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ABSTRACT OF THE DISSERTATION

Transport Studies of the Electronic Properties of Graphene on Hexagonal Boron
Nitride

by

Peng Wang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2015

Dr. Marc Bockrath , Chairperson

Graphene’s planar structure and unique low energy spectrum make it an intriguing ma-

terial to study its electronic properties. Recent progresses in stacking graphene (G) on

high quality hexagonal boron nitride (hBN) greatly advanced the electronic performance

of graphene devices, approaching the intrinsic properties of graphene. This thesis re-

ports transport studies of graphene on hBN, including graphene/hBN moiré superlattice

at small rotation angle and ballistic transport in short/wide encapsulated BN/G/BN

structures.

Chapter 1 will introduce the basic properties of graphene, including the unique

low energy electronic spectrum and the unconventional integer quantum Hall effect. The

concept of Berry’s phase and pseudospin winding number and their connection to the

quantum Hall effect are also discussed. Chapter 2 reviews the properties of graphene

on hBN, especially the long wavelength moiré superlattice at small rotation angle which

modulates graphene’s low energy spectrum. It also discusses the Hofstadter’s butterfly

and its realization in the graphene/hBN heterostructure.

vii



Chapter 3 addresses some of the essential techniques used to fabricate graphene/hBN

devices measured in this thesis, including the layer stacking techniques and fabrication

of graphene field effect transistors.

Chapter 4 reports the measurements of Hofstadter’s butterfly spectrum focus-

ing at the large doping region where the Fermi level is above the secondary Dirac points

generated by the moiré superlattice. At large electron doping, we observed a novel

π phase shift in the magneto-oscillations. At large hole doping, inversion symmetry

breaking generates a distinct hexagonal pattern.

Chapter 5 discusses measurements of short BN/G/BN cavities. The high qual-

ity BN/G/BN devices exhibit ballistic transport behavior - Fabry-Pérot oscillations.

The effects of magnetic field on the system are also investigated, showing signatures of

“pseudodiffussive” transport at the charge neutrality point for finite fields.
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Chapter 1

Introduction

Graphene is a two dimensional carbon allotrope - a single layer of graphite. Since

its first isolation from bulk graphite about 10 years ago[1], graphene quickly became

the “wonder material” that attracted tremendous research interest owing to its many

extraordinary properties. It is only one atom thick yet the strongest material ever mea-

sured[2]. It conducts electricity[1] and heat[3] very efficiently and nearly transparent[4].

Besides these great properties, graphene also provides a rich platform for fundamental

condensed matter physics research due to its linear dispersion[5] at low energy which

mimics relativistic physics.

This thesis reports the studies of the electronic transport properties of graphene

on hexagonal boron nitride (hBN). In chapter 2, a brief induction will be given to the

properties of graphene on hBN previous studied specially the Hofstadter’s butterfly

spectrum in aligned graphene/hBN heterostructures[6–8]. Chapter 3 covers some of the

essential techniques for preparing graphene samples and fabricating graphene field effect

transistors (FETs).
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In chapter 4, we report our studies on electronic transport properties of the

aligned graphene/hBN superlattice at the large carrier density region. Quite interest-

ingly, we observed a π phase change in the magnetoresistance oscillations which we

interpret as an additional π shift of Berry’s phase originating from the change of topo-

logical winding number from odd to even for electrons. At large hole doping inversion

symmetry breaking generates a distinct hexagonal pattern in the longitudinal resistivity.

Chapter 5 focuses on ballistic transport in short BN/G/BN cavities. We

demonstrate fabricating short and wide ballistic cavities in which the length of the

device is as short as ∼100nm. Due to the high quality of the encapsulated BN/G/BN

samples, electrons travel ballistically in a wide range of carrier densities. We observed

the crossover from Fabry-Pérot oscillations to Shubnikov-de Hass oscillations under per-

pendicular magnetic fields related the three different length scales, namely the sample

length L, the electron mean free path l and the cyclotron radius RC . We also report

possible evidence of magneto-pseudodiffusive transport near the charge neutrality point.

In the remaining of this chapter, I will review and introduce the basic properties

of graphene including the band structures and quantum Hall effect. Special attention

will be paid to the concept of Berry’s phase and it’s relation to the unconventional

quantum Hall effect[9, 10], which strongly related to chapter 4.

1.1 Introduction to Graphene

1.1.1 Lattice Structure of Graphene

Graphene is a single atomic layer of carbon atoms in the form of a honeycomb

structure (Figure 1.1a). Each carbon atoms has 6 electrons, which occupy the 1s2, 2s2

and 2p2 atomic orbitals. The 1s orbital is filled and thus strongly bonded. The 2s,
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2px, 2py and 2pz (one 2s electron excited to p orbital) orbitals hybridize which leads to

the formation of a σ band left with an extra p orbital in z direction. The σ band lies

in the xy plane and fully filled which are responsible for the trigonal planar structure

of graphene lattice. The remaining p orbital covalently bind with neighboring carbon

atoms to form a π band.

The hexagonal lattice of graphene has two types non-equivalent carbon atoms

also known as the A-B sublattices. Such lattice can be expressed as a triangular lattice

with a basis of two atoms per unit cell. In Figure 1.1a, the A and B sublattices are

shown in red and blue circles. Two possible unit cells are drawn as a rhombus and a

hexagon in gray, each containing two carbon atoms. The primitive lattice vectors are

drawn as red arrows in Figure 1.1b and can be written as:

a1 = a0(

√
3

2
,
1

2
), a2 = a0(

√
3

2
,−1

2
), (1.1)

where a0 ≈ 2.46Å is the lattice spacing. Correspondingly the primitive reciprocal lattice

vectors are:

b1 =
2π

a0
(

1√
3
, 1), b2 =

2π

a0
(

1√
3
,−1). (1.2)

The resulting reciprocal lattice is also a hexagonal lattice but rotated 90° with respect to

the real space lattice, in which the K and K’ points (Figure 1.1c) on the vertices of the

hexagon are energy degenerate points. These points are also known as the Dirac point

where the valence and conduction bands touch each other, which will become clear in

the following section. The Γ point locates at the center of the Brillouin zone while the

M point is in the middle point of an hexagon edge.

3



Figure 1.1: Honeycomb lattice of graphene and its Brillouin Zone. (a) Lattice structure

of graphene with the red and blue circles representing the trigonal A and B sublattices

respectively. The gray rhombus and hexagon are two example unit cells. (b) A zoomed

in view of the lattice with primitive vectors drawn as red arrows (a1 and a2). (c)

Corresponding Brillouin zone of the reciprocal lattice. The red arrows b1 and b2 are

the primitive reciprocal lattice vectors. The Γ, M and K are highly symmetric points.
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1.1.2 Dirac Fermions in Graphene

One of graphene’s most unique properties is its linear dispersion spectrum near

the K or K’ points[5]. Considering the crystal Schrödinger equation problem:

Hψ = E(k)ψ. (1.3)

Within the tight binding method following Wallace[5] and Neto[11], the Bloch wave

function can be written as:

ψ = aφ1 + bφ2, (1.4)

where

φ1 =
∑
A

φ(r −RA) eik ·RA , φ2 =
∑
B

φ(r −RB) eik ·RB , (1.5)

representing wave functions of A and B sublattices, linear combination of every car-

bon atoms’ pz orbital wave function φ(r). Integrating
∫
drφ∗1,2Hψ =

∫
drφ∗1,2Eψ and

ignoring overlap integrals
∫
drφ∗1,2φ2,1, we obtain

aH11 + bH12 = aNE, (1.6)

aH21 + bH22 = bNE, (1.7)

where

H11 = H22 =

∫
drφ∗1Hφ1, (1.8)

H12 = H∗21 =

∫
drφ∗1Hφ2, (1.9)

5



and N is the number of unit cells in the lattice, following from:∫
drφ∗1φ1 =

∫
drφ∗2φ2

=
∑
A

∑
A′

eik ·(R
′
A−RA)

∫
drφ(r −RA)∗ φ(r −R′A)

≈
∑
A

∑
A′

eik ·(R
′
A−RA) δAA′

=
∑
A

1 = N.

(1.10)

In solving Equation 1.6 and 1.7, in order to have nonzero a and b value, we must have∣∣∣∣∣∣∣∣
H11 −NE H12

H∗12 H22 −NE

∣∣∣∣∣∣∣∣ = 0, (1.11)

which gives the energy

E(k) =
H11

N
± |H12|

N
. (1.12)

We then try to calculate H11 and H12, notice that Hφ = E0φ, where E0 is the carbon

atomic energy of the pz orbital

H11 =

∫
drφ∗1Hφ1 = E0

∫
drφ∗1φ1 ≈ NE0. (1.13)

For the H12 term

H12 =

∫
drφ∗1Hφ2

=
∑
A

∑
B

eik ·(RA−RB)

∫
drφ(r −RA)∗ φ(r −RB),

(1.14)

considering only the nearest neighbor hopping, the sum reduces to
∑
A

∑
n.n.

,

H12 ≈
∑
A

∑
n.n.

eik ·d
∫
drφ∗(r + d) Hφ(r)

= −Nγ0
∑
n.n.

eik ·d

= −Nγ0( eik ·d1 + eik ·d2 + eik ·d3)

. (1.15)
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Where γ0 =
∫
drφ∗(r + d)Hφ(r) ≈ 2.8eV[11] is the nearest neighbor hopping energy

and d1,2,3 are the vectors pointing from a A atom to its nearest neighbor B atoms:

d1 =
a0√

3
(
1

2
,

√
3

2
), d1 =

a0√
3

(−1, 0), d1 =
a0√

3
(
1

2
,−
√

3

2
). (1.16)

Substituting the above results into Equation 1.12 and set E0 = 0, we get:

E(k) = ±γ0

√
1 + 4 cos2 (

a0ky
2

) + 4 cos (

√
3a0kx

2
) cos (

a0ky
2

). (1.17)

The energy band structure is plotted in Figure 1.2. Coincidently, when the wave vector

is at the corner of Brillouin Zone (K or K’ points in Figure 1.1c)

Figure 1.2: Band Structure of graphene

K =
4π

3a0
(

√
3

2
,
1

2
), K ′ =

4π

3a0
(

√
3

2
,−1

2
), (1.18)

the valence (π) and conduction (π∗) bands touch at zero energy. Zoom in to these

points (Figure 1.2b), the energy dispersion is linearly dependent on wave vector k . In

the following discussion, we focus on the region close to a K point while similar results

should apply to K’ point. We can write the Taylor expansion of the energy in terms of

7



q = k −K , where|q | � |K |:

E(q) = ±h̄vF |q |+O[(q/K)2], (1.19)

the leading term is linear in |q | with a constant Fermi velocity vF =
√
3
2 γ0a0/h̄ ≈

1×106m/s. One direct consequence of the linear dispersion is that electrons behave like

relativistic particles which are the so-called Dirac fermions. The effective Hamiltonian

around a K point is H = h̄vFσ · k , where σ = (σx, σy) are the Pauli matrices. So the

electron wave function satisfies the two dimensional Dirac equation

σ · kψ = ±|k|ψ. (1.20)

In momentum space, it is in the form of

ψ±,K (k , r) =
1√
2

 1

±eiθk

 eik·r, (1.21)

where θk = arctan ky/kx. The ± represents the electron (+) and hole band (-). This two

component wave function originated from the two sublattices of carbon atoms A and B

adding an extra degree of freedom-pseudospin to the electron states in graphene. We

note that in Equation 1.20, ψ can be thought of as the eigenstate of spinor operator σ

projected along the momentum operator k and has eigenvalues of (pseudo)spin up (+)

or down (-) for the electron or hole bands. This suggests the states above and below

the Dirac points have opposite chirality. In other words, the pseudospin has the same

direction as k for electron states and opposite direction as k for hole states. The concept

of pseudospin and chirality is of fundamental importance in the understanding of many

interesting physical phenomena such as Klein tunneling[12–15] and integer quantum Hall

effect[9, 10, 16] in graphene.

8



1.2 Integer Quantum Hall Effect and Berry Phase in Graphene

1.2.1 Quantum Hall Effect

The conventional Hall effect is observed when a two dimensional electrical

current is subject to a perpendicular magnetic field (B), first reported by Hall[17]. It

arises from the fact that electrons are deflected by the Lorentz force and accumulate

on the two edges of the conducting channel, creating a transverse electric field until

it cancels the Lorentz force. As shown in Figure 1.3a, a uniform current flows in the

x-direction and is subject to magnetic field, we then define the longitudinal (ρxx) and

Hall (ρxy) resistivity as:

ρxx =
Vxx
I

W

L
, ρxy =

Vxy
I
. (1.22)

Correspondently, the conductivities are:

σxx =
ρxx

ρ2xx + ρ2xy
, σxy =

ρxy
ρ2xx + ρ2xy

. (1.23)

The Hall effect was well understood with the classical Drude model until the discovery of

the integer quantum Hall effect by Klaus von Klitzing when studying the 2D Si MOSFET

samples in 1980[18]. The observed Hall conductivity exhibits quantized values at low

temperature and high magnetic field while longitudinal conductivity vanishes,

σxx = 0, σxy = ν
e2

h
, (1.24)

where e is the electron charge, h is the Plank’s constant and ν is an integer.

Integer quantum Hall effect is a direct result of quantum mechanics on the

macroscopic scales. This phenomenon arises from the quantization of electron cyclotron

orbits and Landau levels (LLs) under a perpendicular magnetic field. A single and

continuous electron band is split into a set of discrete while highly degenerate levels

9



Figure 1.3: Hall effect. (a) Hall measurement setup. A uniform current I is following in

x direction. The sample length and width are L and W respectively. Vxx = V1 − V2 is

the longitudinal voltage and Vxy = V2−V3 is the Hall voltage. A perpendicular magnetic

field B is applied to the sample in the direction pointing out of the page. (b) Landau

levels. Each black curve represents a Landau level where the spectrum is bended close

to the edge of the sample giving rise to a 1D conducting channel. The red dashed line

indicates the position of Fermi energy EF .

given by En = h̄ωC(n + 1
2) and ωC = eB

mec
is the cyclotron frequency, resulting in a

sequence of δ-peaks in the density of states (DOS)[19]:

ρ(E) =
∑
n

gnδ(E − En), (1.25)

where gn accounts for the degeneracy of energy levels. When the electron Fermi en-

ergy (EF ) is fixed, varying the B field will change the energy separation of LLs and

therefore the δ-peaks in the Equation 1.25 will sequentially cross EF leading to a set of

conductance peaks. In real samples, the δ-peaks are broadened due to scattering or ther-

mal fluctuations and merged into an oscillating function in energy. Thus the observed

10



conductance is not δ-peaks but instead becomes maximal when EF lies on a LL and

minimal when EF is in between of two LLs. This phenomenon is called Shubnikov-de

Hass oscillation (SdHO) and was observed long before the discovery of QHE when the

B field is small but sufficiently large. In order to observe the SdHO, it requires the B

field to be strong enough so that electrons can finish at least one cyclotron orbit without

being scattered.

As the magnetic field continues to increase, the LLs are further separated and

eventually there exists energy ranges where DOS is zero. Then, either changing EF

or B will lead to vanishing longitudinal conductivity when EF lies in the energy range

of zero DOS, and constant plateau value of Hall conductivity. The width in energy of

the plateau is the same as that of zero DOS, which also implies that the broadening

of LLs is essential for the observation of QHE because otherwise the width of plateaus

will be too small to resolve. To understand the plateau values of Hall conductivity, the

Schrödinger equation of electron motion in a rectangular (Figure 1.3a) sample is solved

using a Landau gauge[19], the resulting energy spectrum is:

En = h̄ωC

(
n+

1

2

)
+ V (y). (1.26)

The term V (y) comes from the confinement of the boundary conditions and is

independent of x, which readily means each edge of the sample is equipotential forming

1D conducting channels. As drawn in Figure 1.3b, the LLs are bended close to the

edges of the sample. As a result, the number of conducting channels at a certain EF in

between two LLs is exactly the number of filled LLs (filling factor ν) each contributes

one conductance quanta G0 = e2/h in agreement with Equation 1.24. At the transition

region (near a LL), the localized states contribute to the conductance which explains

the steps between the quantized Hall plateaus.

11



Besides the integer quantum Hall effect, Hall plateaus have exhibited fractional

values known as fractional quantum Hall effect (FQHE) and has different origins. Due

to the scope of this thesis, it will not be discussed here.

1.2.2 Integer Quantum Hall Effect in Graphene

The quantum Hall effect in mono-layer and bilayer graphene[1, 9, 10] were im-

mediately observed after the first isolation of graphene[1]. In summary, the observed

quantized Hall conductivities exhibit values of ±(4n+ 2) e
2

h and ±(4n+ 4) e
2

h for mono-

layer and bilayer graphene respectively, where n is an non-negative integer. Quite strik-

ingly, there are no zero conductance plateaus in both cases as opposed to conventional

two dimensional electron gas (2DEG). These unusual behavior can be seen from the

Landau level spectrum of graphene[11, 20]

EN = sgn(N)
√

2eh̄B|N |, (1.27)

and bilayer graphene[16]

EN = sgn(N)h̄ωC
√
|N(N − 1)|, ωC = eB/mc, (1.28)

in the above equations the effective mass of bilayer graphene is m ≈ 0.054me and N is

the LLs index. In both cases, there is a zero energy LL shared by both electron and hole

states, responsible for the missing of zero Hall conductance plateau. The steps of 4 e
2

h in

σxy can be attributed to the electron spin and valley (pseudospin) degrees of freedom,

each being two fold degenerate. Differently in the case of bilayer graphene, since N

being 0 or 1 both result in a zero energy it adds an extra double degeneracy to the zero

energy LL which gives rise to the step of 8 e
2

h in σxy near the charge neutrality point

(CNP).
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The shift of the Hall plateau in graphene and graphene bilayer can be further

understood by investigating the concept of Berry phase or pseudospin winding number

which are the topics of the next section.

1.2.3 Berry’s Phase in Graphene

Berry’s Phase is defined as the geometric phase factor acquired as the eigenstate

of a quantum system adiabatically varies its parameters along a closed path[21, 22]. In

general, this phase can be written as:

θ =

∮
C
dR ·An(R), (1.29)

where An(R) = i 〈n(R)| ∇R |n(R)〉 is called the Berry connection. The integral is over

a closed path C in the parameter space R and R(t) varies in time.

In connection to the quantum Hall effect, only the topological Berry’s phase

arising from the spinor part of the wavefunction is relevant[16, 23, 24]. In the con-

text of graphene, it is the phase that the electron wave function acquires as k evolves

adiabatically along a closed path on the Fermi surface. Such an adiabatic process can

be achieved by applying a perpendicular magnetic field to the 2D graphene plane so

that the wave vector k rotates along a closed circle of constant energy on the Fermi

surface. In connection to the quantum Hall effect, only the topological Berry’s phase

is relevant[16, 23–25] and can be obtained by evaluating the integral in Equation 1.29

using the spinor part of the wavefunction:

θ = −i
∮
C
dk 〈ψ(k)| ∇k |ψ(k)〉

= −i
∮
C
dk

1

2
(1,±e−iθk)

 0

±ieiθk∇kθk

 = π.

(1.30)
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Similarly, we can perform the same calculation for bilayer graphene using its spinor

electron wave function[16, 24, 25]

ψ±,K =
1√
2

 1

±e2iθk

 , (1.31)

which gives the Berry’s phase θ = 2π. Experimentally, this adiabatic process can be

achieved by applying a perpendicular magnetic field to the 2D graphene plane so that

the wave vector k rotates along a closed circle of constant energy on the Fermi surface.

The nontrivial Berry phase of π and 2π are responsible for the observed uncon-

ventional quantum Hall effect for mono and bilayer graphene[9, 10]. Later, Marzari[24]

pointed out that the concept of topological pseudospin winding number w associated

with the Berry’s phase can be used to describe the quantum Hall effect in graphene and

graphene bilayer. The pseudospin winding number describes how fast the pseudospin in

the Dirac quasiparticles evolves as the wave vector rotates when k undergoes a closed

path. It is the same quantity as “the degree of chirality” J [16, 26], which is 1 and

2 for mono and bilayer graphene. As a comparison, conventional 2DEG has no chiral

degree of freedom and therefore w = 0. Figure 1.4[24] is an schematic illustration of the

pseudospin distribution for three different systems. As we can see, the pseudospin in

graphene rotates as fast as k while twice as fast as k in bilayer graphene; for a non-chiral

2DEG, there is no pseudospin.
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Figure 1.4: Illustration of pseudospin for low energy electrons. This figure is from

Ref.[24] with modifications. (a) Upper panel: Energy dispersions for low energy electrons

in graphene. Lower panel: Pseudospin distribution for eigenstates in graphene on an

equi-energy contour specified by the dashed curve in upper panel. The red arrows

represent the direction of pseudospin. Here, we consider the electronic states with wave

vectors near the Dirac point K. (b) and (c) Similar quantities as in (a) for bilayer

graphene and a conventional 2DEG, respectively.

More generally, the pseudospin winding number w equals the number of layers

in graphene for ABC stacked layers at low energy. Therefore the effective Hamiltonian

and wave function (spinor part) near the K point of n layers graphene with ABC stacking
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can be rewritten in the following general form[16, 24, 27]:

Hn(k) ∝ kw

 0 e−iwθk

eiwθk 0

 , (1.32)

ψn±,K(k) =
1√
2

 1

±eiwθk

 . (1.33)

Besides the integer sequence of the quantum Hall plateaus, w also modulates

the phase of magnetoresistance oscillations[10, 28, 29] determined by the semiclassical

Bohr-Sommerfeld quantization condition:

∆ρxx = ρ(B, T ) cos [(2π(BF /B + 1/2 + β)], (1.34)

where BF is the inverse of the period of the oscillations in 1/B, ρ(B, T ) is the oscillation

amplitude and β = w/2. This result will be used to determine w in our experiments on

G/hBN superlattice in chapter 4.
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Chapter 2

Graphene on Hexagonal Boron

Nitride

In this chapter, I will introduce the background of graphene’s electronic properties on

hexagonal boron nitride (hBN). First, I will review previous studies on the electronic

performance improvement when changing from SiO2 to hBN substrates. Then, I will

show our experimental observations on the transport properties of crystallographically

aligned graphene/hBN superlattice, including secondary Dirac points (sDP) arising from

the moiré minibands and Hofstadter’s butterfly spectrum in magnetic field.

Isolated atomically thin graphene was first discovered on SiO2 substrates by

Novoselov et al.[1]. The small but visible optical contrast of graphene on SiO2 makes it

the perfect substrate for researchers to quickly enter the field[30]. However graphene/SiO2

devices usually suffer from strong external perturbations limiting its electronic quality.

Since 2008, suspending graphene by removing substrates brought graphene device qual-

ity to the next era approaching ballistic transport[31, 32]. However the suspended

structures are mechanically fragile compared to those on substrates and lack the flex-
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ibility of device architecture. Moreover, the fabrication processes for producing such

devices is much more complicated. Therefore, it is highly desirable to have alternative

substrates that can support graphene layers while retaining the high performance of

suspended graphene.

2.1 High Quality Electronic Transport of Graphene on

Hexagonal Boron Nitride

Previous studies revealed that the main scattering mechanisms limiting graphene/SiO2

device performance come from charged impurities/inhomogeneity[33–36], surface rough-

ness[37–39] and optical phonons of SiO2[36, 40].

Single crystal hexagonal boron nitride (hBN) on the other hand is atomi-

cally flat and the surface roughness is significantly smaller[41, 42]. Scanning tunnel-

ing microscopy (STM) studies of graphene on both SiO2 and hBN substrates[42] di-

rectly showed a much lower concentration of charge inhomogeneity (∼109cm-2 on hBN

compared to ∼1011cm-2 on SiO2). In addition, hBN similar to graphene is a layered

compound with the carbon atoms replaced by boron and nitrogen atoms on the two

inequivalent sublattices. Due to the large onsite energy difference between boron and

nitrogen atoms, hBN is an insulator with a band gap of 5.9eV[43] and a breakdown

electric field of ∼0.7V/nm[41], making it a perfect dielectric for graphene electronics.

Typical carrier mobilities of graphene on hBN devices are substantially larger than those

of graphene on SiO2 (a quantitative comparison of mobility will be made in chapter 3).
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2.2 Graphene/hBN Moiré Superlattice

In addition to the improvement of electronic performance, the hBN lattice

acts as a long wavelength electrostatic potential modulation to the electron states in

graphene, forming moiré pattern[42, 44]. The resulting superlattice modifies graphene’s

low energy (near the Dirac point) electronic spectrum[45–47], generating minibands near

the Brillouin zone (sBZ) edge of the superlattice and is predicted to induce a sizeable

band gap[48].

A visual illustration of the graphene/hBN moiré superlattice is drawn in Fig. 2.1a

with the red, blue and black solid circles corresponding to boron, nitrogen and carbon

atoms respectively. An example superlattice unit cell is outlined in a yellow shadowed

hexagon. Figure 2.1b plots an example of the low energy band structure near the main

Dirac point of graphene, moiré minibands (green) are generated near the edge of the

sBZ edge. The exact miniband structure will depend on the substrate parameters[47,

49].

Depending on the relative rotation angle θ between graphene and hBN lattices,

the moiré wavelength is given by[44]

λ =
(1 + δ)a0√

2(1 + δ) (1− cos θ + δ2
, (2.1)

where a0 = 0.246nm is the graphene lattice constant and δ = 1.8% is the lattice mis-

match between graphene and hBN. The dependence of the wavelength as a function of

rotation angle is plotted in Fig. 2.1c, which reaches its maximum value of ∼14nm when

the orientation of the two lattices are exactly aligned and quickly drops as θ increases.
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Figure 2.1: (a) Schematic diagram of the graphene/hBN moiré superlattice with a rela-

tive rotation angle of θ = 5°. Red, blue and black solid circles represent boron, nitrogen

and carbon atoms respectively. The yellow shadowed hexagon outlines a unit cell of

the superlattice. (b) An example low energy band structure near the main Dirac point

of graphene. This figure was taken from Ref.[49]. (c) Superlattice wavelength (λ) vs.

rotation angle (θ).
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Figure 2.2: Transport signature of moiré minibands. Top: Temperature dependence of

longitudinal resistance Rxx versus gate Voltage Vg. There are three resistance peaks

observed including one at charge neutrality point (mDP) and two at symmetric electron

and hole doping levels, which arise from sDP generated by minband. Bottom: Rxx (left

axis) and Hall resistance Rxy versus Vg at B = 0.5T and T = 1.6K. The Hall resistance

shows sign changes at mDP as well as sDP, indicating electron- and hole-like states near

the moiré minibands.
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In order to observe the miniband effects in a transport measurement, graphene

has to be doped so that the Fermi level reaches the sBZ edge

E = h̄vF b/2, (2.2)

where b = 4π/
√

3λ is the sBZ reciprocal lattice constant. This translates to a car-

rier density of ns = 4π/3λ2. The gate voltage needed for typical 300nm SiO2 gating

with a capacitance per unit area Cg ≈ 11.5nF/cm2 to reach ns for a perfect aligned

graphene/hBN superlattice is ∼30V. Because of the sharp dependence of wavelength

on rotation angle, the gate voltage required to reach ns quickly increases to ∼60V for

θ = 1◦ and ∼147V for θ = 2◦. In an experiment, this restricts the rotation angle to be

∼ 1◦. For such practical reasons, only ∼3% of randomly stacked graphene/hBN samples

show transport signatures of minibands features.

While most of our graphene/hBN samples do not show any miniband features

within the gate voltage range we can measure, our first sample that exhibited the unusual

behavior was made serendipitously and the first dataset was taken in December 2012.

Figure 2.2 plots the transport characteristics for an aligned sample. Figure 2.2a shows

the longitudinal resistance (Rxx) vs. gate voltage (Vg) at four different temperatures.

Clearly at Vg ≈ 0V, a sharp resistance peak is observed corresponding to the main

Dirac point (mDP) of graphene’s electronic spectrum. Quite interestingly, there are

two additional peaks in Rxx at symmetric electron and hole doping, these are features

coming from the moiré minibands corresponding to the minima in the density of states.

Figure 2.2b plots Rxx and Hall resistance (Rxy) versus Vg at T=1.6K and B=0.5T, in

which Rxy changes sign at the mDP as well as the other two resistance peaks indicating

new generation of Dirac points (sDP).
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2.3 Hofstadter’s Butterfly Spectrum in Graphene/hBN Su-

perlattice

Electrons in a periodic lattice are described by Bloch bands/Bloch wavefunc-

tions with a relevant length scale of the lattice constant a. On the other hand, when

electrons are subject to a strong magnetic field, electronic spectrum are quantized to

discrete energy levels called Landau Levels (LLs). The relevant length scale is magnetic

length lB =
√
h̄/eB ≈ 25.7nm/

√
B, where h̄ is Plank’s constant divided by 2π, e is

electron charge and B is magnetic field in Tesla. When the relevant length scales a

and lB become commensurate, the interplay between the two length scales produces a

complex energy spectrum known as Hofstadter’s butterfly[50], theoretically predicted

by Douglas Hofstadter back to 1976.

For a typical crystal, the lattice constant is on the order of ∼1nm, the com-

mensuration condition a ∼ lB requires magnetic fields B ∼1000T exceeding the limits

of most research apparatus. Recent advancements in stacking graphene on high qual-

ity hBN crystals[41] makes the system an ideal candidate for studying this intriguing

phenomenon-Hofstadter’s butterfly owing to:

1. long superlattice wavelengths up to 14nm;

2. atomically smooth potential modulation as compare to periodic metal gates[51,

52];

3. high quality electronic performance (mobility reaches ∼100,000cm-2/V·s).

The Hofstadter’s butterfly is essentially a fractal spectrum, in which the Bloch

bands and LLs are split when the magnetic flux φ through a unit cell of the periodic
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Figure 2.3: Diophantine diagram. Each grey line represents a pair of (t, s) values in the

Diophantine equation. The red dashed lines correspond to φ/φ0 = 1, 1/2, 1/3 and 1/4,

near where gapped trajectories with non-zero s had been previously reported.

lattice is a rational fraction of the flux quanta φ0 = h/e, i.e.:

φ

φ0
=
p

q
, (2.3)

where p, q are co-prime integers. The splitting produces a self-replicating fractal spec-

trum, namely each Bloch band splits into q subbands or equivalently each LL splits

into p subbands. Wannier[53, 54] further showed that energy gaps in the Hofstadter’s

spectrum in a density-field diagram can be described by the Diophantine relation

n

n0
= t

φ

φ0
+ s, (2.4)

where n is charge density, n0 is the density of one electron per unit cell and t,s are

integers. Plotting the above equations with different t and s values produces a complex
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diagram (Fig. 2.3). Noted that for s = 0 the Diophantine equation is reduced to t =

nh/eB, t is exactly the filling factor ν in a Landau fan diagram. For non-zero s, gapped

trajectories near φ/φ0 = p/q in the Diophantine equation had been previously reported

in aligned graphene/hBN samples[6, 8, 55].

Figure 2.4: Conductance map in the density-field plane. Gray scale of background

subtracted G (∆G) vs. gate voltage (top axis)/normalized charge density (bottom axis)

and B (left axis)/flux quanta per unit moiré superlattice unit cell (right axis). Yellow

lines: Landau fan features originating from the mDP, s = 0. Blue lines: Landau fan

features from the electron side sDP, relative s = 0. Green lines: Landau fan features

originating from the hole side sDP, relative s = 0; green polygon: features created by

the intersection of different s values. Cyan lines: Landau fan features originated from a

relative s = −2 to with respect to hole side sDP. Red dashed lines: features parallel to

the density axis at rational fractions of φ/φ0.
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For a graphene/hBN superlattice, electrons are subject to both the carbon

lattice and the superlattice making the density-field behavior even more complex, a

combination of the superlattice’s Diophantine diagram and graphene’s Landau fan di-

agram. Figure 2.4 plots the conductance (a smoothed background is subtracted to

enhance visual contrast) of an aligned device in a two-terminal geometry. A rich and

complex fan diagram is observed. The yellow lines correspond to the Landau fan fea-

tures originating from the mDP. Blue and green lines follow the fan features from the

sDP for electron and hole doping. These features are all coming from a relative s = 0

in the Diophantine relation. Interestingly, features originating from nonzero s are also

visible, for example those along the cyan lines with a relative s = −2 from the hole side

sDP. The intersection between features from different s values on the hole side produces

a network of polygon features, one of which is outlined in the green dashed hexagon.

Moreover, there are flat features parallel to the density axis along the red dashed lines

at exactly rational fractions of φ/φ0, which was reported previously[49].

The above features only highlight a few observations of the rich spectrum,

while a better understanding of the physics of these features will require much more

experimental and theoretical work. In chapter 4, we will present more data and analysis

on this system.

26



Chapter 3

Sample Preparation and Device

Fabrication

In this chapter, I will describe in detail some essential techniques for fabricating graphene

devices, including:

1. Isolation and identification of graphene.

2. Transfer technique for stacking layered materials.

3. Fabrication of hBN supported or encapsulated graphene devices.

At the end of the chapter, I will discuss and compare the electronic quality of graphene

devices on SiO2 and hBN substrates as well as BN/G/BN encapsulated devices.

3.1 Sample Isolation and Identification

Graphene flakes are isolated from bulk material using the well known “Scotch

tape method”, which was first introduced by Novoselov and Geim[1]. The technique is
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also available for watch on Youtube: Graphene 101. In summary, the procedure can be

divided into the following steps:

1. Substrate preparation.

(a) Cut small SiO2/Si chips (4 by 4 mm squares) from a large (5 inch) wafer.

(b) Clean the silicon chips by sonicating in acetone for ∼ 20 minutes.

(c) Rinse with IPA and blow dry them with N2 gas.

2. Crystal cleavage.

(a) Attach a piece of kish graphite or HOPG (Highly Ordered Pyrolytic Graphite)

to a piece of Scotch tape.

(b) Fold and unfold the tape around the edge of the graphite multiple times until

the graphite is thin enough and distributed uniformly on the tape.

(c) Put the tape with graphite on top of the clean silicon chip and gently press it

to squeeze out air bubbles underneath the tape. Then, slowly pill the tape off

the substrate. Some of the graphite flakes will be transferred to the substrate

due to van der Waals interaction.

3. Flake identification.

Search for thin graphene flakes under optical microscope. To optimize the speed

and yield of finding graphene, a ×20 objective is chosen. When a candidate flake

is chosen, a larger objective can be used for better visualization. Figure 3.1 shows

an example optical image of single and few layer graphene on 290nm SiO2/Si

substrate, where single, double and triple layers are labeled as 1L, 2L and 3L

respectively.
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Figure 3.1: Optical image of single and few layer graphene on 290 nm SiO2/Si substrate.

People might have created graphene long before 2004, but until then no one

observed it with a typical optical microscope. It is really the simplicity of the tape folding

method and optical visibility that have inspired the extensive research on graphene. One

of the key steps of being able to see graphene optically is the right choice of substrate. P.

Blake[30] numerically showed that the visual contrast of graphene on SiO2/Si substrates

depends both on the thickness of SiO2 and wavelength of light, with optimal thickness

of about 90nm and 290nm for green light.

Once the graphene is optically identified, we can then further characterize it

and measure the number of layers using AFM (Atomic Force Microscopy). Figure 3.2

is an AFM image of the graphene shown in Fig. 3.1.
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Figure 3.2: AFM image of single and few layer graphene on SiO2/Si.

Another way of determining the number of graphene layers is via Raman spec-

troscopy[56], distinguished by the G and 2D peak strength and peak shapes. The quan-

tum Hall effect[1, 10]can also be used to differentiate graphene layers resulting from

the fact that different layers of graphene have different sequence of Hall plateau values.

For example, single layer of graphene has Hall plateau sequence of ±(4n + 2)e2/h and

bilayer graphene has plateau sequence of ±(4n + 4)e2/h, where n is a non-negative in-

teger. While the optical image is relatively faster and easy to use, the AFM, Raman

spectroscopy and quantum Hall effect approaches are more accurate for determining the

number of layers.

3.2 Mechanical Transfer of Graphene and Other Layered

Materials

While exfoliating graphene on SiO2/Si substrate is the most straightforward

way to get started with, it is often desirable to have graphene on other substrates or on a

30



Figure 3.3: Illustration of the transfer method. (a) Schematic of the transfer mask. (b)

Alignment of graphene with hBN.

particular location of a substrate. For instance, people have demonstrated that graphene

supported by hBN exhibited mobility above 100, 000 cm2/V·s[41] and micrometer scale

ballistic transport at room temperature when graphene was encapsulated between two

hBN layers[57]. However, direct exfoliation will not work in such scenarios because the

size of hBN flake is typically smaller than 50µm. In this section, I will introduce a

method that can position graphene onto any substrates with lateral accuracies down to

about 5µm. Such a method can also be applied to transferring other layered materials

such as MoS2 and even carbon nanotubes.

3.2.1 Resist Assisted Transfer of Graphene

To transfer graphene onto hBN substrates, we use a technique similar to the

one described by Zomer[58]. Figure 3.3 is an illustration of transferring graphene to

hBN. The detailed procedures are summarized below:
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1. Prepare transfer mask.

(a) Attach a piece of transparent tape (Scotch 600K6) onto a glass slide with the

adhesive side on the glass. Squeeze out any bubbles.

(b) Spin coat 2 layers of Elvacite 2550 (dissolved in methyl isobutyl ketone,

8g/50ml) at speed of 4000rpm. No baking is needed in this step.

2. Exfoliate graphene and hBN.

(a) Exfoliate graphene on the transfer mask. Identify a desired flake and cut the

transfer mask to a 2 by 2mm square with the graphene in the center. Cutting

the transfer mask into a small piece is essential to achieve accurate alignment.

(b) Exfoliate hBN on to SiO2/Si substrate using a similar method used for ex-

foliating graphene. Thermally anneal the sample in O2 gas at 500°C for 2

hours to remove any tape residues. Identify a hBN that is uniform and clean

for later use.

3. Align graphene with hBN and release it.

(a) Mount the SiO2/Si chip with hBN onto a micro-manipulator (cartridge heater

installed) and facing downward.

(b) Place the transfer mask with graphene on top of a inverted microscope (Zeiss

Axiovert 200 MAT) and facing up.

(c) Align the graphene and hBN by adjusting the micro-manipulator. Lower the

hBN until it make good contact to graphene.

(d) Heat the sample up to 60°C and wait for about 3 minutes.

(e) Raise the micro-manipulator to release the Elvacite polymer onto the SiO2/Si

substrate due to a stronger adhesion than the transparent tape.
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(f) To further assist graphene staying on hBN, bake the chip on hot plate at

150°C for 20 minutes.

4. Remove the resist and clean the sample.

(a) Put the chip in Acetone on hot plate (60°C) for 10 minutes to remove Elvacite

resist. Rinse with IPA and blow dry the sample.

(b) To further remove any polymer residue, anneal the sample in O2 at 300°C for

2 hours. This step also helps to reduce bubbles between graphene and hBN.

Figure 3.4: SEM image of a transferred graphene on hBN.

Figure 3.4 shows a SEM image of a transferred graphene on hBN. The brighter

area is hBN, where graphene is usually darker with increasing layers.
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3.2.2 Resist Free Transfer Technique

While resist assisted transfer provides a fast and high yield method to place

graphene on alternative substrates, it usually leaves a layer of resist residue on it which

is a source of contamination and potentially limits the quality of graphene devices. As

a result, thermal annealing[41] or mechanical cleaning[59] after the device fabrication is

required to remove resist residues. However, those procedures can potentially cause dam-

age to the devices. In our experience, annealing graphene/hBN devices at 300°C usually

downgrades contact resistance to ∼100kΩ and sometimes the devices become insulating

although other groups did not report such problems[41, 60, 61]. Nevertheless, even if

no damage would be produced, it is hard to completely remove all the residues[62, 63].

As a result, it is desirable to have a transfer method such that graphene never contacts

any resist. In 2013, Wang[64] pioneered a resist free transfer technique that utilized van

der Waals forces between graphene and hBN to successively pick up additional layers

and form sandwiched BN/G/BN structures. Transport measurements before and after

thermal annealing indicated the device quality is the same and no cleaning procedure

is necessary after fabrication. Furthermore, a low temperature mean free path of more

than 15 µm was observed, possibly one of the best substrate supported graphene devices

ever measured.

In Wang’s work[64], they used a transfer mask that consists of a glass slide, a

PDMS layer and a PPC (poly propylene carbonate) polymer layer. During the transfer,

the mask was heated to ∼40°C for better adhesion. However, due to the low glass

transition temperature of PPC (25 to 45 °C), it turns soft and can be easily broken

during heating. In this section, I will describe a modified method combining the pick

up technique[64] and the all-dry viscoelastic stamping technique[65, 66]. This method
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is based on two facts:

1. When pulled off quickly from a substrate, layered materials (hBN, graphene) will

stay on PDMS.

2. When pulled off slowly from a substrate, layered materials will be deposited onto

the substrate.

Our transfer mask is simplified to a PDMS layer on top of a glass slide. To

make the BN/G/BN sandwiched structure, we perform the following steps:

1. Mechanically exfoliate hBN to the transfer mask.

2. Select a uniform and clean hBN layer and aligned to the target graphene prepared

on SiO2/Si. Then, heat the sample to ∼ 50°C and quickly pull off the mask from

substrate to pick up the graphene.

3. Align the BN/G stack to another hBN layer sitting on SiO2/Si and slowly pill off

the transfer mask, leaving the BN/G/BN sandwich on the target substrate.

Our modified method involves no resist polymer at all which greatly reduces

the process time of spin coating and resist cleaning. Furthermore, the transfer mask can

be recycled multiple times. Figure 3.5 shows the optical image of an example BN/G/BN

structures.

In summary, we have demonstrated two transfer methods, including resist (El-

vacite) assisted transfer and resist free transfer. In practical experiments, one can choose

accordingly which method to apply depending on their needs. When yield is more im-

portant, the resist assisted technique can produce samples faster. If device quality is

the concern, one might want to try resist free transfer. One other method that involves
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Figure 3.5: Optical image of a BN/G/BN sandwich structure. The shadow area in the

center of the image is single layer graphene. The cyan color is hBN where the yellow and

white dashed lines outline the bottom and top hBN layer respectively. The BN/G/BN

structure lie on top of SiO2/Si in red.

a wet process (wet etching of substrate) is widely used to transfer CVD (chemical vapor

deposition) grown graphene to arbitrary substrates[67–69]. This method is also useful

when pre-processing is needed, for example to transfer a complete device[70].

3.3 Fabrication Graphene Field Effect Transistors

In this section, we will first describe some of the essential techniques to fabricate

high quality substrate supported graphene field effect transistors (FETs). Then, an

innovative method of contacting graphene covered by hBN via an one dimensional carbon

chain is introduced.
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3.3.1 Fabrication of Graphene/hBN FETs

To fabricate graphene/hBN field effect transistors, we utilize standard electron

beam lithography (EBL) and oxygen plasma etching[1] to define the device shape and

electrodes. Then, electron beam evaporation and lift-off processes are used to metalize

the device. The detailed recipe and procedure are listed below and the flow chart can

be found in Fig. 3.6.

1. Etch graphene into Hall bar shape.

(a) Spin coat the sample with a layer of PMMA (Microchem 950 A4) at a rate

of 4000rpm for 40 seconds and bake it at 180° for 10 minutes.

(b) Design etching pattern to open windows where graphene needs to be etched

away. Expose the PMMA resist using EBL (LEO SUPRA 55 Scanning Elec-

tron Microscope) at a dose of ∼300µC/cm2. Develop in methyl isobutyl

ketone/isopropyl alcohol (MIBK/IPA, 1:3) for 65 seconds and rinsing in IPA

for 30 seconds.

(c) Etch graphene in O2 plasma with ICP (inductively coupled plasma) . Etching

parameters (forward/ICP power, flow rate, time) are (30/300watts, 50sccm,

3 seconds). For few layer graphene (<4 layers), etching should only take less

than 3 seconds.

(d) Remove the PMMA resist in PG remover at 80°C for 2 hours and anneal the

sample in furnace at 300°C for 2 hours. We found that these cleaning steps

are crucial for achieving best contact resistance with graphene.
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Figure 3.6: Flow chart of the fabrication procedure. (a) G/hBN sample on SiO2/Si

substrate. (b) Spin coat PMMA. (c) EBL to open window for etching. (d) O2 plasma

etching in ICP. (e) Spin coat PMMA (top)/MMA (bottom). (f) EBL to define electrodes.

(g) Deposit Cr/Au metals. (h) Schematic of a complete G/hBN device.
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Figure 3.7: (a) Optical image of a complete G/hBN device. (b) SEM image of the same

device corresponding to the dashed area in (a).
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2. Define electrodes.

(a) Spin coat the sample with bilayer resist PMMA (top)/MMA (bottom) at a

rate of 4000rpm for 40 seconds. Bake the MMA layer at 150°C for 2 minutes

and the PMMA layer at 180°for 10 minutes.

(b) Expose the electrodes pattern using EBL at a dose of ∼400 µC/cm2. Develop

in MIBK/IPA (1:3) for 65 seconds and rinsing in IPA for 30 seconds.

3. Metal deposition. Metals are deposited using electron beam evaporation (Temescal

BJD 1800 system). We first deposit 1 nm of Cr as an adhesion layer following 80

nm of Au. The thickness of Au should be at least 20 nm thicker than the depth of

the hBN layer. Finally, we place samples in Acetone on hot plate (65°C) for several

hours to lift-off any unexposed PMMA/MMA resist and rinse with IPA/blow dry

with N2. Figure 3.7a and b show a optical image and SEM image of a complete

G/hBN device.
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3.3.2 Fabrication of Edge Contacts to Encapsulated Graphene

In the previous section, we have discussed a innovative technique that utilized

van der Waals forces layered compounds to successively pick up graphene and hBN

layers, resulting in a sandwiched BN/G/BN structures. However, it is challenging to

electrically contact the graphene layer since it is fully covered by an insulating hBN layer.

Wang demonstrated in their paper[64] that such contacts are feasible and the contact

resistance can be as low as ∼100Ω. The most critical step to achieve good contacts is to

etch through the BN/G/BN stack and expose a one dimensional chain of carbon atoms.

The tools and procedure used are essentially the same as fabricating G/hBN devices

except a few steps need to be taken care of. These points are summarized as follows:

1. After the etching windows being opened, etch the sample in SF6 plasma in ICP

(30/300 watts, 50sccm, 10 seconds).

2. Before depositing metal, functionalize the graphene edge with O2 plasma in ICP

(30/0 watts, 50sccm, 10 seconds).

3. The contact metals are made of Cr/Pd/Au with thickness of 1/3/100 nm respec-

tively. The total metal thickness should be larger than that of the bottom hBN

layer.

Figure 3.8: Schematic of metal contacts to graphene
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The carbon atoms are exposed on the edge due to the sloped profile from ICP

etching. A schematic of the cross section between BN/G/BN and metal contacts is show

in Fig. 3.8.

3.4 Comparison of Electronic Qualities of Graphene De-

vices

In this section, we will compare the electronic qualities of our G/SiO2, G/hBN

and BN/G/BN devices in terms of carrier mobilities (µ).

For non-encapsulated graphene, we usually anneal our samples in flowing

H2/Ar (0.2slm/0.4slm) gas for ∼2-4 hours to remove resist residues. For BN/G/BN

samples, such cleaning process is unnecessary as the transport quality does not change

much before and after annealing[64]. In order to compare the qualities of the devices,

we calculate µ using two methods. The field effect mobility µFE is calculate from the

slope of σ vs. n:

µFE =
1

e

dσ

dn
, (3.1)

where e=1.6×10−19 C is the electron charge, σ and n are graphene sheet conductivity

and carrier density. We also fit our data to a self-consistent Boltzmann equation which

includes both long and short range scattering terms[34, 35, 41]:

σ = ((|n|eµC + σ0)
−1 + ρS)−1, (3.2)
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Figure 3.9: Transport characteristics for graphene devices at room temperature (300K).

(a) σ vs. n for G/SiO2 device. Black circles are experimental data and red/blue lines

fitted curves to Equation 3.2 for hole/electron doping. (b) Same as (a) for a G/hBN

device. (c) Same as (a) for a BN/G/BN device.

where µC corresponds to density-independent charged impurity scattering, ρS is short

range scattering contribution, and σ0 is residual conductivity at charge neutrality point

(CNP). Fitting is carried out separately for electron and hole doping in observation of

electron/hole asymmetry. Figure 3.9a, b and c plot σ vs. n for representative G/SiO2,

G/hBN, BN/G/BN devices with experimental data in black circles and fitted curves

in colored lines. These data are all taken at room temperature (300K) in vacuum, low

temperature data follow a similar trend. From the conductivity curves, we immediately
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observe an increasing in transport quality from G/SiO2, G/hBN to BN/G/BN devices.

The µFE is calculated for low density and high density region. The µC is calculated

separately for electron and hole doping. The quantitative results are summarized in

Table 3.1.

device µFE (cm2/V·s) µC (cm2/V·s)
low n high n e h

G/SiO2 3500 3300 3100 3300
G/hBN 35000 10000 34000 29000

BN/G/BN 80000 18000 64000 72000

Table 3.1: Mobility values corresponding to Fig. 3.9.
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Chapter 4

Topological Winding Number

Change and Broken Inversion

Symmetry in a Hofstadter’s

Butterfly

Abstract

Graphene’s quantum Hall features are associated with a π Berry’s phase due to its odd

topological pseudospin winding number [9, 10]. In nearly aligned graphene-hexagonal

BN heterostructures, the lattice and orientation mismatch produce a superlattice po-

tential, yielding secondary Dirac points in graphene’s electronic spectrum [6, 8, 44, 49],

and under a magnetic field, a Hofstadter butterfly-like energy spectrum [6, 8, 49]. Here

we report an additional π Berry’s phase shift when tuning the Fermi level past the

secondary Dirac points, originating from a change in topological winding number from

odd to even when the Fermi-surface electron orbit begins to enclose the secondary Dirac
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points. At large hole doping inversion symmetry breaking generates a distinct hexagonal

pattern in the longitudinal resistivity versus magnetic field and charge density. Major

Hofstadter butterfly features persist up to ∼100 K, demonstrating the robustness of the

fractal energy spectrum in these systems.

Hexagonal boron nitride-graphene (hBN/G) heterostructures [41] have recently emerged

as model systems for experimentally investigating the properties of electrons in a com-

bined periodic potential and magnetic field [6, 8, 49]. Like graphene, the hBN atoms

are arranged in a honeycomb lattice, but with a ∼ 1.8% lattice constant mismatch.

Graphene’s band structure consists of two inequivalent gapless Dirac points in the Bril-

louin zone at which the valence and conduction band touch, with a pseudospin degree

of freedom originating from the two atoms per unit cell. When placed on hBN, the

lattice and orientation mismatch creates a periodic moiré pattern [6, 8, 44, 49], with a

lattice-commensurate phase with periodic domains reported to form at small mismatch

angles when the moiré period is >∼ 10nm [71]. At special points at the edges of the

superlattice Brillouin (sBZ) zone, the superlattice potential induces secondary Dirac

points [6, 8, 44, 46, 47, 49, 71–75] and is predicted to open small gaps for both electron

and hole states if inversion symmetry is broken [44, 46, 47, 72, 73, 75]. Under a magnetic

field B, commensuration effects between the lattice period and the magnetic length lead

to predictions of a fractal energy spectrum known as a Hofstadter’s butterfly [50]. Re-

cently such a spectrum appropriate for graphene’s Dirac band structure [49] has been

observed, as well as in bilayer graphene [6], and accompanied by the opening of a gap at

the charge neutrality point [8, 71], opening the door to the exploration of this system.

Compared to previous efforts on semiconductor heterojunction based two-dimensional

electron gasses [51, 76–80], the graphene-hBN system is readily tunable, enabling the

quantum Hall effect to be explored more fully [6, 8, 49].
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Previously, magneto-transport [6, 8, 49] and capacitance [55] data were re-

ported for densities where the Fermi level EF was tuned beyond the secondary Dirac

points, with two-terminal conductance data presented over an especially wide range in

ref. [8]. However relatively little discussion or analysis was presented for this regime,

especially at lower magnetic fields <∼ 10 T. Here, we focus on four-terminal measure-

ments at large charge densities at such magnetic fields, enabling new phenomena to be

identified. In the Hofstadter butterfly spectrum [53, 81–83], spectral gaps and minima

in the longitudinal resistivity Rxx occur along lines in the density and magnetic field

plane according to the Diophantine equation (n/n0) = t(φ/φ0) + s with integer t and

s. Here n is the carrier density, n0 corresponds to one electron per superlattice unit

cell, φ is the magnetic flux threading a superlattice unit cell, and φ0 = 2πh̄/e is the flux

quantum with h̄ Plank’s constant, and e the electric charge. When s = 0, the integer t

corresponds to filling factor ν = 2πnh̄/eB, and determines the slope of the gap features

in the n/n0 − φ/φ0 plane for general s. The integer s determines the miniband from

which the spectral gaps originate at B = 0. This behavior has recently been observed

experimentally [6, 8, 49].

Here, we report that surprisingly, once the electron density is tuned past the

secondary resistance maximum, the integers t corresponding to the Rxx minima for s = 0

become those of Rxx maxima and vice-versa. This can be understood as arising from an

additional phase originating from graphene’s Dirac particle spectrum in which the Dirac

pseudospin winding number w, which counts the number of times the pseudospin rotates

under a closed orbit [9, 10, 72, 84], changes from odd to even. The winding number is

topological and reflects the total number of Dirac points enclosed by the orbit, each of

which contributes ±1 to the total w [72, 84]. The transition occurs when EF is such

that the semiclassical electron orbits enclose the additional odd number of the Dirac
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points forming at the edge of the mini-Brillouin zone [46, 47, 72–74, 84], adding an

additional relative phase of π accumulated in a single orbit, consistent with theory [72,

84]. This changes the observed filling factors where gaps occur to t = 4m with s = 0, for

integer m > 0, interchanging the Rxx maxima and minima at constant t, as observed.

This demonstrates that such orbits, which require magnetic breakthrough of the Bragg

scattering condition at the sBZ boundaries [85], are relevant to the observed behavior

on the electron side.

In previous work on graphene bilayers changes in orbit topology and a Lifshitz

transition at energy E∗ ∼ 6 meV were reported arising from pairs of degenerate Dirac

points near the K and K’ points, produced by an interaction-driven spectrum recon-

struction [86]. In this work [86], however, no changes in the filling factors corresponding

to spectral gaps were observed. In contrast, here the number of Dirac points enclosed by

the Fermi surface orbit changes with Fermi level, enabling topological winding number

changes to be observed.

For hole doping, where the lattice perturbs the charge carrier motion more

strongly [47, 73, 75], the mixing between features originating from the different Bloch

bands is stronger. Inversion symmetry breaking [71, 73] generates a distinct hexagonal

pattern in Rxx vs. B and gate voltage Vg. Gaps at the hexagon centers occur at t = 4m,

with s = −4, for integer m < 0, in accordance with theory [73]. New generations of Dirac

particles are clearly observed, where peaks in Rxx are associated with sign changes in the

Hall resistivity Rxy from positive to negative, consistent with previous studies [6, 49].

The honeycomb pattern shows that the Dirac points alternate with gaps in a systematic

manner as the density and field are varied, demonstrating a regularity to the fractal

spectrum in hBN-graphene similar to that proposed by Hofstadter [50].
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Figure 4.1: hBN/G heterostructure device geometry and transport properties.

(a) Hall bar device. Graphene is crystallographically aligned and placed on a hBN

substrate. The resulting structure is etched into a Hall bar geometry and leads are

attached. (b) Longitudinal resistivity measured vs. gate voltage. Analysis yields a

four-terminal electron mobility ∼ 9, 000 cm2/V·s. Left inset, schematic of moiré pattern

from stacked hBN and graphene layers. Right inset: schematic diagram of superlattice

Brillouin zone (red hexagon) and its relation to the Brillouin zone of graphene (black

hexagon).
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Figure 4.1a shows a scanning electron microscope image of a completed de-

vice(G1), fabricated as described in the Supplementary Discussion. The four-terminal

resistance vs. gate voltage Vg is shown at temperature T = 1.5 K in Fig 4.1b. The

primary resistance peak near Vg = 0 when the device Fermi level is tuned through the

charge neutrality point surrounded by two additional peaks. These peaks correspond

to minima in density of states induced by the periodic potential from the moiré su-

perlattice [6, 8, 44, 46, 47, 49, 73, 74], shown schematically in the Fig. 4.1b left inset,

with the graphene lattice represented in black and hBN lattice in blue. The right inset

of Fig. 4.1b shows the Brillouin zone of graphene in black, and the sBZ of the moiré

superlattice in red around one of the corner points.

The evolution of the features in the main panel of Fig. 4.1b with magnetic field

is shown in Fig. 4.2. Figure 4.2a shows Rxx vs. B and Vg, while Fig. 4.2b shows Rxy.

Data is also plotted with respect to normalized density n/n0 and φ/φ0 (determined as

described in Supplementary Discussion). A number of features are apparent. Minima in

Rxx and plateaus in Rxy extend from the charge neutrality point. Similar features are

also apparent extending from the secondary Dirac points on the electron and hole sides.

The minima in Rxx originating from the primary Dirac point can be followed as they

cross the Landau level like features from the secondary Dirac point on the electron side.

Interestingly, for large filling factor ν, which corresponds to the integer t for s = 0, once

the visible features extrapolating to the secondary Dirac point are crossed , the minima

become maxima and vice-versa, for example as shown by the dotted line in Fig. 4.2a.

Figure 4.3a shows this more clearly by comparing plots of Rxx vs. ν on the

left hand side of the sDP to those on the right hand side. The black trace is taken

from Fig. 4.2a along the black line while the red trace is taken along the red line. Rxx
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Figure 4.2: Magnetotransport in a hBN/G heterostructure device. (a) Color

plot of Rxx vs. gate voltage (top axis)/normalized charge density (bottom axis) and B

(left axis)/flux quanta per unit moiré superlattice unit cell (right axis). Data on right

is plotted with enhanced contrast. Arrows correspond to regions where Rxx is at a

minimum(lower left arrow) or a maximum (upper right arrow). (b) Color plot of Rxy

vs. the same variables as in (a). Lines added on the electron side indicate Zak bands

(black), and features corresponding to s = 0 (yellow) and s = 4 (purple) as a visual

guide. Nonlinear color maps were used in (a) and (b) to enhance contrast.
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oscillates with a period of 4 in both line traces but there is a π phase shift between them.

Similar results were also found on a two-terminal aligned device G2 (Supplementary

Information Fig. S4.1). The phase shift makes a transition at a given B over a range of

Vg that increases with increasing B, as shown in Fig. S4.2, where an array of magneto-

oscillation line traces at different Vg for G1 and G2 are shown versus ν. Figure S4.3

shows the oscillations and phase shift in Vg traces (plotted against ν) at an array of

different B values, which shows that the phase shift is robust against uncertainties in

the zero of charge. Here the phase shift occurs near a relative filling factor from the

sDP of ν ≈ 10 for both samples. The transition region arises from the Zak minibands

[49, 87]. that perturb the slope of the Landau fan features near n/n0 = 4, especially in

G2.

We can understand this by considering the motion of the electrons in an ex-

tended zone scheme of the sBZ. The quantum Hall states’ filling factors at the Rxx

minima can be determined semiclassically by the Bohr-Sommerfeld condition, from

which it is found that the modulations in Rxx can be determined from the relation

∆Rxx = R(B, T ) cos [(2π(BF /B + 1/2 + β)] [10, 28, 29], where BF is the period of the

oscillations in 1/B, R(B, T ) is a pre-factor, and β is an additional topological phase

accumulated over a single orbit, β = w/2. To compare to our data, we rewrite this in

terms of ν, obtaining ∆Rxx = R(B, T ) cos [(2π(ν/4 + 1/2 + β)], where the 1/4 factor

multiplying ν stems from the spin and valley degeneracy in graphene. As was shown pre-

viously [9, 10], Dirac points in the spectrum have a topological number that determines

the Landau level spectrum, which counts the number of times the pseudospin rotates

under a complete orbit in reciprocal space [84]. Orbits that enclose a single Dirac point

have a pseudospin winding number w = ±1 depending on whether they belong to the K

52



Figure 4.3: Transition in Berry’s phase and corresponding electron orbits. (a)

Plot of Rxx vs. filling factor ν = 2πnh̄/eB, for electron density below the sDP (red) and

above (black), corresponding to the red and black lines in Fig. 4.2. (b) Semiclassical

orbit (black) in reciprocal space shown in the sBZ (red). The pseudospin direction is

shown by the blue arrow for the case of a winding number of 1 (top) and 2 (bottom).
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or K’ point or are in the valence or conduction band. Therefore, when the Fermi level

is tuned below the secondary Dirac point encloses only the single primary Dirac point,

resulting in a winding number of ±1, β and an unconventional quantum Hall effect at

filling factors ±2, ±6, ±10 etc., corresponding to a Berry’s phase of ±π as shown in

Figure 4.3b top, consistent with previous studies [9, 10].

However, the situation differs when the Fermi level is tuned above the sDPs.

Calculations indicate that the hBN induces either one or three Dirac points at the edges

or corner of the sBZ depending on parameters, and has overshadowing bands [47], that

may be viewed in a nearly free electron picture as the original Dirac spectrum folded

into the sBZ. Electron orbits individually enclosing each of the secondary Dirac points

could potentially occur via Bragg scattering at the sBZ boundary. However, interband

tunneling via magnetic breakthrough to the overshadowing bands, expected to occur

for relatively low fields φ/φ0 ∼ 0.1 [47], enables orbits that instead enclose the entire

sBZ for sufficiently large doping, such as shown schematically in Fig. 4.3b bottom in

an extended zone scheme. At the sBZ boundary, the theoretically expected number

of Dirac points is odd; depending on substrate parameters there is one if it occurs at

a corner of the sBZ, and three otherwise [47]. For the case of one Dirac point at the

sBZ corner as shown in Fig. 4.3b, the winding number w changes to an even number,

which yields β = 0 or ±1, and an effective Berry’s phase shift of 0 or ±2π, which is a

relative phase shift of π compared to the low-doping regime. Three Dirac points at the

sBZ edges would be expected to produce the same result. More detailed analysis [72]

indicates that for an incommensurate lattice phase, an orbit enclosing the entire sBZ has

β = 0, while the commensurate phase has β = ±1 with the bands becoming topological

in nature, producing the same result. Thus, regardless of the substrate parameters, the

Rxx minima and maxima vs. ν are exchanged, as observed.
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Within the region defined by the most visible features of the sDP, the behavior

is more complex. Horizontal feature alignments in Rxy, plotted in Fig. 4.2b, result from

spectral gaps occurring at φ/φ0 = 1/q, where q in an integer, arising from the Zak

minibands [49, 87]. Additionally, Rxy oscillates as either a Zak band boundary (dashed

black lines) or features corresponding to s = 0 (dashed yellow lines) or s = 4 (dashed

purple lines) are crossed [6, 8, 49]. This can be interpreted as an interchange of electron

and hole-like Landau level bands whenever a gap or Dirac point is crossed in the fractal

spectrum, as expected from theory [47].

For large hole density a distinctive pattern of hexagonal ridges in Rxx emerges

in the plot of Rxx vs. B and Vg. This is shown in Fig. 4.4a for a third sample G3 in which

the hexagonal features were more clearly resolved. (An apparent charge inhomogeneity

prevented an analysis of the phase shift on the electron side as was done for G1 and

G2, as shown in Supplementary Information Fig. S4.4.) Measurement of Rxy shows a

plateau at the minimum of the Rxx in the hexagon centers indicating the presence of

a gap, as shown in Fig. 4.4b. At B =∼ 5 T, the field corresponding to the Zak band

at φ/φ0 = 1/5, a third generation Dirac point [6, 49] appears showing a peak in Rxx

associated with a crossover from hole-like to electron-like behavior (Fig. 4.4c). We note

that at other fields and gate voltages, the behavior in Rxy can be similar but offset from

zero, consistent with previous work [6, 49]. The gaps at the hexagon centers occur along

lines in the density-field plot that extrapolate to n/n0 = s = −8,−6, and −4. The slopes

of the lines are determined to follow t = 4m, where m 6= 0 is an integer with a sign

determined by the extrapolation point. Calculations show that gaps occurring along

lines with such slopes result from inversion symmetry breaking by the hBN layer [47].

Such inversion symmetry breaking may indicate the formation of a commensurate lattice

phase [71]. The Dirac points occur along lines extrapolating to n/n0 = −4 and −8 with
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slopes t = 4m + 2, for integer m where the sign depends on s. No clear signature of

magnetic breakthrough is observed, consistent with the calculated spectrum that shows

larger gaps at the sBZ boundaries without overshadowing bands [47].

Finally, Rxx in the large hole doping regime vs. Vg and B is plotted at two

additional temperatures in Fig. 4.4d. The Zak miniband structure persists up to at

least 100K indicating an energy scale at least EZ ∼10-30 meV for these features. The

temperature dependence data of Rxx within one of the hexagonal gap regions is plotted

as an Arrhenius plot in Fig. 4.4e. Analysis of the linear region of the plot yields a gap

∼0.2 meV. This value is uncertain due to the relatively small range of data above the

saturation region. Moreover, the small value may, for example, reflect transport mech-

anisms such as variable range hopping. More work is required to determine accurately

the gaps in this region.

In sum, we have measured graphene samples with a moiré pattern potential

from an underlying hBN substrate. For the electrons, we observe an additional π shift

in phase in the magnetoresistance oscillations when tuning the Fermi level past the

secondary Dirac points, indicating a change in topological winding number and electron

orbits that enclose an even number of Dirac points. When the substrate interactions are

stronger as on the hole side, a distinct hexagonal pattern emerges in Rxx vs. B and Vg

which results from gaps that form due to inversion symmetry breaking, systematically

paired with the formation of third generation Dirac points. Finally, in the semiclassical

theory of electrons in periodic potentials and nonzero magnetic field, the electrons can

tunnel between real-space cyclotron orbits, forming energy bands. This leads to new

quasiparticles that follow “hyperorbits” [85, 88], acting as if they are in a reduced

magnetic field. The ability to realize this situation may enable such theories to be

tested, for example in magnetic focusing experiments [89, 90].
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Figure 4.4: Replica Dirac points and gaps in hole side. (a) Color plot of Rxx

vs. Vg (bottom)/normalized density (top) and B (left axis) flux quanta per unit moiré

superlattice unit cell (right axis) near the sDP on the hole side showing hexagonal

ridges for sample G3 with four-terminal mobility ∼ 20, 000 cm2/V·s. A nonlinear color

mapping was used to enhance contrast. (b) Rxx (black) and Rxy (red) vs. Vg taken

near the point indicated by the solid circle in (a). (c) Rxx (black) and Rxy (red) vs. Vg

taken near the point indicated by the solid square in (a). (d) region to the left of the

sDP at T = 25K and T = 100K. Dark blue corresponds to 3 kΩ, and dark red to 9 kΩ.

(e) Arrhenius plot of Rxx at the point indicated by the solid circle in (d).
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S1. Sample Fabrication

Samples are fabricated by placing graphene on hBN using Elvacite 2550 layers [10],

on top of an oxidized Si wafer with 300 nm oxide. The doped Si acts as a back gate.

The edges’ cleavage planes are oriented to within approximately ∼ 1°under an optical

microscope [8, 9, 44]. Raman measurements are used to verify the lattice alignment [6,

49], and electrodes are attached using electron-beam lithography.

S2. Parameter Normalization

To plot the data in terms of n/n0, we determined n by measuring the Shubnikov-de Hass

oscillations in Rxx at low B field using a range of densities near the secondary Dirac

point. The density n0, which corresponds to one electron per superlattice unit cell, was

then extracted from the oscillations in Rxy that are independent of gate voltage near

the secondary Dirac point called “Zak oscillations” [8]. Contours of these are shown

by the black dashed lines in Fig. 4.2b of the main text. This enables the normalized

density n/n0 to be computed, which can be determined for the extrapolation point to

B = 0 of the Landau fan features from the secondary Dirac Point (sDP). These occur

at n/n0 = ±4, consistent with previous studies [8, 9, 44]. From the normalized density,

the area of the morié unit cell 1/n0 is used to determine the normalized magnetic field

φ/φ0, which is the number of flux quanta per superlattice unit cell.

S3. Two-terminal magnetotransport data for sample G2

We show in Fig. S4.1 magnetotransport data for a two-terminal aligned device G2 that

exhibits secondary Dirac point features. The graphene/hBN alignment was confirmed

by Raman spectroscopy [6, 49]. Figure S4.1a plots the two-terminal conductance versus

B and Vg. Following the Landau fan features corresponding to a conductance minimum

along constant filling factor ν (for example along the black dashed line) originating from

the main Dirac Point (mDP), the conductance makes a transition to a maximum upon
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crossing through the sDP at n/n0 = 4 on the electron doped side, indicating a π shift

in the magneto-oscillations vs. ν. Although only a single magnetic field direction was

measured for this sample, symmetry in B is expected based on Onsager symmetry.

To improve the feature contrast, in Fig. S4.1b we plot the conductance with

a smoothed background subtracted, labeled ∆G. At low densities the features are

somewhat irregular, and curve towards the density axis at the lowest densities. This

may be due to a combination of quantum interference phenomena [41] and insufficiently

screened charge puddles [47, 71, 72]. However, above n/n0 ≈ 2, the Landau fan features

are relatively regular and follow approximately straight lines. As in the previous plot,

∆G changes from a minimum to a maximum along lines of constant filling factor such as

the back dashed line. To confirm that the background subtraction does not create any

spurious or extra features in our data, we plotted line traces (along the red and black

lines) from both the original data and background subtracted data versus filling factor

in Fig. S4.1c and d. Both Figures show a similar transition of the magneto-oscillation

phase as the minima from the left of the sDP (red line) align with the maxima from the

right of sDP (black line).

For both devices G1 and G2, the onset of the region where the oscillation

phase makes its transition occurs at n/n0 = 4, where the miniband states are just

filled, indicating that the observed behavior stems from the superlattice potential. Also,

features from n/n0 > 4 and those with similar slope from n/n0 < 4 extrapolate back to

the same point at B = 0, indicating that the shift in phase cannot be accounted for by

a charge offset due to a charge inhomogeneity within the sample (see device G3 below).
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Figure S4.1: Data for sample G2. (a) Gray scale of G vs. gate voltage (top

axis)/normalized charge density (bottom axis) and B (left axis)/flux quanta per unit

moiré superlattice unit cell (right axis). (b) Gray scale of background subtracted G

(∆G) with the same axes as in a. (c) Plot of G vs. filling factor ν = 2πnh̄/eB, for

electron density below the sDP (red) and above (black). (d) Plot the ∆G vs. ν for

electron density below the sDP (red) and above (black).
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S4. Additional vertical line traces showing the phase shift for sample G2

and G1

In order to better illustrate the π phase shift, we show here numerous line

traces in a wide range of gate voltages covering the sDP for two devices G2 and G1.

In Fig. S4.2a, we plot ∆G vs. ν for device G2 with Vg ranging from 30V

to 60V (1V increment) with the sDP feature around Vg = VsDP ∼ 36V. The traces

are offset vertically for clarity. The minimum or maximum features stay at constant ν

at low(Vg � VsDP ) or high (Vg � VsDP ) gate voltages (blue and dashed lines) while

shifting when Vg ∼ VsDP (red dashed lines). Comparing the low to high gate voltage

curves, the minima at low gate voltages align for the same ν with maxima at high gate

voltages, demonstrating the π phase shift.

The transition region near Vg ∼ VsDP , becomes broader for lower ν, due to the

Zak oscillations (horizontal bands in Fig. S4.1a) that perturb the slope of the features,

which become wider in gate voltage at larger B. Also, we note that since we plot here the

two-terminal conductance instead of Rxx, the minima occur at different filling factors

than those expected for Rxx minima (4m+ 2 for integer m) when n/n0 < 4.

Figure S4.2b is a similar plot for device G1, where the vertical axis is instead

the four-terminal resistance Rxx. For this sample, a similar phase shift was observed

for large filling factors. For relatively small filling factors, the phase shift appears to be

within the transition region over the gate voltage range studied.

S5. Horizontal line traces showing the phase shift for sample G2 and G1

In order to further verify the presence of the π phase shift, we show here

horizontal gate traces for G2. In Fig. S4.3a, we plot ∆G vs. ν for device G2 with B

ranging from 3T to 5T. The phase shift occurs near n/n0 = 4, at a relative filling factor
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Figure S4.2: Vertical line traces for sample G2 and G1. (a) Plot of ∆G vs.

ν = 2πnh̄/eB, for gate voltages ranging from 30V to 60V (1V increment for each line).

Dashed lines are drawn as a guide to the eye. Blue: regions where the phase is stable in

gate voltage, following the ∆G minima. Red dashed lines, phase transition region. (b)

Plot of Rxx vs. ν = 2πnh̄/eB, for gate voltage range from 40V to 83.5V (1.5V increment

for each line). Dashed lines are drawn as guides to the eye as in (a), except following

Rxx maxima. Vertical scale is expanded by a factor of 2.5 in the region indicated by the

arrows to enhance the oscillation visibility.

62



∼10 from the sDP that occurs just to the right of the Zak oscillation region; for each

line trace, the transition point is calculated and drawn as a black circle. To the left

of the transition the period of the oscillations is 4 and the maxima in ∆G are aligned

with the vertical dashed lines, verifying our capacitance calculations from section S4

are correct. However, near the black circles, the phase starts to shift and a full π shift

is observed towards the right end of the traces where instead the minima in ∆G are

aligned with the dashed lines. This is shown for example along the red arrow, which

connects a maximum to a minimum across the π phase shift. The observed phase shift

in the gate traces is insensitive to the zero of charge, since changing this would only

uniformly translate the curves.

To perform a similar analysis on sample G1, we plot in Fig. S4.3b the back-

ground subtracted ∆Rxx vs. ν and expand the vertical scale after the black circles by

a factor of 3. A similar π phase shift is observed in the gate traces. To the left of

the transition, the vertical dashed lines align with ∆Rxx minima, and to the right of

the transition they align to the ∆Rxx maxima. This is shown by the red arrow, which

connects a minimum to a maximum across the transition.

S6. Data from sample G3

We show in Fig. S4.4 additional data from device G3 (Rxx vs. B and Vg) that

shows secondary Dirac point features. Due to an apparent charge inhomogeneity in the

sample, the Landau fan features at different ranges of gate voltage do not extrapolate

to the same Vg at B = 0, as indicated by in red and black lines in Fig. S4.4. As a result,

it is impossible to make a similar analysis for the phase shift as for devices G1 and G2.
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Figure S4.3: Horizontal line traces for sample G2 and G1. (a) Plot of ∆G vs.

ν = 2πnh̄/eB, for B ranging from 3 T to 5 T. Equally spaced dashed lines are drawn as

a guide to the eye, where blue follows ∆G maxima and red follows the minima. For each

line trace, a black circle (marking a relative filling factor of +10 from sDP) is drawn

indicating where the phase shift in the oscillations with respect to ν(Vg) occurs. (b)

Plot of ∆Rxx vs. 2πnh̄/eB, for B ranging from 4 T to 6 T. Dashed lines are drawn

as guides to the eye as in (a), except blue follows ∆Rxx minima and red follows ∆Rxx

maxima. Black circles are as in (a). The vertical scale to the right of the black circles

is expanded by a factor of 3.
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Figure S4.4: Data for sample G3. Color plot of Rxx vs. gate voltage (top

axis)/normalized charge density (bottom axis) and B (left axis)/flux quanta per unit

moiré superlattice unit cell (right axis). Red and black lines show extrapolation to zero

B of features from n/n0 > 4 (red) and n/n0 < 4 (black).
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Chapter 5

Ballistic Transport in Short

Graphene cavities

In this chapter, we report our observations on ballistic transport of short graphene cav-

ities encapsulated between two hexagonal boron nitride (hBN) layers. The BN/G/BN

sandwich structures[64, 91] allow us to achieve electronic transport with ultra high mo-

bilities (µ) and long mean free path (l). As a consequence, the conductance exhibits

quantum interference phenomenon such as Fabry-Pérot oscillations (FPO). When sub-

ject to a perpendicular magnetic field (B), we observe a continuous transition from FPO

to Shubnikov-de Hass oscillations (SdHO) as B increases. Moreover, near the charge

neutrality point, the conductance exhibits small to no dependence on B suggesting sig-

natures of “pseudodiffusive” transport[92].

5.1 Device Fabrication and Characteristics

The BN/G/BN sandwich structures are stacked using a technique that se-

quencially picks up hBN and graphene layers. Electrical contacts are then made via
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one-dimensional carbon chain parallel to the sample edge exposed by inductively cou-

pled plasma (ICP). The details of these techniques are described in detail in chapter 3.

To prepare the short BN/G/BN cavities, we first fabricated the device into a Hall bar

geometry and tested the device quality. Figure 5.1 shows the low temperature transport

characteristics at T = 1.6 K. Figure 5.1a plots the resistivity (ρxx, black) versus charge

density (n) at zero B field, and we obtain a field effect mobility µFE ≈ 100, 000 cm2/V·s

near the charge neutrality point (CNP) defined by the Drude model µ = e−1dσ/dn. The

electron mean free path (l) can be extracted using the following relation:

σ =
2e2

h
kF l, (5.1)

where σ = 1/ρxx is the conductivity and kF =
√
πn is the Fermi wave vector. As we

can see, the electron mean free path is above 0.5µm in a wide range of doping levels

except very close to the CNP. The above analysis only provides a lower bound estimation

of the mean free path as pointed out in Ref.[91] due to boundary scattering when l is

approaching the sample width. Figure 5.1b plots ρxx (black) and Hall conductivity (σxy,

red) near the CNP at B = 5.5T. Clearly, Hall plateaus at filling factors of ν = ±2 with

vanishing ρxx and ν = 0 with insulating ρxx (∼ 450kΩ) are well developed; moreover,

we also observe the start formation of the ν = ±1 quantum Hall plateaus, suggesting

the broken symmetry states of the zeroth Landau level in graphene are fully resolved.

The observation of ν = 0,±1 quantum Hall states at such low B field further confirms

the high quality of our samples.
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Figure 5.1: Low temperature transport characteristics of BN/G/BN device in Hall bar

geometry. (a) Longitudinal resistivity (ρxx, black) and electron mean free path (l, red)

vs. charge density (n) at zero B field. The mean free path near the CNP is not plotted

due to a singularity when divided by a zero kF . (b) ρxx (black) and Hall conductivity

(σxy, red) vs. gate voltage (Vg). Red dashed lines are for eye guide to the Hall plateaus.
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We then perform further lithography and etching steps to cut the Hall bar

device into short and wide sections with length of ∼ 100nm, ∼ 200nm and ∼ 300nm.

The width of the device is approximately 1µm. A scanning electron microscopy (SEM)

image of a finished device is shown in Figure 5.2 with the BN/G/BN cavities outlined

by dashed lines.

Figure 5.2: Scanning electron microscopy (SEM) image of short-wide BN/G/BN cavities.

The red, blue and green dashed lines outline three cavities with length of about 300nm,

100nm and 200nm.

5.2 Fabry-Pérot Oscillations in BN/G/BN Cavities

The length of the devices are shorter than the electron mean free path as plotted

in Figure 5.1a. As a consequence, quantum interference effects are expected such as

Fabry-Pérot oscillations arising from the ballistic phase coherence transport. As drawn
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Figure 5.3: Fabry-Pérot oscillations in BN/G/BN cavity. (a) Schematic of the reflection

of ballistic electron wave packets on the BN/G/BN boundaries (1 and 2 denotes the two

boundaries). Yellow lines: electron trajectories. α corresponds to the incidence angle.

(b) Two-terminal conductance (G) vs. gate voltage (Vg). (c) Differentiated conductance

(dG/d(kL)) vs. kL (in units of π).

in Figure 5.3a is an schematic of the interference effects, where ballistic electrons are

reflected off the graphene boundaries. The phase difference between successive reflections
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of electron wave packets at zero B field is given by

θWKB = 2

∫ 2

1
k · dr = 2kL cosα, (5.2)

where k =
√
πn is the Fermi wave vector, L is the sample length and α is the incident

angle. Figure 5.3c plots the two-terminal conductance (G) of a 300nm cavity as a

function of gate voltage (Vg). We can clearly see G oscillates as k is tuned (by changing

Vg). Note that the oscillations are most visible at large carrier doping, consistent with

the calculated mean free path trend in Figure 5.1a. Figure 5.3c plots the differentiated

conductance (dG/d(kL) vs. kL in the large hole doping region, in which a period of π

is observed in agreement with Equation 5.2 at normal incidence (α = 0°).

The temperature dependence of the FPO is plotted in Figure 5.4a with the

kL range as in Figure 5.3b. The oscillations are persistent up to ∼ 16K in this sample.

We next try to extract the energy scale (∆E) of the FPO and the Fermi velocity (VF )

by fitting the oscillations amplitude (standard deviation of dG/dVg) with the thermal

damping model[93]:

δ(dG/dVg) = A
ξ

sinh(ξ)
, (5.3)

where ξ = 2π2kBT/∆E and A is a fitting parameter. This results in ∆E ≈ 7.59meV

and vF ≈ 1.10 × 106 m/s, consistent with previously reported values of graphene on

substrates[9, 10, 94].

This effect in graphene has been previously studied in gate defined cavities or

suspended samples[15, 93, 95–97]. In our experiments, the cavities are defined by the

hard boundaries of the BN/G/BN junctions providing an alternative method to study

this type of quantum interference effect. The hard wall boundary conditions also lead

to somewhat different behavior as a magnetic field is applied, which will be discussed in

the following section.
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Figure 5.4: (a) Fabry-Pérot oscillations at different temperatures for the same device

as in Figure 5.3. The temperature range from 6K to 18K as labeled. (b) Fitting the

oscillation amplitude to the thermal damping model. Blue dots represent experimental

data while the red line is fitting curve.
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5.3 Magnetotransport of BN/G/BN Cavities

In this section, we present magnetotransport data on BN/G/BN cavities. Fig-

ure 5.5a plots the background subtracted conductance (∆G) in gray scale vs. charge

density (n) and B for a 300nm cavity. Focusing on the electron side, we can clearly see

three different regions of features separated by the red and blue dashed curves. In the

high B limit above the blue dashed curve, oscillation features of G in the B − n plane

is observed corresponding to Shubnikov-de Hass oscillation (SdHO); in the low B limit

below the red dashed curve, G oscillates with n and bends toward high n as B increases;

in between the two curves, features in G are mostly smeared out.

The above observations can be explained by considering the relevant length

scales in the system, namely the cyclotron radius RC , the electron mean free path l

and sample length L. As illustrated in previous section, the mean free path l of the

BN/G/BN cavities is mostly larger than the cavity length L except at the CNP. As

a result, the scattering length of the system is determined by L. On the other hand,

the cyclotron radius RC = kF l
2
B =

√
πnh̄/eB. Figure 5.5b-e schematically show the

different scenarios of RC compare to L as increasing B, where the yellow curves represent

cyclotron orbits. In the low field limit (Figure 5.5b), RC is larger than L, thus ballistic

electrons are reflected off the boundaries and quantum interference effects still hold with

an additional phase induced by the curved orbits. As B further increases, when equal or

larger than L, cyclotron orbits can no longer reach the other boundary and no reflection

takes place. This corresponds to the cases of Figure 5.5c and d. Lastly, when B further

increases reaching the limit where L ≥ 2RC , electrons can finish at least one complete

cyclotron orbit without being scattered (Figure 5.5e) leading to magneto-oscillations

known as Shubnikov-de Hass Oscillation as discussed in chapter one.
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Figure 5.5: Magnetotransport in a 300nm BN/G/BN cavities. (a) Background sub-

tracted conductance (∆G) vs. Vg (top axis)/n (bottom axis) and B. Blue and red

dashed curves correspond to the critical condition when L = 2RC and L = 2RC respec-

tively. (b)-(e) cyclotron orbits compare to the sample length L as B increases. The

yellow lines represent cyclotron orbits.
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Going back to Figure 5.5a, the blue and red dashed curves are indeed related

to the critical limits in the above discussion, representing the conditions of L = 2RC and

L = RC respectively. Quite interestingly, in normal samples where l � L, the SdHO

boundary in B is set by the quality of the sample (l). As a contrast, this boundary in

our BN/G/BN cavities is due to finite limit size effect (L).

Similar measurements and analysis are also performed on a 200nm and a 100nm

sample, plotted in Figure 5.6a and b. The features in the three regions are again well

separated by the L = 2RC and L = RC curves but with less clear oscillations than those

of the 300nm cavity possibly due to the increased sensitivity to the edge roughness in

shorter samples.

Another interesting aspect is the conductivity at the charge neutrality point.

Although the density of states in graphene tends to zero when the Fermi level is tuned to

Dirac point, the observed conductivity remains finite on the order of e2/h [1]. For a short

and wide graphene strip, the minimum conductivity is predicted to tend to a constant

value 4e2/πh as the aspect ratio W/L increases in clean graphene[98]. Such deviation

from zero conductance results from transport via the evanescent modes near the Dirac

point, which is also called “pseudodiffussive” transport[92, 98]. When a magnetic field is

applied, Landau quantization leads to SdHO and quantum Hall effects at finite doping.

However, at the Dirac point, the cyclotron radius RC = kF l
2
B = 0 for any B field

and is always smaller than the mean free path (same as sample length L in this case).

As a result, the pseudodiffussive transport at the Dirac point is preserved and the

conductivity remains constant as B increases[92]. Experimentally, this effect has not be

observed possibly because of its extreme sensitivity to finite doping with increasing B.
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Figure 5.6: Magnetotransport in a 200nm (a) and a 100nm (b) BN/G/BN cavities

similar to Figure 5.5a.
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In our BN/G/BN cavities, we observed possible signatures of pseudodiffussive

transport at charge neutrality point, plotted in Figure 5.7. In Figure 5.7a, the conduc-

tivity σ of a 200nm cavity is plotted vs. Vg near the CNP for a magnetic field ranging

from 0T to 0.7T with an increment of 0.1T. The observed σ at the CNP remains close

to a constant value (which happens to be 4e2/πh but different from sample to sample)

up to 0.6T. Figure 5.7b plots σ vs. L/lB for all B measured, again shows the unusual

B independent conductivity for L/lB up to ∼ 6. We see similar behavior at the CNP

in most of the samples studied.

In summary, we achieved micron-scale mean free path boron nitride encap-

sulated graphene samples. By fabricating BN/G/BN cavities down to critical lengths

smaller than the mean free path, quantum phase coherent effects such as Fabry-Pérot os-

cillations emerge. Magnetotransport measurements demonstrate transitions from Fabry-

Pérot oscillations to Shubnikov-de Hass oscillations by tuning cyclotron radius to critical

lengths by changing magnetic field. Magnetotransport data at the Dirac point also shows

signatures of pseudodiffussive transport.
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Figure 5.7: (a) Conductivity (σ) vs. Vg near the charge neutrality point (CNP) for B

ranging from 0 to 0.7T. The vertical and horizontal dashed lines represent CNP and

σ = 4e2/πh. (b) σ (red circles) vs. L/lB (bottom axis)/B (top axis) at the Dirac point

(V g ≈ 12V ). The horizontal dashed is the same as in (a).
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Chapter 6

Conclusion

In this thesis, we used transport measurements to study the electronic properties of

graphene stacked on hexagonal boron nitride in two different scenarios. In the limit of

small rotation angle (<∼1°), the long wavelength moiré superlattice alters graphene’s

low energy electronic spectrum creating minibands near the superlattice Brillouin zone

(sBZ). In magnetic field, commensurate effects lead to a complex self-similar fractal

spectrum known as the Hofstadter’s butterfly. Our measurements on this system focused

on the large electron doping region leads to the observation of a π shift in Berry’s phase

associated with the change of the topological pseudospin winding number from odd to

even when the electron doping level crosses from below to above the minibands Dirac

point (s). On the large hole doping region, inversion symmetry breaking induced by the

hexagonal boron nitride substrate creates a complex network of polygon pattern with the

alternate occurrence of Dirac point features and gap-like features. These observations

contribute to the understanding of this highly tunable system, yet more experimental

and theoretical works are needed to further explore it.

In the limit of large rotation angle, the high quality of the encapsulated graphene
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between two boron nitride crystals allows the intrinsic properties of graphene to be more

approachable. By making the sample length shorter than the electronic mean free path,

quantum phase coherence transport - Fabry-Pérot oscillations were observed. In the

presence of a perpendicular magnetic field, transitions from the Fabry-Pérot type os-

cillations to Shubnikov-de Hass oscillations was demonstrated and could be explained

by comparing the cyclotron radius with the length of the devices. Moreover, conduc-

tivity at the charge neutrality point as tuning the magnetic field provides signatures of

magneto-pseudodiffussive transport. Further experiments may be done with a corbino

disk geometry to investigate the pseudodiffussive behavior for finite doping in resonance

with Landau levels[92].

To conclude, the advances in stacking 2D crystals have opened a new route

to study material science and the mesoscopic physics associated with it. By combining

different 2D materials, there are in principle unlimited possibilities of tailoring the prop-

erties of them. For example, stacking graphene with the recent rising material - black

phosphorus[99] may induce anisotropic electronic properties in graphene due to the 1D

periodic structure of the black phosphorus. Such examples are just too many to list,

future work will continue to explore this rich research field.
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Richter, K. Ensslin, and T. Ihn. Fabry-Pérot interference in gapped bilayer graphene

with broken anti-Klein tunneling. Physics Review Letter 113, p. 116601, 2014. doi:

10.1103/PhysRevLett.113.116601.

[94] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watan-

abe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy. Scanning tunnelling mi-

croscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Na-

ture materials 10, pp. 282–5, 2011. doi: 10.1038/nmat2968.

[95] L. C. Campos, a. F. Young, K. Surakitbovorn, K. Watanabe, T. Taniguchi, and P.

Jarillo-Herrero. Quantum and classical confinement of resonant states in a trilayer

94

http://dx.doi.org/10.1103/RevModPhys.71.1641
http://dx.doi.org/10.1038/nphys2549
http://dx.doi.org/10.1021/nl200758b
http://dx.doi.org/10.1103/PhysRevB.75.113407
http://dx.doi.org/10.1103/PhysRevB.75.113407
http://dx.doi.org/10.1103/PhysRevLett.113.116601
http://dx.doi.org/10.1038/nmat2968
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