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Abstract 
The blocking effect, canonical in the study of associative 
learning, is often explained as a failure of the blocked cue to 
become associated with the outcome. However, this 
perspective fails to explain recent findings that suggest 
learning about a blocked cue is superior to a different type of 
redundant cue. We report an experiment designed to test the 
proposal that blocking is not a failure of association, but a 
performance effect arising from a comparator process 
(Denniston, Savastano, & Miller, 2001). Participants received 
A+ AX+ BY+ CY- training containing a blocked cue X and 
another redundant cue Y, before rating outcome expectancies 
for individual cues. These ratings were inconsistent with the 
association-failure view. After subsequent A- Y+ training, 
participants rated cues again. Ratings in the second test were 
inconsistent with the comparator theory. Our data suggest that 
neither perspective is likely to provide a complete account of 
causal learning. 
 

Keywords: associative learning; comparator theory; 
redundancy effect; blocking; cue competition 

Introduction 
In a typical causal learning task, participants are required to 
learn which cues cause an outcome. Many such tasks 
involve presentation of more than one cue on each trial, and 
this typically results in cue competition. That is, learning 
about a cue is dependent to some extent on accompanying 
cues. Probably the best-known example of cue competition 
is blocking (e.g. Dickinson, Shanks, & Evenden, 1984). In a 
blocking task, participants receive trials on which cue A is 
paired with an outcome (denoted A+) and trials on which A 
is presented alongside a second cue, X, and paired with the 
outcome (AX+). Blocking is said to have occurred if 
learning about X is restricted by the presence of A, relative 
to a control condition in which A+ trials are omitted. 
Learning about X is therefore influenced by the presence 
and associative history of A. This finding is analogous to 
classic demonstrations of blocking in nonhuman animals 
(e.g. Kamin, 1969). 

Following the discovery of cue competition effects, 
Rescorla and Wagner (1972) outlined an elegant and much-
cited model according to which an outcome will only 
support learning if it is surprising. Surprise is equivalent to 
prediction error, or the discrepancy between the outcome 
that is expected and the outcome that occurs. When an 
unexpected outcome occurs, the resulting prediction error 
enables the formation of an association between any cues 

present and the outcome. Critically however, outcome 
expectancy is based on all the cues that are present rather 
than individual cues. To illustrate this, consider the blocking 
effect. On AX+ trials, expectancy of the outcome is based 
on the extent to which it is predicted by both A and X. 
Because A is established as a predictor of the outcome on 
A+ trials, the outcome is expected on AX+ trials and little 
learning can take place. Learning about X is therefore 
‘blocked’ by the presence of A. If A were not separately 
paired with the outcome, blocking would not occur. 
Informally, we can say that X is blocked because it is 
informationally redundant; it indicates no change in the 
outcome that is predicted by A. According to the Rescorla-
Wagner model, this is operationalized as a failure by X to 
become associated with the outcome. 

This description of blocking as a failure of association 
formation has been called into question by a recent result 
comparing learning about a blocked cue with another kind 
of redundant cue. Uengoer, Lotz, and Pearce (2013) 
compared learning about the blocked cue X with cue Y from 
a BY+ CY- discrimination. Here, the outcome was predicted 
by B and its absence was predicted by C. We refer to the 
common cue, Y, as an uncorrelated cue because it is paired 
with both the presence and the absence of the outcome. 
Uengoer et al. gave participants A+ AX+ BY+ CY- training, 
followed by test trials on which they were asked to rate 
outcome expectancy for each cue. The Rescorla-Wagner 
(1972) model predicts that learning about X should be 
blocked by A, as described above. The prediction for Y is 
perhaps more complex, but the model predicts that the 
strength of the association between Y and the outcome will 
increase overall during training. This results from the use of 
a combined prediction error in determining learning, as 
follows: On BY+ trials, the associations between B and Y 
and the outcome should strengthen. On CY- trials, the 
association between Y and the outcome should lead to 
expectation of the outcome, and its non-occurrence will in 
turn lead to decreases in the extent to which both C and Y 
predict the outcome. As a consequence, C should be 
established as an inhibitor of the outcome. This will enable 
Y to maintain its association with the outcome to some 
extent. Informally, we can say that Y could be a cause of the 
outcome if its absence on CY- trials is explained by the 
preventative status of C. The Rescorla-Wagner model, then, 
predicts that Y will become better associated with the 
outcome than will X. Contrary to this prediction, Uengoer et 
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al.’s participants rated X as a more likely cause of the 
outcome than Y. This finding is known as the redundancy 
effect (for corresponding results using rats and pigeons, see 
Jones & Pearce, 2015; Pearce, Dopson, Haselgrove, & 
Esber, 2012).  

Comparator theory 
While the redundancy effect is not predicted by the 
Rescorla-Wagner (1972) model, it perhaps makes intuitive 
sense because X is consistently paired with the outcome. Y, 
on the other hand, is paired with the outcome only 
intermittently. Ignoring any effect of cue competition, we 
might expect X to become better associated with the 
outcome than Y. Accordingly, Uengoer et al. (2013) 
considered whether their results might be better accounted 
for by supposing that blocking occurs not because X fails to 
become associated with the outcome, but because of an 
additional process that acts during the test. According to 
comparator theory (Denniston, Savastano, & Miller, 2001), 
association formation is non-competitive and driven by an 
individual prediction error for each cue. Cue competition is 
then accounted for by a comparator process that operates at 
test to influence performance. This process compares the 
associative status of the target cue with that of any cues that 
have previously been presented alongside the target. This 
results in a decrease if companion cues have a strong 
association with the outcome, and an increase if the 
association is weak. In the case of X, outcome expectancy 
will be reduced because A is strongly associated with the 
outcome, and blocking will occur. This model also predicts 
the redundancy effect, because association formation is 
governed by each cue’s relationship with the outcome. X 
should be better associated with the outcome than Y, 
because Y is only followed by the outcome on 50% of trials. 
The comparator theory therefore seems like a promising 
candidate for explaining both blocking and the redundancy 
effect. 

However, two attempts have been made to test this 
account and both have cast doubt on its validity. Jones and 
Pearce (2015) conducted an experiment in which rats were 
given A+ AX+ BY+ CY- training, where each cue was an 
auditory or visual stimulus and the outcome was the 
delivery of a sucrose solution. Rats were subsequently 
tested in extinction with B, X, and Y. A larger response was 
elicited by X than Y, demonstrating the redundancy effect. 
Responding was also higher for B than for X. Jones and 
Pearce suggested that this was important, because it allowed 
a further test of the comparator theory. According to this 
theory, because B and X were both consistently paired with 
the outcome, they should have become associated with the 
outcome to the same extent. The larger response for B than 
for X at test must therefore have been the result of the 
comparator process. Because B had been presented 
alongside Y, which was only weakly associated with the 
outcome, the response to B was left largely intact. For X, 
however, the response was moderated because X had been 
trained alongside A, which was strongly associated with the 

outcome. To test this account, rats were given A- Y+ 
training. Following this, they were again tested with B and 
X. The comparator theory now predicts greater responding 
for X than for B, but the results closely resembled those 
from the first test. B elicited more responding than X 
despite revaluation of the comparator cues A and Y, 
apparently in contradiction of the theory. An objection may 
be raised, however, because of the nature of the outcome 
used in this experiment. Miller and Matute (1996) suggested 
that, once a target cue becomes associated with an outcome 
of motivational significance, the target cue itself acquires 
motivational significance. As a result, attempts to deflate 
responding to the target cue by further conditioning of an 
associate cue may be unsuccessful. In the experiment 
reported by Jones and Pearce, the appetitive outcome is 
likely to have had substantial motivational significance. It is 
therefore possible that responding to B was unaffected by 
Y+ training, not because the comparator theory is incorrect 
but because the manner in which it was tested was 
inadequate. Urushihara and Miller (2010) noted that such 
revaluation effects are difficult to observe in nonhuman 
animals because of the use of motivationally significant 
outcomes, but occur frequently in human causal learning.  

There also exists a test of whether the comparator theory 
can account for the redundancy effect in humans, reported 
by Uengoer et al. (2013). Since blocking is dependent on a 
comparison between X and A, it follows that revaluation of 
A should increase outcome expectancy for X. In one 
experiment, following initial A+ AX+ BY+ CY- training 
and subsequent individual cue testing, participants were 
given A- training and a further test. They found that 
outcome expectancy for X was equivalent for the two tests, 
contrary to the predictions of the comparator theory. This 
conclusion should be treated with caution, however. The 
crucial comparison is between outcome expectancy for X 
during the first and second tests. This means that the results 
are likely to have been contaminated to some extent by 
order effects. In the present paper, we report an experiment 
intended to provide a fairer test of the comparator theory. 
The experiment is conceptually similar to the Jones and 
Pearce experiment, except that it used human participants 
and a causal learning task. It therefore combines the better 
aspects of the existing evaluations of the comparator theory 
described above, while eliminating the shortcomings. The 
use of human participants should provide ideal conditions 
for observing revaluation effects and, because the adequacy 
of the comparator theory can be assessed by comparing B 
and X in the same test, the confounding effect of order 
present in the Uengoer et al. experiment is avoided.  

A test of the comparator theory 
The design of this experiment is summarized in Table 1. 
Stage 1 of the experiment was designed to establish the 
causal status of B, X, and Y. Each participant received four 
types of trial: A+, AX+, BY+, and CY-. Following Uengoer 
et al. (2013), training was embedded in a variant of the 
classic allergist task (Aitken, Larkin, & Dickinson, 2000). 
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On each trial, participants were shown one or two food 
pictures and asked to predict whether they would lead to 
stomach ache in a fictional patient, Mr. X. After participants 
made their predictions, they received feedback on whether 
stomachache did (+) or did not (-) occur. After the 
completion of Stage 1, a test stage was administered in 
which participants were shown the five individual food cues 
and asked to rate the likelihood of stomach ache for each 
food using a rating scale. These ratings served as the 
measure of outcome expectancy for each cue. We expected 
these ratings to resemble those obtained by Uengoer et al. 
That is, we expected ratings to be higher for X than for Y 
(the redundancy effect) and to be higher for B than for X. 
We also expected ratings to be high for A and low for Y. 
After this test, participants received further training in Stage 
2. This training was designed to revalue A and Y, and 
consisted of A- and Y+ trials. Following this training, 
outcome expectancies were again measured in the same way 
as in the earlier test. If the comparator theory (Denniston, 
Savastano, & Miller, 2001) is correct, ratings for X should 
be higher than ratings for B in this test. Alternatively, if the 
outcome expectancy for B was higher than for X at Test 1 
because of a difference in the strength of associations 
formed between these cues and the outcome during Stage 1, 
then ratings should still be higher for B than for X at Test 2. 

 
Table 1: The design of the experiment. 

 

 

Method 
Participants The participants were 50 Plymouth University 
undergraduate students studying Psychology. They received 
course credit for their participation in this experiment. They 
were aged 18-53 years (M=21.86, SD=7.1) and five were 
male.  
 
Materials The experiment was run using computers 
attached to 22-inch monitors with a 1920 x 1080 resolution. 
The experiment was designed, cues presented and responses 
recorded, using E-prime 2.0 software (Psychology Software 
Tools, PA, US).  

The cues were five images of foods on a white 
background, each measuring 300 x 300 pixels. The foods 
were: apple, cherry, grape, lemon and strawberry. Foods 
were randomly assigned to serve as each cue (A, B, C, X, 
Y) for each participant. Outcomes were stomach ache, 
signified by text and a sad face on a red background, and no 
stomachache, indicated by text and a happy face on a green 

background. Cues and outcomes were presented on a black 
background with white text. Participants responded using 
the mouse.  
 
Procedure Each participant was initially asked to read on-
screen instructions that were identical to those used by 
Uengoer et al. (2013). In the first stage of the experiment 
participants were presented with eight blocks of trials. Each 
of the four trial types (A+, AX+, BY+, CY-) were presented 
once per block, and were randomized within each block. 
Each trial started with the presentation of either one or two 
images of foods, below the phrase “The patient ate the 
following food(s):” The sentence “Which reaction do you 
expect?” was presented below the images. Participants 
responded by clicking one of two response buttons placed at 
the bottom of the screen. The left-hand button was labelled 
“No stomach ache”, and the right-hand button was labelled 
“Stomach ache”. As soon as the participant responded, the 
response buttons and the sentence above them were replaced 
by a statement and image showing the outcome of the trial. 
When the outcome was stomach ache, the statement was 
“The patient has stomach ache” and the picture of a sad face 
was shown. When the outcome was no stomach ache, the 
statement was “The patient has no stomach ache”, and the 
picture of a happy face was shown. This feedback display 
remained on the screen for 3 s and was then followed by the 
next trial.  

After the completion of Stage 1, Test 1 began. Here the 
participants were instructed to judge the probability with 
which specific foods will cause stomach ache in the absence 
of feedback. On each trial a single food was presented on 
the screen below the sentence “What is the probability that 
the food causes stomach ache?” Participants responded by 
clicking on an 11-point rating scale ranging from 0 
(Certainly not) to 10 (Very certain). After participants chose 
a rating for each food, a blank screen was shown for 1 s. 
Each food that appeared in Stage 1 was presented twice, 
with the order of trials randomly determined for each 
participant. For each participant, the average of the two 
outcome expectancy ratings was calculated and used in 
subsequent analyses. 

Participants then received further training in Stage 2. 
Training consisted of eight blocks of two trial types (A-, 
Y+) appearing once per block in a random order. The 
procedure for this stage was otherwise identical to Stage 1. 
Test 2 then measured final outcome expectancies, using the 
same procedure as Test 1.  

Results 
We applied an inclusion criterion of 60% correct predictions 
in Stage 1, commonly used in similar work (e. g. Le Pelley 
& McLaren, 2003). Four participants failed to meet this, and 
are excluded from all subsequent analyses. The remaining 
46 participants learned readily, and made 98% correct 
responses during the final block of trials of Stage 1. These 
participants also made correct predictions on 98% of trials 

Stage 1 Test 1 Stage 2 Test 2 
A+ 
AX+ 
BY+ 
CY- 
 
8 blocks 

A 
B 
C 
X 
Y 
2 blocks 

A- 
Y+ 
 
 
 
8 blocks 

A 
B 
C 
X 
Y 
2 blocks 
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during the final block of Stage 2. Our analyses here focus on 
the critical test data.  

Mean ratings from Tests 1 and 2 are shown in Figure 1. 
The pattern of results in Test 1 closely resembles those 
obtained by Uengoer et al. (2013), with higher ratings for X 
than for Y, and higher ratings for B than for X. For the 
comparator theory, the crucial comparison is between B and 
X at Test 2. As for Test 1, ratings for B were higher than for 
X. A two-way ANOVA with test and cue variables was 
conducted. This revealed a significant effect of test, F(1, 45) 
= 6.59, p = .014, ηp

2 = .128, a significant effect of cue, F(4, 
180) = 80.76, p < .001, ηp

2 = .642, and a significant 
interaction, F(4, 180) = 207.85, p < .001, ηp

2 = .822. To 
explore this interaction, simple effects analyses were used to 
compare ratings from Tests 1 and 2 for each cue. Ratings 
differed between tests for A, F(1, 45) = 431.15, p < .001, ηp

2 
= .905, for B, F(1, 45) = 29.30, p < .001, ηp

2 = .394, for C, 
F(1, 45) = 23.28, p < .001, ηp

2 = .341, and for Y, F(1, 45) = 
359.38, p < .001, ηp

2 = .889. Ratings for X did not differ 
between tests, F < 1. 

Separate analyses were conducted to test the most 
informative comparisons. Firstly, in order to check that the 
redundancy effect was obtained, we used a within-subjects 
t-test to compare ratings for X and Y at Test 1. Ratings for 
X were significantly higher than for Y, t(45) = 7.58, p < 
.001. Secondly, to confirm that the revaluation of A and Y 
was successful, we conducted a two-way ANOVA 
comparing ratings for A and Y in the two tests. We found an 
effect of cue, F(1, 45) = 6.37, p = .0151, ηp

2 = .124, an 
effect of test, F(1, 45) = 5.12, p = .029, ηp

2 = .102, and 
importantly, a significant interaction, F(1, 45) = 559.83, p < 
.001, ηp

2 = .926. Exploring this interaction, we found that 
ratings for A were higher than for Y at Test 1, F(1, 45) = 
559.62, p < .001, ηp

2 = .926, but that ratings were higher for 
Y than for A at Test 2, F(1, 45) = 112.41, p < .001, ηp

2 = 
.714. The revaluation of A and Y was therefore successful. 
Thirdly, to test the predictions of the comparator theory, we 
conducted a similar two-way ANOVA to compare ratings 
for B and X at Test 1 and Test 2. We found an effect of cue, 
F(1, 45) = 46.82, p < .001, ηp

2 = .510, an effect of test, F(1, 
45) = 21.40, p < .001, ηp

2 = .322, and a significant 
interaction, F(1, 45) = 18.81, p < .001, ηp

2 = .295. Exploring 
the interaction, we found that ratings for B were higher than 
for X at both Test 1, F(1, 45) = 62.86, p < .001, ηp

2 = .583, 
and Test 2, F(1, 45) = 16.52, p < .001, ηp

2 = .268. This 
disconfirms the predictions of the comparator theory. If 
outcome expectancies for B and X were determined by a 
combination of direct associations with the outcome and 
comparison with Y and A respectively, then ratings for X 
should have been higher than for B at Test 2. One notable 
feature of the data that might suggest some role for a 
comparator process is the change in ratings for B between 
the two tests. Participants rated B as a less likely cause of 
the outcome after Y+ training than they did before, which is 
consistent with the comparator theory. However, an 
opposite effect was observed for C. Ratings for C were 
higher at Test 2 than at Test 1, which is the opposite change 

to that predicted by the comparator theory. It therefore 
seems likely that these changes are not the result of a 
comparator process, but rather a general decrease in 
certainty at Test 2. Since A and Y had been revalued in 
Stage 2, some participants may have assumed that 
associations learned during Stage 1 were no longer reliable.  

 

 
 

Figure 1: Mean ratings for Test 1 and Test 2, for each cue. 
Error bars show the standard error of the mean. 

 

Discussion 
The experiment reported here was designed to test an 
explanation of the redundancy effect based on the 
comparator theory (Denniston, Savastano, & Miller, 2001). 
Following A+ AX+ BY+ CY- training, participants were 
asked to rate the probability of the outcome occurring for 
each individual cue in Test 1. Ratings were higher for X 
than for Y; we therefore replicated the redundancy effect 
(Uengoer et al., 2013). This finding is consistent with the 
comparator theory, which states that the strength of the 
association formed between a cue and an outcome is 
determined by an individual (i.e. non-competitive) 
prediction error.  Since X was consistently paired with the 
outcome and Y was not, it follows that X should have 
become better associated with the outcome than Y. 
Participants also gave higher ratings for B than for X during 
Test 1. Again, this is consistent with the comparator theory. 
Although the theory predicts that each of these cues will 
have become associated with the outcome to the same 
extent, it also states that outcome expectancies should have 
been moderated by the comparator process at test. 
Specifically, outcome expectancy for X should have been 
reduced because it had been trained alongside A, which was 
strongly associated with the outcome. Any reduction in 
outcome expectancy for B should have been smaller, 
because it had been trained alongside Y, which was only 
weakly associated with the outcome. However, the 
comparator theory is not consistent with the results of Test 
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2. Following Stage-2 A- Y+ training, participants again 
rated the probability of the outcome occurring for each cue. 
Ratings for B were again higher than for X. The comparator 
theory, however, predicts the opposite pattern of results. 
This is because, although the associations with the outcome 
should have remained unchanged for both B and X, the 
associative status of their comparator cues had changed. We 
therefore conclude that the comparator theory cannot 
account for our results. Of course, this conclusion relies on 
the assumption that Stage-2 training was successful in 
revaluation of A and Y. This is apparent in the higher 
ratings given for Y than for A at Test 2.  

Our results are also difficult to reconcile with the model 
of learning proposed by Rescorla and Wagner (1972). 
Because it describes learning as being the result of a 
combined prediction error, X should have failed to become 
associated with the outcome and should have been rated as a 
less likely cause of the outcome than Y at Test 1. In other 
words, the Rescorla-Wagner model fails to account for the 
redundancy effect because it incorrectly predicts that 
learning about the blocked cue will be prevented. However, 
Vogel and Wagner (2017) have suggested a way in which 
the prediction of blocking can be modified to accommodate 
the redundancy effect. Their modification is based on the 
assumption that each cue shares some common features, 
denoted K. The training given in Stage 1 here could 
therefore be re-described as AK+ AXK+ BYK+ CYK-. K 
should become associated with the outcome, with two 
consequences that are relevant for interpreting the 
redundancy effect. Firstly, because K is present on CYK- 
trials, overexpectation of the outcome is increased and the 
weakening of the association between Y and the outcome on 
these trials is more substantial than when K is omitted. 
Secondly, When XK is presented at test, outcome 
expectancy is boosted by K; the model can therefore predict 
greater outcome expectancy for XK as a result of including 
the common features. Combination of these two changes 
allows the model to predict the redundancy effect. This 
version of the model also makes an interesting prediction 
regarding the effect of adding further trial types to Stage-1 
training. Because the extent to which K becomes associated 
with the outcome is critical, adding extra trials on which the 
outcome does not occur (e.g. DK-) should reduce the 
influence of common features and eliminate the redundancy 
effect. This prediction remains untested. If it is correct, it 
would lend support to an account that provides a way to 
reconcile the Rescorla-Wagner model with the redundancy 
effect.  

Another possibility is that learning is governed by quite 
different rules. Not all models of learning make such strong 
predictions about the restriction of learning about blocked 
cues. Pearce’s (1987, 1994) configural model, for instance, 
predicts substantial outcome expectancy for blocked cues. 
According to this model, participants learn about configural 
representations that include all cues present on a given trial, 
rather than each cue entering into its own association with 
the outcome. In the case of blocking, participants would 

come to associate A with the outcome on A+ trials, and to 
associate AX with the outcome on AX+ trials. Outcome 
expectancy for X alone would then be determined by 
generalization from AX, based on their similarity. Outcome 
expectancy for X would therefore be weaker than for AX, 
but considerably stronger than it would have been without 
any training. However, Pearce at al. (2012) note that the 
theory is unable to predict the redundancy effect because it 
predicts that outcome expectancy for Y will be higher still. 
As with the Rescorla-Wagner (1972) model, it is possible 
that some modification of the configural model would alter 
this prediction, but it is not clear at present what that 
modification might be.  

Whether cues are learned about individually or as 
configurations, the redundancy effect might be 
accommodated if we suppose that the amount of attention 
paid to blocked and uncorrelated cues changes during 
training. For instance, it is commonly assumed (Le Pelley, 
2004; Mackintosh, 1975) that cues are processed to the 
extent that they have predictive value. Since blocked and 
uncorrelated cues are both redundant, we might expect the 
amount of attention they are paid to be reduced. In order to 
explain the redundancy effect, however, we need to propose 
that this reduction in attention differs in magnitude for 
blocked and uncorrelated cues. If we suppose that 
participants learn quickly that Y is irrelevant during BY+ 
CY- training, then we might expect substantial decreases in 
the amount of attention paid to Y and a weak association 
between Y and the outcome as a result. Attention to X, on 
the other hand, might be maintained for longer, allowing a 
stronger association to form between X and the outcome. In 
an attempt to evaluate this claim empirically, Jones and 
Zaksaite (2017) monitored participants’ eye gaze during A+ 
AX+ BY+ CY- training. The duration of eye gaze for each 
cue has been used extensively as a measure of overt 
attention in learning tasks (e.g. Beesley & Le Pelley, 2011). 
Jones and Zaksaite found that participants spent more time 
looking at Y than at X, but that this was likely to have been 
a consequence of differing trial durations. When X and Y 
were presented on the screen together in a subsequent stage 
of training, gaze was equivalent for each. This experiment 
therefore failed to provide any evidence that the amount of 
attention paid to blocked and uncorrelated cues differs.  

In addition to associative accounts of blocking, others 
(e.g. Lovibond, Been, Mitchell, Bouton, & Frohardt, 2003) 
have argued that blocking is the result of inferential 
reasoning. According to this view, blocking occurs because 
participants do not have independent evidence that the 
blocked cue causes the outcome (i.e. training trials on which 
X is presented without A). However, since participants also 
lack evidence that the blocked cue does not cause the 
outcome, they should be uncertain about the causal status of 
X and blocking should be relatively weak. This uncertainty 
might be enhanced because the magnitude of the outcome is 
fixed, meaning that compound presentation of two causal 
cues would lead to the same outcome as either cue alone.   
Lovibond et al. provided support for this position by 
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showing that blocking is enhanced when the magnitude of 
the outcome varies in accordance with the number of causes 
present, allowing participants to infer that the blocked cue is 
not a cause of the outcome. In light of this account, we 
should consider whether the intermediate ratings for X in 
the present experiment were the result of an intermediate 
level of learning, or of uncertainty about its causal status. 
An unpublished experiment from our laboratory suggests 
that this might be a promising approach. In addition to 
rating the probability of the outcome for each cue, 
participants rated their confidence in these judgments. 
Confidence ratings were lower for blocked than for 
uncorrelated cues, suggesting that the redundancy effect 
might be due at least in part to uncertainty about X. 

Conclusion 
We have considered theories that account for learning by 
using individual and combined prediction errors. While 
combined prediction error models (e.g. Rescorla & Wagner, 
1972) are difficult to reconcile with the redundancy effect, 
individual prediction error does not result in cue 
competition effects such as blocking, unless an additional 
process is invoked. We tested a theory that includes such a 
process (Denniston, Savastano, & Miller, 2001), but found 
that it was not consistent with the results of Test 2. We 
suggest two lines of future enquiry. Firstly, data should be 
collected that evaluate the predictions arising from Vogel 
and Wagner’s (2017) addition of common features to 
simulations of the Rescorla-Wagner model. While the cues 
used in the present experiment are likely to have shared 
some common features, we cannot currently evaluate the 
claim that learning about these features enables the 
redundancy effect to occur. Secondly, since neither 
combined nor individual prediction errors seem capable of 
producing our results, attempts should be made to evaluate 
some combination of the two. In particular, any models 
containing both kinds of prediction error should be tested 
against the idea that cue competition occurs because of 
inferential reasoning processes. 
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