	� R� C� Wood� �On optimum quantization�� IEEE Trans� Infor� Theory� vol� IT�	�� pp� �������� Mar� 	����

���� J� Chen� S� Itoh� and T� Hashimoto� �Scalar quantization noise analysis and optimal bit allocation for wavelet
pyramid image coding�� IEICE Trans� Fundamentals� vol� E
��A� pp� 	����	�	�� Sep� 	����

���� T� Senoo and B� Girod� �Vector quantization for entropy coding of image subbands�� IEEE Trans� Image

Proc�� vol� 	� pp� �������� Oct� 	����

���� R� R� Matic and J� I� Mosley� �Wavelet transform�adaptive scalar quantization of multispectral data�� in
Proc� of AIAA Computing in Aerospace � Conference� San Diego� Oct� 	����

���� A� Gersho and R� M� Gray� Vector Quantization and Signal Compression� Kluwer Academic Publishers�
Boston� 	����

���� Z� Xiong� K� Ramchandran� and M� T� Orchard� �Joint optimization of scalar and tree�structured quantiza�
tion of wavelet image decompositions�� Proc� ��th Annual Asilomar Conf� on Signal� Syst� and Computers�
Paci�c Grove� CA� Nov� 	���� pp� ��	�����

	�



���� Z� Xiong� K� Ramchandran� M� T� Orchard� and K� Asai� �Wavelet packets�based image coding using joint
space�frequency quantization�� Proc� IEEE Intl� Conf� Image Proc�� Austin� TX� Nov� 	

�� vol� III� pp�
������
�

��
� W� B� Pennebaker� J� L� Mitchell� G� G� Landon� Jr�� and R� B� Arps� �An overview of the basic principles
of the Q�coder adaptive binary arithmetic coder�� IBM J� Research and Development� vol� �� pp� �	������
Nov� 	


�

��
� I� H� Witten� R� M� Neal� and J� G� Cleary� �Arithmetic coding for data compression�� Comm� ACM� vol�
��� pp� ������
� June� 	

��

���� V� R� Algazi� P� L� Kelly� R� R� Estes� �Compression of binary facsimile images by preprocessing and color
shrinking�� IEEE Transactions on Communications� vol� �
� No� 
� pp� 	�
��	�

� 	

��

��	� M� Miyahara� K� Kotani� and V� R� Algazi� �Objective Picture Quality Scale �PQS� for Image Coding��
Proc� SID Symposium for Image Display� ����� pp� 
�
�
��� May 	

��

���� M� Miyahara� K� Kotani� and V� R� Algazi� �Objective Picture Quality Scale �PQS� for Image Coding��
submitted to IEEE Trans� on Communications� May 	

��

���� CCIR� �Rec� ������ Method for the subjective assessment of the quality of the television pictures�� vol� 		�
pp� 	���	�
� 	

��

���� M� Miyahara� K� Kotani� Y� Horita� and T� Fujimoto� �Objective Picture Quality Scale �PQS��
Consideration of local feature and universality�� IEICE Trans� B�I� vol� J���B�I� pp� ��
��	
� Mar� 	

��
�in Japanese��

���� K� Kotani and M� Miyahara� �Objective picture quality scale by neural network �PQS�NN��� IEICE Trans�

B�I� vol� J���B�I� pp� �������� Apr� 	

�� �in Japanese��

���� K� Kotani and M� Miyahara� �Objective picture quality scale by neural network fed the distortion factors to
the input layers�� IEICE Trans� D�II� vol� J���D�II� pp� 	����	��
� Aug� 	

�� �in Japanese��

���� J� Lu� V� R� Algazi� and R� R� Estes� �Comparison of wavelet image coders using the Picture Quality Scale
�PQS��� in Wavelet Applications II� H�H� Szu� Editor� Proc� of SPIE� vol� ��
	� pp� 			
�		��� Apr� 	

��

	�



 B97
 D8 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Entropy (bpp)

P
Q

S

PQS vs. Entropy (Lena)

 B97
 D8 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Entropy (bpp)
P

Q
S

PQS vs. Entropy (Barbara)

�a�

 B97
 D8 

0 0.5 1 1.5 2
20

25

30

35

40

45

Entropy (bpp)

P
S

N
R

 (
dB

)

PSNR vs. Entropy (Lena)

 B97
 D8 

0 0.5 1 1.5 2
20

25

30

35

40

45

Entropy (bpp)

P
S

N
R

 (
dB

)

PSNR vs. Entropy (Barbara)

�b�

Figure �� Comparison of two wavelets� fB���D�g� under quantizer Q�	 Left and right charts are for 
Lena� and

Barbara�� respectively� �a� comparison by PQS and �b� comparison by PSNR	
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Figure �� Comparison of three quantizers� fQ��Q��Q�g� under wavelet B��	 Left and right charts are for 
Lena�
and 
Barbara�� respectively� �a� comparison by PQS and �b� comparison by PSNR	
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original Q� ���� PQS����� dB�

Q� ���� PQS����� dB� Q� ���� PQS����� dB�

Figure �	 A visual comparison of 
Barbara� compressed�decompressed with three quantizers
 fQ�
Q�
Q�g
 and
wavelet B��� A portion �boxed� of the image is enlarged and compared in Figure ��
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Q� ���� PQS����� dB� Q� ���� PQS����� dB�

Figure 	
 A visual comparison of an enlarged portion of �Barbara� compressed
decompressed with the three
quantizers� fQ��Q��Q�g� and wavelet B��� From left to right and top to bottom are the original� Q�� Q�� and
Q�� The full
sized images are shown in Figure ��
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Figure �� Comparison of four wavelet image coders� Left and right columns are for �Lena� and �Barbara��
respectively� �a� comparison by PQS and �b� comparison by PSNR�
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Figure �� A visual comparison of �Lena
 coded by three wavelet coders at 
��� bits�pixel� The PQS values are
out of valid range and not meaningful in this case�
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Table �� Image quality measured by PQS and PSNR for �Lena��

B�� D�

nominal Q� Q	 Q� Q� Q	 Q�

entropy PQS PSNR PQS PSNR PQS PSNR PQS PSNR PQS PSNR PQS PSNR
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Table �� Bit rates from E� for �Lena��
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Table �� Bit rates from E� for �Barbara��
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Table �� Bit rates from E� for �Lena��

nominal B�� D� average

entropy Q� Q� Q	 Q� Q� Q	 bit rate
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Table �� Bit rates from E� for �Barbara��

nominal B�� D� average

entropy Q� Q� Q	 Q� Q� Q	 bit rate
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Table �� Bit rates from E� for �Lena��

nominal B�� D� average

entropy Q� Q	 Q� Q� Q	 Q� bit rate
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Table ��� Bit rates from E� for �Barbara��
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entropy Q� Q
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