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FINDER: an automated software package 
to annotate eukaryotic genes from RNA‑Seq 
data and associated protein sequences
Sagnik Banerjee1,2, Priyanka Bhandary1,3, Margaret Woodhouse4, Taner Z. Sen5, Roger P. Wise4,6 and 
Carson M. Andorf4,7*  

Abstract 

Background: Gene annotation in eukaryotes is a non-trivial task that requires meticu-
lous analysis of accumulated transcript data. Challenges include transcriptionally active 
regions of the genome that contain overlapping genes, genes that produce numerous 
transcripts, transposable elements and numerous diverse sequence repeats. Cur-
rently available gene annotation software applications depend on pre-constructed 
full-length gene sequence assemblies which are not guaranteed to be error-free. The 
origins of these sequences are often uncertain, making it difficult to identify and rectify 
errors in them. This hinders the creation of an accurate and holistic representation of 
the transcriptomic landscape across multiple tissue types and experimental conditions. 
Therefore, to gauge the extent of diversity in gene structures, a comprehensive analysis 
of genome-wide expression data is imperative.

Results: We present FINDER, a fully automated computational tool that optimizes the 
entire process of annotating genes and transcript structures. Unlike current state-of-
the-art pipelines, FINDER automates the RNA-Seq pre-processing step by working 
directly with raw sequence reads and optimizes gene prediction from BRAKER2 by 
supplementing these reads with associated proteins. The FINDER pipeline (1) reports 
transcripts and recognizes genes that are expressed under specific conditions, (2) 
generates all possible alternatively spliced transcripts from expressed RNA-Seq data, (3) 
analyzes read coverage patterns to modify existing transcript models and create new 
ones, and (4) scores genes as high- or low-confidence based on the available evidence 
across multiple datasets. We demonstrate the ability of FINDER to automatically anno-
tate a diverse pool of genomes from eight species.

Conclusions: FINDER takes a completely automated approach to annotate genes 
directly from raw expression data. It is capable of processing eukaryotic genomes of 
all sizes and requires no manual supervision—ideal for bench researchers with limited 
experience in handling computational tools.

Keywords: Genomics, Transcriptomics, Eukaryotic gene annotation, Gene prediction, 
Optimized RNA-Seq alignment, Changepoint detection
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Background
Recent advances in sequencing technology enable the construction of chromosomal-
level assemblies for even non-model organisms. As of December 2020, genomes of 
16,108 eukaryotes, 295,784 prokaryotes, 41,936 viruses, 26,079 plasmids and 17,820 
organelles are sequenced and available through GenBank [1], a considerable increase 
over the 1,500 sequences reported two decades ago (see Additional file 1: Fig. S1). There-
fore, to annotate the ever-rising number of genome sequences, annotation software 
applications need to be fast, accurate, and designed to handle large amounts of expres-
sion data to facilitate discovery of novel genes across different conditions [2–5]. Exten-
sive analysis of this available data is the key to achieving exhaustive gene discovery by 
analyzing samples from multiple tissues and conditions, obviating the need for addi-
tional sequencing.

Genome annotation is the process of identifying transcriptionally active regions of the 
genome and defining gene structures. Decoding the correct structures of genes is essen-
tial since several downstream applications rely on accurate annotations: detecting inter-
actions between proteins [6–14], identifying post-translational modifications [15–23], 
mining effectors [24–28], and determining protein structure [29–32]. Although we have 
seen a significant improvement in genome sequencing technology, annotation methods 
continue to underperform [33, 34]. Obtaining accurate gene annotations is challeng-
ing, especially in recently sequenced non-model organisms. The presence of sequences 
exchanged through horizontal gene transfer in such genomes and the existence of frag-
mented assemblies make it difficult to predict gene structures [35]. Multiple groups 
working on the same species have different and oftentimes conflicting annotations that 
are difficult to merge into a common consensus.

The early 2000s saw initial genome annotation attempts with the introduction of PASA 
[36], which was developed to map full-length transcripts and Expressed Sequence Tags 
(ESTs) in order to annotate genomes. In parallel, FGENESH [37, 38], GeneGenerator 
[39], mGene [40] and GeneSeqer [41] were introduced which predicted gene structures 
directly from genome sequence. Tools such as MAKER [42–45] and PASA [36] closely 
depend on pre-assembled full-length transcripts to generate annotations. ESTs and/or 
de novo assembled transcriptomes have been often provided as inputs to these tools to 
generate annotations [46–52]. Transcripts constructed via de novo [53–57] or genome-
guided [58–63] approaches are sensitive to the nature of the assembler and its param-
eter settings. Such assemblers report sequences that are highly similar to one another, 
making the process of sifting the correct assemblies from artefacts difficult. This issue is 
moderately mitigated by BRAKER2 [64, 65], which uses read splice information instead 
of full-length assemblies to predict gene structures and has been shown to perform bet-
ter than de novo approaches [66]. BRAKER2 entails a round of unsupervised gene pre-
dictions using GeneMark-ET [67] generating ab-initio gene predictions followed by a 
second round of training by AUGUSTUS [68] using a subset of the gene models cre-
ated by GeneMark-ET [64]. All variations of MAKER (MAKER, MAKER2 and MAKER-
P) use a combination of AUGUSTUS [68] and SNAP [69] to generate gene predictions. 
Unlike BRAKER2 or PASA, users need to run MAKER for multiple rounds to improve 
annotation. With no standard technique to optimize the number of rounds, users often 
undertake a trial-and-error approach to decide what data is supplied to MAKER in each 
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execution round. These unguided choices can create different annotations based on the 
same data sets. Thus, current approaches report either incomplete genes and/or derive 
annotations that are missing alternatively spliced transcripts. In addition to MAKER, 
BRAKER, PASA there is another gene annotator -GeMoMa [70] that use protein coding 
genes from a reference genome and transfers those to the target genome. Since it does 
not optimally use information from expression data, it has not been compared with the 
other gene annotators discussed in this manuscript.

To overcome the drawbacks described above, we developed FINDER, a new, auto-
mated annotation pipeline that downloads RNA-Seq data from NCBI SRA [71], con-
ducts genome-guided assembly of short reads, predicts gene structure, and annotates 
genes. FINDER annotates both untranslated and coding regions of genes, categorizes 
transcripts based on the tissue/conditions where they are expressed, and outputs a com-
plete set of alternatively spliced transcripts. FINDER analyzes the spatial expression pro-
file of each transcript to redefine its boundaries and/or even create newer transcripts 
and employs an optimized strategy to locate transcripts housing micro-exons. Finally, 
gene models predicted by BRAKER2 are incorporated into the annotation along with 
assemblies generated by PsiCLASS [63]. We show that FINDER outperforms state-of-
the-art annotation tools in constructing accurate gene structures, when executed with 
the same expression data.

Implementation
The detailed workflow of FINDER is outlined in Fig. 1. The pipeline accepts metadata via 
a comma-separated values (csv) file (see Additional file 2: Table S1). Users can verify the 
input data using the `verifyInputsToFINDER` utility (Please check Sect. 1.5.1 of Addi-
tional file 9). Both single-end and paired-end data are accepted. The pipeline automati-
cally downloads RNA-Seq data from NCBI SRA or the samples can be accessed locally. 
Multiple rounds of alignment are conducted using STAR [72, 73] with short reads, thus 
ensuring the capture of tissue-specific splice junctions and ultimately generates the most 
comprehensive set of alternatively spliced transcripts. FINDER uses PsiCLASS [63] to 
generate transcripts both at the tissue level and consolidates them to produce a consen-
sus annotation. It employs change-point detection (CPD) using coverage data to polish 
intron/exon boundaries if needed. Polished transcripts are then supplied to GeneMarkS-
T [74] to predict protein coding regions. In addition to constructing genes from expres-
sion data, FINDER uses BRAKER2 [65] to predict genes de novo. Finally, gene models 
are assigned scores that reflect the confidence of prediction and evidence across differ-
ent data sets. Throughout the pipeline run, intermediate temporary data is removed to 
optimize space usage. Proper logging of executions is implemented through ruffus [75].

Read alignments to the genome

Reads from each sample are aligned to the genome using STAR [73]. FINDER accepts 
the location of the genomic STAR indices. If indices are not provided, then FINDER will 
generate them locally. FINDER implements multiple strategies to detect as many cor-
rect splice-junctions as possible. Several studies use a multi-step approach where splice 
junctions are detected in the first pass and then those junctions are used to guide the 
alignments in future passes [76, 77]. FINDER employs a similar strategy to align reads 
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and obtain the most confident splice junctions in each tissue type and/or condition by 
conducting mapping in four passes (Please check Sect. 1.3 of Additional file 9 for more 
details).

Annotating transcripts with micro‑exons

Certain genes in eukaryotes have micro-exons (i.e., exons with fewer than 50 nucleo-
tides) [78–81] which impart important biological properties both in plants [82–86] 
and animals [87–91]. FINDER uses OLego [92] to map the reads which were reported 
unmapped by STAR, because OLego optimizes micro-exon sensitivity by checking 
intron signatures when no hits of seed sequences (~ 14 nt) are found. It is configured to 
align reads to exons of minimum length 2, with a minimum and maximum intron size of 
20 and 10 K respectively.

Fig. 1 FINDER workflow. FINDER assembles short reads from RNA-Seq expression data, collected from 
multiple tissues and conditions, to generate full-length transcripts using PsiCLASS. Short read coverage 
profile is used to polish the structure of the transcripts to enhance the quality of annotation. GeneMarkS-T is 
used to predict coding regions of the transcripts. Gene models predicted by BRAKER2 and models obtained 
by mapping proteins are added to the gene models constructed from RNA-Seq data. Additionally, FINDER 
outputs the tissues where each transcript is expressed allowing users to work with tissue-specific transcripts. 
FINDER categorizes transcripts into two confidence levels depending on the available supporting evidence 
and depth of coverage. (Generated using Microsoft PowerPoint v16.47) 
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Generating exon‑exon transcript structure annotation with PsiCLASS

Alignments reported by STAR and OLego are combined and provided as input to 
PsiCLASS [63]. Unlike traditional assemblers, PsiCLASS accepts alignments from multi-
ple samples at the same time. It generates annotations for each sample and one consoli-
dated gene annotation for all the samples. FINDER runs PsiCLASS with the—bamGroup 
option enabled which instructs PsiCLASS to preserve tissue/condition specific features. 
It is a fast meta-assembler generating 350 samples of output in less than three hours 
while running on 30 cores and consumes less than 50 GB of memory.

Polishing gene structures to optimize gene discovery

Gene structure annotations reported by PsiCLASS were polished to generate the best 
assemblies. Annotations generated by assemblers often have three kinds of errors that 
impact accuracy: (1) presence of redundant transcripts that are proper subsets of other 
transcripts, (2) multiple transcripts on the same strand merged into one, and (3) tran-
scripts with ill-defined exon boundaries. Most assemblers ignore such cases to boost the 
speed of operation. Developing solutions to deal with these kinds of errors increases the 
number of correct structural annotations thereby improving downstream analysis.

FINDER uses different algorithmic and statistical approaches to deal with the above 
cases. To eliminate redundant transcripts, exon–intron structure of all transcripts is 
compared with each other to retain only unique transcripts. Even though eukaryotes 
possess large genomes, certain genes/transcripts are closely packed and are overlap-
ping (Fig. 2). Reads originating from one of those genes often map to nearby overlapping 
genes making the task of distinctly recognizing the transcripts very challenging.

FINDER is configured to use changepoint detection (CPD) analysis to detect the 
descent in read coverage at the junction of two overlapping transcripts. Statistical CPD 
is a procedure to detect changes in the probability distribution of a stochastic pro-
cess. Typically, CPD is widely used to detect changes in time series [93–97], but can be 
extended to other applications as well [98, 99]. We have found that even though CPD 
was developed under the assumption of normality, it can also be used where normality 
is violated.

In the first step in FINDER’s CPD, short read alignments to the genome are converted 
into number of read counts per nucleotide using bedtools [100]. A custom python script 
is used to transfer the per nucleotide coverage data from the genome to the transcrip-
tome reported by PsiCLASS. Each internal exon is considered as a potential site for the 
presence of changepoints if there exist premature stop codons in all the three frame 
translations. CPD only considers exons that have a high chance of housing a change-
point, thereby reducing duration of operation. The coverage pattern of each exon is 
probed to detect changepoints. The data has been modeled using an exponential distri-
bution, and binary segmentation has been used to determines the changepoints in the 
exonic coverage using the ‘changepoints’ package [101]. Read coverage of exons mimics 
a time series where each nucleotide position of an exon can be assumed to be a single 
unit of time. Coverage patterns of exons, suspected to be merged, contain a character-
istic depression in the signal to split the gene models (Fig. 2a). Overlapping transcripts 
on opposite strands sometimes share a common exon (Fig. 2b). This negatively impacts 
precision since the boundaries of the predicted transcript exceed the boundaries of the 
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transcript in the reference annotation. FINDER trims the transcript boundaries, using 
the changepoints, to better model the RNA-Seq coverage (Fig.  2b). These strategies 
improve the annotation by increasing the transcript F1 scores (Table 1).

De novo gene prediction from expression data and proteins from closely related species

Certain genes are expressed only under specific tissues and conditions [102]. However, 
constructing an exhaustive set of genes expressed across all possible tissues and condi-
tions is a daunting task due to the mammoth volume of potential expression data. Hence, 
approaches that can predict structures of unknown genes using information obtained 
from known genes are needed. Within the FINDER framework, we used BRAKER2 
[103] to predict the structure of protein coding genes. The pipeline is provided with 
alignment files generated by STAR and an optional, user-provided protein data file. If the 
previous execution fails, a second execution of BRAKER2 is launched without protein 
information. Genes predicted by BRAKER2 are compared to the genes obtained from 
expression data. To prevent too many false positives, predictions made by BRAKER2 are 
considered high confidence, only if those are supported by expression level or protein 
level evidence.

In addition to RNA-Seq data, FINDER also uses protein data (when provided), in two 
ways (1) to assess the veracity of the transcript models generated by BRAKER2, and (2) 
to align those proteins not recognized by BRAKER2 or PsiCLASS. Protein coding genes 
obtained from expression data and predicted by BRAKER2 are BLASTed [104] to the 

a

b

Fig. 2 FINDER implements changepoint analysis of read coverages to modify existing gene models and/
or generate new ones. Changepoint analysis is a statistical technique to assess alterations in trends over 
time. The same approach has been used to analyze read coverage patterns of a genome, where the data is 
distributed spatially. a Two Arabidopsis thaliana genes AT1G42960.1 and AT1G42970.1 are present within 50 
base pairs of each other on the positive strand. Reads originating from the end exons of either genes bleed 
into each other resulting in PsiCLASS to merge the two gene models. Changepoint analysis recognizes the 
fall the read coverage and reports a position within the exon where the trough exists. This information is 
used to split up the gene models. b A similar issue exists with closely spaced genes residing on opposite 
strands. The end exons (highlighted with a red box) for a transcript extend up to the nearest intron of the 
adjacent transcript. Changepoint analysis is used to determine the actual end/start of transcript based on 
the read coverage. (Screenshot obtained from Integrative Genomics Viewer and figure generated using Microsoft 
PowerPoint v16.47) 
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protein set provided by the user. Proteins not encountering any hits are aligned to the 
genome using exonerate [105] with a minimum threshold of 90% similarity. These align-
ments are augmented to the final set of gene predictions. Since these transcripts are 
obtained solely from proteins, they lack UTR sequences.

Prediction of coding regions

We leveraged GeneMarkS-T [74] to predict protein-coding regions of genes constructed 
from expression data. GTF files are first converted to FASTA files using the provided 
genome. Those FASTA files are supplied to GeneMarkS-T as inputs. GeneMarkS-T out-
puts coding sequence for the transcripts. CDS annotations are incorporated into the 
final GTF file by converting the transcriptomic coordinates to genomic coordinates.

Tissue/condition specific transcripts/gene models

Most eukaryotic genes have multiple isoforms which are derived from alternative tran-
scripts. Expression of different transcripts can occur under different conditions in differ-
ent tissues at different time points. FINDER compares assembled transcripts from each 
condition and prints out an association between each transcript and the provided tissue/
condition (Additional file 9: Sect. 1.5).

Scoring gene models

FINDER groups genes into multiple categories based on supporting evidence. Genes that 
are expressed in RNA-Seq datasets, predicted by BRAKER2, and have protein evidence, 
are put into the high-confidence gene set. BRAKER2-predicted genes with no evidence 
of expression and/or proteins are treated as low confidence genes. FINDER expects a 
soft masked genome since it is a BRAKER2 requirement. Genes which are located in the 
repeat regions are marked as such and moved to the set of low-confidence genes.

Results and discussion
Choice of species for comparison

We tested the performance of FINDER primarily on three well-annotated plant 
organisms—Arabidopsis thaliana [106], Oryza sativa [107–109] and Zea mays 
[110, 111]. The genomes assemblies of these model organisms have been frequently 
updated and are almost complete with telomere-to-telomere sequences with fewer 
gaps and unknown nucleotides. In addition, their gene annotations have undergone 
regular improvement by mining the large number of RNA-Seq datasets available in 
the literature. Also, The Arabidopsis Information Resource (TAIR) provides a five-
star rating system based on available evidence for each gene. Such a system offers a 
platform to test the quality of gene annotation software. For further evaluation, and 
to ensure that FINDER is able to annotate a wider range of genome types, we selected 
the following additional species to test: Caenorhabditis elegans [112], Drosophila 
melanogaster [113, 114], Homo sapiens [115, 116], Hordeum vulgare [117], and Triti-
cum aestivum [117–120]). The genomes of these species range from small (C. elegans, 
D. melanogaster, A. thaliana), medium (O. sativa), to large (H. sapiens, Z. mays, H. 



Page 9 of 26Banerjee et al. BMC Bioinformatics          (2021) 22:205  

vulgare, and T. aestivum). Finally, we evaluated FINDER on three different versions of 
Z. mays annotations—RefSeq [121], AGPv3 [111, 122] and AGPv4 [110, 123].

Metrics to assess quality of annotation

We used four metrics to compare the quality of annotations generated by each pipeline: 
(1) Annotation Edit Distance (AED) [42, 43, 124], (2) sensitivity, (3) specificity, and (4) 
F1 score. Although these metrics could be computed both at the nucleotide- and exon-
level we chose to make comparisons at the transcript level since it encompasses bases, 
exons, and introns. An AED score of 0 indicates complete agreement of the predicted 
annotation with the reference, and a score of 1 denotes that the reference has not been 
identified in the annotation. A transcript is considered to be “recognized” only when all 
its intron definitions agree with at least one transcript from the predicted set. We used 
the Mikado “compare” utility to compare the predictions with the reference annotations 
[125]. A highly sensitive annotation is one that can correctly recognize more reference 
transcripts. A set of annotations has high specificity when it reports minimal incor-
rect transcripts. For an annotation to be of good quality, both sensitivity and specificity 
should be high. A balanced metric is the F1 score which is the harmonic mean of sen-
sitivity and specificity. While AED provides a good numeric assessment of how well the 
ground truth evidence is represented in an annotation, when individually used, it fails to 
capture the extent to which false positives are reported. Hence, F1 score complements 
AED since it incorporates both specificity and sensitivity. For evaluation purposes, we 
assume that the annotations achieved through community efforts are the ground truth 
and contain no errors.

FINDER generates more accurate gene models than BRAKER2, MAKER2 and PASA

FINDER leverages expression data to construct transcript models and employs statisti-
cal changepoint detection to enhance their structures (see “Implementation” section). 
Both MAKER2 and PASA were run with transcript sequences reported by PsiCLASS.

To assess FINDER’s performance, we compared the AED scores of transcript mod-
els generated by FINDER with those generated by other commonly used annota-
tion methods. As shown in Fig. 3a, d, g, the violin plots for FINDER are broader at the 
base, indicating a greater number of transcripts with lower AED scores as compared to 
BRAKER2, MAKER, and PASA. We compared the FINDER AED scores with the AED 
scores reported by other pipelines using Wilcoxon’s signed rank test (More details in 
Additional file 9: Sect. 2.5). For all organisms (Fig. 3, Additional file 1: Figs. S2–S5 and 
Additional file 3: Table S2), the AED scores reported by FINDER were significantly lower 
(p_value < 0.01) than that of any other pipeline. Figure 3c, f, i, shows a stacked bar plot 
to represent the fraction of transcripts in each category of AED values. In all the cases, 
a higher percentage of transcripts reported by FINDER have lower AED scores (Addi-
tional file  1: Figs.  S2–S5). This indicates that FINDER is capable of constructing gene 
structures that better comply with the reference annotations.

High-quality exhaustive annotations predict the fewest false positives thereby boosting 
the transcript F1 score. The transcript F1 scores of the gene models that were reported 
by FINDER for A. thaliana, O. sativa and Z. mays were higher than the models generated 
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by BRAKER2, MAKER, and PASA (Fig. 3b, e, h). This same trend is observed for other 
tested organisms where FINDER was successful in detecting nucleotides, exons, introns, 
transcripts and genes (Table  1, Additional file  1: Figs.  S2–S5 and Additional file  3: 
Table S2). MAKER2 and BRAKER2 registered a high specificity for most of the organ-
isms because fewer transcripts were reported than FINDER. MAKER2 and BRAKER2 
also had lower F1 scores, indicating less sensitivity than FINDER. Additionally, we com-
pared the CDS regions of genes reported by FINDER with those of BRAKER2. For most 
of the organisms, FINDER generated transcript models with a higher F1 score (Addi-
tional file  4: Table  S3). These results show that the better performance of FINDER is 
ensured not only due to the presence of UTRs but also due to enhanced CDS structure 
of gene models.

Finally, including BRAKER2 predictions and protein sequences to FINDER enhanced 
the gene model predictions. About 15% of the gene models reported by BRAKER2, those 

Fig. 3 Comparison of performance of predicted annotations in three model species—a–c A. thaliana, d–f O. 
sativa and g–i Z. mays. Annotation Edit Distance (AED) is an assessment of how well predicted annotations 
agree with the evidence and was used as a quality control metric. A value of 0 denotes complete agreement 
of two annotations while a value of 1 denotes that the ‘gold standard’ reference annotation was not 
detected. Transcripts from ‘gold standard’ reference annotations that are not detected in any of the predicted 
annotations are removed from analysis. a, d, g Distribution of AED scores. Violin plots wider at the base 
indicate high density of annotations with lower AED. FINDER was able to create gene models having lowest 
AED resulting in a wide base. Gene models generated by FINDER were enhanced by adding predictions 
made by BRAKER and including protein evidence. Wilcoxon’s signed rank test was used to compare the 
AED scores between FINDER and other annotating pipelines. The “***” symbol implies that the AED scores 
of FINDER gene models were significantly lesser (p_value < 0.01) than the AED scores of the gene models 
reported by other pipelines. b, e, h Bar plot of F1 score of multiple approaches of annotation. Having a high 
nucleotide F1 (Base F1) or a high exon F1 score is not sufficient to conclude a good annotation. High value of 
transcript F1 score is indicative of good gene models with high sensitivity and high specificity. c, f, i Stacked 
bar plot showing percentage of transcripts in each of the four groups of AEDs. Higher number of transcripts 
to low AED denotes better annotation. In each of the three species, FINDER was able to generate a higher 
percentage of transcripts with low AED compared to other techniques of annotation. (Generated using 
ggplot2 v3.3.3)



Page 11 of 26Banerjee et al. BMC Bioinformatics          (2021) 22:205  

having high sequence similarity with the provided protein sequences were included 
in the final annotations (Table 2). As shown in Table 1 and Additional file 5: Table S4, 
including evidence at the protein level led to the identification of more genes.

Unlike BRAKER2, FINDER does not assume a homogeneous nucleotide composition 
of the genome [103]. FINDER outperforms BRAKER2 while constructing gene models 
in complex organisms like H. sapiens, H. vulgare, and Z. mays since assemblers generat-
ing transcriptomes from alignments do not require a genome to possess homogeneous 
nucleotide composition.

FINDER in itself is restricted to annotate genes only in regions of the genome that are 
transcriptionally active. Recognizing that BRAKER2, being a gene predictor, can con-
struct gene models in transcriptionally silent regions of the genome, FINDER is designed 
to incorporate the gene models predicted by BRAKER2 into the final annotations.

Distinct gene groups are accurately annotated with FINDER

Although eukaryotic genes differ from one another in terms of location, structure and 
the isoforms they encode, most annotation pipelines annotate and evaluate gene pre-
dictions with a global and uniform approach. The problem arises when these variances 
prompt each pipeline to perform differently on dissimilar groups of genes. To avoid this 
pitfall, we created groups of genes and transcripts based on various criteria (Table 3) and 
compared the performance of FINDER with BRAKER2, MAKER, and PASA for each of 
these sets.

On the set of UTR-containing transcripts, FINDER reported the best transcript F1 
scores (Fig. 4, Additional file 1: Figs. S6, S7). Unlike BRAKER2, FINDER uses GeneMark 
S/T to predict CDS from the transcript sequences assembled by PsiCLASS and can 
hence annotate UTR regions. For most of the organisms, BRAKER2 and MAKER2 gene 
models register a low transcript F1 score in this category of genes. Next, we tested the 
performance of the annotation pipelines on transcripts that are closely located in the 
genome. On this set of transcripts, FINDER reported the best F1 transcript score for 

Table 2 Improvement in overall gene recognition by adding gene models predicted by BRAKER2 
and aligning protein sequences

Organism Number of 
transcript 
models 
borrowed 
from BRAKER

Percentage 
of transcript 
models 
borrowed 
from BRAKER

Improvement 
in average 
annotation 
score

Number of 
transcript 
models 
from protein 
alignments

Percentage 
of transcript 
models 
from protein 
alignments

Improvement 
in average 
annotation 
score

Arabidopsis 
thaliana

1692 5 1.43 185 0.01 0.05

Oryza sativa 5662 10 0.15 440 0.01 0.15

Zea mays 1061 2 0.05 452 0.01  − 0.02

Caenorhabditis 
elegans

4807 18 0.48 389 0.01 0.58

Drosophila 
mela-
nogaster

2421 9 0.44 481 0.02 0.22

Homo sapiens 5776 16 0.05 229 0.01 0.15

Hordeum 
vulgare

1065 3 0.01 19 0  − 0.57
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A. thaliana, O. sativa, and Z. mays (Fig. 4), and comparable scores for D. melanogaster 
(Additional file 1: Fig. S6), H. vulgare (Additional file 1: Fig. S8), and C. elegans (Addi-
tional file  1: Fig.  S7) with BRAKER2. Most eukaryotic genes have multiple isoforms 

Table 3 Classification of gene models into different groups based on their relative location to other 
genes, number of isoforms and other criteria

Name Description

Group 1 Uni-exon transcripts Transcripts having a single exon and no introns

Group 2 Transcripts without UTRs Transcripts missing either the 5′ or the 3′ UTR sequence

Group 3 Transcripts with UTRs Transcripts having both UTRs

Group 4 Transcripts with micro-exons Transcripts where at least one exon has length less than 
50 nucleotides

Group 5 Transcripts with long introns Transcripts where at least one intron has a length 
greater than 10,000 bp

Group 6 Closely placed transcripts on same strand Transcripts on the same strand having less than 250 
nucleotides between each other

Group 7 Closely placed transcripts on opposite strand Transcripts on the opposite strands having less than 250 
nucleotides between each other

Group 8 Multi transcript gene Transcripts of a gene that have multiple transcripts

Group 9 Single transcript gene Transcripts of a gene that have single transcript

Fig. 4 FINDER versus other pipelines on different groups of genes in three model species—a A. thaliana, b O. 
sativa, c Z. mays. F1 score is the harmonic mean between sensitivity and specificity. Higher F1 score indicates 
better agreement with the reference transcript models. We created groups of transcripts that have similar 
characteristics as shown in the y-axis legend. A pool of transcripts was created containing multi-exonic 
transcript predictions, from each pipeline, that has a complete intron chain match with at least one reference 
annotation. Mono exonic transcripts were considered if at least 80% of the nucleotides overlap with one 
reference annotation. Transcript F1 scores, for each of the annotation pipelines, have been plotted as a bar 
graph. Even though all annotation pipelines are designed to serve the same purpose of annotating genomes, 
each pipeline adopts a different strategy. Each strategy has its own merits and demerits that lead to better 
annotation of a certain category of genes. This plot helps understand the performance of each annotation 
pipeline on different categories. The symbol “#” denotes the best annotator in each gene group. (Generated 
using ggplot2 v3.3.3)
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which differ from one another by their exon–intron definition. Splice sites and cover-
age information provides clues to construct such alternatively spliced transcripts. We 
selected genes with more than one transcript to check how well each annotation pipe-
line was able to detect transcript isoforms. For this case, FINDER was able to generate 
the best transcript structures with the highest transcript F1 score among all the pipelines 
gene annotation software applications (Fig.  4 and Additional file  1: Figs.  S6–S9). Sur-
prisingly, BRAKER2 fared poorly in this category despite training with all the detected 
splice sites from RNA-Seq data. This demonstrates that FINDER is capable of leveraging 
both intron splice sites and read coverages to report best transcript structures. For H. 
sapiens, PASA was able to generate the best transcript structures across all categories of 
transcripts. Adding transcripts from BRAKER2 and protein evidence improved the tran-
script F1 score for all the organisms, signifying the importance of incorporating de novo 
gene models and protein evidence.

BRAKER2 generated the best transcript annotation for the set of transcripts with a 
single exon (Fig. 4a, b and Additional file 1: Figs. S6–S9). Such transcripts, devoid of any 
introns, are difficult to construct from RNA-Seq alone. Also, the direction of the splice 
sites infers the direction of a transcript. Without any introns, such a single-exon tran-
script has to be probed for a CDS sequences’ presence to infer directionality. BRAKER2 
was configured to optimally predict only CDS regions of genes, hence, it performs well 
with the set of transcripts that have missing UTRs for organisms with small and moder-
ate sized genomes (Fig. 4a, b and Additional file 1: Fig. S6–S9). The average number of 
transcripts per gene reported by BRAKER2 is lower than FINDER. While this boosts 
specificity, it compromises recall since BRAKER2 is not sensitive to detecting alterna-
tively spliced transcripts. Hence, BRAKER2 accomplishes the best F1 score when tested 
on a set of single-transcript genes but performs poorly on a set of multi-transcript genes 
(Fig. 4a, b and Additional file 1: Figs. S6–S9).

Performance comparison on TAIR’s 5‑star System

In order to assess the performance of the annotation pipelines on groups of genes 
constructed from varying levels of evidence, we used the TAIR10 5-star system. TAIR 
associates a quality score to each A. thaliana transcript based on the evidence used to 
construct the models, with five stars designating the best evidence and zero stars the 
least [126]. The three categories with limited evidence (< 3 stars) have fewer than 3,000 
transcripts each. BRAKER2′s performance, on the genes in these three categories, was 
slightly better than the rest of the annotation pipelines (Fig. 5). The other two catego-
ries (five star and four star) have 9,067 and 18,374 transcripts respectively. In both of 
these categories, FINDER was able to detect more transcripts than any other annotation 
pipeline. 51.5% and 86.4% of genes in the 5-star and 4-star category respectively were 
multi-exonic. In both these categories, FINDER correctly constructed more gene models 
compared to any other annotation pipeline (Fig. 5). FINDER reported 80% of the gene 
models belonging to the 4-star category—18% more than BRAKER2 (Fig. 5). Hence, it 
is evident from this analysis that FINDER can reconstruct the structures of most of the 
genes that are well-supported by underlying evidence.
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Improving transcript annotations using changepoint analysis

The co-location of multiple overlapping genes on the genome strands makes it difficult 
to correctly annotate their structures (see “Polishing gene structures to optimize gene 
discovery” section). FINDER employs changepoint detection (CPD) [101] to split the 
merged transcripts reported by PsiCLASS (Fig. 2). To gauge the magnitude of improve-
ment in transcript structures brought about by the application of CPD, we compared 
the accuracy of the predicted transcriptome before and after implementing CPD based 
on read coverage. As shown in Table 4 and Additional file 6: Table S5, implementing the 
CPD improved both specificity and sensitivity in organisms with small or medium-sized 
genomes. In A. thaliana, the transcript F1 scores increased from 40.78 to 45.95 (Table 4 
and Additional file  6: Table  S5) and in C. elegans it increased from 40 to 50. In large 
genomes, the improvement was not as significant, mainly because there are only a few 
genes that overlap with one another.

PsiCLASS meta‑assembly works better than other approaches

We explored three popularly used software applications for merging transcriptome 
assemblies—StringTie-merge [77, 127–133], TACO [134–139] and Cuffmerge [140–145] 
to combine 116 A. thaliana assemblies constructed by StringTie [59], Scallop [61] and 
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Strawberry [60] (Please check Sect.  3 of Additional file  9 for more details). The best 
assembly was reported by StringTie-merge and was hence used for all other organisms. 
We compared the accuracy of the consensus transcript models generated by StringTie-
merge with the transcript models reported by PsiCLASS [63]. As depicted in Table 4 and 
Additional file 6: Table S5, PsiCLASS generated the best transcript models for all organ-
isms registering the highest transcript F1 score improving upon the StringTie models by 
up to 15%. Hence, FINDER uses only PsiCLASS to generate assemblies from short-read 
data.

Impact of missing untranslated region on annotation of transcripts

Gene transcription is triggered by adherence of a transcription factor in the promoter 
region of a gene. Promoters are typically located within 1,000 bp upstream of a gene’s 
transcription start site (TSS) [146–148]. Determining the TSS from sequencing data 
is best facilitated by RAMPAGE [149, 150] or CAGE-Seq [151], but this data is usually 
unavailable due to constraints imposed by cost and time. Nevertheless, a good estimate 
can be obtained from RNA-Seq data by assuming the start coordinates of the assem-
bled genes as the TSS. Thus, researchers often localize their investigation to a sec-
tion 500–1000 bp upstream of the assumed TSS [152, 153]. Without 5′ UTR annotation 
it is impossible to deduce a good approximation of the TSS. This leads to conducting 
promoter mining in a completely incorrect genome location. To assess the quality of 
5′ UTR annotation, we plotted the difference of TSS between the reference genes and 
the genes reported by BRAKER2 and FINDER using a violin plot (Fig. 6). Further, we 
applied Wilcoxon’s rank-sum test and found that the TSS distances reported by FINDER 
were significantly less than that of BRAKER2 for A. thaliana and Z. mays. Interestingly, 

Fig. 6 Comparison of distance between transcription start sites of gene models predicted by BRAKER2 and 
FINDER. Violin plots of the distribution of the distance between the actual transcription start site (TSS) and 
the predicted transcription start site. In a set of well annotation complete gene structures, a higher fraction 
of genes is expected to have low deviation from the actual TSS. We considered genes that were reported in 
either BRAKER or FINDER for this analysis. Wilcoxon’s rank sum test was used to compare the TSS distances 
between FINDER and BRAKER2. The “***” symbol implies that TSS distance for FINDER gene models was 
significantly less than BRAKER2 gene models. (Generated using ggplot2 v3.3.3)
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for O. sativa, BRAKER2 generated better gene models for more transcripts. Over 25% 
of reference gene models in O. sativa have no UTRs annotated which is higher com-
pared to 15% UTR-less gene models in A. thaliana and Z. mays. This result illustrates 
that more FINDER transcripts have a TSS closer to the evidence as compared to the 
TSS of the transcripts reported by BRAKER2. This is an expected result since BRAKER2 
was configured to annotate only CDS regions of transcripts. Table 5 highlights the num-
ber of transcripts that have better agreement with the reference TSS for FINDER and 
BRAKER2.

Enhancing ground truth annotations by extending untranslated regions

Official annotations of several model organisms, used as ground truth for this study, 
contain transcripts with missing UTR sequences. Even though UTRs do not code for 
proteins, they are relevant segments of a transcript involved in several important bio-
logical processes like mRNA translation [154–156], regulation of expression [157–161]] 
and a number of diseases [162–166]. In the A. thaliana TAIR10 annotations, there are 
7,888 transcripts missing either UTR; 50% of these had a rating below 2 stars.

PacBio (Menlo Park, CA) offers long-read sequencing that contain both CDS and 
UTRs. Therefore, we used the PacBio annotations instead of the incomplete TAIR10 
transcripts to assess FINDER’s performance on transcripts that were missing UTRs 
(Please refer to Sect. 2.6 in Additional file 9 for more details). Out of the 7,888 TAIR10 
transcripts with missing UTRs, 113 transcripts were found both in the PacBio data and 
the 116 short-read RNA-Seq samples. We compared the FINDER annotations against 
these 113 transcripts. FINDER annotations were able to recall 91.55% of the nucleotides 
in 113 transcripts of TAIR10 and 97.86% of PacBio transcripts. The specificity of the 
FINDER annotations is markedly higher with PacBio transcripts (79.67%) compared to 
TAIR10 transcripts (72.14%). This demonstrates that FINDER enhances and improves 
upon the existing annotation.

The TRITEX H. vulgare annotation (Morex version r2) [117], released by the Inter-
national Barley Sequencing Consortium (IBSC), is devoid of UTRs. We used FINDER 
to update and enrich the existing annotations by flanking the CDS region with UTRs 
on both sides. To verify the accuracy of the gene models reported by FINDER, we used 

Table 5 Use of RNA-Seq evidence to improve annotation of untranslated regions to aid in promoter 
mining and epigenetic studies

Best performance is indicated by bold values

Number of FINDER1 transcripts having 
TSS better than BRAKER2

Number of BRAKER2 transcripts 
having TSS better than FINDER1

Arabidopsis thaliana 15,063 (65%) 8022 (35%)

Oryza sativa 11,089 (66%) 5762 (34%)

Zea mays (NCBI) 20,721 (76%) 6628 (24%)

Zea mays (AGPv3) 7618 (28%) 19,731 (72%)
Zea mays (AGPv4) 18,114 (69%) 8297 (31%)

Caenorhabditis elegans 8681 (33%) 17,730 (67%)
Drosophila melanogaster 10,238 (63%) 5917 (37%)

Homo sapiens 10,158 (74%) 3486 (26%)

Hordeum vulgare 10,373 (65%) 5607 (35%)
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PacBio full-length mRNA sequences derived from a time course of powdery mildew 
infected barley leaf tissue [167, 168]. A total of 7,352 gene models from IBSC, FINDER, 
and PacBio had a complete intron-chain match with each other. The gene structures for 
more than 93% (6,886 out of 7,352) of the FINDER models were improved when com-
pared to PacBio full-length sequences (Additional file 7: Table S6). The highest F1 score 
achieved was 87.16. This shows that FINDER is capable of constructing accurate gene 
structures constituting both CDS and UTRs.

Evaluating performance with different annotations of Zea mays

Z. mays is an important model organism for crops and has been one of the most stud-
ied plants for genetics by researchers in several different fields [169–172]. Genes have 
been annotated in multiple ways using different kinds of data, resulting in substantial 
differences in gene structures [122]. Here we compare three alternative annotation sets 
of Z. mays—RefSeq, AGPv3, and AGPv4 and the performance of FINDER surpassed all 
three approaches. The transcript F1 score for FINDER gene models compared against 
the NCBI gene models were 43.48, whereas the F1 scores for AGPv3 and AGPv4 were 
26.69 and 22.51 respectively. We observed the same trend for other annotation pipelines 
and reported a higher transcript F1 score for NCBI than the AGP annotations (Table 1 
and Additional file 3: Table S2). Hence, FINDER generated high-quality gene structures 
with high transcript F1 scores for different Z. mays annotations.

Evaluating FINDER on different clades reported by Phylostratr

Genes in each organism can be categorized by their evolutionary history [173, 174]. We 
used Phylostratr [175] to classify genes into evolutionary strata. Here we present our 
results on the three model organisms—A. thaliana, O. sativa, and Z. mays. For all three, 
FINDER was able to accurately detect more genes in highly populated strata (Fig.  7). 
The performance of FINDER and PASA was comparable in strata with few genes. It was 
surprising to note that BRAKER2 was unable to identify highly conserved genes (those 
from the “cellular organisms” strata) since those would be easier to predict than organ-
ism specific genes. This demonstrates that FINDER is capable of effectively constructing 
genes from different evolutionary backgrounds.

FINDER constructs gene models for polyploid genomes

Being a general-purpose genome annotator, in addition to diploid organisms, FINDER 
can annotate the genomes of polyploid organisms. We generated gene structures of Trit-
icum aestivum, a hexaploid with 120,744 annotated genes and 146,597 transcripts [117]. 
FINDER was able to detect 48,129 transcripts (39.9%). Out of the 130,582 transcripts 
predicted by FINDER, 48,104 (36.83%) matched perfectly with at least one reference 
annotation.

Conclusion
Identifying genes on chromosomes and deducing their structures from a plethora of evi-
dence has been undertaken in multiple ways, with each method having advantages and 
disadvantages. Herein, we propose FINDER—an entirely automated, general-purpose 
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pipeline to annotate genes in eukaryotic genomes. FINDER (1) implements an opti-
mized mapping strategy that reduces the number of spurious mappings, (2) produces 
complete full-length transcripts comprising UTRs while identifying transcripts with 
micro-exons, (3) employs statistical CPD to modify gene boundaries and construct new 
genes, (4) reports more alternatively spliced transcripts as compared to other state-of-
the-art annotation pipelines, and (5) assigns confidence classes to each transcript based 
on the evidence(s) that were used to construct those.

While FINDER’s performance has been superior to other gene annotation softwares, 
all the gene models reported by FINDER are predicted. Hence, a validation is necessary 
to ensure false positives are detected and removed. Also, future versions of FINDER will 
offer functionalities to leverage data from CAGE-Seq and Ribo-Seq to better annotate 
transcription start site and translation start sites respectively.

With a wide variety of available data for annotation, researchers often struggle to man-
age and optimize their usage. Several gene annotation software also offer users compli-
cated configurations without providing substantial guidance. FINDER makes the job of 
gene annotation easy for bench scientists by automating the entire process from RNA-
Seq data processing to gene prediction. Since FINDER does not assume the ploidy or the 
nucleotide composition of a genome, it could be applied to derive gene structures for a 
wide range of species, including non-model organisms. FINDER constructs gene mod-
els primarily from RNA-Seq data and is therefore capable of constructing tissue- and/
or condition- specific isoforms which would have been impossible to obtain from ESTs 
only. FINDER supersedes the performance of existing software applications by utilizing 

Fig. 7 Assessment of annotation pipelines on genes from each phylostrata—Genes from three model 
species—a Arabidopsis thaliana, b Oryza sativa and c Zea mays, were allocated into evolutionary classes using 
Phylostratr. The number of genes correctly constructed by each pipeline was computed and plotted as a 
bar graph. Numbers below each stratum indicate the number of genes allocated to that strata. Strata having 
genes fewer than 500 are not shown in the graph. (Generated using ggplot2 v3.3.3)
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read coverage information to fine-tune gene model boundaries. Instead of removing 
low-quality transcripts, FINDER flags them as low confidence—giving users the choice 
of using them as they seem fit. As a proof of concept, we provided evidence that using 
read coverage signal indeed enhances gene structures in a diverse set of organisms. Thus, 
we are confident that FINDER will pave the way for improved gene structure annotation 
in the future.

Availability and requirements
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