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ABSTRACT OF THE DISSERTATION

Software and Hardware Co-optimization for Deep Learning Algorithms on FPGA

by

Chen Wu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Lei He, Chair

Over recent years, deep learning paradigms such as convolutional neural networks (CNNs)

have shown great success in various families of tasks including object detection and au-

tonomous driving, etc. To extend such success to non-euclidean data, graph convolutional

networks (GCNs) have been introduced, and have quickly attracted industrial and academia

attention as a popular solution to real-world problems. However, both CNNs and GCNs often

have huge computation and memory complexity, which calls for specific hardware architec-

tures to accelerate these algorithms. In this dissertation, we propose several architectures to

accelerate CNNs and GCNs based on FPGA platforms.

We start from the domain-specific FPGA-overlay processor (OPU) on commonly used

CNNs, such as VGG, Inception, ResNet, and YoloV2. The data is first quantized to 8-bit

fixed-point with little accuracy loss to reduce computation complexity and memory require-

ment. A fully-pipelined dataflow architecture is proposed to accelerate the typical layers

(i.e., convolutional, pooling, residual, inception, and activation layers) in CNNs. Experi-

mental results show that OPU is 9.6× faster than GPU Jetson TX2 on a cascaded of three

CNNs, which are used for the curbside parking system.
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However, 8-bit fixed-point data representation always need re-training to maintain accu-

racy for deep CNNs. In this way, we propose a low precision (8-bit) floating-point (LPFP)

quantization method for FPGA-based acceleration to overcome the above limitation. With-

out any re-training, LPFP finds an optimal 8-bit data representation with negligible top-

1/top-5 accuracy loss (within 0.5%/0.3% in our experiments, respectively, and significantly

better than existing methods for deep CNNs). Furthermore, we implement one 8-bit LPFP

multiplication by one 4-bit multiply-adder (MAC) and one 3-bit adder. Therefore, we can

implement four 8-bit LPFP multiplications using one DSP48E1 of Xilinx Kintex-7 family or

one DSP48E2 of Xilinx Ultrascale/Ultrascale Plus family whereas one DSP can only imple-

ment two 8-bit fixed-point multiplications. Experiments on six typical CNNs for inference

show that on average, we improve throughput by 1.5× over existing FPGA accelerators.

Particularly for VGG16 and Yolo, compared with seven FPGA accelerators, we improve

average throughput by 3.5× and 27.5× and average throughput per DSP by 4.1× and 5×,

respectively.

CNNs quantized with mixed precision, on the other hand, benefits from low precision

while maintaining accuracy. To better leverage the advantages of mixed precision, we propose

a Mixed Precision FPGA-based Overlay Processor (MP-OPU) for both conventional and

lightweight CNNs. The micro-architecture of MP-OPU considers sharing of computation

core with mixed precision weights and activations to improve computation efficiency. In

addition, run-time scheduling of external memory access and data arrangement are optimized

to further leverage the advantages of mixed precision data representation. Our experimental

results show that MP-OPU reaches 4.92 TOPS peak throughput when implemented on Xilinx

VC709 FPGA (with all DSPs configured to support 2-bit multipliers). Moreover, MP-OPU

achieves 12.9× latency reduction and 2.2× better throughput per DSP for conventional

CNNs, while 7.6× latency reduction and 2.9× better throughput per DSP for lightweight

CNNs, all on average compared with existing FPGA accelerators/processors, respectively.

Graph convolutional networks (GCNs) have been introduced to effectively process non-
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euclidean graph data. However, GCNs incur large amount of irregularity in computation

and memory access, which prevents efficient use of previous CNN accelerators/processors.

In this way, we propose a lightweight FPGA-based accelerator, named LW-GCN, to tackle

irregularity in computation and memory access in GCN inference. We first decompose the

main GCN operations into Sparse Matrix-Matrix Multiplication (SpMM) and Matrix-Matrix

Multiplication (MM). Thereafter, we propose a novel compression format to balance work-

load across PEs and prevent data hazards. In addition, we quantize the data into 16-bit

fixed-point and apply workload tiling, and map both SpMM and MM onto a uniform archi-

tecture on resource limited devices. Evaluations on GCN and GraphSAGE are performed on

Xilinx Kintex-7 FPGA with three popular datasets. Compared with existing CPU, GPU and

state-of-the-art FPGA-based accelerator, LW-GCN reduces latency by up to 60×, 12× and

1.7× and increases power efficiency by up to 912×, 511× and 3.87×, respectively. Moreover,

compared with Nvidia’s latest edge GPU Jetson Xavier NX, LW-GCN achieves speedup and

energy savings of 32× and 84×, respectively.

At last, we extend our GCN inference accelerator to a GCN training accelerator, called

SkeletonGCN. To better fit the properties of GCN training, we add more software-hardware

co-optimizations. First, we simplify the non-linear operations in GCN training to better fit

the FPGA computation, and identify reusable intermediate results to eliminate redundant

computation. Second, we optimize the previous compression format to further reduce mem-

ory bandwidth while allowing efficient decompression on hardware. Finally, we propose a

unified architecture to support SpMM, MM and MM with transpose, all on the same group

of PEs to increase DSP utilization on FPGA. Evaluations are performed on Xilinx Alveo

U200 board. Compared with existing FPGA-based accelerator on the same network archi-

tecture, SkeletonGCN can achieve up to 11.3× speedup while maintaining the same training

accuracy with 16-bit fixed-point data representation. In addition, SkeletonGCN is 178×

and 13.1× faster than state-of-the-art CPU and GPU implementation on popular datasets,

respectively.
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To summarize, we have been working on FPGA-based acceleration for deep learning

algorithms of CNNs and GCNs in both inference and training process. All the accelera-

tors/processors were hand-coded and have been fully verified. In addition, the related tool

chains for generating golden results and running instructions for the accelerators/processors

have also been finished.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 The Rapid Pace of Deep Learning

Deep learning algorithms have been demonstrated a breakthrough in performance for a broad

range of applications and have brought artificial intelligence (AI) into our daily life. The

smart phones, autonomous driving cars, web-scale recommenders have made our life easier.

Among all the deep learning algorithms, convolutional neural networks (CNNs) have

shown great success in various families of tasks in the euclidean data domain, such as ob-

ject classification, object detection and segmentation tasks. Starting from 2012, CNNs have

reduced the top-5 error for ImageNet classification from 17% (AlexNet in 2012) to 2.9%

(EfficientNet-B7 in 2019). In the non-euclidean data domain, such as graphs, graph neural

networks (GNNs) have been introduced and have demonstrated the ability to accurately pro-

cess complex graph data. Among numerous GNNs, graph convolutional networks (GCNs),

which borrows ideas from CNNs to aggregate neighbor data, have quickly attracted industrial

attention as a popular solution to real-world problems.

1.1.2 Challenges of Deploying Deep Learning Algorithms

CNNs and GCNs have great success on the prediction accuracy front, however, they always

require a large amount of memory and computation. Although algorithm designers have
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been reducing parameters in CNNs, the number of parameters of a CNN still stays large at

264 MB. Moreover, the requirement of storage goes higher for GCNs, as the datasets can be

as large as gigabytes. Such great storage requirements makes fitting CNNs or GCNs onto

hardware challenging, especially for resource-limited devices.

On the other hand, the computation complexity keeps increasing to achieve better pre-

diction accuracy. For example, the computation complexity of a feed-forward process of a

224×224 RGB image increases from 2.27 GOP of AlexNet in 2012 to 74 GOP of EfficientNet-

B7 in 2019. This calls for specific hardwares to accelerate computation because general CPUs

may take seconds or even minutes to run one network, which is difficult to meet the con-

straints in real scenarios. In addition, the irregular computation patterns caused by Sparse

Matrix-Matrix Multiplication (SpMM) in GCNs also requires specific hardwares as general

purpose hardwares are not efficient.

1.2 Motivation

1.2.1 Data Compression

The huge amount of data is difficult to be fitted into hardwares, therefore, data compression

is needed. Previous quantization schemes have demonstrated that 8-bit fixed-point data

representation is effective for CNNs [ORK15a]. However, they are not effective for deep

CNNs or need re-training to compensate for the quantization error. In this way, we explore

further for different data representations and quantization schemes to compress CNNs while

maintaining accuracy. We first propose a low precision floating-point data representation to

quantize deep CNNs, which will be discussed in detail in Chapter 3. In addition, we explore

more on the properties of different layers and use mixed precision for different layers, so that

we can further compress the CNNs and keep accuracy. Details can be found in Chapter 4.

We also consider quantization for GCNs, both in inference phase and training phase.

However, the sparse matrices in GCNs are always as large as megabytes but only less than
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0.1% of which are valuable (non-zeros) elements. Therefore, we propose an effective com-

pression method to compress such sparse matrices to only store and compute the non-zero

elements. Details will be discussed in Chapter 5 and 6.

1.2.2 FPGA-based Acceleration

FPGA-based accelerators for CNNs have been widely explored [ZSF16], showing a promising

solution to CNN acceleration. However, these accelerators only target on a certain network

and it is difficult to expand to other networks. In this way, we first propose an FPGA-

overlay processor to support a wide range of CNNs without changing the hardware design,

as discussed in Chapter 2. Based on the low precision floating-point and mixed precision

data representation for CNNs, we also develop specific FPGA-based processors to further

leverage the advantages of different data representation, as explained in Chapter 3 and 4.

CNN accelerators/processors is not effective for GCNs, especially for SpMM used in

GCNs. Although previous work tries to overcome the sparseness challenges [LWL20b,

GLS20], they either require large on-chip buffers or use independent hardware modules for

different operations, which are not efficient for hardwares, especially for resource-limited de-

vices. To this end, we propose a lightweight GCN inference accelerator to tackle the above

challenges, as discussed in detail in Chapter 5. We also extend our GCN inference accelerator

to support GCN training to better resolve the challenges in GCNs, which will be discussed

in Chapter 6.

1.3 Organization

This dissertation mainly focuses on the research on architecture level and algorithm level

optimizations to accelerate deep learning algorithms on FPGA. The remaining parts of this

dissertation are organized as follows:
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• Chapter 2: OPU: An FPGA-based overlay processor for convolutional neu-

ral networks.

A domain-specific FPGA-based overlay processor, called OPU, is first proposed to ac-

celerate inference for various CNNs. 8-bit fixed-point data representation is utilized in

OPU to reduce computation complexity and memory requirement. Based on this data

representation, a fully-pipelined architecture is developed to accelerate the inference

phase of CNNs. We also implement OPU on a real world application with cascaded

CNNs to show the effectiveness of OPU.

• Chapter 3: Low precision floating-point arithmetic for high performance

FPGA-based CNN acceleration.

We study further into the quantization algorithm, and propose a low precision floating-

point (LPFP) quantization method to quantize depp CNNs without re-training while

maintaining accuracy. We further develop an FPGA-based processor, where one DSP

slice along with several LUTs are decomposed into four LPFP multipliers, to further

leverage the advantages of LPFP data representation.

• Chapter 4: MP-OPU: A mixed precision FPGA-based overlay processor

for convolutional neural networks.

Since mixed precision CNNs can further reduce memory requirement while maintaining

accuracy, we propose a mixed precision FPGA-based overlay processor (MP-OPU)

to leverage the advantages brought by mixed precision. We focus on the micro-

architecture design to support mixed precision weights and activations during runtime.

In addition, we explore the parallel computation pattern of different layers in CNNs.

• Chapter 5: LW-GCN: A lightweight FPGA-based graph convolutional net-

work accelerator.

CNNs work efficiently for euclidean data while GCNs process non-euclidean data ef-

ficiently. However, GCNs incur large amount of irregular computation and memory
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access because of sparse matrix multiplication, which is not efficient for CNN proces-

sors. In this way, we propose a lightweight FPGA-based (LW-GCN) accelerator for

GCNs to tackle the irregularity in computation and memory access. We first develop a

compression format to efficiently compress the sparse matrix while effectively decom-

press on hardware. Moreover, a unified architecture, which support both SpMM and

MM, is designed to accelerate the inference phase of GCNs.

• Chapter 6: SkeletonGCN: A simple yet effective accelerator for GCN train-

ing.

We extend our GCN inference accelerator to support GCN training. The compression

method is first improved to further reduce storage. In addition, non-linear functions

are simplified in algorithm level to better fit the FPGA computation, and intermediate

results are identified to be reused to reduce redundancy computation. Finally, the

unified architecture is extend to support MM with transpose on the same group of PEs

so that the DSP utilization is optimized.

• Chapter 7: Summary.

The summary of this dissertation is discussed in this chapter.
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CHAPTER 2

OPU: An FPGA-based Overlay Processor for

Convolutional Neural Networks

2.1 Introduction

Convolutional neural networks (CNNs) have demonstrated a breakthrough in performance

for a broad range of applications including object recognition [SLJ15c], object detection

[RDG16b] and speech recognition [AAA16]. However, CNNs often have huge computation

complexity. This motivates accelerating CNNs by CPU/GPU clusters [DCM12b], FPGAs

[ORK15b] and ASICs [CDS14]. Customized accelerators on FPGAs [ORK15a, ZLS15b],

which leverage full capacity of parallelism, have shown more promising throughput and

power efficiency than traditional CPU/GPU clusters [ZSF16,WYZ17b].

However, implementing a high-performance FPGA accelerator can be time-consuming

as it always involves parallel exploration, bandwidth optimization, area and timing tuning.

This leads to the development of accelerator generators, where hardware description codes

of the target accelerators are generated automatically [ZWZ18a,WYZ17a]. In these designs,

they simplify the design space exploration to parameter optimization for existing modules

by designing a parameterized template architecture.

However, the above accelerator generators still have challenges in design CNN acceler-

ators. Since the outputs are always RTL codes, they still need synthesis, placement and

routing to obtain the final bitstream, which always takes hours to finish and may face timing

violation problems. Instead of fixing violating paths as in regular FPGA design, user can
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only adjust module parameters or alleviate timing constraints at the expense of performance

degradation in these automatic compilers. Moreover, nowadays complex deep learning tasks

usually involve cascaded networks, which is inefficient to constantly re-burn FPGA for run-

ning different networks in series.

To this end, we propose an FPGA-based overlay processor (OPU) for general CNN ac-

celeration. OPU has fine-grained pipeline and explores parallelism of different CNN archi-

tectures, which ensures 91% runtime utilization of computation resources on average across

9 commonly used CNNs. Moreover, we provide a domain-specific instruction set to support

different CNN configurations. In this way, once a new network configuration is given, instead

of re-generating a new accelerator on FPGA, we just compile the network into instructions

to be executed on OPU. Experiments also show that OPU has OPU is 9.6× faster than

GPU Jetson TX2 with similar amount of computing resources for cascaded networks.

To conclude, the main contributions can be summarized as follows:

• High flexibility. Controlled by parameter registers, OPU is flexible to run different

CNNs without any change of the hardware.

• Fully pipelined micro-architecture. The micro-architecture of OPU is opti-

mized for computation, communication and data reorganization. Moreover, the micro-

architecture is designed fully pipelined to improve performance.

• High performance. Comprehensive experiments are performed on OPU. It shows

on average 91% runtime MAC efficiency across 9 different CNNs. Moreover, OPU

shows 9.6× speedup than Jetson TX2 GPU on realtime cascade CNNs.
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2.2 Background and Related Work

2.2.1 CNN

CNNs are used to classify or recognize objects by passing the inputs through multiple types

of layers. In each layer, multiple neurons are constructed to process different inputs and pass

the outputs to the next layer through connections, and the connections are used to store the

weights for the network. Based on different processing procedures, the layers are typically

divided into convolutional, pooling, activation, normalization, fully-connected, residual and

inception layers. Among them, convolutional/fully-connected layers consume most portions

of computation while fully-connected layers require largest memory to store weights. In this

way, we treat convolutional/fully-connected layers as major layers while other layers as minor

layers. In most CNNs, one major layer is always followed by several minor layers.

2.2.2 Quantization

It has been proven that CNNs are robust against precision reduction [QWY16, GSQ18].

To reduce memory footprint and save computational resources, we select 8-bit fixed-point

data representation for both weights and feature maps in OPU. We employ a fast yet

effective stationary quantization method which does not require any calibration, fine-tuning

or re-training. Similar to that in [QWY16,MCV17b], we utilize dynamic quantization to

maintain accuracy. In this way, the process of finding the best range for each trunk of data

is described as follows:

argmin
floc

∑
(Vfp − V flen

fix )2, (2.1)

where Vfp is the original floating-point data, while V flen
fix is the fixed-point data quantized

based on the fraction length flen. Based on the dynamic quantization scheme, we can main-

tain the accuracy loss within 1% averagely when evaluated on 9 commonly used networks,
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Table 2.1: Accuracy evaluation for quantized networks. We report validation accuracy (%)

and mean average precision (%) for classification and detection networks, respectively.

Classification Networks Detection Networks

VGG16 VGG19 InceptionV1 InceptionV2 InceptionV3 ResNet50 ResNet101 YoloV2 TinyYolo

Float32 89.8 85.2 87.3 90.3 93.2 92.9 93.7 85.9 90.8

INt8 89.4 84.3 85.5 89.9 91.4 92.3 93.2 86.2 89.5

as shown in Table 2.1.

2.2.3 Related Works

FPGA-based acceleration for deep learning algorithms has been extensive studied, start-

ing with customized accelerators for specific network. Farabet [FPH09] uses FPGA as a

vectorial arithmetic unit, and implements CNN mainly on a 32 bit soft processor for flexi-

bility. Accelerators for each layer of CNN are proposed in [ORK15a,CMB10,CSJ10]. The

whole network AlexNet is implemented on a VC707 board with high throughput by using

HLS [ZLS15b], and hand-coded RTL accelerator for VGG16 is proposed in [QWY16]. The

aforementioned work demonstrates the capability of developing high performance accelerator

on FPGA, however, manually designing accelerator for each CNN is inefficient.

More recent studies focus on automatic compiler to generate CNN accelerators on FPGA.

Deepweaver [SPM16] is proposed to map CNNs into hand-optimized design templates to

achieve comparable performance with hand-crafted accelerators. The Caffeine is proposed

as a high level synthesis (HLS) based compiler which optimizes bandwidth by memory access

reorganization [ZFZ16]. However, the above work aims at generating specific accelerators for

a specific CNN, which comes with high efforts of re-engineering hardware when the target

CNN updates.

The work in [AHB18] explores FPGA overlay to implement CNN accelerators. They use

instructions to decrease the overhead of control logic and reconfigure the overlay architecture
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to maximize performance for different CNNs. Moreover, they use coarse grained instruction

sets, for example, one block of 10 instructions are used for a single convolutional layer and

an optional pooling layer. In contrast, OPU uses fine grained instruction sets to represent

each typical operation with one specific instruction. In addition, we design a FPGA-based

processor for different CNNs without FPGA reconfiguration.

2.3 Micro-architecture

The challenge for designing the micro-architecture of OPU is to incur small control overhead

while maintain easily runtime adjustable and functionality. In this way, we design parameter

registers, which can be configured directly by instructions, to customize and reconfigure

the modules during runtime. Moreover, the computation core explores multiple levels of

parallelism that generalize well among different network configurations. At the same time,

the minor operations are combined so that they can be accomplished by the same module

to reduce overhead.

As shown in Fig. 2.1, the overall micro-architecture of OPU can be decomposed into

six main modules. Each module is controlled by one corresponding instruction (see details

in 2.3.4) to accomplish the functionality. Besides, the memory system, which includes four

on-chip buffers and one off-chip memory, are optimized to overcome the bandwidth con-

straint issue. With most of the control flow embedded in instruction, OPU only handles the

computation of one tile. If the input size of one layer is larger than the tile size, the layer

will be sliced into different tiles to fit into the hardware.

2.3.1 Computation Core

There are several parallelism levels (i.e., parallel in input channel, output channel, kernel)

for computing convolutional layer. In this way, how to use the same architecture of the

computation core to accommodate parallel computing for layers with different configurations
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Figure 2.1: Overall micro-architecture of OPU.

is the biggest challenge in OPU. Conventional designs explore parallelism within the 2-

dimension (2D) kernel, which is straightforward but comes with the disadvantages of complex

data management of feature map and poor generalization among various kernel sizes. As

shown in Fig. 2.2(a), expanding a kx ∗ ky kernel sized window of feature map requires row

and column direction data fetch in single clock cycle (step 1O). This poses challenges on

data arrangement in on-chip memories and generally requires extra resources for data reuse

(i.e., line buffer). Moreover, customized data management logic for one kernel size cannot

be efficient for other kernel sizes. Similarly, the computation core optimized for one kernel

size may not fit other sizes efficiently. This is why many conventional FPGA accelerators,

which is optimized for 3×3 kernels, perform the best only on networks with pure 3×3 kernel

size.

To address this issue, we explore channel based parallelism and leave the 2D kernel being

computed sequentially, which makes OPU fit well for any kernel size. Moreover, both the

sizes of input channel and output channel in CNNs are always multiples of 16. This feature
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Figure 2.2: (a) Conventional intra-kernel based parallelism. (b) OPU channel based paral-

lelism. (c) Data fetch pattern in OPU.

makesOPU suitable for different network configurations with different input/output channel

sizes. The working flow in OPU is explained in Fig. 2.2(b) with an example. At each clock

cycle, a slice of input channel of 1, 1, ICi
p in width, height and depth, respectively, is read.

In addition, the corresponding kernel elements in OCi
p output channels are read so that

parallelism is implemented within input channel slice ICi
p and output channel slice OCi

p.

This fits natural data storage pattern and requires much smaller bandwidth. Fig. 2.2(c)

further shows the computation process. For round 0 cycle 0, input feature map channel slice

from position (0, 0) is read. We then jump stride x (x = 2 in this example) and read position

(0, 2) in next cycle. Read operation continues until all pixels corresponding to kernel position

(0, 0) is fetched out and computed. After that we enter round 1 and read from position (0, 1)

to get all pixels corresponding to kernel position (0, 1).

With fixed number of multiply-adders (MACs) in the computation core, we implement

parallelism with different input and output channel combinations. In this way, OPU can fit

flexibly into different convolutional layers with different input/output channels combinations.

In our current implementation with totally 1024 MACs, we can support 6 [inc, outc] pairs:

[512, 2], [256, 4], [128, 8], [64, 16], [32, 32] and [16, 64].

Our computing pattern guarantees uniform data fetching pattern for any kernel size

or stride, which greatly simplifies data management and enables higher working frequency

with less resource consumption. Moreover, we leverage both input and output channel level
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parallelisms. This provides higher flexibility for resource utilization and promises reasonable

generalization performance.

2.3.2 Post Process

We perform the major layers in the computation core and all the minor layers in the post

process module. Since one major layer is always followed by a set of minor layers in series,

we design the fully pipelined post process module to go through all the operations in minor

layers so that extra on-chip data movement is reduced. In addition, data quantization,

concatenation in output channel and partial sum addition are performed in this module, as

only one tile is computed in the computation core. Since the different computation pattern

will produce [2, 4, 8, 16, 32, 64] output channels, we set the parallelism in the post process

module 64 to later process. To conclude, the detailed architecture of the post process module

is shown in the right part of Fig. 2.1.

2.3.3 Memory Management

Another crucial issue for CNN acceleration on FPGA is the bandwidth constraints of the

off-chip memory. Roof-line model [ZLS15a] reveals the relationship between bandwidth

utilization and computational roof performance and the bandwidth can easily become the

bottle neck of performance. In this way, we utilize a ping-pong structured on-chip buffer to

hide the off-chip communication latency under computation. While data is fetched from one

buffer for computation, the other buffer can get refilled and updated, which maintains the

maximum bandwidth utilization.

The data arrangement in both the off-chip memory and on-chip buffers also influence

the communication latency greatly. Considering that the most efficient way for accessing

off-chip memory is to fetch data in continuous addresses, we arrange as many data of one

tile in continuous addresses as possible. Moreover, a slice of input channel is computed in
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Figure 2.3: Data arrangement in off-chip memory and on-chip memory.

parallel in the computation core, we need to store them under the same address so that they

can be accessed in one clock cycle. To this end, we arrange the data of one feature map

in channel-column-row pattern in the off-chip memory, as shown in Fig. 2.3. We store each

Wfm×Hfm× ICi (ICi = DW/8 indicates the bit width of off-chip memory divided by data

width used in OPU) feature map in continuous addresses in the off-chip memory, shown as

1O − > 2O in Fig. 2.3. To simplify the off-chip communication, we set the bit width of the

on-chip buffer the same as that of the off-chip memory. In this way, the ICi input channel

data is stored into one address of the on-chip buffer, and the other data is also stored in a

continuous way. Moreover, our data arrangement scheme can support any tile size.

2.3.4 Instruction Control

We propose a domain-specific instruction set for OPU to support CNN inference. After

identifying all the necessary operations during CNN inference, we design different types of

instructions with adjustable parameters for flexibility. The instructions are designed with

32-bit uniform length and variant runtime (up to hundreds of cycles) to process major
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operations. To summarize, we have 7 types of instructions:

• Memory Read transforms data from external memory to on-chip buffers. It operates

in two modes to accommodate for different data read patterns. Received data will be

distributed to different destination buffers corresponding to the feature map, kernel

weighs and instruction respectively.

• Memory Write sends the block of computational results back to external memory.

• Data Fetch reads data from on-chip buffers and feed to computation engine. For

feature map, we fetch in a rectangular way by setting corresponding parameters, while

for kernels, we fetch continuous address.

• Compute controls the computation core to work on different computation pattern.

• Post Process includes pooling, activation, data quantization, partial sum addition as

well as residual operations. Selected combination of before-mentioned operations are

executed when post process is triggered.

• Instruction Read reads a new block of instructions from instruction buffer and sends

it to target operation modules.

• Parameter Setup follows one of the above 6 instructions to set the corresponding pa-

rameter registers.

All these instructions are first fetched and decoded, and control signals for other modules

are generated according to the instructions in this module.
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Table 2.2: Resource Utilization on KC705

Resource LUT FF BRAM DSP

Used 94763 150848 165 516

Available 203800 407600 445 840

Utilization 46.50% 37.01% 37.08% 61.43%

Table 2.3: Network Configurations

VGG16 VGG19 InceptionV1 InceptionV2 InceptionV3 ResNet50 ResNet101 YoloV2 TinyYolo

Input size 224x224 224x224 224x224 224x224 299x299 224x224 299x299 608x608 416x416

Kernel size 3x3 3x3

1x1

1x1,3x3

1x1,3x3 1x1 1x1

1x1,3x3 1x1,3x33x3 5x5,1x3 3x3 3x3

5x5,7x7 3x1,1x7,7x1 7x7 7x7

Pool size 2x2 2x2 3x2,3x1,7x1 3x2,3x1,7x2 3x2,3x1,8x2 3x2,1x2 3x2,1x2 2x2 2x2

# Conv layer 13 16 57 69 90 53 53 21 9

Activation ReLU Leaky ReLU

Operations(GOP) 30.92 39.24 2.99 3.83 11.25 6.65 12.65 54.07 5.36

2.4 Experimental Results

2.4.1 Experiment Setup

We implement OPU with 1024 MACs on Xilinx KC705 evaluation board, and the resource

utilization under 200MHz working frequency is shown in Table 2.2. To verify the effective-

ness of OPU, 9 commonly used CNNs of different architectures are mapped, with detailed

configurations shown in Table 2.3. Among all the networks, YoloV2 and TinyYolo are used

for object detection while others are used for image classification. Different kernel sizes from

square kernels (1 × 1, 3 × 3, 5 × 5, 7 × 7) to sliced kernels (1 × 7, 7 × 1), various pooling

sizes (1× 2, 2× 2, 3× 1, 3× 2, 7× 1, 7× 2, 8× 2) and different activation types (ReLU and

Leaky ReLU) are used to verify the flexibility of OPU.
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Table 2.4: RME of OPU for different CNNs, (B) indicates evaluated with batch size of 8.

VGG16 VGG19 InceptionV1 InceptionV2 InceptionV3 ResNet50 ResNet101 YoloV2 TinyYolo

RME(%) 97.2(B) 97.3(B) 90.4(B) 90.5(B) 91.1(B) 84.5 86.9 95.5 89.2

Conv RME(%) 97.0 97.8 90.5 90.8 90.9 84.5 86.9 95.5 89.2

FPS(B) 12.2 9.8 112.5 89.8 30.0 54.4 27.1 7.2 68.3

FPS 11.3 9.4 104.5 84.6 27.3 54.4 27.1 7.2 68.3

2.4.2 Runtime MAC Efficiency

We define the runtime MAC efficiency (RME) to indicate how effective OPU is for running

different CNNs. The computation of RME is shown in Equ.(2.2).

RME = Ttest/Ttheo, (2.2)

where Ttest and Ttheo are the testing and theoretical throughput, respectively. The theoretical

throughput is defined in Equ.(2.3), and for our current design, Ttheo = 1024×2×200MHz =

409.6GOPS.

Ttheo = # MAC × 2× frequency. (2.3)

We evaluate RME on all the networks and the results are shown in Table 2.4. On average,

the overall RME of OPU is 91.4% under all the tested networks. The high RME indicates

that all computation resources are well-utilized and OPU is efficient for running the CNNs.

Note that for fully connected layers, high RME is difficult to achieve under non-batch mode

because of the bandwidth constraints. In this way, we also report RME under batch mode

(batch size is 8), and it only influence the networks with fully connected layers.
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Table 2.5: Comparison with FPGA accelerators, C: convolutional layer only.

[SCD16] [QWY16] [XLL17a] OPU [GSQ18] OPU

Device XC7Z045 XC7Z045 XC7Z045 XC7K325T XC7Z020 XC7K325T

Network VGG16 TinyYolo TinyYolo YoloV2

# DSP 727(900) 780(900) 824(900) 516(840) 190(220) 516(840)

Data format 16-bit 16-bit 8-bit 8-bit 8-bit 8-bit

Frequency(MHz) 120 150 100 200 214 200

Ttheo (GOPS) 174 234 329 409.6 162 409.6

Ttest (GOPS) 118/137(C) 137/188(C) 230 354/397(C) 62.9 366 391

RME(%) 67/78(C) 58/79(C) 69 86/97(C) 39 89 95

2.4.3 Comparison with Existing FPGA Accelerators

In this section, we compare the performance of OPU with existing FPGA accelerators of

VGG or Yolo, as shown in Table 2.5. The batch size is set to 1 for fair comparison. As shown

in Table 2.5, OPU outperforms other automatically compiled network-specific accelerators

in terms of RME. To be specific, OPU has 86% RME while other accelerators only have

58% to 69% RME for running VGG.

2.4.4 Case Study of Cascaded CNNs

To further evaluate the effectiveness of OPU, we evaluate OPU on a real-time task to

recognize car license plate by running cascaded CNNs. We will first use a car-YoloV3 to

detect cars from pictures, and a plate-TinyYolo to detect license plates from cars, and finally

a plate-CR to recognize the characters in the license plates. As shown in Table 2.6, we run

the cascaded CNNs on both OPU and Nvidia Jetson TX2 GPU for comparison. TX2 GPU

is running under batch mode (batch size = 5) and the latency is recorded as the average

latency for running one image, while OPU is tested without using batch. It can be seen

from Table 2.6 that OPU is faster for running all the three networks compared with TX2
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Table 2.6: Latency comparison with Jetson TX2 GPU on cascaded CNNs.

Frequency(MHz) Ttheo(GOPS) car-YoloV3 plate-TinyYolo plate-CR Speedup

Jetson TX2 845 450 607 ms 174 ms 26 ms 1×

OPU 200 409.6 64 ms 19 ms 1.2 ms 9.6×

GPU. Overall, OPU is 9.6× faster than TX2 GPU on average. With similar computation

capability, the higher speed achieved by OPU comes from the higher PE utilization enabled

by our domain micro-architecture.

2.5 Conclusions and Discussions

In this work, we propose OPU, a domain-specific FPGA-based overlay processor for general

CNN acceleration. We generate an instruction set after analyzing the basic operations in

general CNNs. A fully-pipelined micro-architecture is proposed to optimize computation

efficiency and reduce communication latency. Comprehensive experiments are performed on

KC705 evaluation board for OPU with 1024 MACs. It shows that OPU has a high RME

of 91% for 9 commonly used CNNs, which indicates a high efficiency of the computation

resources. For running VGG16, TinyYolo and YoloV2, OPU outperforms other automati-

cally generated network-specific accelerators in terms of RME. Moreover, for cascaded CNN

network to detect license plate, OPU is 9.6× faster than Nvidia Jetson TX2 GPU with

similar amount of computation resources.
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CHAPTER 3

LPFP: Low Precision Floating-point Arithmetic for

High Performance FPGA-based CNN Acceleration

3.1 Introduction

Larger and deeper CNNs have been developed to improve performance for a broader range

of scenarios. For example, the top-5 error for ImageNet [RDS15b] classification decreases

from 17% to 2.9%. However, computation complexity and number of parameters increase

dramatically as shown in Fig. 3.1, where the name and top-5 error of different CNNs are

depicted in x-axis. To be specific, the computation complexity of a feed-forward process of a

224×224 RGB image increases from 2.27 GOP of AlexNet [KSH12b] in 2012 to 74 GOP of

EfficientNet-B7 [TL19] in 2019. At the same time, the number of parameters stays large at

264 MB. Such great computation complexity makes it harder for general-purpose processors

to meet the requirements of real-time applications. On the other hand, the great quantities of

parameters lead to a big challenge for communication between off-chip and on-chip memories

because of bandwidth constraints.

There are two types of research to reduce computation and parameter complexities for

CNN inference. The first one is deep compression including weight pruning, weight quan-

tization and compression storage [HPT15,HMD15a]. However, irregularity caused by deep

compression degrades parallelism and hardware performance. Cambricon-S [ZDG18] allevi-

ates irregularity in sparse neural networks through a software/hardware co-design approach

to improve hardware performance. However, all the above accelerators need time-consuming
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Figure 3.1: Computation complexity and memory requirement with respect to different

CNNs.

retraining process to maintain accuracy.

The second type of research is more efficient data representation, also known as quantiza-

tion for circuit implementation. The authors [MLN17] use 16-bit floating-point in contrast to

32-bit floating-point, which is commonly used for computing. However, one 16-bit floating-

point multiplier on FPGA needs 1 DSP, 85 LUTs and 167 FFs when using Xilinx floating-

point IP [Log12] as shown in Table 3.1, leading to a low hardware efficiency. Since one 16-bit

or smaller fixed-point multiplier can be fit into one DSP, both 16-bit [XLL17b,MCV18] and

8-bit [ZLS15c, JYP17b, CDS14, YWZ19a] fixed-point are employed to gain more hardware

efficiency than 16-bit floating-point does. Another 8-bit arithmetic, called block floating-

point (BFP), is also applied [SLW18,LLS19], where a parameter has its own mantissa but

shares a same exponent for one data block. ARM [LSC17] proposes a mixed data representa-

tion with floating-point for weights and fixed-point for activations (e.g., outputs of a layer).

Xilinx [SBD18] develops an 8-bit floating-point quantization scheme, which needs an extra

training batch to compensate for the quantization error. However, [LSC17] and [SBD18]
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Table 3.1: Resource utilization of multipliers on FPGA for different data representations.

DSP: digital signal processing, LUT: look-up table, FF: flip-flop. M4E3: 1-bit sign, 4-bit

mantissa and 3-bit exponent.

Data Representation DSP LUT FF

one 16-bit floating multiplication 1 85 167

one 16-bit fixed multiplication 1 0 0

two 8-bit fixed multiplications 1 2 0

four 8-bit floating (M4E3) multiplications 1 20 27

do not present a circuit design for their approaches. While all aforementioned work has a

good accuracy with retraining, more aggressive data representations such as binary [CBD15],

ternary [LCM15], and mixed precision (2-bit activations and ternary weights) [CNN18] may

suffer from great accuracy loss even with time-consuming retraining.

In this work, we first propose a low precision floating-point (LPFP) to quantize both

weights and activations. During the quantization process, an optimal LPFP data format

and the corresponding scale factor are decided for a workload of CNNs. Our proposed

quantizer works for deep CNNs (more than 100 convolutional/fully-connected layers). On

average, the top-1 accuracy loss is within 0.5%, while V-Quant [PYV18] that works for

such deep CNNs has a top-1 accuracy loss about 1% with fine-tuning. Then, we design a

LPFP based FPGA processor to further improve the performance for CNN inference. We are

able to implement four 8-bit floating-point multiplications within one DSP (see Table 3.1).

We experiment for inference of AlexNet, VGG16 [SZ14c], ResNet50/101/152 [HZR16b] and

DenseNet201 [HLV17] via Xilinx KC705 and Xilinx ZCU106. We can achieve an average

throughput of 1100.4 GOPS (Giga-Operations Per Second), and it is 1.43 GOPS per DSP on

KC705. On ZCU106, the average throughput and per DSP throughput are 1650.6 GOPS and

2.15 GOPS per DSP, respectively. Moreover, the average throughput for these networks is

82.3% and 1.5× over Intel I7-8700T CPU and existing accelerators, respectively. Compared
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with six existing accelerators for VGG16 and YOLO, on average, our processor improves

throughput by 3.5× and 27.5×, while improving per DSP throughput by 4.1× and 5×,

respectively. To the best of our knowledge, this is the first work that can fit four 8-bit

multiplications for inference in one DSP while maintaining comparable accuracy without

any retraining.

To summarize, the main contributions of this work are listed as follows:

• The non-uniform quantization method with low-precision float-point data

format are used to quantize the input activations and weights for CNNs. The optimal

data format, which achieves negligible accuracy loss, can be selected automatically

without any fine-tuning, calibration or retraining.

• The previous work with 8-bit fixed-point quantization converts the original 32-bit float-

ing point multiplication into 8-bit fixed-point multiplication, and one DSP slice can

only be implemented to perform two 8-bit fixed-point multiplication. However, LPFP

quantization converts the original 32-bit floating point multiplication into 8-bit floating-

point multiplication, four of which can be implemented inside one DSP slice. Thus, 2×

number of multipliers can be implemented under the same resource constraints for the

same FPGA. Note that the computational throughout mainly comes from the number

of multipliers, and our approach can achieve 2× computational throughput compared

with previous work with 8-bit fixed-point quantization methods.

3.2 Background and Motivation

3.2.1 Background: Low Precision Floating-point

Similar to the definition of 32-bit floating-point from the IEEE-754 standard [ZCA08], the

binary representation of LPFP number comprises sign, mantissa and exponent in order. The
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decimal value of LPFP number is then calculated by:

Vdec = (−1)S × 1.M × 2E−Eb , (3.1)

where Vdec is the value in decimal, S,M and E are all unsigned values and denote the sign,

mantissa and exponent, respectively. For exponent bias Eb in Eq. (3.1), it is introduced to

support both positive and negative exponents as

Eb = 2DWE−1 − 1, (3.2)

where DWE is the data width of E. Different from the IEEE Standard, data widths for

M and E in this work are not fixed. In later sections, we use the term MaEb to indicate

different combinations, where a and b indicate the bit width of M and E, respectively. For

example, M3E4 means the mantissa is 3 bits while the exponent is 4 bits.

There are three special definitions in IEEE-754 standard. The first is subnormal numbers

when E = 0, then Eq. (3.1) is modified to:

Vdec = (−1)S × 0.M × 21−Eb . (3.3)

Note that Infinity (Inf) and Not a Number (NaN) are the other two special cases, but are

not used in our work. This is because our saturation scheme saturates large numbers to the

maximal number, as illustrated in detail in Subsection 3.3.1.

3.2.2 Motivation

CNN accelerators with lower data width have significant improvements in terms of memory

size, memory bandwidth and power efficiency. Due to the lack of floating-point arithmetic

units in FPGA, researchers have used low precision fixed-point instead of floating-point.

A 16-bit fixed-point quantization to find the best scale factor for each layer is proposed

in [XLL17b]. However, this requires time-consuming retraining to amend the weights to

maintain accuracy. Furthermore, a model is developed to quantitatively analyze the convo-

lution loops and optimize design objectives such as memory access and latency [MCV18].
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However, it has an accuracy loss as large as 2%. A shared drawback for the above two

approaches is the low per DSP throughput (0.279 GOPS/DSP for [XLL17b] and 0.472

GOPS/DSP for [MCV18]) because of using 16-bit multiplication.

An 8-bit fixed-point accelerator is designed in [GSQ17] for embedded FPGAs, with a low

per DSP throughput of 0.444 GOPS/DSP. DNNBuilder [ZWZ18b] aims to automatically

build high-performance DNN hardware accelerators for both cloud- and edge-FPGAs with

8-bit fixed-point quantization. It increases the per DSP throughput to 0.771 GOPS by

better architecture exploration; however, its quantization method incurs 4.6% top-1 accuracy

degradation without fine-tuning. FPGA accelerator with the aforementioned BFP arithmetic

[LLS19] has a per DSP throughput of 0.741 GOPS. However, only slim and medium CNNs

are validated in their approach. Approaches in the industry focus on improving the accuracy

with 8-bit fixed-point data representation [JGW19, Inc21a,Mig17]. However, even if we use

the quantization policies from these work, we will still suffer from the low per DSP throughput

as one DSP can only be decomposed to 2 8-bit fixed-point multiplications. In short, existing

approaches cannot improve the per DSP throughput while maintaining comparable accuracy

for all slim, medium and deep CNNs.

3.3 Low Precision Floating-point Quantization

In this section, we present the details of our proposed low precision floating-point (LPFP)

quantization method, including the quantization process, data flow in processor and quanti-

zation results.

3.3.1 Quantization Process

The quantization process is divided into two steps: 1) fusing operations; 2) finding scaling

factor and quantizing data. We will discuss in detail in this section.

Fusing layers. In each CNN, we define the convolutional/fully-connected layers as key
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layers while others as subordinate layers. During the quantization process, we try to merge

as many subordinate layers into the previous key layers as possible to simplify the design.

This is because most of the subordinate layers will not change the data precision during

calculation. For example, batch normalization layer is linear and can be merged in advance;

max pooling layer only does comparison and will not influence the precision. Moreover, for

the subordinate layers which cannot be merged into the key layers, (i.e., average pooling),

we treat it as a separate layer and will do quantization in the next step.

Finding scaling factor and quantizing data. The proposed LPFP quantization method is

applied to the output activations and weights of each fused layers. The quantization function

is defined as follows:

Vlfp = quan(Vfp32 × 2sf ,MINlfp,MAXlfp), (3.4)

where Vlfp and Vfp32 denote the decimal values represented by LPFP and traditional single

floating-point format, respectively; MINlfp and MAXlfp indicate the minimal and maximal

numbers represented by LPFP, and sf is the scaling factor which is used to better fit the

data into the dynamic range of LPFP. After finding the optimal scaling factor and quantiz-

ing the activations and weights of each layer, the scaling factor needs to be re-normalized

for accuracy. To simplify the calculation in the processor, we do the re-normalization of

the scaling factor when we re-quantize the output activations to LPFP format in the data

conversion step (see details in the Section 3.3.2). The quan function in Eq. (3.4) rounds the

data to the nearest value with saturation considered, formulated as

quan(x,MIN,MAX) =


MIN x <= MIN

MAX x >= MAX

round(x) otherwise

, (3.5)

where MIN and MAX are the minimal and maximal values, respectively.

The mean square error (MSE) of the values before and after quantization is used as the
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metric to evaluate the quantization error, illustrated as:

MSE =
1

N

N∑
i=0

(Vlfp/2
sf − Vfp32)

2, (3.6)

where N denotes the amount of data.

As illustrated from Eq. (3.4) to (3.6), MSE is influenced by the data format of LPFP

and the scaling factor (sf). Since the quantization process is performed offline only once for

each CNN, we use exhaustive search to find the optimal combination of LPFP data format

and scaling factors for both weights and activations. During the inference process for each

CNN, the quantized weights and scaling factors of activations are fixed for different test

images. Therefore, no extra computation is need during the inference process. In this work,

we assume the same data format for a CNN and a same scaling factor for each

layer. This assumption can be removed as needed. Furthermore, we choose to use a same

optimized data format for all test cases in our experiments, while the problem formulation

is to decide a data format for each CNN.

3.3.2 Data Flow in Processor

The data flow of our proposed approach is shown in Fig. 3.2. In order to explicitly illustrate

the data flow, we list the bit width in each step with M4E3 data format as an example. The

weights and biases of the pre-trained model are represented by 32-bit floating-point. The

weights are first quantized into M4E3 while the biases are quantized into 16-bit fixed-point

to reduce quantization error. All the quantized weights and biases are then stored into the

external memory of the FPGA board. The quantization of weights and biases are performed

on a server only once for each CNN. In our processor, the raw input image which indicates

the input of the first layer is also quantized from 32-bit floating point into M4E3 and stored

into the external memory. During the inference on our FPGA processor, the quantized

image, weights and biases are fetched from the external memory, and the multiplications

of image and weights are performed with M4E3 data format. The M4E3 multiplication is
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Figure 3.2: The data flow in our processor with M4E3 data format as an example (FP:

floating-point, Mult: LPFP multiplier, AM: alignment module, Acc: accumulator, DC: data

converter).

decomposed into three parts: 1) xor of the sign bit; 2) multiplication of the mantissa; and

3) addition of the exponent. To maintain full precision during computation, the results of

the LPFP multiplier are kept 15-bit, with 1 sign bit, 10 mantissa bits and 4 exponent bits.

The followed align module (AM) converts the 15-bit products to 23-bit fixed-point without

any precision loss. Considering the exponent of the product can be varied from -4 to 8, we

can use 12 more bits to cover all the 13 cases (12 bits can have 13 dot positions). Moreover,

we set the 23-bit fixed-point to have 12 decimal places by considering the worst case (4 bits

from the worst case of exponent to be -4 and 8 bits from the 10-bit mantissa). In this way,

all the accumulation can be done in 32-bit fixed-point accumulators with saturation, which

consumes fewer resources in FPGA than floating-point accumulators. Since the fixed-point
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accumulator does not change the dot position, the final outputs of the accumulators still

have 12 decimal places. Finally, we quantize the 32-bit fixed-point data back to M4E3

floating-point and store them in the external memory before being used by another CNN

layer. As the scaling factors of the input activations and kernels are propagated to the output

activations during convolution, we need to re-normalize the output activations for accuracy

by multiplying 2sfoa−sfia−sfk , where sfoa, sfia and sfk indicate the scaling factors of output

activations, input activations and weights, respectively. This is done by shifting the 32-bit

fixed-point data in the data conversion step. Moreover, to simplify the data conversion,

we will first quantize the shifted data to 16-bit fixed-point with 1 sign bit, 7 integer bits

and 8 decimal bits. After that, the 16-bit fixed-point data is quantized to 8-bit LPFP data

format. In the whole data flow, only the final data conversion step introduces bit truncation

and precision loss. However, the precision loss introduced by the final step has little impact

on the final accuracy and is validated in Section 3.5.1.2 with comprehensive experimental

results.

3.4 Processor Architecture

In this section, we discuss in detail the architecture of the processor, which efficiently supports

the inference process of quantized networks for various CNNs.

3.4.1 Overview

The overall architecture of the proposed processor is depicted in Fig. 3.3. A floating-point

function unit (FPFU), which is composed of multiple processing elements (PEs), is developed

to compute the outputs of a layer in parallel. The PE, which is the key component of

FPFU, is designed to efficiently perform dot product with LPFP data format. The on-chip

memory system (MS) consists of three buffers, e.g., input feature map buffer (IFMB), weight

buffer (WB) and output feature map buffer (OFMB). All these three buffers are ping-pong
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Figure 3.3: The overall architecture of proposed processor.

architecture to hide the communication time between on-chip and off-chip memories through

direct memory access (DMA) module. The central control module (CCM) is designed to

arbitrate between different modules. Moreover, the CCM decodes various instructions stored

in the instruction RAM (IR) into detailed signals for other modules.

3.4.2 Floating-point Function Unit

FPFU, which is constructed by multiple PEs, is designed to perform convolution in LPFP

data format efficiently for performance gain and power reduction. Different parallel com-

putation patterns, including parallel in input feature maps, parallel in output feature maps

and parallel in both input and output feature maps, are developed in FPFU and are dis-

cussed in the following paragraphs. FPFU receives activations and weights from IFMB and

WB, respectively, and distributes the activations and weights to different PEs to perform
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convolution according to the control signals decoded by CCM.

3.4.2.1 Architecture of PE

The PE is designed as a fully pipelined data-flow-based architecture, as shown in Fig. 3.4a.

Once a PE receives the activation and weight vector, which are represented with M4E3

data format, it distributes the data to Nm multipliers inside the PE. The products of the

multipliers keep full precision and are transferred into the alignment module (AM). The

full precision products are aligned and converted to fixed-point numbers without any bit

truncation. The aligned products are then fed into four fixed-point adder trees to finalize

four dot product processes in parallel, which indicates the feed-forward process of four pixels

in two output channels (see details in Section 3.4.2.2). The accumulation of partial results

(including bias), pooling and activation processes are performed in series inside the post

process module (PPM).

The multipliers in each PE are developed for LPFP, which are represented with scientific

notation in the sign-and-magnitude format, as illustrated in Eqs. (3.1) and (3.3). The multi-

plication of two LPFP numbers is then divided into three fixed-point components: (1) XOR

of the signs; (2) multiplication of mantissas; (3) addition of exponents. Take the MaEb

format as an example. An a-bit unsigned MAC and a b-bit unsigned adder are needed. Con-

sidering the first hidden bit of mantissas – “1” for normal numbers and “0” for subnormal

numbers – we design an a-bit multiplier and an a+2-bit adder to perform the a+1-bit mul-

tiplication. The a-bit multipliers and a+2-bit adders are implemented within one DSP slice

to improve per DSP throughput (see details in Section 3.5.2.2). Meanwhile, the exponent

bias Eb is not included during addition, because the Eb is the same for all the numbers in

one CNN as we assume, and we can address this at the last step to simplify the adders.
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Figure 3.4: The architecture of a PE and the parallel computation pattern in a PE. MUL:

LPFP multiplier, AM: alignment module, ACC: accumulator, Act: activation.

3.4.2.2 Parallel Computation Pattern

The convolutional/fully-connected layers are calculated in the PE. For the fully-connected

layers, we treat the input feature maps as ”weights” and weights as ”input feature maps”

to increase the data reuse and make the calculation pattern the same as convolutional lay-

ers. Therefore, each pixel in one output channel for convolutional/fully-connected layers is

calculated as

yi =
KW×KH∑

k=0

IC∑
ic=0

xk,icwk,ic + bi, (3.7)

where IC indicates the number of input channel, KW and KH denote the width and height

of the kernel, and x, y, w and b are input activation, output activation, weight and bias,

respectively. In our implementation on FPGA, we implement 4 LPFP multipliers with one

DSP slice, which follows the pattern: (a + b) × (c + d) = ac + bc + ad + bd (see details

in Section 3.5.2.2). Therefore, each PE is designed to process convolution in two output

channels in parallel, and in each output channel, it will calculate the convolutional results

of two pixels at the same time, as shown in Fig. 3.4b. To be specific, in the first cycle, the
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first pixel in IC input channels and the first value in the corresponding kernels are fed into

the PE, marked with a and c in Fig. 3.4b, respectively. To follow the computation pattern

in these four multipliers, the second pixel in IC input channels (marked with b), and the

corresponding kernels to calculate the pixel in another output channel (marked with d) are

also fed into the PE. In this way, a and b are reused to produce the pixels in different output

channels, while c and d are reused to produce the pixels in different positions of the same

output channel. After KW ×KH cycles, four convolution results are produced by one PE.

As illustrated in Section 3.4.2.1, Nm multipliers are used in each PE, and IC is designed

to be Nm/4. In this way, Nm/4 input channels are calculated in parallel in each PE. With

the corresponding weights and biases, 2 pixels in 2 output channels are calculated in parallel.

When the number of input channels is larger than Nm/4 and/or when the number of pixels

in each output channel is larger than 2 and/or when the number of output channels is larger

than 2, multiple rounds of computation are needed in series to finalize the convolution. In

order to further increase the parallelism, we use Np PEs in the FPFU. In different PEs, we

can feed in different pixels in input feature maps and weights to perform different parallel

computation pattern. For example, the Np PEs can share the same input feature map and

use different weights to parallelize the computation in output channels, or the Np PEs can

share the same weights and use different input feature maps to parallelize the computation in

input channels. The Nm, Np and the parallel computation pattern are decided by considering

the CNNs, the throughput and the bandwidth requirement. This will be explained with

experiments in Section 3.5.2.2.

3.4.3 Memory System

In order to keep the PE working without waiting for the data to be ready, the bandwidth of

IFMB and WB for each PE are designed to be Nm/2 LPFP input activations and weights per

cycle, respectively, while the OFMB is 4 output activations per cycle. Although each pixel

in the output feature map is represented with LPFP data format, we keep the intermediate

33



results with 16-bit precision to reduce accuracy loss. In this way, the bandwidth of OFMB

for each PE is set to 64 bits per cycle. As the input activations and/or weights can be

shared by different PEs according to different computation patterns, we define Pifm and

Pofm (Pifm × Pofm = Np) to indicate the parallelisms in input feature map and output

feature map, respectively. In this definition, Pifm indicates that we have Pifm PE groups

where the same weights are shared during calculation, while in each PE group, Pofm PEs

share the same input activations. In conclusion, the bandwidth for IFMB, WB and OFMB

are Nm/2× Pifm × BW , Nm/2× Pofm × BW and 64Np per cycle, respectively, where BW

denotes the bit width of LPFP data format.

As the amount of on-chip buffers are limited, we stored all the feature maps, weights, and

biases in the off-chip memory and preload the feature maps, weights and biases needed by a

computation block in the on-chip memories before computation. In this way, the parameters

Nm, Pifm and Pofm are decided to trade off between the throughput, bandwidth requirement

and resource utilization. Previous proposed work applied large enough buffers to store all the

activations or weights for one layer [HLM16a] to avoid costly off-chip memory access. How-

ever, such designs incurred large area and unscalability for larger and deeper CNNs. In our

processor, we trade off among the throughput, bandwidth requirement, resource utilization

and scalability, and employ the smallest size which can hide the DMA communication time.

In our implementation on FPGA, we use block RAM to deploy IFMB and OFMB, while we

use distributed RAM to deploy WB, as distributed RAM can provide higher bandwidth than

block RAM. During inference on our processor, only when all the input feature maps have

been processed and reused, or all the weights have been processed and reused, or OFMB is

full, will the off-chip memory be accessed for loading new input feature maps, loading new

weights or storing output feature maps, respectively.
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3.4.4 Central Control

The CCM is designed to arbitrate among different modules and control the whole execution

process. First, CCM decodes the instructions from IR efficiently and sets the corresponding

control registers. Second, different modules are activated according to the control registers

and the status of each module is monitored by the control registers as well. Finally, the

CCM decides when to fetch the next instruction from the feedback of the control registers.

We also design a compiler to generate the block-level instructions.

3.5 Evaluation

In this section, the evaluation of the proposed quantization method is first provided, then

the implementation details and comprehensive experimental results are provided.

3.5.1 Evaluation of Quantization Method

3.5.1.1 Experiment Setup

We implement our LPFP quantization method with C language based on the Darknet frame-

work [Red16], and the inference process of the quantized network follows the same data flow

as that in our processor illustrated in Fig. 3.2. The validation accuracy with single center-

crop is then evaluated via the ImageNet validation set (50,000 labelled images) [RDS15b].

Our quantization process is run on an Intel (R) Core (TM) I7-8700T CPU working under

2.40GHz, while the evaluation process is run on a Nvidia TITAN Xp GPU. During the eval-

uation process on GPU, all the quantized data are converted to 32-bit floating without any

precision loss. In addition, the computation on GPU are based on 32-bit floating point. Six

representative CNNs (AlexNet, VGG16, ResNet50/101/152 and DenseNet201) including the

slim, medium and deep CNNs are evaluated.
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Figure 3.5: Top-1/Top-5 accuracy for different (mantissa, exponent) combinations with re-

spect to different CNNs.

3.5.1.2 8-bit Quantization

The detailed validation accuracies on the quantized networks with 8-bit floating-point data

format are shown in Fig. 3.5a and 3.5b. We emulate all 8 different (mantissa, exponent)

combinations to validate the top-1 and top-5 accuracy of the quantized CNNs, and the

32-bit floating-point results are included as the baseline.

In Fig. 3.5a and 3.5b, the dashed lines illustrate the 32-bit floating-point baseline, while

the values above the dashed lines are the accuracy loss compared with the baseline. We

can see that our LPFP quantization approach can maintain comparable top-1 and top-5

accuracy to the baseline. On average, the top-1 and top-5 accuracy loss is within 0.5%

and 0.3% compared with the full precision results, respectively. Particularly, M5E2 always

achieves the highest accuracy compared with the other cases. Data formats with more than

or equal to 3-bit mantissa all have a low accuracy loss for all the six CNNs, while those with

less than 3-bit mantissa can hardly find accurate results. We also compare our proposed

approach with the fixed-point situation, marked as M7E0 in the figures (M7E0 means 1-bit

sign, 7-bit mantissa and no exponent, exactly fixed-point). As shown in Fig. 3.5a and 3.5b,

M4E3 and M5E2 outperform the fixed-point for all six benchmarks.
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Table 3.2: Accuracy comparison between M4E3, M5E2, references and FP32. “-” means

no reported results. “R” means the method with retraining.

Top-1 Accuracy (%) Top-5 Accuracy (%) for each network

AlexNet VGG16 ResNet50 ResNet101 ResNet152 DenseNet201

Nvidia [Mig17] 0.03 -0.01 0.03 - 0.13 0.12 -0.01 0.06 0.08 0.05 - -

BFP [LLS19] - - 0.03 0.02 0.11 0.12 - - - - - -

Ours (M4E3) 0.58 0.19 0.33 0.13 0.55 0.15 0.42 0.10 0.81 0.39 0.45 0.19

Ours (M5E2) 0.48 0.13 0.64 0.32 0.43 0.19 0.67 0.37 0.50 0.21 0.30 0.13

Ours (M4E3) R 0.03 0.01 0.03 0.00 0.08 0.06 0.05 0.02 0.04 0.01 0.07 0.03

Ours (M5E2) R 0.04 0.00 0.02 0.00 0.05 0.03 0.06 0.04 0.03 0.02 0.03 0.01

3.5.1.3 Comparison with the Prior Quantization Strategies

M4E3 and M5E2, which achieve the two best accuracies among all the test cases, are

also compared with five typical approaches. We report both the top-1 and top-5 accuracy

losses for all six benchmarks in Table 3.2, where “-” indicates no reported results in the

literatures. We also retrain our quantized network using M4E3 and M5E2 for 10 epoch

with the original training data, and the Top-1 and Top-5 accuracy loss are also included in

Table 3.2. Although the top-1 and top-5 accuracy losses achieved by our LPFP quantization

method without retraining are not the best among all the literatures, our method without

retraining is suitable for fast deployment and does not need any training data in the real-

world. Moreover, after retraining, our LPFP quantization method can regain the validation

accuracy compared with the 32-bit floating point networks. Moreover, our method can reach

deep networks.

3.5.1.4 Lower Bit Width Quantization

We further reduce the bit width from 8-bit to 4-bit and also evaluate the top-1 and top-5

accuracy of the quantized networks. We pick the best (mantissa, exponent) combination for
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Figure 3.6: Top-1 and top-5 accuracies for different bit width with respect to different CNNs.

each data format and the results are shown in Fig. 3.6. We can see that both the top-1

and top-5 accuracy decrease when lower bit length is utilized to represent the weights and

activations of CNNs. Particularly, the average top-5 accuracy degradations for 7-bit and

6-bit are 0.8% and 4.2%, respectively. However, the accuracy drops dramatically when the

bit width decreases to less than 6 bits, which means our LPFP quantization approach can

hardly find accurate results without any retraining process.

3.5.2 Evaluation of Hardware Implementation

3.5.2.1 Environment Setup

Our processor is implemented on the KC705 evaluation board with a Kintex-7 XC7K325T

FPGA and ZCU106 evaluation board with a Zynq UltraScale+ XCZU7EV FPGA. First,

we explore the parallel computation patterns to find the optimal parameters to best fit the
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Figure 3.7: Data format of the DSP to implement four 4-bit MACs. Ma,Mb,Mc and Md: the

mantissas of LPFP data a, b, c and d, respectively; ExMaMc , ExMaMd
, ExMbMc and ExMbMd

:

the extra term expressed as ExMaMc = 1.Ma + 0.Mc; Pac, Pad, Pbc and Pbd: the mantissas of

the product of two LPFP data expressed as Pac = 1.Ma × 1.Mc.

two FPGAs. Second, with these parameters, the processor is described in Verilog-HDL,

and synthesized and implemented with the Xilinx Vivado 2018.2 Design Suite. Finally,

we evaluate the throughput, inference latency and per DSP throughput of running different

networks on our processor, and the results are compared with two prior accelerators [MCV18,

LWC18]. The Intel (R) Core (TM) I7-8700T CPU under 2.40GHz working frequency and

the Nvidia Xavier NX GPU with a 8GB LPDDR4 are also used for comparison. More

comprehensive experimental results on VGG16 and YOLO are compared with latest FPGA

accelerators [MLN17,XLL17b,MCV18,GSQ17,LWC18,LLS19,WMS18].

3.5.2.2 Implementation Details

We use the M4E3 data format for FPGA implementation in this work for two reasons.

First, M4E3 achieves the top two best validation accuracies among all the LPFP (mantissa,

exponent) combinations we tested (see Section 3.5.1). Particularly, the average top-1 and
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top-5 accuracy loss of M4E3 compared with 32-bit floating-point are 0.53% and 0.19%,

respectively. Second, M4E3 only needs a 4-bit fixed-point MAC and a 3-bit fixed-point

adder, resulting in fewer resources on FPGA than M5E2. To be specific, four 4-bit fixed-

point MACs can be implemented inside one DSP48E1 slice in XC7K325T FPGA.

In order to clearly explain the way to implement four MACs with one DSP48E1 slice, we

take the multiplication of two normal numbers (X and Y ) as an example. The mantissa of

the product can be explained as:

Prod = 1.Mx × 2Ex−Eb × 1.My × 2Ey−Eb

= (0.Mx × 0.My + (1.Mx + 0.My))× 2Ex+Ey−2Eb ,
(3.8)

where Mx,My, Ex and Ey are the mantissas and exponents of X and Y , respectively. In Eq.

(3.8), the term 0.Mx× 0.My + (1.Mx +0.My) is performed with a 4-bit unsigned fixed-point

MAC and the term Ex + Ey is performed with an extra 3-bit unsigned fixed-point adder.

As the DSP48E1 slice can be implemented as a MAC followed by P = A × B + C (where

the maximal bit width of A, B and C are 25, 18 and 48, respectively), we add blank bits

to the three inputs to fully utilize the functionality of DSP48E1, as shown in Fig. 3.7. This

proposed method also works for the next generation of Xilinx DSP slice (DSP48E2), which

can also be configured as a MAC, with the maximal bit width of A, B and C to be 27, 18 and

48. During the calculation process, the dot position is kept at the right most position. That

is, the terms 0.Mx and 0.My are converted to 4-bit integers, while the extra term 1.Mx+0.My

is converted to 10-bit integers to make sure that no overlap occurs. In this way, with a few

LUTs and FFs to perform additions of the exponents and the extra term 1.Mx +0.My, four

multiplications with M4E3 data format can be carried out in on DSP slice (see Table 3.1),

thus dramatically increasing the per DSP throughput.

Parallel Exploration. Since one DSP slice is divided into four 4-bit LPFP MACs

in our implementation, the parameters should meet the requirement that Nm × Np = 4 ×

#ofDSP . Considering the resources of XC7K325T FPGA, we set the targeted number
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Table 3.3: Resource Utilization on XC7K325T.

Resource LUT LUTRAM FF BRAM DSP

Used 154625 7860 180561 234.5 768

Available 203800 64000 407600 445 840

Utilization 75.87% 12.28% 44.30% 52.70% 91.43%

of DSP as 768, which accounts for 91.43% of the available DSPs. We then evaluate the

throughput for different CNNs and the bandwidth requirement with respect to different

Nm and Np combinations as shown in Fig. 3.8a and 3.8b, respectively. We also explore

different combinations of the parameters Pifm and Pofm, and only depict the Pifm and

Pofm for achieving the optimal throughput and minimal bandwidth requirement in Fig. 3.8a

and 3.8b.

In general, when Nm keeps increasing, the throughput first increases and then decreases

when it reaches the peak. The small Nm and large Np indicate that more output channels are

calculated in parallel while large Nm and small Np mean more input channels are calculated

in parallel. When Nm is larger than the total number of input channel (denoted as IC),

only IC multipliers are used while the rest are wasted, resulting in a low throughput. This

is the same for large Np, and the peak throughput comes from balanced Nm and Np. For

different CNNs, the peak throughput comes from different Nm and Np combinations due

to different network configurations. For example, DenseNet201 has lots of inception layers,

which concatenate layers with small output channels (e.g., 32) to form layers with large input

channels (e.g., 1568). In this case, largerNm and smallerNp incur fewer wasted computations

and lead to higher throughput. From Fig. 3.8a, we can see that the combination of Nm = 96

and Np = 32 results in an optimal throughput for all cases on average.

The bandwidth requirement is extremely high when Np is large. This is because larger

Np indicates more parallel computations in output channels. Moreover, OFMB is designed

to store 16-bit intermediate results, which also lead to higher bandwidth requirement with
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Figure 3.8: Parallel exploration with respect to throughput and bandwidth requirement.

Table 3.4: Resource Utilization on Ultrascale+ 7EV.

Resource LUT LUTRAM FF BRAM URAM DSP

Used 133517 15760 201465 84.5 48 768

Available 230400 101760 460800 312 96 1728

Utilization 57.95% 15.48% 43.72% 27.08% 50% 44.5%

larger Np. The total bandwidth requirement decreases when Np decreases, and then increases

again since larger Nm needs more bandwidth to load input activations and weights. The

smallest bandwidth requirement comes when we have a balanced combination of Nm and

Np. As concluded from Fig. 3.8b, the optimal combinations are Nm = 96, Np = 32 and

Nm = 128, Np = 24. Take the case for optimal throughput, we set Nm = 96 and Np = 32 in

this implementation.

3.5.2.3 Experimental Results

Resource Utilization. Given the parameters that Nm = 96 and Np = 32, the detailed

post-implementation resource utilization under 200MHz working frequency on Kintex 325T is
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Table 3.5: Comparison between Intel I7-8700T CPU, Nvidia Xavier NX GPU, existing ac-

celerators and our processor with respect to different CNNs. ”-” means no reported results.

Throughput (GOPS) Inference Latency (ms) per DSP throughput (GOPS/DSP)

AlexNet VGG16 ResNet50

Intel i7-8700T [Inc21b] - - - - - - 755.6 10.19 -

Nvidia Xavier NX 1317.6 1.72 - 4253.4 7.19 - 2402.4 3.21 -

Ma, et. al. [MCV18] - - - 715.9 42.74 0.47 611.4 12.59 0.40

RNA [LWC18] 687.8 3.3 - 878.1 34.85 - 804.3 9.57 -

ours on 325T 1066.4 2.13 1.39 1086.8 28.16 1.42 1101.9 6.99 1.43

ours on 7EV 1599.6 1.42 2.08 1630.2 18.77 2.12 1652.9 4.66 2.15

ResNet101 ResNet152 DenseNet201

Intel i7-8700T [Inc21b] - - - - - - - - -

Nvidia Xavier NX 2584 5.88 - 2734.6 8.26 - 972 11.1 -

Ma, et. al. [MCV18] - - - 707.2 31.96 0.47 - - -

RNA [LWC18] - - - - - - - - -

ours on 325T 1121.4 13.6 1.46 1121.3 20.2 1.46 1104.7 9.78 1.44

ours on 7EV 1682.1 9.04 2.19 1682.0 13.4 2.19 1657.1 6.52 2.16

listed in Table 3.3 and resource utilization under 300MHz working frequency on Ultrascale+

7EV is listed in Table 3.4.

Throughput and per DSP throughput for different CNNs. Six representative

CNNs, including slim, medium and deep networks, are mapped on our processor. When cal-

culating the CNN size, one MAC is counted as two operations. The throughput is measured

in GOPS (Giga Operations Per Second), and is reported for different networks on our proces-

sor, Intel I7-8700T and Nvidia Xavier NX GPU in Table 3.5. We map our processor on two

typical FPGAs (Xilinx Kintex-7 325T and Xilinx Ultrascale+ MPSoC 7EV) which target on

edge applications. For fair comparison, we use the reported int8 results with OpenVINO on

Intel I7-8700T [Inc21b], and run all the 8-bit fixed-point networks on Nvidia Xavier NX with

TensorRT from PyTorch models [Inc21c]. As the existing studies [MCV18,LWC18] support

multiple networks, we also include their results in Table 3.5.
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Table 3.6: Comparison with prior accelerators on VGG16. ”-” means no reported results.

Mei, et.al. Xiao, et. al. Ma, et. al. Angel-Eye RNA BFP OPU
ours

[MLN17] [XLL17b] [MCV18] [GSQ17] [LWC18] [LLS19] [YWZ19a]

Year 2017 2017 2018 2018 2018 2019 2019 2019

Platform XC7VX690T XC7Z045 Arria 10 GX1150 XC7Z020 XC7Z045 XC7VX690T XC7K325T XC7K325T

Frequency (MHz) 200 100 200 214 - 200 200 200

Quantization 16-bit 16-bit 16-bit 8-bit 8/4-bit 8-bit 8-bit 8-bit

Strategy floating fixed fixed fixed fixed/log block floating fixed floating

DSP Used 1728 824 1518 780 - 1027 516 768

Throughput (GOPS) 202.42 229.55 715.9 84.3 (CONV) 878.11 760.83 354 1086.8

per DSP Throughput
0.117 0.279 0.472 0.444 - 0.741 0.69 1.42

(GOPS/DSP)

Power (W) 10.81 9.4 - 3.5 10.56 9.18 8.23 9.42

Power Efficiency
18.72 24.42 - 24.1 83.15 82.88 43.0 115.4

(GOPS/W)

Compared with the existing accelerators, our processor outperforms them in through-

put, inference latency and per DSP throughput. Particularly, the average improvement of

throughput is 63.5% and 1.45× for 325T and 7EV compared with [MCV18], respectively.

Meanwhile, compared with RNA, we can achieve 38.6% and 1.08× better throughput for

325T and 7EV, respectively. Moreover, the average improvement of per DSP throughput is

2.2× and 3.9× compared with [MCV18] for 325T and 7EV, respectively. In the approach

proposed in [LWC18], they use LUT to implement multipliers, so we do not compare per DSP

throughput with them. For the comparison with CPU on ResNet50 which is only reported

by OpenVINO, our FPGA processor outperforms 82.3% in terms of throughput because

of the high parallelism in our processor. Although Nvidia Xavier NX can achieve higher

throughput (due to more hardware resources) in most cases than our processor does, their

computation efficiency is low as their peak throughput is reported to be 21TOPS [Inc20].

Comparison with Previous Accelerators on VGG16. We run the classification net-

work VGG16 on our processor, and compare the results with seven typical studies, as shown

in Table 3.6. We also list the detailed implementation information, such as platform, work-

ing frequency and quantization strategy in Table 3.6. First, our processor, which uses the
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LPFP quantization scheme, has a negligible top-1 and top-5 accuracy degradation. Although

the work in [MLN17] and [LWC18] can also maintain negligible accuracy loss, the approach

in [MLN17] uses 16-bit floating-point data format, which results in higher bandwidth and

memory requirement and lower per DSP throughput, while the approach in [LWC18] needs

144 extra hours for the fine-tuning process. Second, our processor outperforms all the six ac-

celerators in terms of throughput and per DSP throughput. Particularly, the improvements

of throughput and per DSP throughput are from 24% to 11.89× and from 92% to 11.14×,

respectively. These improvements mainly come from the parallel computation pattern in

FPFU and the implementation of four 4-bit MACs within one DSP slice. To the best of our

knowledge, this is the first work that can simplify the multiplication to 4-bit and implement

four MACs inside one DSP slice while maintaining comparable top-1/top-5 accuracy with-

out any retraining process. Finally, we also show the power efficiency in Table 3.6, and our

processor improves the power efficiency by 39% – 5.16×.

Comparison with Previous Accelerators on YOLO. We further compare the de-

tection network YOLO [RDG16b,RF17b] with prior accelerators [MCG17,GHY17,GSQ17,

WMS18] and we use the tiny version of the YOLO network. The comparison results are

shown in Table 3.7, where we also list the mean average precision (mAP) loss of our quan-

tized networks. Compared with the full precision network, the mAP loss of quantized tiny-

yolo and tiny-yolo-v2 is 0.3% and 0.1%, respectively. The hardware comparison with prior

accelerators shows that our processor is 20.1× and 49.7× higher in terms of throughput for

tiny-yolo and tiny-yolo-v2, respectively. Moreover, due to the implementation of four 4-bit

MACs within one DSP slice, the per DSP throughput improves by 5× compared with prior

accelerators on average.
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Table 3.7: Comparison with prior accelerators on YOLO. “-” means no reported results.

Ma, et.al. Aristotle Angel-Eye Wai, et.al. OPU
ours

[MCG17] [GHY17] [GSQ17] [WMS18] [YWZ19a]

Year 2017 2017 2018 2018 2019 2019

Platform XC7V485T XC7020 XC7Z020 Cyclone V XC7K325T XC7K325T

Frequency (MHz) 143 214 - 117 200 200

Quantization Strategy 16-bit fixed 8-bit fixed 8-bit fixed 8-bit fixed 8-bit fixed 8-bit floating

Network tiny-yolo tiny-yolo tiny-yolo tiny-yolo-v2 tiny-yolo tiny-yolo tiny-yolo-v2

mAP loss (%) - - - - 1.3 0.3 0.1

DSP Used 112 198 - 122 516 768

Throughput (GOPS) 48 36.5 62.9 21.6 366 987.2 1095.4

per DSP Throughput
0.429 0.184 - 0.177 0.71 1.29 1.43

(GOPS/DSP)

3.6 Related Work

Weight and Computation Reduction. CNNs are typically over-parameterized, and ex-

tensive accelerator developers in recent years focus on using CNN approximation algorithms,

including weight reduction, computation complexity reduction and quantization to acceler-

ate CNN inference [WDZ19a]. The accelerator proposed in [LLX17,WCC18] uses Winograd

algorithm to reduce the number of multiplication in convolution, thus reducing computa-

tion complexity. EIE [HLM16a], Cambricon-X [ZDZ16a] and Cambricon-S [ZDG18] are the

mainstreaming accelerators that benefit from weight and computation complexity reduc-

tion techniques. Unnecessary computations (i.e., multiplication of zeros) in CNN inference

are skipped for better inference time and energy [AYS18, SZH18]. All these methods for

computation reduction take the 8-bit fixed-point as the target data representation. How-

ever, the irregularity caused by these algorithms degrades the parallelism and hardware

efficiency [WLD18].

Quantization. Accelerators with quantization is another concentration. XNOR Net

[ROR16] applied weights binarization by quantizing weights into {-1, 1} with a scaling

46



factor for AlexNet. The lightweight YOLOv2 [NYF18] is another binarization approach

which focuses on object detection CNN. Accelerator with ternary representation, which adds

zero to the binary set, is introduced to help improve the accuracy [PBP17]. Although these

accelerators achieve remarkable power and storage saving, they both suffer from significant

accuracy loss. Moreover, they all need time-consuming retraining process to compensate

for the quantization error. 16-bit quantization oriented accelerators, including floating-point

and fixed-point representations, solve the problem of accuracy loss [MLN17,XLL17b,MCV18,

MCG17]. However, the storage requirement is still huge, and the per DSP throughput is

extremely low (less than 0.5GOPS/DSP) because of the usage of 16-bit.

8-bit quantization makes a trade-off between storage and accuracy. The accelerators

[GSQ17, LWC18] optimize the computation patterns with 8-bit fixed-point quantization to

improve the performance for different CNNs. DNNBuilder [ZWZ18b] is proposed to auto-

matically build DNN accelerators to satisfy the performance and power efficiency demands on

embedded and cloud FPGAs, while Cloud-DNN [CHZ19] is the framework for mapping DNN

models to cloud FPGAs. Block floating-point scheme with 8-bit mantissa is used in [LLS19]

to accelerate the inference of CNN while maintaining accuracy. However, all these acceler-

ators need 8-bit MAC to perform convolution, leading to a low per DSP throughput (less

than 0.8GOPS/DSP). A more aggressive method quantizes the small values of the weights

into 4 bits and keeps the remaining 16 bits as full precision, by dividing the weights into

the low-precision and high-precision regions according to the values of the weights [PKY18].

HAQ [WLL19a] proposes a mixed precision quantization approach with a trade-off between

quantization policy and hardware performance. However, both studies need time-consuming

retraining process to compensate for quantization errors.

Different from all the above methods, the proposed LPFP quantization scheme fully

exploits the properties of weights and activations, thus obtaining a comparable or better

accuracy for deep CNNs. Moreover, the LPFP quantization method gets rid of the time-

consuming retraining process that needs labelled data and extra computing, because access
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to labelled data can be difficult in practice as hardware and CNN algorithms are often de-

veloped by different parties. Furthermore, with the help of the LPFP quantization method,

our processor only needs 4-bit MACs, thus dramatically improving the per DSP through-

put. Moreover, our LPFP quantization method can also be applied to the aforementioned

computation reduction methods. This is because the LPFP and fixed-point data representa-

tion share the same representation of zeros, and the aforementioned computation reduction

methods all focus on eliminating the computations on zeros. Overall, the proposed processor

achieves better performance on FPGA.

3.7 Conclusion

We have proposed a low precision floating-point quantization method, called LPFP, to reduce

memory size and memory access with negligible accuracy degradation (less than 0.5% for

top-1 and 0.3% for top-5 accuracy) for CNN interference. Furthermore, we have reduced

the bit width for multiplication to 4-bit with comparable accuracy and implemented four

4-bit MACs within one DSP48E1 slice in Xilinx Kintex 7 FPGA family or DSP48E2 in

Xilinx Ultrascale/Ultrascale+ FPGA family. Experiments using Xilinx KC705 and ZCU106

platforms and six typical CNN networks show that we achieve an average throughput and

per DSP throughput of 1100.4 GOPS, 1.43 GOPS 1650.6 and 2.15, respectively. Moreover,

the average throughput for these networks is 82.3% and 1.5× over Intel I7-8700T CPU and

existing accelerators, respectively. Particularly for VGG16 and YOLO, we outperform six

existing accelerators in terms of average throughput by 3.5× and 27.5×, while improving per

DSP throughput by 4.1× and 5×, respectively. To the best of our knowledge, this is the first

in-depth work that can simplify the multiplication to 4-bit and accommodate four MACs in

one DSP slice while maintaining comparable top-1/top-5 accuracy without any retraining.
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CHAPTER 4

MP-OPU: A Mixed Precision FPGA-based Overlay

Processor for Convolutional Neural Networks

4.1 Introduction

Recent deep convolutional neural networks (CNNs) are widely used in real-time applications,

such as autonomous driving, where model size and inference latency are the main constraints.

Many researchers have introduced low-precision quantization techniques to reduce the model

size, computation complexity and communication bandwidth so that the inference latency

is reduced [HMD15b]. However, conventional quantization approaches take the same bit

width of weights and activations for all layers, and 8-bit fixed point has been proved effec-

tive in hardware implementation while maintaining accuracy [YWZ19b,WWC20]. Lower

precision networks are also possible to achieve high accuracy, but require expert design and

re-training [ZHM16b]. To this end, mixed precision comes to be a significant solution that

assigns different precision for different layers and different networks [WLL19b]. However,

the variety of the precision of each layer makes the architecture design more challenging.

Trying to overcome the challenge, Nvidia releases Turing GPU architecture which sup-

ports mixed precision arithmetic operations (1-bit, 4-bit, 8-bit and 16-bit) [MDL18]. BitFu-

sion [SPS18a] is another accelerator which can support multiplication on 2, 4, 8 and 16 bits.

However, these architectures cannot fully leverage the advantages of the quantized model.

For example, when the network is quantized to be 6-bit, the model has to be modified to

4-bit or to 8-bit when mapped on these architectures, which either leads to accuracy reduc-
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tion or latency increment. On the other hand, bit-serial multipliers, which can support more

flexible mixed precision multiplications, are used in Bismo [URS18]. However, Bismo uses

large amount of look-up-tables (LUTs) and Block RAMs (BRAMs) to implement matrix

multiplication on the FPGA, which makes it difficult to support CNNs.

To this end, we propose the Mixed Precision FPGA-based Overlay Processor (called

MP-OPU) that effectively accelerates the inference of mixed precision models. By using

the similar instructions and compilation flow as Light-OPU [YZW20a], we redesign the

computation core and memory system to expand the support from 8-bit fixed point CNNs

to 2-bit to 8-bit mixed precision CNNs. More specifically, the computation core can be

configured to operate with different number of multipliers according to the given bit width

of activations and weights, while the memory system in ping-pong architecture is capable of

run-time data rearrangement to fully utilize the bandwidth of external memory.

To summarize, the main contributions of the proposed MP-OPU can be summarized as

follows:

• High Flexibility. Different from the previous work that only support a subset of

the the possible precision choices [MMN18], our MP-OPU manages to address mixed

precision CNNs varying from 2-bit to 8-bit. In our design, the computation core is

developed to be programmable during run-time to support mixed precision efficiently.

By setting different parameter registers in the instructions, MP-OPU can support

mixed precision without re-implementing the design. Moreover, the memory system is

designed with run-time data pre-fetch and placement modules to optimize the external

memory access for mixed precision.

• High Scalability. Our implementation is highly scalable as it can be easily scaled up

or down to different FPGAs by adding or removing PEs. We only implement batch

parallelism among different PEs so that the PEs are separate to each other and can be

simply added or removed.

50



• High Performance. With all the DSPs configured to support 2-bit multiplication,

MP-OPU can reach 4.92 TOPS peak throughput on Xilinx VC709 evaluation board.

Furthermore, we take conventional and lightweight CNNs as benchmarks to be tested

on MP-OPU. All these networks are accelerated and MP-OPU achieves 12.9× la-

tency reduction and 2.2× better throughput/DSP for conventional CNNs, while 7.6×

latency reduction and 2.9× better throughput/DSP for lightweight CNNs on average

compared with existing FPGA accelerators, respectively.

4.2 Background and Related Work

4.2.1 Low Precision Quantization

Extensive explorations have been made on compressing and accelerating neural networks by

using quantization. Deep compression methods [HMD15b] quantize the network weights to

reduce the model size by rule-based strategies. More aggressive quantization strategies use

1-bit or 2-bit to represent the weights [CHS16]. Neural architecture search (NAS) based

mixed precision quantization is also proposed to improve the performance and efficiency

of quantizing a network. FBNet [WDZ19b] builds a lookup table of latency for different

operations running on the hardware, and optimizes the latency during the design process.

HAQ [WLL19b] computes the hardware feedback directly from two customized accelerators

and optimizes the quantization policy until the resource constraints (e.g., latency, energy)

are met. All these studies manage to quantize the full precision network (32-bit) into low

precision (less than or equal to 8-bit) with negligible accuracy loss. Therefore, we utilize the

quantization results from these methods and the quantization approach is not included in

the scope of this work.
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4.2.2 Fixed Precision Processors/Accelerators

Customized processors/accelerators on FPGA are proposed to accelerate the inference of

the quantized networks. OPU [YWZ19b] accelerate 8-bit fixed point CNNs, while the work

in [WWC20] addresses 8-bit floating point CNNs. Light-OPU [YZW20a] expands the work

from conventional CNNs to light-weighted CNNs with 8-bit fixed point as well. Different

from these studies, our work focuses on mixed precision CNNs.

4.2.3 Mixed Precision Processors/Accelerators

Mixed precision processors or accelerators on FPGA have also been also proposed recently.

Moreover, power-of-2 and fixed point data are supported by the auto-generated accelerators

on FPGA [ZGG19]. The approach in [MMN18] keeps the activations to be 8-bit fixed point

while the weights vary from 1 to 16-bit. However, they only support a limited part of the bit

width combinations, while MP-OPU is optimized for all the combinations of low precision

(2 to 8 bits).

4.3 Micro-Architecture of MP-OPU

The micro-architecture of MP-OPU discussed in this section is shown in Fig. 4.1, consisting

of Computation Core and Memory System. In the Computation Core, the PE Array and Post

Process modules perform the computation for all the conventional convolution, depth-wise

convolution, fully-connected, pooling, activation, residual and concatenation layers. In the

Memory System, we have 4 on-chip buffers, which are designed in ping-pong manner, to

perform data communication with the external memory. Moreover, in each module, we have

a separate control module to update the parameter registers defined in instructions, as well

as to control the data flow in these modules.
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Figure 4.1: The micro-architecture of MP-OPU. The computation core has multiple PEs for

convolutional layers followed by a post process module for other types of layers. The memory

system is designed with on-chip buffers in ping-pong manner to save communication time

with the external memory.

4.3.1 Computation Core

In the Computation Core, the PE Array finalizes the convolution of one layer block, while

the Post Process handles the accumulation of the intermediate results of different layer

blocks and other types of layers, such as pooling, residual and concatenation layers. To fully

leverage the advantages of mixed precision CNNs, both the PE Array and the Post Process

modules are designed to support mixed precision operations and can be programmed by the

parameter registers defined in the instructions.
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Figure 4.2: The architecture of one PE.

4.3.1.1 Architecture of PE

As shown in Fig. 4.2(a), each PE has multiple computation lanes to perform computation in

parallel, and one lane combination module is followed to combine or select the results accord-

ing to different parallelism modes. Each computation lane is composed of a mixed precision

multiplier (MPM) array and an adder tree. In order to fully utilize the resources on FPGA,

we use the DSP slices to implement the mixed precision multipliers, and we decompose one

DSP slice into several low precision multipliers to increase the resource usage efficiency. As

the weights and activations are always quantized by different bit width in a CNN, we pro-

pose the decomposition rule to support different bit width of multiplier and multiplicand,

as shown in Fig. 4.2(b). We share the same multiplier B1 and use n multiplicands (A1, A2

to An) to compact n multipliers into one DSP. In our implementation, we configure each

DSP to perform as a multiply-adder (P = A × B + C), and fit different operands (A,B
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and C) to the multiply-adder according to different precision combinations. As the signed

multiplication of lower significant bits may impact the higher significant bits, we introduce

a modification bit for each low precision multiplier. We explore all the combinations of Ai

and B1 in an exhaustive way and conclude that the ith modification bit follows:

Mi =


Sign(B1)⊕ Sign(Ai) B1 ̸= 0 and Ai ̸= 0

0 otherwise

, (4.1)

where Sign(x) indicates the sign of the data x and ⊕ means xor. In this way, we just need

to slice P into n parts to have the product of each low precision multiplier.

For each computation lane in MP-OPU, the number of DSPs is set to be fixed. Since

each DSP can be decomposed to multiple low precision multipliers, the number of outputs

for the MPM array varies according to the number of multipliers. Therefore, the following

adder tree is also designed to be programmable by the parameter registers, as shown in

Fig. 4.2(c). In order to use unified bit width for the adders in the adder tree, we first do

slicing and sign extension for each input in the slicer. The aligned data are then fed into the

4-stage adder tree. Afterwards, the sum of two 4-stage adder trees are either summed up or

concatenated according to the computation mode. Moreover, some stages of the adder tree

can also be bypassed in order to support depth-wise convolution.

4.3.1.2 Parallelism Exploration

In order to speed up the calculation of the CNN, we use four levels of parallelism in the

MP-OPU, as shown in Fig. 4.3. For the output channel parallelism, we use one activation

to multiply different kernels to generate different activations of different output channels,

as shown in Fig. 4.3(a). In the input feature map parallelism (shown in Fig. 4.3(b)), we

will compute the convolution of different activations in the same input feature map with

the corresponding kernels to produce one activation of one output feature map. For the
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Figure 4.3: Four levels of parallelism in MP-OPU.

input channel parallelism (shown in Fig. 4.3(c)), multiplication of activations in different

input channels and corresponding kernels are computed in parallel and then summed up

to form a result (or intermediate result) of one output channel. The batch parallelism will

calculate activations from different input images in parallel. These four levels of parallelism

are selected according to different types and parameters of the layers. For example, for the

conventional convolutional layer, we will use input channel parallelism in each computation

lane, and use output channel parallelism among different computation lanes in each PE. Since

each output feature map channel is generated by convolving one kernel and one input feature

map channel in the depth-wise convolutional layer, we use the input feature map parallelism

in each computation lane and output channel parallelism among different computation lanes

in each PE. To simplify the design, we set all the PEs to be independent and only do batch

parallelism among different PEs.

4.3.2 Data Pre-fetch and Placement for on-chip Memory

Since the maximal bandwidth of the external memory is fixed, we use ping-pong architecture

and data pre-fetch module to increase the run-time bandwidth of the external memory. With
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Table 4.1: Comparison with customized FPGA accelerators/processors on conventional

CNNs.

OPU1024 [YWZ19b] [ZGG19] [APR20] LPFP [WWC20] MP-OPU

Year 2019 2019 2020 2019 2021

Device XC7K325T 2 XC7VX690T XC7VX485T XC7K325T XC7VX690T

Network VGG16 VGG16 Tiny-Yolo-V3 VGG16 VGG16 Tiny-Yolo-V3

Bit width 8 mixed 1 18 FP8 mixed

Frequency (MHz) 200 156 200 200 200

DSP Used 516 - 2304 768 3072 2

Inference latency (ms) 88.7 200.9 - 29.6 11.2 2.91

Throughput/DSP (GOPS) 0.68 - 0.2 1.42 0.90 0.62

1 Weights are mixed precision while activations are 8-bit.

2 2048 DSPs are used for low precision multipliers while 1024 DSPs are used for adders.

ping-pong architecture, the communication time can be hid under the computation time. The

data pre-fetch module manages to load as many data with different precision as possible. As

different parallelism levels require activations and weights to be placed in different orders,

we arrange and store the data accordingly in the memory system in advance. On the other

hand, the feature maps are arranged during run-time to fit different parallelism levels. As

the output feature map of one layer will be the input of another layer, we add an extra data

rearrangement logic to change the data arrangement between row major and channel major

according to the parallelism levels. Only when the parallelism level changes between two

adjacent layers, will the data rearrangement logic be enabled.

4.4 Experiments

4.4.1 Experimental Setup

The proposed MP-OPU is implemented on the Xilinx VC709 evaluation board with an

XC7VX690T FPGA. The design is described in Verilog-HDL, synthesized and implemented

with Vivado 2020.1. For the network benchmarks, we use both conventional and lightweight
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Table 4.2: Resource Utilization of MP-OPU on XC7VX690T.

Resource LUT LUTRAM FF BRAM DSP

Used 278548 42853 324033 912 3072

Available 433200 174200 866400 1470 3600

Utilization 64.3% 24.6% 37.4% 62.0% 85.3%

CNNs for a comprehensive comparison to show the effectiveness of MP-OPU. These CNNs

cover different kernel sizes (1 × 1 and 3 × 3), strides (1 × 1 and 2 × 2), and convolutional

layer types (conventional convolution and depth-wise convolution). In addition, irregular

layer operations such as residual and concatenation are also included.

4.4.2 Hardware Implementation

In this work, 8 PEs are implemented. To balance the usage of DSPs and LUTs, we use 256

DSPs to implement mixed precision multipliers and 128 DSPs to implement mixed precision

adders in each PE. All the 256 DSPs for multipliers are configured by the same parameter

registers to support multipliers with bit width varying from 2 to 8 bits. The processor is

designed to meet 200MHz timing constraints and the detailed resource utilization is listed

in Table 4.2.

4.4.3 Comparison with Customized FPGA Accelerators

We further compare MP-OPU with 6 FPGA accelerators/processors on both conventional

and lightweight CNNs, and the results are shown in Table 4.1 and Table 4.3. As the quantiza-

tion method is not included in this paper, we use the bit width generated by HAQ [WLL19b].

We use the inference latency to evaluate the performance of running the network on each

FPGA processor/accelerator. Throughput/DSP, which is defined as the throughput con-

ducted by each DSP during run-time, is utilized to indicate the efficiency of each design.
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Table 4.3: Comparison with customized FPGA accelerators/processors on MobileNetV1/V2.

[ZNL18] [BZH18] [ZGG19] Light-OPU MP-OPU

Year 2018 2018 2019 2020 2021

Device Stratix V 5SGSD8 Arria 10 SoC 2 Stratix 10 XC7K325T XC7VX690T

Network V1 V2 V1 V1 V2 V1 V2

Bit width 16 8 mixed 1 8 mixed

Frequency (MHz) 133 150 156 200 200

DSP Used 1641 1278 - 704 3072 2

Inference latency (ms) 4.33 3.76 0.32 3.78 3.07 0.47 0.34

Throughput/DSP (GOPS) 0.13 0.06 - 0.21 0.14 0.38 0.29

1 Weights are mixed precision while activations are 8-bit.

2 2048 DSPs are used for low precision multipliers while 1024 DSPs are used for adders.

The image size is 416× 416× 3 for Tiny-Yolo-V3 and 224× 224× 3 for the other networks.

As shown in Table 4.1,MP-OPU achieves 7.9× and 17.9× inference latency reduction on

VGG16 compared with OPU1024 and the accelerator in [ZGG19], respectively. In addition,

MP-OPU outperforms OPU1024 on throughput/DSP by 1.3×. As for Tiny-Yolo-V3, we

have 3.1× better throughput/DSP than the prior accelerator. The approach in [ZGG19]

does not report the DSP utilization, but they use two XC7VX690T FPGAs while we only

use one. For MobileNet-V1/V2, MP-OPU performs 6.0× and 10.1× reduction on latency

on average compared with existing works, respectively. Although we use more DSPs than

others, we still have 2.4× and 3.5× better throughput/DSP on average, respectively. Better

throughput/DSP indicates higher computation efficiency during run-time, and this is one

main reason why we have lower inference latency.

4.4.4 Discussion

To further demonstrate the effectiveness of MP-OPU, we evaluate the inference latency

with respect to different bit width combinations. We take Tiny-Yolo-V3 as an example and
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Figure 4.4: Inference latency of Tiny-Yolo-V3 with respect to different combinations of bit

width. In the legends, “w=2” means the bit width of weights is 2.

the results are shown in Fig. 4.4. In general, the latency increases as the bit width increases.

The observation follows the rule that one DSP can be decomposed to more multipliers when

the target bit width is small. However, the latency remains unchanged when the bit width

changes from 7-bit to 8-bit because one DSP can only be decomposed into two multipliers for

both 7-bit and 8-bit. Furthermore, compared with the 8-bit model, the inference latency of

the 2-bit model reduces to about 3.9×, although one DSP can only be decomposed to 3× as

many 2× 2 multipliers as 8× 8 multipliers. The extra benefits come from the data pre-fetch

module, where we manage to fetch 4× as much 2-bit data as 8-bit data under the same

external memory bandwidth. For the 8-bit case, the bandwidth constraints is still severe as

we cannot hide all the external communication time under the computation time, especially

for the layers with 1 × 1 kernel size. Therefore, the percentage of the DSPs being effective

during run-time is less than 100%. The problem of bandwidth constraints can be alleviated

when the activations and weights decreased to 2-bit.
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4.5 Conclusions

In this work, we propose a Mixed Precision Processor on FPGA (MP-OPU) to leverage

the advantages of mixed precision CNNs. We reuse part of the instructions and compilation

flow in Light-OPU and redesign the hardware processor. To support mixed precision CNNs,

the computation core is designed to be run-time re-configurable to have different number of

multipliers according to the given precision. Meanwhile, the ping-pong architecture, pre-fetch

and data rearrangement logic in the memory system make fully utilization of the bandwidth

of the external memory. By mapping on Xilinx VC709, MP-OPU can reach 4.92 TOPS

peak throughput when configuring to only support 2-bit. Our experimental results show that

MP-OPU manages to reduce inference latency by 12.9× and increase throughput/DSP by

2.2× for conventional CNNs on average, respectively. Also, the average latency reduction is

7.6× and the throughput/DSP increment is 2.9× for lightweight CNNs.
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CHAPTER 5

LW-GCN: A Lightweight FPGA-based Graph

Convolutional Network Accelerator

5.1 Introduction

Over recent years, deep learning paradigms such as convolutional neural networks (CNNs)

and recurrent neural networks (RNNs) have shown great success in various families of tasks

such as image and text processing [ON15, SMH11]. However, these paradigms rely heavily

on structural properties of euclidean data such as dense tensors, and have trouble processing

non-euclidean data such as graphs. To tackle this problem, graph neural networks (GNNs)

have been introduced and have demonstrated the ability to accurately process complex graph

data [SGT08]. Among numerous GNNs, graph convolutional networks (GCNs) [KW16a],

which borrows ideas from CNNs to aggregate neighbor data, have quickly attracted industrial

attention as a popular solution to real-world problems [SZG20a, BA19, YHC18a, CLS19a].

Since then, there have been many other graph processing algorithms (i.e. GIN, GraphSAGE,

GAT, etc.) introduced to optimize performance on existing problems and extend to new

challenges [XHL18,HYL17c,VCC17,TWO18,SKB18,FLW18].

Similar to CNN, GCNs also contain multiple layers, where the main operations of each

layer are combination and aggregation. Combination is similar to a dense layer of a multi-

layer perceptron (MLP), where a feature matrix is multiplied by a weight matrix. Aggregation

is similar to a convolution operation of a standard CNN, where the feature vector of each

vertex is computed through a weighted aggregation of all feature vectors of neighboring
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vertices, which can be represented as a matrix multiplication between the graph adjacency

matrix and the feature matrix.

Despite the fact that the majority of GCN operations can be represented as matrix

multiplication, it is unlikely for existing matrix multiplication oriented accelerators [YWZ19c,

FR04, YZW20b, LDT16b] to yield high throughput on GCN. These accelerators typically

exploit the structured nature of dense tensors and apply data reuse techniques to achieve

performance boosts. However, such techniques are ineffective in GCNs because adjacency

matrices in GCNs are often sparse, random, and irregular due to the fact that node degree

distribution of random graphs follow the power law distribution. Although existing works

such as EIE and Cambricon-X [HLM16b, ZDZ16b] tackles irregularity in computation and

memory access in deep compressed CNNs, the sparsity of deep compressed CNNs is much

lower (around 90%) than that of GCNs (over 99.9%). Due to the extreme sparseness of

graph data, sparse CNN accelerators also fail to maximize computational efficiency, thus a

more effective approach is required.

There are existing GCN accelerators to overcome the sparseness challenges [GLS19,

LWL20a,YDH20a, LLK21]. The work EnGN [LWL20a] proposes a unified architecture for

feature extraction, aggregation and operation update. The GCNAX also proposes a uni-

fied architecture while focusing specifically on loop rearrangement to improve the efficiency

of loading data from off-chip. The Cambricon-G [SZF22] proposes the cuboid engine with

multiple vertex processing units and hybrid on-chip memory to process the sparse data and

dynamically update the graph topology. Meanwhile, the Rubik [CWX20a] develops a unified

architecture to cooperate with graph reordering to support both node-level and graph-level

computing. On the contrast, the work in [YDH20a,GLS19] assumes combination and aggre-

gation are structurally different. In HyGCN, they design an aggregation engine for irregular

accesses and computations, and an combination engine for regular accesses and computa-

tions. The AWB-GCN uses TDQ-1 and TDQ-2 to perform general sparse (sparsity < 75%)

matrix multiplication and ultra-sparse matrix multiplication, respectively. Although the
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above work achieves performance boosts, they either cache large amounts of data on-chip or

rapidly load data from off-chip memory. This requires either large amounts of on-chip mem-

ory or huge off-chip memory bandwidth (i.e., high-bandwidth memory (HBM)). Moreover,

HyGCN and AWB-GCN deploys independent hardware modules for different operations,

such as combination and aggregation. Despite the efforts to balance computation in each

module, the inherent workload differences across datasets make it difficult to keep both mod-

ules fully utilized. Moreover, as GCN grows in popularity and supports numerous real-world

applications, it is natural for its inference workload to see heavy demand on edge devices in

the near future. For example, GCN is used for autonomous exploration under uncertainty in

the robotic domain [CWS19]. The authors in [AKT21] propose a GNN based algorithm to

optimize pose prediction in 2D SLAM, which can be widely used in autonomous driving. It is

unlikely for these resource limited devices to provide powerful hardware resources, therefore

a more lightweight approach is required.

To this end, we propose a lightweight software-hardware co-optimized accelerator, named

LW-GCN, to efficiently perform GCN inference. We first introduce the ”packet” conception

in compressing the sparse matrix into a packet-level column-only coordinate-list (PCOO)

format in software. The PCOO format is also easy to decompress in the hardware. We then

propose a unified micro-architecture to efficiently execute both combination and aggregation,

where the main operations are MM and SpMM. An optimized computation pipeline is utilized

in each processing element (PE) to cope with the irregularity in computation and memory

access caused by SpMM. Due to the limited hardware resources, we apply tiling to process

a portion of MM/SpMM at a time, which enables us to only keep a fraction of the matrices

on-chip. Finally, our preprocess procedure injects ”empty elements” in PCOO to indicate

idle cycles and prevent data collisions caused by irregularity of the sparse matrix in software

side. The preprocess algorithm has linear time and space complexity with respect to the

number of elements in the sparse matrix.

We implement LW-GCN onto the Xilinx Kintex-7 K325T FPGA, which simulates the
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Table 5.1: Dimensions and densities of widely-used datasets.

Datasets Nodes Edges Input Features Classes Feature Density Edge Density Weight Density

Cora 2708 10556 1433 7 1.27% 0.144% 100%

CiteSeer 3327 9104 3703 6 0.85% 0.0822% 100%

PubMed 19717 88648 500 3 10.0% 0.0228% 100%

limited resource availability of edge devices. We evaluate LW-GCN for GCN and Graph-

SAGE on three popular datasets Cora [CGS13], CiteSeer [CWC14] and PubMed [DL17].

Compared to state-of-the-art software framework Pytorch Geometric (PyG) running on In-

tel Xeon Gold 5218 CPU, NVIDIA Jetson Xavier NX edge GPU, NVIDIA RTX3090 GPU,

and a prior FPGA-based GCN accelerator [GLS19], LW-GCN achieves up to 60×, 32×,

12×, and 1.7× smaller latency, as well as 912×, 84×, 511×, and 3.87× higher energy effi-

ciency, respectively.

To summarize, the main contributions of this work as listed as:

• Software-Hardware Co-optimization. We propose a linear time and space pre-

process algorithm to compress the sparse matrix into PCOO format and optimize the

GCN workload. In addition, the micro-architecture is designed to efficiently process

the PCOO format, so that the GCN workload is also optimized in hardware side.

• High Computation Efficiency. We design unified micro-architecture for MM and

SpMM, which efficiently performs both combination and aggregation operations in

GCN. Moreover, the PCOO format skips computation and storage of zeros in the

sparse matrix, and the optimized architecture in each PE addresses the irregularity

issue caused by sparse matrix, which further increase the computation efficiency of

LW-GCN.

• Low Resource Requirement. The compression method in the preprocess algorithm

reduces both the storage and bandwidth requirement. Moreover, LW-GCN utilizes
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tiling techniques to process a portion of MM/SpMM at a time, thus further alleviating

on-chip memory burdens. Different from prior works that rely heavily on large on-chip

memory availability, LW-GCN works effectively on resource limited edge devices.

• High Performance. We evaluate LW-GCN on a Kintex-7 FPGA on three popular

datasets. Our work reduces latency by up to 60×, 32×, 12×, and 1.7× and increases

energy efficiency by up to 912×, 84×, 511×, and 3.87×, compared to Intel CPU,

NVIDIA edge GPU, NVIDIA server GPU and prior FPGA-based GCN accelerator.

5.2 Challenges and Motivations

In this section, we will briefly introduce the GCN algorithm, the challenges to map it on

hardware, and the motivation of our accelerator design.

5.2.1 GCN Background

The forward propagation of the lth layer of a multi-layer GCN [KW16a] is illustrated in

Equ. (5.1),

Xl = Relu(AXl−1Wl), (5.1)

where A,Xl and Wl indicate the adjacency matrix of the input graph, the feature matrix

of the lth layer, and the weight matrix of the lth layer, respectively. Relu is the activation

function and the input feature matrix of the graph is represented as X0.

Based on our analysis on widely-used datasets, the adjacency matrices and the input

feature matrix are often sparse, while the weight matrices are dense, as shown in Table 5.1.

Therefore, the computation order influences dramatically on computation complexity when

skipping the zeros. Following the analysis in [GLS19], we profile the required number of

scalar operations and intermediate storage under different computation orders, as shown in
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Table 5.2: Required computation and storage under different computation orders.

Datasets (A×Xl−1)×Wl A× (Xl−1 ×Wl)

Cora 18.7M / 56.2Mb 1.33M / 0.661Mb

CiteSeer 38.9M / 188Mb 2.23M / 0.812Mb

PubMed 118M / 150Mb 18.6M / 4.81Mb

Table 5.2. This way, we perform A× (Xl−1 ×Wl) as it is much more efficient.

This is also true for GraphSAGE. The computation of a layer in GraphSAGE can be

expressed as follows:

Xl = ReLU(Xl−1Wl,1 + ÂXl−1Wl,2), (5.2)

where Â is preprocessed from adjacency matrix A by dividing each element by the number

of non-zero elements in the row. In this way, we can perform the same optimized compute

order of Â(Xl−1Wl,2) as that in GCN. Similarly, GAT and the first layer of GIN both contain

similar sparse-dense-dense matrix multiplication workloads and can potentially utilize this

optimization.

For simplicity, we refer to step Xl−1 ×Wl as combination and A× (...) as aggregation of

each GCN layer, following the conventions of [YDH20a]. Moreover, for the combination of

the first layer and aggregation, we perform SpMM and for the combination of other layers,

we perform MM. This is because Xl is produced by the previous layer and it is always dense

except the first layer. From here on, for SpMM we will refer to the left sparse input matrix

as X, the right dense input matrix as W , and output matrix as Y for simplicity.

5.2.2 Challenges

As illustrated in previous sections, the main operations in GCN can be extracted as SpMM

and MM. Moreover, as more and more edge applications, such as autonomous exploration

in robots [CWS19] and pose prediction in 2D SLAM [AKT21], use GCNs for better perfor-
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Algorithm 1 SpMM

1: Input: X ∈ Rm×n, W ∈ Rn×p, Y ← 0m×p

2: for Xi,j in X do

3: if Xi,j ̸= 0 then

4: for Wj,k in W do

5: Yi,k ← Yi,k +Xi,j ×Wj,k

6: end for

7: end if

8: end for

9: return Y

mance. Therefore, the challenge becomes to accelerate SpMM and MM on resource limited

devices.

5.2.2.1 Challenges on SpMM

The computation of SpMM on one PE can be effective to skip all zero elements of the sparse

input X, as shown in Algorithm 1. However, parallel computing with multiple PEs introduce

new problems in Computation Imbalance and Memory Irregularity.

Computation Imbalance: To accelerate the computation of SpMM on multiple PEs,

we will first divide the workload and distribute portions to multiple PEs. In each PE, we

only process the non-zero elements from X. Due to irregularity in X, it is difficult to allocate

identical workloads to every PE, which leads to computation imbalance. This is challenging

for the SpMM in GCN, as the matrices in combination and aggregation are extremely sparse

(> 99%). Moreover, real-world graphs follows the power law distribution [XYL14], which

implies that the minority of rows (columns) in the adjacent matrix have the majority of non-

zeros while the majority of rows have only a few (not empty) non-zeros. Such irregularity

further increases the difficulty to balance workload.
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Memory Irregularity: Since the optimization of SpMM only stores the non-zero ele-

ments to save memory requirement, the data irregularity incurs several issues during com-

putation. Firstly, it is difficult to predict the position of the next non-zero element Xi,j to

be processed in the left matrix. Since matrix multiplication matches Xi,j against Wj and j

is unknown, the next non-zero Xi,j could require any row of W . This uncertainty requires us

to cache the entire W matrix on-chip, which leads to very expensive caching. Secondly, par-

allel computing of SpMM will process multiple non-zero elements of X simultaneously, thus

requiring all corresponding data in W to be readily available, this introduces the problem

of bank conflict. For example, to process non-zero elements Xia,ja and Xib,jb simultaneously,

the PEs must be provided with Wja and Wjb . However, memory resources on FPGA usually

come with high depth and very limited (1 or 2) ports, where each port can only access a

single depth of the memory bank at a time. In the scenario where Wja and Wjb are stored

on the same bank, which can only supply one of them at a time, we face a data conflict.

Thirdly, since the SpMM algorithm computes each row of the SpMM result as a sum of many

scalar-vector multiplications, it introduces a read-after-write (RAW) conflict. This is due to

the fact that arithmetic operations tend to take multiple cycles on hardware. If we process

non-zero elements Xi,ja followed by Xi,jb in the immediate next cycle, the multiplication and

addition would not have finished in the first cycle. When the PE reads in Yi in the next cycle

to process addition for Xi,jb it would inevitably read in an incorrect result. Finally, although

the RAW conflict can be effectively resolved by utilizing multiply-accumulators (MACs) in-

stead of individual multipliers and adders, doing so restraints the design to use the same

PE to process each row Xi, which leads back to the issue of Computation Imbalance.

As the individual node degree in a random graph follows the power law distribution, it is

common for there to be a large difference (over 100×) between densities of individual rows of

an adjacency matrix. Naively partitioning the sparse input X into row-blocks and assigning

row-blocks to a PE group would result in a difference between non-zero workload assigned

to each PE within the group. The latency of the group would be controlled solely by the
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input row with the highest density, vastly reducing efficiency.

5.2.2.2 Challenges on resource limited devices

Accelerating the inference of GCN should include the acceleration of both MM and SpMM.

Although MM does not have the issues of Computation Imbalance and Memory Ir-

regularity as SpMM, MM requires storage of all the numbers in the matrices, which incurs

the issue of Bandwidth Constraints. Therefore, designing a module with both MM and

SpMM in consideration is challenging. Existing solutions such as [YDH20a, GLS19] view

MM and SpMM as inherently different workloads, therefore introduced dedicated modules

to perform each independently. Although this allows each module to efficiently tailor to-

ward its workload, the resource allocation for each module raises a non-negligible concern.

Since different problem settings come with different data dimensions and densities (examples

shown in Table 5.1), the ratio between arithmetic operations required in combination and

aggregation varies significantly across datasets. In order to fully utilize the dedicated mod-

ules for each, these accelerators often need to dynamically allocate computation resources

to each module for each problem setting, which consumes many hours or even days for the

synthesis and implementation process. Moreover, the data dependency between combina-

tion and aggregation leaves one of the MM and SpMM modules idle, which leads to a waste

of resources. Such problem makes the accelerating GCN on resource limited devices more

challenging.

5.2.3 Motivation

Motivated by the above challenges, we propose a software-hardware co-optimization process

to address each of them, while keeping an available resource budget of an edge device. We

first define a PCOO format to compress the input sparse matrix, effectively eliminating zero

elements to preserve both storage space and computation time. We then design a dedicated
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computation engine processing multiple non-zero elements in parallel efficiently. Some key

highlights of our design include:

• Software Preprocessing: We first compress the sparse data into PCOO format, and

leverage the binary “edge-or-no-edge” feature of graph adjacency matrices to remove

value data. Then, we search the space of the sparse matrix to balance the workload

on different PEs in order to resolve the issue of computation imbalance. Finally, idle

data insertion is applied to solve the problem of bank conflict with a small burden.

• Dedicated Architecture Design: We design a dedicated architecture to decompress

the PCOO format in order to further increase the computation efficiency. Moreover,

a multi-port memory is applied in our design to resolve the issue of data conflict from

the hardware side.

• Unified Micro-architecture: We observe that MM is essentially a special case of

SpMM where density is 1. Therefore, we design the algorithm to process SpMM by

individual non-zero elements on the sparse matrix, and apply that algorithm on MM

as well. Moreover, we design a unified architecture of PE to process both MM and

SpMM efficiently, which allows all computation resource to be fully utilized. This

allows the full GCN workload to be deployed onto a unified module, resolving the

resource allocation problem.

• Flexible Design: Our design is not dedicated toward any specific GCN configura-

tions, instead it is able to support any number of layers with any size of GCN layers.

Additionally, since MM and SpMM are widely used across GNNs, our design supports

most operations needed for many other networks. In Section 5.5 we also evaluate our

design on GraphSAGE in addition to GCN as we support it out of the box.

71



Sparse tile X

S E Non-zero element

S Start of row

E End of row

Row #Col #Before compression S Col #After compression E V

S E

SE

S E
S E SE

SE
Empty element

SE Only element in row

SE Empty row element

2 * ⌈log2T⌉ bits 3 + ⌈log2T⌉ bits

Figure 5.1: Packet-level column-only coordinate list format

5.3 Software Preprocessing

The software preprocessing algorithm will first compress the input data, then allocate and

schedule GCN workloads onto different PEs. We will explain these algorithms in detail in

this section.

5.3.1 Data compression

5.3.1.1 PCOO format

As shown in Table 5.1, the adjacency matrix and the input matrix of the first layer in

GCNs are often extremely sparse. Therefore, we compress these matrices to process only

valuable information (non-zero elements) to save storage and reduce computation complexity.

We introduce the “packet” concept to propose a packet-level column-only coordinate-list

(PCOO) format to compress the sparse matrix (Fig. 5.1). In detail, we treat all the elements

in one row as one packet, and each non-zero element Xi,j in one row is formatted into a bit-

wise format. Firstly, the leading two bits conclude the row information of each non-zero

element, which indicate the start-of-row (SOR) for first non-zero element and end-of-row

(EOR) for last non-zero element. Secondly, the following one bit indicates valid (VLD) to

differentiate from injected empty elements (the injected empty elements are explained in

detail in Section 5.3.2). These three bits act as the header of a packet and the rest bits play
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Table 5.3: Comparison of Storage Requirement between CSR, CSC, COO and PCOO.

Dataset row col non-zeros CSR CSC COO PCOO

Cora Features 2708 1433 49216 781Kb 810Kb 1.33Mb 886Kb

Cora Edges 2708 2708 10556 207Kb 207Kb 296Kb 201Kb

CiteSeer Features 3327 3703 105165 1.74Mb 1.74Mb 2.94Mb 2.00Mb

CiteSeer Edges 3327 3327 9104 192Kb 192Kb 255Kb 173Kb

PubMed Features 19717 500 105165 13.2Mb 18.8Mb 27.7Mb 15.8Mb

PubMed Edges 19717 19717 9104 202Kb 202Kb 301Kb 195Kb

a role of payload, which has the column information and the value of each non-zero element.

We use log2(T ) bits, where T is the tile size, to represent the column position within tile (j

mod T ) of Xi,j. Finally, we use the remaining H bits to represent the value of the non-zero

element. In the corner case where there are no non-zero elements in a given row, we set the

header SOR = EOR = 1 and VLD = 0 with empty payload, in order to instruct the hardware

to increment the row number without performing calculation. In this way, we totally need

3+ log2(T )+H bits to represent each non-zero element in the sparse matrix. The algorithm

of compressing sparse matrix with PCOO is concluded in Algorithm 2.

We also evaluate the storage consumption of the commonly used compression formats

(CSR/CSC/COO) vs PCOO, and the results as shown in Table. 5.3. For all the datasets,

PCOO format is comparable in terms of storage efficiency compared with CSR and CSC,

and is more efficient than COO.

Since we treat MM the same operation as SpMM, we format the left dense matrix in

MM to fit the unified PE (as expressed in Section 5.4). The dense matrix is first stored as

normal, and then we design all rows to share the same column information in PCOO format.

In this way, we only need an extra of (3 + log2(T )) × Column Size bits to store the dense

matrix in intermediate steps.
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Algorithm 2 Sparse matrix preprocessing

1: inputs: X ∈ Rm×n, T , K

2: tiles, sor, eor, vld = [], T × 4, T × 2, T

3: for t← 0 to n− 1 by T do

4: rows ← [[] for 0:K]

5: for i← 0:m do

6: row ← []

7: for j ← t:(t+ T − 1) do

8: if Xi,j ̸= 0 then

9: row.append(j % T + vld)

10: end if

11: end for

12: row ← [0] if row is empty else row

13: row[0] ← row[0] + sor

14: row[-1] ← row[-1] + eor

15: rows[i % K].extend(row)

16: end for

17: fill zeros until rows is rectangular

18: tiles.append(rows.transpose())

19: end for

20: return tiles

5.3.1.2 Quantization

In order to further reduce the memory consumption, we apply quantization onto the val-

ues of all the matrices in GCNs. There are existing quantization strategies for GNNs.

Degree-Quant [TFL20a] can quantize to 8-bit signed fixed point with negligible accuracy

loss. However, their quantization strategy is applied during the GCN training process.
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Figure 5.2: Outer product matrix multiplication

SGQuant [FWL20a] proposes a GNN-tailored quantization algorithm to reduce GNN mem-

ory consumption. However, they require a fine-tuning scheme to compensate for the accuracy

loss caused by precision reduction. Our work only targets the inference phase and we target

on reducing the running time for preprocess. In this way, we take post-training quantization

strategy to save time for preprocessing. To maintain accuracy, we select 16-bit signed fixed

point (SINT16) to quantize the features and weights. Moreover, we explore the data proper-

ties of the sparse matrices and use 4-bit signed fixed point (SINT4) to quantize the non-zero

elements. In fact, for all matrices as well as two out of three feature matrices on the three

popular used datasets, the value of each Xi,j would be binary between 0 and 1, and there

would be no accuracy loss at all. During the computation, we store all the intermediate

results as 32-bit signed fixed point (SINT32) to maintain accuracy. The evaluation of our

quantization strategy on both GCN and GraphSAGE on all three datasets shows that our

proposed approach incurs negligible accuracy loss (within 0.2%).

5.3.2 Assignment and Scheduling

In order to reduce memory consumption, we employ an outer-product tiling approach, as

shown in Fig. 5.2. We partition the inputs into T -column tiles for X and T -row tiles for

W . The hardware processes a pair of tiles at a time, and produces the final result by
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accumulating all tile results. For each pair of tiles, we perform the following preprocessing

steps to balance workload and reduce data volume.

5.3.2.1 Workload assignment and scheduling

Multiplication of non-zero elements in one row of the sparse matrix X is assigned to the

same PE, while multiplication of different rows are assigned to different PEs in a round-

robin fashion. This way, non-zero elements from each row are processed sequentially on the

same PE and do not require the same accumulator simultaneously. However, different rows

of a graph adjacent matrix could have extremely different densities (with relative difference

> 100×). If we naively tile the workload further into row blocks, it would be inefficient for the

majority of PEs to finish execution and remain idle to wait for a single PE to finish processing

a particularly dense row, shown as the assignment step in Fig. 5.3. To increase PE efficiency,

we design the PEs to work independently, each PE starts to compute a new row immediately

when it finishes the previous one. This way, multiple rows are effectively concatenated before

assigned to one PE, this way we eliminate idle time (shown as concatenation step in Fig. 5.3).

Since it is unlikely for the density of a row to correlate with its row number, by Law of Large

Numbers we expect the sum of densities of rows assigned to each PE to be similar. In section

5.5, we will analyze examples in details and compare the computation cost and idle time

before and after the concatenation step. Finally, to ensure all PEs balance to process the

same amount of elements, including zeros and non-zeros, we inject empty elements at the

end of each concatenated row when necessary.

5.3.2.2 Data collision resolution

Due to constraints of on-chip memory, multiple rows of W are stored in the same memory

slice, out of which only a single row may be accessed at any time. However, the sparsity of

X may cause two PEs to simultaneously access different depths on the same memory slice,
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Figure 5.3: Round-robin assignment of non-zero elements to four PEs

which incurs data collision. To resolve this problem, we first develop a multi-bank memory

system with data replication to reduce the occurrence of such data collisions (see details in

Section 5.4.2). We then inject an empty element with VLD = 0 to prevent any data collision

not resolved by the multi-port memory system. For example, there will be a bank conflict

if N + 1 elements are requiring to access the same N−port memory. For this case, we will

insert an empty element in the place of the N +1th element and make the empty element to

access at one of the other N addresses so that the bank conflict can be avoided. The inserted

element will incur extra inference latency while more ports on a single memory will incur

large usage of on-chip memories. The trade-off is then made between the usage of on-chip

memory and extra latency incurred by empty elements, detailed analysis will be discussed

in Section 5.5.3.

Preprocessing is summarized in two steps in Algorithms 2 and 3. Overall, this prepro-

cessing algorithm is bounded by linear time and space complexity to the total number of

non-zero elements in every unique sparse tile. On the other hand, the dense tile is quan-

tized to SINT4 and passed to hardware without structural change. Finally, the preprocessor

generates instructions to serialize the execution across layers and steps.
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Algorithm 3 Collision stalling

1: inputs: tile ∈ RN×K , depth d=16

2: used, row ← [0 for 0:K], [-1 for 0:K]

3: result, share, block, j ← [], {}, {}, 0

4: while sum(used) < N × T do

5: i ← usedj

6: if tilei,j ∈ share or tilei,j % d ̸∈ block then

7: rowj ← tilei,j

8: share.append(tilei,j)

9: block.append(tilei,j % d)

10: usedj ← usedj + 1

11: else

12: rowj ← 0

13: end if

14: if min(row) ̸= -1 then

15: result.append(row)

16: row, share, block ← [-1 for 0:K], {}, {}

17: end if

18: j ← (j + 1) % K

19: end while

20: fill zeros until result is rectangular

21: return result

5.4 Micro-architecture of LW-GCN

As shown in Fig. 5.4, the micro-architecture of LW-GCN is composed of Peripheral In-

terface, External Memory Interface, Top Control, PE Array for Sparse-Dense Matrix Mul-

tiplication and on-chip buffers. The Top Control module fetches and decodes instructions,
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Figure 5.4: The overall micro-architecture and workflow of LW-GCN

before passing them to individual modules. As mentioned above in Section 5.3, the micro-

architecture processes a single tile at a time.

5.4.1 Overall Workflow

The overall workflow of computing one tile of LW-GCN is shown in Fig. 5.4. The dense

input data is transferred from external memory to dense data memory (DDM) during the

initial load step. During the Compute step, sparse input data is streamed onto the edge

weights memory (EWM), and the PE array fetches X data from EWM and W data from

DDM and performs multiply-accumulate (MAC) operations in parallel. Upon finishing all

pairs of tiles from each aggregation or combination step, we move output to the output

matrix memory backup (OMMB), and move a copy to DDM after combination and EWM

after aggregation during the data move step.
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5.4.2 Multi-Bank Dense Data Memory (DDM)

As mentioned in Section 5.3, in order to compute different rows on different PEs in parallel,

multiple non-zero elements from the sparse input are streamed on-chip during SpMM. Due to

the sparseness and irregularity of X, it is difficult to predict the column positions of the non-

zero elements ahead of time. Particularly, it is possible that several PEs require different

addresses from the same DDM. Limited by read capability of on-chip memory (dual-port

RAM only supports reading from two ports at most but the PE number is likely larger than

two), such access restriction leads to data collision. In the micro-architecture of LW-GCN,

we build a multi-port memory to store weights of one tile through data replication and row

grouping to reduce such data collision. In addition, we further reduce the occurrence of such

data collision during preprocessing, as mentioned in Section 5.3.

5.4.2.1 Data replication

We replicate the dense data into r replicas for different memory slices. Ideally, when setting

r equals to the number of PEs, the aforementioned data collision can be avoided because

we would have a dedicated replica of dense data for each PE. However, this incurs a large

on-chip memory requirement and is unfeasible in reality. Therefore, we set a relative small

r to solve part of the data collision with acceptable resource utilization (the chosen of r is

explained in detail in Section 5.5.2), and we introduce row grouping to further reduce the

occurrence of data collision.

5.4.2.2 Row grouping

We partition each dense data replica into g row groups, each of which is stored indepen-

dently. Specifically, we store row Wj on group (j mod g), so that data collision can only

occur between elements Xia,ja and Xib,jb if (ja mod g) = (jb mod g) and ja ̸= jb, which is

significantly less likely compared with the undivided memory. Despite the fact that on-chip
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Figure 5.5: (a) The architecture of PE Array; (b) Detailed architecture of a PE.

memory requires a minimum depth to be fully utilized, we are able to use high numbers of

row groups to statistically reduce the probability of data collision. However, row grouping

with large g leads to high complexity for data distribution to PEs, which results in complex

placement and routing and increases resource consumption.

Both data replication and row grouping can efficiently reduce data collision. The remain-

ing collision is avoided by injecting empty elements and processing them as idle cycles, as

mentioned in Section 5.3. We experiment with different r and g in section 5.5.3, where we an-

alyze the number of inserted idle cycles versus hardware resource consumption to determine

the optimal number of memory replicas and row groups.

5.4.3 Unified PE architecture for MM and SpMM

As shown in Fig. 5.5(a), the number of PE groups and memory banks are kept the same, so

that each PE group can access the corresponding memory bank for dense data to avoid data

collision. Based on addresses generated by an individual PE, Memory Selector and Data

Distributor dispatch appropriate dense data. We use priority decoder when distributing

addresses to memory banks, which allows different PEs to fetch from the same address of

the same memory bank.
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Note that data replication only applies to dense input but not sparse input. The com-

pressed sparse data is streamed directly to each PE. As shown in Fig. 5.5(b), data first

passes through PCOO Decoder, where the log2(T )-bit column index is interpreted as mem-

ory address to fetch dense data. If a valid bit is observed (VLD = 1), the PE routes the

corresponding value to its multiplier, otherwise it assumes the current value is an injected

empty element (i.e. data collision, waiting for other PEs to finish, etc.), and routes 0 to the

multiplier instead. Since multiple rows are concatenated to feed into each PE, we use SOR

and EOR to indicate the start and end of a row, respectively. For each computation step,

SOR controls the input of the accumulator to be either its previous result (SOR = 0) or

the intermediate result of the previous tile saved in OMMB (SOR = 1). Meanwhile, EOR

controls the address generation for storing current results into the output buffer, and also

increments the internally tracked row number (EOR = 1).

The MM is also performed in the PE with the same working flow. Since the left matrix

is dense, all the rows share the same row and column information, which also goes through

the PCOO decoder. The sparse flag signal then indicate which data to select. When we are

processing MM (sparse flag is 0), we will select the edge weights stored in EWM, otherwise,

we will select the value decoded from PCOO Decoder. In this way, we can perform both MM

and SpMM in the unified PE, which increases the working efficiency of PE for computing

combination and aggregation of GCNs.

5.5 Evaluation

In this section, we evaluate LW-GCN on different configurations to identify the impact of

each hardware resource. We then compare a final implementation against existing computing

platforms on three popular datasets: Cora, CiteSeer, and PubMed. The dimensions and

densities of each dataset are shown in Table 5.1.
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5.5.1 Experiment Design

We evaluate LW-GCN on a two-layer GCN which uses a hidden size of 16 and trained

dense weights and biases via the state-of-art framework Pytorch Geometric (PyG). Note

that this setup is identical to the GCN used in [GLS19] which we will be evaluating against.

In addition, to demonstrate the flexibility of our approach, we extend our evaluation to

GraphSAGE under the same datasets.

LW-GCN is implemented in Verilog HDL and deployed onto a Xilinx Kintex-7 K325T

FPGA, where we measure the execution time and energy consumption. The DDM is imple-

mented with LUT RAM while other on-chip memories are implemented with Block RAM

(BRAM). This is because memory banks in DDM require small depth and high bandwidth,

and LUT RAM is more suitable than BRAM. In this section, we first explore the impact of

tile size and dense input replication on execution latency. Then, we present a breakdown of

latency in individual step of loading, computation, and data movement. Finally, we present

an overall performance comparison against existing platforms in terms of latency and energy

efficiency.

The preprocessing time for all the datasets evaluated are shown in Table 5.4. For reference

we also provide the time it takes to read corresponding data from csv files. We can see that

the preprocessing time is comparable with the data loading time. Moreover, we only run

preprocess once for each dataset, and the preprocessing time is acceptable.

5.5.2 Hyper Parameter Impact

During each SpMM step, the dense input of one tile is stored in on-chip LUT RAM, where

multiple rows would be stored on the same slice of memory in order to fully utilize it. The

limitation where only a single row can be read from each LUT RAM slice at a time induces

data collision when multiple reads are needed for a same RAM slice and at a same time. As

explained in Section 5.4.2, both data replication and row grouping can effectively reduce data
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Table 5.4: Preprocessing time for different datasets.

Dataset CSV Load Time Preprocess Time

Cora Features 95.9 ms 19.8 ms

Cora Edges 20.3 ms 8.67 ms

CiteSeer Features 177 ms 46.6 ms

CiteSeer Edges 25.4 ms 11.0 ms

PubMed Features 1.53 s 279 ms

PubMed Edges 167 ms 228 ms
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Figure 5.6: Impact of (a) dense data replication with 512-row tiles and (b) tile size with 1

replica

collision. The less data collision will in return results in smaller latency of computing SpMM.

On the other hand, due to the irregular nature of graph adjacency matrices, individual rows

have very different sparsity which results in PE imbalance, we statistically minimize this

effect by utilizing larger tiles. As GCN has the hidden size of 16, we set each PE to have 16

multiply-accumulators and have the fixed relationship between tile size T and row grouping

g that T = 16g. Therefore, we evaluate the impact of latency from dense data replication r

and tile size T , as shown in Fig. 5.6. We can see that the latency of computing is decreased

by more dense data replications as well as larger tile sizes. At 8 replicas, LW-GCN’s SpMM
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latency is reduced by up to 44.23% (on PubMed) compared to 1 replica under the same 512-

row tile setup. At 4096-row tiles, SpMM latency is reduced by up to 61.83% (on PubMed)

with the same replication setup. The ideal cases in Fig. 5.6 is estimated by summing up the

total amount of workload, and assuming every PE is fully utilized.

Due to resource limitations, it is unfeasible to continuously expand tile sizes and replica-

tion numbers. Considering the tile size T and data replication r, the number of LUT RAM

needed can be expressed in Equ. (5.3).

#LUTRAM =
T × 16× r

16
= T × r, (5.3)

where the 16 in numerator indicates the data width. Equ. (5.3) is divided by 16 because each

LUT RAM can store 16-bit of data [Xil15]. Since we insert two registers in each LUT RAM

in order to achieve higher working frequency, the number of flip-flop (FF) can be expressed

in Equ. (5.4).

#FF = 2×#LUTRAM. (5.4)

Since the dense data are distributed to each PE in one PE group, we need multi-bit

multiplexer to select the data of the appropriate memory. Moreover, in Xilinx FPGA, each

8-bit multiplexer is implemented with 1 F7 MUX and 2 LUTs [Cha14]. In this way, the

number of F7 MUX and LUT required is listed as follows, respectively.

#F7 MUX =
T

16
× g × 256

8
= 2× T × g. (5.5)

#LUT = 2×#F7 MUX. (5.6)

In Equ. (5.5), T
16
× g indicates the number of multi-bit multiplexers. It is divided by

16 because 16 multiply-accumulators in each PE can share a same multi-bit multiplexer.

Since we using 256-bit multiplexer (each PE has 16 multiply-accumulator and each data is
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Figure 5.7: Resource consumption of (a) replication and (b) tile size

Table 5.5: Resource utilization on Kintex-7 325T FPGA.

Resource LUT LUT RAM FF F7 MUX BRAM DSP

Used 161529 33804 94369 32768 291.5 512

Available 203800 64000 407600 101900 445 840

Utilization (%) 79.26 52.82 23.15 32.16 65.51 60.95

in SINT16 data format), the number of multi-bit multiplexers is multiplied by 256/8 to get

the number of F7 MUX.

We also evaluate the resource utilization under the resource limited device with respect

to dense data replication r and tile size T , as shown in Fig. 5.7. According to the results

in Fig. 5.7, the resource utilization for storing and fetching dense input data follows our

analysis in Equ. (5.3) - (5.6). Moreover, r = 4 and T = 512(g = 32) achieve the best

balance between resource and performance under the specific FPGA, and will be used for

the remaining of experiments. When the FPGA platform varies, it is also easy to change

the hyper parameters following Equ. (5.3) - (5.6) with the resource constraints. Given these

hyper parameters, the overall resource utilization on Kintex-7 K325T FPGA is shown in

Table 5.5.
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5.5.3 Latency Breakdown

During preprocessing, we inject empty elements (see section 5.3.2) to handle the corner

case where a row Xi contains no non-zero elements, or when a PE completes its execution.

This enables each PE to internally track current row i, which allows us to remove row

number i from off-chip memory and reduce memory bandwidth consumption. We also inject

empty element symbols when two elements are to read from different depths of the same

memory, in order to prevent data collision. Fig. 5.8 shows the latency breakdown for overall

runtime (including MM/SpMM, memory load and on-chip data movement) as well as for

SpMM (including computation, PE imbalance, and data collision). The latency of MM is

dominant by computation as MM does not have the issues of PE imbalance and data collision.

Therefore, we do not list the latency breakdown for MM. In both cases, the time spending

on computation (i.e. MM/SpMM for overall, and computation for SpMM) is dominant. The

dataset PubMed has a relatively larger PE imbalance. This is because the higher sparsity

and irregularity of PubMed (the edge density in PubMed is about 1/5 of that in Cora and

CiteSeer.) When using the round-robin workload assignment and scheduling scheme, there

exists the number of non-zeros elements in one row is higher than the sum of non-zero

elements in other rows, thus causing an imbalance. The higher PE imbalance in PubMed

also indicates potential room for improvement by workload assignment and scheduling, which

will be explored in the future. For example, we can assign non-zero elements of the same row

to multiple PEs to make PE balance. At the same time, we need extra buffers and adders

on hardware to make correct computation.

We further evaluate the specific utilization rates per PE with respect to combination

and aggregation operations. For simplicity we only show the first layer on Cora dataset in

Fig. 5.9. It shows that the idle time of each PE varies from 6% to 12% for combination and

from 1% to 20% for aggregation, respectively. In overall, the lowest utilized PE is idle for

less than 20% of the SpMM time.

87



79.77% 76.32%
93.53%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cora CiteSeer PubMed

SpMM Load Data Move

79.25% 81.47%
69.96%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cora CiteSeer PubMed

Computation Data Collision PE Imbalance
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Figure 5.9: PE utilization during SpMM for Cora: (a) first combination tile and (b) first

aggregation tile

5.5.4 Overall Comparison

We evaluate the overall latency and energy efficiency of LW-GCN against the Intel Xeon

Gold 5218 CPU, NVIDIA Xavier NX edge GPU with Volta architecture, NVIDIA RTX3090

GPU with Ampere architecture and state-of-the-art FPGA-based GCN accelerator AWB-

GCN [GLS19], as shown in the top half (GCN) of Table 5.6. The overall latency on CPU

and GPU are evaluated under the state-of-the-art software platform Pytorch-Geometric.

Note that AWB-GCN is implemented on Intel Stratix 10 D5005 with frequency of 330 MHz

and uses 8192 DSP slices. We normalize their reported latency and energy efficiency with

this resource utilization to our FPGA (200 MHz and 512 DSP slices) for a fair comparison.
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Table 5.6: Comparison with CPU, edge GPU, general GPU and existing FPGA accelerator

on GCN and GraphSAGE

Latency (ms) [speedup] Energy efficiency (graph/kJ)

Platform Cora CiteSeer PubMed Cora CiteSeer PubMed

(Clock rate: GHz) GCN

Intel Xeon Gold 5218 (2.1) 1.89 [1×] 3.88 [1×] 12.5 [1×] 4.23E3 2.06E3 640

NVIDIA Xavier NX (1.1) 1.87 [1×] 1.88 [2.1×] 2.01 [6.2×] 3.57E4 3.55E4 3.32E4

NVIDIA RTX3090 (1.7) 0.492 [3.9×] 0.481 [8.1×] 0.491 [26×] 5.83E3 5.95E3 5.83E3

AWB-GCN (0.2) 0.0613 [31×] 0.115 [35×] 0.791 [16×] 7.70E5 4.82E5 6.21E5

LW-GCN (0.2) 0.0412 [46×] 0.0652 [60×] 0.571 [22×] 2.98E6 1.88E6 2.14E5

GraphSAGE

Intel Xeon Gold 5218 (2.1) 172 [1×] 385 [1×] 340 [1×] 46.5 20.8 23.5

NVIDIA Xavier NX (1.1) 10.6 [16.3×] 9.63 [40.0×] 10.8 [31.5×] 6.28E3 6.92E3 6.17E3

NVIDIA RTX3090 (1.7) 1.94 [89.0×] 1.88 [204.8×] 1.96 [173.6×] 1.47E3 1.52E3 1.46E3

AWB-GCN (0.2) NA NA NA NA NA NA

LW-GCN (0.2) 0.086 [2.01E3×] 0.14 [2.75E3×] 1.07 [318×] 1.42E6 8.77E5 1.72E4

For energy efficiency, Intel Stratix 10 D5005 uses 14nm transistors while Xilinx Kintex-7

325T uses 28nm transistors, following the analysis in [LLH05], we normalize their power

consumption by (28
14
)2 = 4×. For GCN as illustrated in Table 5.6, LW-GCN outperforms

all the other platforms in terms of latency and energy efficiency. Specifically, LW-GCN

achieves up to 60×, 32×, 12× and 1.7× speedup, as well as 2478×, 84×, 511×, and 3.88×

energy efficiency, compared with CPU, edge GPU, GPU, and AWB-GCN, respectively. LW-

GCN is able to achieve such performance benchmarks while keeping a small resource budget,

due to the techniques used in software preprocessing and micro-architecture to reduce data

collision and PE imbalance for SpMM, as well as performing MM and SpMM with unified

architecture.

89



5.5.5 Extending LW-GCN to Other Algorithms

Although LW-GCN is designed as a GCN accelerator, the underlying MM/SpMM acceler-

ation is not limited to GCN, and can be applied to any MM/SpMM related GNN workloads.

In fact, due to the sparse nature of graph adjacent matrices and dense nature of weight ma-

trices, most GNNs workload involves MM/SpMM. As a proof of concept we directly applied

LW-GCN to GraphSAGE [HYL17c] on the same datasets, and achieved an acceleration of

up to 2750×, 123×, and 22.6× and energy savings of up to 42200×, 226×, and 966× over

CPU, edge GPU, and GPU respectively, as shown in the bottom half of Table 5.6. Note that

AWB-GCN results for GraphSAGE is not available in the literature. Additionally, note that

the PyG implementation for GraphSAGE involves a sparse-sparse matrix multiplication due

to computing aggregation before concatenation, when applied on the three datasets we used,

therefore the latency is much higher than it could be.

We also evaluate the inference latency of larger datasets (i.e., Reddit [HYL17a]) and

deeper GCN architectures (i.e., GraphSAINT [ZZS19a]) running on LW-GCN to validate

the flexibility. First, we run GCN with the larger dataset Reddit, which has 232965 nodes

and 602 features. We partition Reddit into small tiles that fits for LW-GCN and run

all the tiles iteratively to get the inference results. The total inference time for running

Reddit on LW-GCN is 1249.6ms. For reference, the original reported inference time on

AWB-GCN [GLS19] is 31.81 ms, which would scale to 839 ms given our frequency and dsp

usage. The performance drop is because LW-GCN is only capable of storing data of one

tile, and we have to do data transfer between different tiles. In fact, 54.5% of inference

time is spent on data loads and stores, where a typical value is 6% - 23%, as shown in

Fig. 5.8 (a). Second, we run Cora dataset with GraphSAINT architecture, which has 6

graph convolutional layers. The inference latency is 0.225ms, of which 21.5% is used for

data communication while others for computation. This is quite similar to that of running

GCN because all the layers in GraphSAINT share the similar computation operations as

GCN. The above two examples show that the proposed LW-GCN can also work on larger
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datasets and deeper GNNs. For larger datasets, LW-GCN does not get promising results

because of the resource limitation and off-chip memory bandwidth.

5.6 Conclusions and Future Work

GCN involves heavy computation of multiplications of sparse and dense matrices, but most

neural network accelerators are targeted at CNN with dense matrix multiplication and there-

fore are not efficient for GCN. Recently, FPGA-based AWB-GCN improves performance,

but still requires a large amount of on-chip memory. Therefore, it is inapplicable to resource

limited hardware platforms such as edge devices.

In this paper, we have proposed LW-GCN, a software-hardware co-designed accelerator

for GCN inference. LW-GCN consists of a software preprocessing algorithm and an FPGA-

based hardware accelerator. The core to LW-GCN is our SpMM design, which reduces

memory needs through tiling, data quantization, sparse matrix compression, and workload

assignment with data collision resolution. Experiments show that for GCN, LW-GCN

reduces latency by up to 60×, 12×, and 1.7× compared to CPU, GPU, and AWB-GCN and

increases power efficiency by up to 912×, 511×, and 3.87×. Additionally, the underlying

SpMM design used by LW-GCN is applicable to other graph neural network algorithms

such as GraphSAGE, not limited to GCN.
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CHAPTER 6

SkeletonGCN: A Simple Yet Effective Accelerator for

GCN Training

6.1 Introduction

Over recent years, graph convolutional networks (GCNs) [KW16b] and similar representation

learning models have grown to be an efficient family of models to process non-euclidean

graph data. The graph convolution layer is able to improve learning through information

aggregation from each node’s neighbors, and have shown strong results among popular graph

datasets. There have been numerous real-world applications of GCN at the time of writing

across various popular research areas, from computational drug development to web-scale

recommenders. The capability to make use of inter-sample data is likely to pick up more

popularity in the near future [SZG20b,YHC18b].

However, despite its great success on the prediction accuracy front, training of GCN

comes with an enormous memory and computation burden. GCN is often used to process

large graph datasets, where the number of nodes can reach hundreds of thousands [HYL17b].

Therefore, the datasets can be as large as gigabytes and have trouble fitting onto hard-

ware accelerators such as GPUs and FPGAs. Fortunately, there have been sampling-based

approaches [CLS19b, ZZS19b] to decompose large graphs into many smaller subgraphs,

each of which can then fit onto the hardware with ease. Specifically, the experiments

in [CLS19b, ZZS19b] demonstrate that it is possible to decompose many popular datasets

into subgraphs with negligible reduction in training accuracy. On the other hand, both mem-
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ory consumption and computation efficiency can be further reduced through quantization.

Previously, Degree-Quant [TFL20b] is able to quantize the data to INT8 with little accuracy

loss during the inference phase. However, there is yet to be an accelerator to fully leverage

the advantages of the approaches above.

Previous dedicated hardware accelerators of CNNs over such data volume, such as Cam-

bricon, TPU and OPUs [LDT16c,JYP17c,YWZ20,YZW20c], explore parallel computing of

large number of compute cores to improve efficiency. Such efficiencies depend heavily on

data regularity and re-usage. However, it becomes challenging to apply such techniques to

accelerate the training of GCNs [KW16b,CLS19b,ZZS19b] due to the sparsity in graph ad-

jacency matrices. Firstly, the sparsity in adjacency matrices incurs a sparse matrix-matrix

multiplication (SpMM), which results in a high volume of irregular memory access. Sec-

ondly, the sparsity also incurs imbalance in load and computation when designing multiple

processing elements (PEs) to perform parallel computing for acceleration. Moreover, the

commonly used graph convolution layers in GCNs also incur a dense matrix-matrix multi-

plication (MM), which requires heavy arithmetic resources for fast computation.

There exist GCN accelerators to overcome the above challenges during the inference

phrase. For example, AWB-GCN [GLS20] processes each SpMM and MM during inference

in pipelined modules, and uses a dynamic resource allocation scheme to keep each module ac-

tively utilized. Meanwhile, EnGN [LWL20b] proposes a uniformed architecture to accelerate

SpMM and MM. However, it is difficult to expand these approaches to training acceleration

as their designs either cache large amounts of data on-chip or depend on high bandwidth

of external memory. In the training phase, most intermediate results need to be stored for

back-propagation, and therefore require much larger memory capacities. GraphACT [ZP20]

proposes a CPU-FPGA heterogeneous platform to accelerate GCN training. They first focus

on redundancy reduction in the algorithm level and then design an accelerator to parallel the

computation of feature propagation and weight transformation. However, their redundancy

reduction scheme relies heavily on the properties of the datasets and they treat the feature
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propagation and weight transformation as separate modules. The stray away from a uniform

architecture may leads to low hardware efficiency as data dimensions change.

To this end, we propose SkeletonGCN, a simple yet effective FPGA-based accelerator

for GCN training with both algorithm and hardware optimizations. We first apply quantiza-

tion to a sample-based GCN training algorithm to reduce storage requirement. In addition,

we simplify the non-linear operations (i.e., L2 normalization, Adam optimizer) to fit better

for FPGA acceleration and eliminate redundant computations by identifying reusable inter-

mediate results. Thereafter, in order to further reduce storage and bandwidth consumption,

we employ a compact packet-level column-only coordinate-list (CPCOO) format proposed

in LW-GCN [TWL21] to compress the sparse data. A unified PE architecture is then de-

veloped to efficiently handle SpMM, MM and MM with transpose. The architecture is fully

pipelined and equipped with ping-pong buffers to maximize DSP efficiency. We evaluate our

design on a Xilinx Alveo U200 board. The experimental results show that our simplification

steps incur negligible accuracy loss. Moreover, compared with the state-of-the-art FPGA

accelerator [ZP20] on the same experiment settings, we can achieve up to 11.3× speedup

on the total training convergence time. Compared with state-of-the-art CPU and GPU,

SkeletonGCN can achieved up to 178× and 13.1× speedup, respectively.

To summarize, our main contributions are as follows:

• Simple yet effective training: We apply low precision quantization on existing

training approaches for the commonly used large datasets. In addition, we simplify

the computation of non-linear operations and eliminate redundant computation during

the training process. Experimental results show that SkeletonGCN offers comparable

training accuracy despite these proposed simplification techniques.

• Unified high efficiency PE architecture: It can support SpMM, MM and MM

with transpose with high DSP efficiency. Comprehensive experiments show that we

can achieve up to 95% DSP efficiency, which in turn contributes to overall low training
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latency.

• Low training latency: Compared with a prior FPGA-based accelerator [ZP20]

under the same experiment settings, SkeletonGCN achieves up to 11.3× speedup for

total training convergence time. The speedup is up to 178× and 13.1× respectively

compared with state-of-the-art CPU and GPU.

6.2 Background and Related Work

6.2.1 Workload Breakdown

Following the state-of-the-art architectures, GCN [KW16b] and GraphSAINT [ZZS19b] are

composed of multiple graph convolution layers or multi-layer perceptron (MLP) layers. The

training process of a network can be divided into forward propagation, backward propagation,

and the weight update phase. To avoid ambiguity, the mathematical definitions we used in

GCN and GraphSAINT throughout this work are listed as follows. Forward propagation in

GCN for layer l is defined in Equ. (6.1).

Xl = ReLU(AXl−1Wl), (6.1)

whereXl−1 andXl denote the feature matrix of layer l−1 and l, respectively. Wl is the weight

matrix of layer l while A is the adjacency matrix of the input graph. Each graph convolution

layer applies a ReLU activation function. Since the adjacency matrix is always sparse for

different graph datasets, while the feature and weight matrices are typically dense, the basic

operations for the forward phase are sparse-dense matrix-matrix multiplication (SpMM) and

dense matrix-matrix multiplication (MM). The forward phase in GraphSAINT shares the

same basic operations as that in GCN, but arranges them in different combinations. Instead

of graph convolution layers, GraphSAINT introduces a concept of order. Each layer has an

order between 0 and 1, and an order 0 layer is simply an MLP layer, while an order 1 layer
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is shown as

Xl = ReLU(
[
Xl−1Wl,a AXl−1Wl,b

]
), (6.2)

where the [.] indicates column-wise concatenation of the two intermediate results, and

Wl,a,Wl,b are the self-weight and neighbor-weight matrices of layer l, respectively. The MLP

layer performs a simple MM as XL = σ(XL−1WL). While orders above 1 were defined in the

original work, it has not been used in practice. GraphSAINT also inserts an L2 normalization

before the final MLP layer, as shown in Equ. (6.3).

Xl =
Xl−1

||Xl−1||2
. (6.3)

For the training process of GCN and GraphSAINT, gradients are computed during back-

ward propagation before weights are updated via the Adam optimizer [KB14]. The gradients

of layer l − 1 for GCN are shown in Equ. (6.4) and (6.5).

∂L
∂Xl−1

= 1Xl−1>0[W
T
l−1A

T ∂L
∂Xl

], (6.4)

∂L
∂Wl−1

= AT ∂L
∂Xl

XT
l−1, (6.5)

where the superscript T denotes matrix transpose. The basic operations during the backward

phase are also SpMM and MM. However, the input to an MM may be a transposed copy

of a previous feature map or weight, which requires a different data access pattern, we refer

to this case as “MM with transpose”. The gradients of layer l − 1 for GraphSAINT are

computed as follows: [
∂L

∂Xl,a

∂L
∂Xl,b

]
=

∂L
∂Xl

, (6.6)

∂L
∂Xl−1

= 1Xl−1>0[W
T
l−1,a

∂L
∂Xl,a

+W T
l−1,bA

T ∂L
∂Xl,b

] (6.7)

∂L
∂Wl−1,a

=
∂L
∂Xl,a

XT
l−1,a (6.8)
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∂L
∂Wl−1,b

= AT ∂L
∂Xl,b

XT
l−1,b (6.9)

∂L
∂Xl−1

=

∂L
∂Xl−1

||Xl−1||2
−Xl−1

∑
(Xl−1 × ∂L

∂Xl−1
)

||Xl−1||32

=

∂L
∂Xl−1

||Xl−1||2
− Xl−1

||Xl−1||2

∑
(

Xl−1

||Xl−1||2
×

∂L
∂Xl−1

||Xl−1||2
)

(6.10)

In Equ. (6.4) - (6.10), L denotes the training loss, specifically categorical cross entropy

loss. The [.] on the left side of Equ. (6.6) indicates a column-wise partitioning into two

blocks with equal number of columns, opposite of the concatenation step in Equ. (6.2). We

show Equ. (6.10) in this format to show that the intermediate result ||Xl−1||2 can be reused

to simplify the computation (see details in Section 6.4.2.3). After computing the gradients,

we use the Adam Optimizer [KB14] to update weights for learning.

For all input (sub)graphs in GraphSAINT related computation, we directly use the

random-walk sampler as proposed in the original text [ZZS19b]. The number of roots per

subgraph is tuned per dataset to generate subgraphs with approximately 2048 nodes in order

to fit our hardware design.

6.2.2 Low Precision Training

Various low precision training algorithms have been proposed to train CNNs. The work

in [SCC19] uses 8-bit floating point to train CNNs by exploring different bit-width of expo-

nent and mantissa. Research recently uses neural architecture search (NAS) to search the

optimal precision combinations for each layer in CNNs [WDZ19c,WLL19c]. They also con-

sider hardware feedback, such as latency and power, to achieve speedup and power reduction

on hardware during inference.

However, these studies cannot directly be applied to GCNs training due to the inher-

ent differences between CNNs and GCNs, such as input sparsity. The work in [TFL20b]
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proposes an architecture-agnostic method, which is applied to existing quantization-aware

training algorithms, to quantize GNN while maintaining accuracy during inference. On the

other hand, SGQuant [FWL20b] proposes a GNN-tailored quantization algorithm to reduce

GNN memory consumption. Moreover, they use a fine-tuning scheme to compensate for the

accuracy loss caused by precision reduction. Although the above approaches can reduce the

memory requirements for GCNs during inference, the studies on quantization of large graphs

and hardware-aware quantization is not sufficient.

6.2.3 FPGA-based Accelerators

FPGA-based accelerators have been explored extensively on CNN inference and training.

The work in [YZW20c, WWC21, WZW21] uses the FPGA overlay technique to acceler-

ate CNN inference with different data representations, including 8-bit fixed point, 8-bit

floating point and mixed precision. CNN training accelerators are developed in these stud-

ies [KMY19,VSY20]. They take a fully pipelined architecture to accelerate mini-batch train-

ing on CNNs and use HBM to further resolve the issue of external bandwidth constraints.

Although GCNs share a similar layer-based network architecture as CNNs, accelerating

GCNs is quite different as the workload consists of two different major operations, SpMM

and MM. AWB-GCN [GLS20] proposes a configurable architecture to fit for SpMM and

MM with different sparsity during GCN inference. EnGN [LWL20b] processes SpMM and

MM in a unified architecture to speed up the inference phase of GCNs. Although exist-

ing accelerators achieve speed boosts on GCN inference, their designs rely heavily on large

on-chip buffers or high external memory bandwidth. Caching the same amount of data on

chip for GCN training would be impractical, as training requires larger amounts of inter-

mediate results to be stored for back-propagation. The Rubik [CWX20b] develops an ASIC

accelerator to cooperate with graph reordering to support both node-level and graph-level

computing. GraphACT [ZP20] accelerates GCN training through redundancy reduction in

software and parallel computing in hardware. However, the redundancy reduction technol-
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ogy requires a uniform weight value for all the edges, which is not applicable to support

other GCN architectures and datasets. HP-GNN [LZP21] proposes a framework to generate

GNN accelerators on a CPU-FPGA platform automatically. They reduce the memory traffic

and random memory access to accelerate the GNN training. However, both GraphACT and

HP-GNN treat feature aggregation and weight transformation as separate modules that will

reduce DSP runtime utilization.

6.3 Optimized Training

6.3.1 Training Simplifications

In this work, we perform the majority of GCN training with 16-bit signed integers (SINT16).

We chose signed integer representation over floating point as arithmetic operations with

integers consume less hardware resources and power. The precision of 16 bits was selected as

Xilinx provides native IP support for 16-bit integer operations in DSP configuration. While

SINT8 is also natively supported, our experiments show that direct quantization to SINT8

would result in a significant accuracy degradation.

We apply quantization to the initial input feature maps and adjacency matrices, and

initialize trainable parameters directly as SINT16. Experiments show that for most of com-

putation, quantization yields negligible loss to final training accuracy, and would not affect

convergence time in terms of epochs. However, for some non-linear operations, applying

quantization would devastate results, and they must be kept in FP32. Specifically, L2 nor-

malization, softmax, and square root cannot be quantized without incurring a major loss of

accuracy.

Due to the representation precision of SINT16, multiplication with a number within [1 ±

2−16] results in no change at all. This allows two simplifications to the Adam weight update

procedure. First, we eliminate the need to compute m̂t and v̂t, as the quantized results are

identical to the original mt and vt starting from the second to third epoch. Second, the
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Table 6.1: Dimensions, Densities and Workloads Across Datasets.

Datasets Nodes Edges Edge Density

PPI 14755 225270 0.1035%

Reddit 232965 11606919 0.0214%

Yelp 716847 6977410 0.0014%
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Figure 6.1: Packet-level column-only coordinate list format

learning rate η is rounded to the nearest power of 2 to replace the multiplication by a simple

bit shift.

Furthermore, we detect intermediate results used in multiple places and cache them

to prevent redundant computation. Specifically, the step AT ∂L
∂Xl

was used twice in back

propagation, and ||XL−1||2 was used multiple times in L2 normalization and its gradient.

6.3.2 Hardware-aware Compression

After exploring the GCN architectures and commonly used datasets, an immediate observa-

tion is that the adjacency matrix is often extremely large and sparse, as shown in Table 6.1.

Without compression, the adjacency matrices would consume an impractical amount of

storage, while less 1% are non-zero elements. Therefore, it is necessary to compress sparse

matrices to only store and compute the non-zero elements.
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Table 6.2: Compressed matrix sizes across datasets and algorithms (random-walk sampled

subgraphs [ZZS19b])

Dataset Avg. Nodes Avg. Edges Avg. COO Size Avg. PCOO Size Avg. CPCOO Size

PPI 1992 41939 2.01Mb 4.89Mb 1.76Mb

Reddit 1977 10780 517Kb 1.65Mb 486Kb

Yelp 1959 7561 363Kb 1.98Mb 412Kb

Following the approach proposed in [TWL21], we use their packet-level column-only

coordinate-list (PCOO) format to compress sparse matrices. PCOO provides an easy de-

compression mechanism on hardware and allows the dense matrices to be processed in the

same way with negligible extra cost, which enables an uniform PE design. The PCOO format

treats all the elements in one row as a packet. As shown in Fig. 6.1: PCOO, three control bits

are used to indicate each start-of-row (SOR), end-of-row (EOR) and valid (VLD) non-zero

element in each row, respectively. While the column information of each non-zero element

is included, the row information can be tracked on corresponding PEs, and therefore can

be hidden from the data. Since PCOO injects empty elements for empty rows, it will be

less effective for larger and sparser matrices, especially when we are tiling large matrices

into small matrices. For large datasets shown in Table 6.1, there are few elements per row.

When we tile these matrices by columns, we end up with large numbers of empty rows, which

incurs large amounts of storage with empty elements.

To this end, we optimize the PCOO format by dividing it into header and body parts,

as shown in Fig. 6.1: CPCOO. The header field includes the SOR, EOR and VLD signals

while the body field includes the column information. The representation of the rows with

non-zero elements is the same as PCOO. For empty rows, the header information would

contain 0 in the VLD bit, and we do not insert any empty element into the body field. On

the hardware during decompression, we will fetch the body according to the VLD signal

provided in the header field (see details in Section 6.4.2). Since the data width for the body
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Figure 6.2: Overall architecture of SkeletonGCN.

field is much larger than the header field, we can significantly reduce storage consumption

for empty rows of large datasets than PCOO. Table 6.2 shows the storage consumption of

original and updated PCOO per average subgraph across three datasets. CPCOO reduces

memory by 2.87× to 4.81× compared to PCOO.

6.4 Hardware Architecture

In this section, we discuss in detail the hardware architecture of the proposed Skele-

tonGCN, which efficiently supports the training process of quantized GCN.

6.4.1 Overall Architecture

We first analyze the GCN training process. The forward and backward phases are com-

putationally expensive, thus are assigned to the FPGA. The weight update process, which

includes large amounts of element-wise operations, is also assigned to FPGA to perform im-

mediately when the gradients are computed during the backward phase. On the other hand,

since softmax and categorical cross-entropy loss require exponential and logarithmic func-
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tions that are hardware expensive to compute accurately, we assign them to the CPU. Other

software processes, such as graph sampling, data pre-processing, are also assigned to the

CPU. The detailed scheduling between CPU and FPGA will be discussed in Section 6.4.5.

Regarding workload assignment, the overall architecture of SkeletonGCN is shown

in Fig. 6.2. The PE Array Module performs all the operations in the forward and back-

ward phases, while the Weight Update Module is followed to update the weights after back-

propagation. The Communication Module is responsible for the data transfer between CPU

and FPGA, between off-chip memory (DDR4) and FPGA, and also among different PEs.

6.4.2 Unified PE Architecture

In order to improve the performance of the training accelerator, we need to 1) reduce the

overhead of off-chip memory access, and 2) increase the efficiency of computation resources.

Since the whole graph is sampled and only one subgraph is trained each time, we can set

the size of the subgraph appropriate so that all the data of a subgraph can be handled by

the on-chip memories of the FPGA. In this way, the FPGA only need to access the off-chip

memory three times during the training of one subgraph: 1) to get the initial data for the

forward pass, 2) to send back the results of the last layer to compute loss and gradients on

CPU, and 3) to get the gradients of the last layer for back-propagation.

To increase computation efficiency, we propose a unified PE architecture to perform each

step in each layer during the forward and backward phases, as shown in Fig. 6.3(a). As

discussed in Section 6.3, the main operations during forward and backward are SpMM, MM

and MM with transpose, where the basic operation is multiply-accumulate. In this way, we

first design an M × N Multiply-Accumulator (MACC) Array to support each SpMM, MM

and MM with transpose in parallel. Generally, all the MACC units in each row of the MACC

Array share a same input. The challenge then becomes how to feed data into the MACCs

to make it perform efficiently under different workloads.
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bution module. (c) The architecture of the L2 normalization and gradients module.

6.4.2.1 SpMM

As discussed in Section 6.3, we use the CPCOO format to compress sparse matrices and

we store the compressed data (header, body and non-zero elements) into 3 separate RAMs,

as shown in Fig 6.3 (a). During computation, the Header (SOR/EOR/VLD) is flushed out

from the Header RAM and we use “VLD” signal to enable the Address Counter, which is

used to generate the address of the Body RAM. The output of the Body RAM is the column

position of the non-zero element in the sparse matrix, thus indicating the address of the

corresponding dense data in the Multi-bank RAM. In this way, the decompression logic of

data under the CPCOO format can be as simple as several wires and a counter, as shown

in Fig 6.3(a). The non-zero sparse data and corresponding dense data are then fed into the

MACC Array, and the “SOR” and “EOR” signals control when to start computation for a

new row and when to save the results. With the fully pipelined architecture, the MACC units

keep active during most cycles of computing SpMM, thus leading to a high DSP efficiency

(see details in Section 6.5.4).
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6.4.2.2 MM and MM with transpose

Although MM and MM with transpose share the same computation operations, they require

different memory access for matrices and transposed matrices. Moreover, the output of

one layer can be either used in standard arrangement or the transposed arrangement for

subsequent computations. To save memory access burden and improve DSP efficiency, we

design a same memory load and store logic for both MM and MM with transpose. In

contrast, a Data Distribution Module is added to control the data needed by the MACC

Array for computing MM and MM with transpose, as shown in Fig. 6.3(b). The row data of

the left matrix in MM or MM with transpose is first fetched from the on-chip memory and

then fed into the shift registers. Each shift register stores one row and can be configured to

output one element or all the elements in one row according to computation mode. When

computing MM, each shift register is first configured to output one element. Then all the

elements from different shift registers are concatenated and fed into the N rows of the MACC

Array, as shown with the blue arrow in Fig. 6.3(b). On the other hand, when computing MM

with transpose, each shift register is first configured to output all the elements in one row.

Then the elements are selected one by one to feed into the N rows of the MACC Array, as

shown with the pink arrow in Fig. 6.3(b). By setting the data width of the on-chip memory

N ×N × 16 (we use 16-bit signed integers), we can keep outputting active data every cycle

for both MM and MM with transpose to make the MACCs active, thus maintain high DSP

efficiency. Since we set N = 16 in our accelerator, the data width of N ×N × 16 is easy to

achieve by using block RAMs (BRAMs) or ultra RAMs (URAMs) in Xilinx FPGA.

6.4.2.3 L2 normalization and its gradients

The L2 normalization and its gradients both follow a MM in the forward and backward

phase. Therefore, we develop an extra module which takes the results of the MACC Array

as inputs to pipeline the computation. We use the CORDIC IP and division IP in Xilinx
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Figure 6.4: An example of allocating SpMM, MM or MM with transpose onto 2 MACC

Arrays. The notion “L R#” indicates the row index of the left matrix while the notion

“R R#” indicates the row index of the right matrix.

FPGA to compute square root and division needed by L2 normalization, respectively. As the

L2 normalization and its gradients are computed in serial, we reuse most of the computation

units to save resource utilization, as shown in Fig. 6.3(c). All the multiplexers in Fig. 6.3(c)

are selected by the signal indicating the computation of L2 normalization or gradients. As

expressed in Equ. (6.3) and Equ. (6.10), the ||Xl−1||2, which is produced by the square root

module, is used in both computing L2 normalization and its gradients. Therefore, we buffer

the results of the square root module h to eliminate redundant computation. Moreover,
∂L

∂Xl−1

||Xl−1||2
and Xl−1

||Xl−1||2
are also used several times in different computation steps for computing

the gradients. Therefore, we buffer them after the first computation and reuse them to save

computation resources and reduce latency.

6.4.3 Weight Update

Since the weights are updated after computing the gradients by MM with transpose, we

design a separate module that takes the outputs of the PE array to fully pipeline the com-
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putation, as shown in Fig. 6.2. The square root and division operations in Adam are also

computed by using CORDIC and Division IPs in Xilinx FPGA. Moreover, we define the

hyper parameters in Adam to the nearest power of 2 (i.e., learning rate η) to simplify the

multiplications to shift.

6.4.4 Data Communication

The Communication Module handles data transfer between external memory and FPGA

(both with CPU and DDR4), and among different PEs, as shown in Fig. 6.2. The interface

between CPU and FPGA is PCIe Gen3 X16, and only the initial data, final results of the

forward phase and the first gradients for the backward phase are transferred via PCIe. DDR4

is also used as the external memory to save initial data for different training epochs and

on-chip buffers are designed to perform in ping-pong manner, so that the communication

time between DDR4 and FPGA can be hidden under the computation time. Since the

computation of one layer is allocated to perform in parallel on different PEs (see allocation

details in Section 6.4.5), we also transfer data among different PEs. Moreover, we also collect

all the data of one layer and input into the Weight Update Module for updating weights after

back-propagation. Considering the properties of FPGA (i.e., constraints of the number of

long connections between different super logic regions), we use FIFOs in the PE Interface

Modules to control the bandwidth between different PEs.

6.4.5 Allocation and Scheduling

In this subsection, we will discuss in detail 1) how to allocate SpMM, MM and MM with

transpose onto different PEs, and 2) how to schedule computation between CPU and FPGA

as well as between different FPGA modules.
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6.4.5.1 Allocation

For SpMM, MM and MM with transpose, we use a round robin method to assign different

rows of the left matrix onto different rows of different PEs, as shown with a simple example in

Fig. 6.4. In this way, we can hide the row information of the non-zero elements in the sparse

matrix under the row index of the MACC Array in each PE, thus reducing the complexity

and memory requirements of the CPCOO format. Moreover, the element of each row in the

left matrix is fed into the MACCs one by one, and the element is accumulated to get the

MM results. Therefore, the elements of the right matrix is fed into the PEs row by row, as

shown by the blue arrow in Fig. 6.4. Since we are not able to perform the computation of

the whole matrix, we do a row-wise partition in the left matrix and a column-wise partition

in the right matrix to fit one tile into the MACC Array of each PE. In this way, each PE

can only achieve a portion rows of the result matrix (in the example shown in Fig. 6.4,

MACC Array 0 achieves ROW 0/1/4/5 of the result matrix while MACC Array 1 achieves

ROW 2/3/6/7). Since each MACC Array only uses part of the rows in the left matrix, we

will propagate the results inside each PE if the result matrix is used as the left matrix in

next steps. Otherwise, we will communicate among different PEs to collect the whole result

matrix.
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6.4.5.2 Scheduling

During the training of GCN, most of the computation expensive operations are assigned

to the FPGA while others are assigned to CPU. In order to improve the overall training

performance, we parallel most of the operations between CPU and FPGA, as shown in

Fig. 6.5. After the first data initialization, the CPU keeps on sampling and preprocessing

data for the next epochs while the FPGA is forwarding the current epoch. The CPU is

interrupted to transfer forward results and compute the softmax, cross-entropy loss and

the corresponding gradients once the forward phase of one epoch is finished on the FPGA.

The gradients are then transferred back to the FPGA for backward and the CPU is back

to preparing data for next epochs. Once the data of one epoch is prepared on the CPU,

the data will be transferred to the FPGA via PCIe and saved to the DDR4 for later use.

In addition, the multi-core CPU can be set to work in parallel because the subgraphs are

independent to each other.

6.5 Experimental Results

In this section, our proposed approach is evaluated with comprehensive experiments. We

first evaluate the proposed 16-bit signed integer training approach on different datasets and

networks to show its effectiveness. The FPGA accelerator is then evaluated on GraphSAINT

with different configurations. Finally, we compare our work with a state-of-the-art FPGA

accelerator with the same FPGA configurations.

6.5.1 Experimental Setup

SkeletonGCN is implemented with Verilog HDL and deployed on a Xilinx Alveo U200

board. According to the resources of the U200 board, we implement 8 PEs, each of which

is equipped with a 32 × 16 MACC Array for SpMM, MM and MM with transpose. The
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Figure 6.6: Training Accuracy Comparison

Table 6.3: Resource Utilization on Alveo U200 Board.

Resource LUT LUTRAM BRAM URAM DSP

Used 1021386 183191 1338 598 4460

Available 1182240 591840 2160 960 6840

Utilization(%) 86.39 30.95 61.94 62.29 65.20

BRAMs and URAMs of the U200 board are used to store all the data used. After synthesis

and implementation with Vivado 2020.1, the overall resource utilization is shown in Table 6.3.

Our design relies heavily on on-chip memories (LUTRAM, BRAM and URAM) to buffer the

graph data to resolve the issue of bandwidth constraints.

We consider the commonly used large datasets in our experiments, as shown in Table 6.1.

We also list the densities of the features, edges and weights. As we cannot buffer all the graph

data on board for large datasets, we take the the same sampling algorithms as GraphSAINT

and GraphACT for fair comparison. All the results on CPU and GPU are generated by using

PyTorch Geometric [FL19] and the open-sourced codes provided by GraphSAINT [ZZS19b]

and GraphACT [ZP20].

6.5.2 Training Accuracy and Latency

Fig. 6.6 shows a training accuracy cross-comparison between three GraphSAINT [ZZS19b]

implementations across three popular datasets. The original GraphSAINT configuration uses
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Table 6.4: Training Latency Comparison.

Intel Xeon Nvidia Tesla P100 Ours

Data type Float32 Float32 INT16

Frequency(GHz) 2.2 1.2 0.25

DSP/CPU/Cuda Cores 40 3584 4460

Total PPI 352.5 8.3 7.1

convergence Reddit 72.5 2.9 0.96

time (s) Yelp 965.1 27.7 27.1

large subgraphs (i.e., 8000 nodes) as proposed by the original authors. The simplified version

uses 2000 node subgraphs to better fit our hardware, and removes a portion of functionality

including dropout and batch normalization. The quantized version is the one we run on our

hardware, mostly in 16-bit signed integer as mentioned in previous sections. As we can see,

there were insignificant drops in F1 score of approximately 0.5-0.7% for Reddit and Yelp

datasets. The drop for PPI was significant at 8% because the PPI dataset is less robust to

smaller subgraph sizes during sampling [ZZS19b].

The training latency under the same configurations is shown in Table 6.4. On average,

we can achieve 53.5× and 1.7× speedup compared with Intel Xeon CPU and Nvidia Tesla

P100 GPU, respectively.

6.5.3 Comparison with State-of-the-art

We also compare our work with GraphACT to further show the effectiveness of our approach.

We follow the same experimental settings, including network architecture, testing datasets

and FPGA board, as those in GraphACT for fair comparison. The GCN evaluated has two

graph convolution layers and one MLP layer in the classifier, and the hidden size is set to

256 for all graph convolution layers. As shown in Table 6.5, we have speedup up to 8.9×
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Table 6.5: Comparison with GraphACT.

GraphACT Xeon Gold 5128 Nvidia Tesla P100 Ours

Data type Float32 Float32 Float32 SINT16

Frequency(GHz) 0.2 2.2 1.2 0.25

DSP slices / CPU cores / CUDA cores 5632 40 3584 4460

PPI 9.6 151.4 10.6 0.85

Total convergence time (s) Reddit 7.6 95.5 11.4 0.87

Yelp 23.4 359.4 30.4 3.76

compared with GraphACT across all datasets. On average, we still achieve 6.5× speedup

on PPI, Reddit and Yelp.

The advantages come from both our quantization-aware training algorithm and our uni-

fied PE architecture. First, we reduce precision from 32-bit floating point to 16-bit signed

integers with negligible accuracy loss, which in turn greatly reduces the usage of DSPs (in

Xilinx FPGA, each Float32 multiplier consumers 3 DSPs while each INT16 multiplier only

consumers 1 DSP). Therefore, we can have more multipliers than GraphACT for computation

with same number of DSPs. Second, we use the unified PE architecture, which dramatically

increase the DSP efficiency (see details in Section 6.5.4). In GraphACT, they design sepa-

rate modules for feature aggregation and weight transformation. Although their scheduling

algorithm tries to overlap the operations of both modules, there still has quantitative idle

cycles for either of the two modules.

6.5.4 Discussion

We will discuss the DSP efficiency, which dramatically influences the overall training latency,

in this subsection. The DSP efficiency is defined as follows:

DSP EFF =
Lattheo
Lattest

, (6.11)
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Figure 6.7: The DSP efficiency of computing SpMM, MM, and MMwith transpose in training

GCN on reddit. The MM with transpose is marked as “TMM” in the figure.

where the Lattheo and Lattest indicate the theoretical latency and tested latency, respectively.

We skip all the zeros in SpMM and the theoretical latency of SpMM and MM are then

calculated by using Equ. (6.12) and (6.13).

LatSpMM
theo =

# of non− zero MAC ops

# of MAC units
. (6.12)

LatMM
theo =

# of MAC ops

# of MAC units
. (6.13)

Following the above definitions, we analyze the average DSP efficiency of training GCN

on reddit, as shown in Fig. 6.7. We can see that DSP efficiency for computing MM and MM

with transpose can be up to 98.3% for some cases. The DSP efficiency of SpMM is 71.2%

because we inject empty elements to avoid bank conflicts as that of the PCOO format.

However, it has little influence on the total training latency because SpMM only accounts

for around 1% of the total computation workloads.
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6.6 Conclusion and Future Work

In this work, we propose a software-hardware co-optimized GCN accelerator on FPGA,

named SkeletonGCN, to improve GCN training efficiency. The data representation in

SkeletonGCN is first quantized from 32-bit floating point to 16-bit signed integer to reduce

computation and storage requirements. In addition, we simplify the non-linear operations

and eliminate redundant computations to better fit the computation on FPGA. Moreover,

we employ a linear time sparse matrix compression algorithm to further reduce memory

bandwidth while allowing efficient decompression on hardware. A unified hardware archi-

tecture is then proposed to compute SpMM, MM and MM with transpose to improve DSP

efficiency. Evaluation first shows that our simplified training approach can train the network

with negligible accuracy loss. Moreover, SkeletonGCN can achieve up to 11.3× speedup

over existing FPGA-based accelerator while executing the same network structure and main-

taining the same training accuracy. In addition, SkeletonGCN achieves up to 178× and

13.1× speedup over state-of-art CPU and GPU implementation, respectively.
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CHAPTER 7

Summary

Deep learning algorithms have shown promising performance among various real-world ap-

plications. At the same, domain specific accelerators/processors that target on deep learning

algorithms help improve the performance in real-time scenarios. In this thesis, we propose

a series of software and hardware co-optimized acceleration for deep learning algorithms,

including CNNs and GCNs.

Starting from 2016, we worked on the OPU project and proposed the base OPU archi-

tecture. With the base OPU, any CNN can be executed by instructions without the change

of FPGA implementation. Moreover, we used 8-bit fixed point data representation in the

base OPU to reduce computation and memory cost of CNNs. We evaluated the OPU on

a real-world application with a cascade of three CNNs, where YoloV3 was used for car de-

tection, TinyYolo was used for license plate detection and a self-trained CNN was used for

license plate recognition. Compared with the resource comparable GPU, the OPU is 9.6×

faster for running the three network in sequence.

After that, we explored more on the data representation in order to improve the quan-

tization accuracy and further compress CNN. We first utilized the 8-bit floating-point data

representation, and quantized the CNNs with 8-bit floating-point. The quantization strategy

reduced the quantization error from around 1% to 0.5% compared with the 8-bit fixed-point

data representation. Moreover, we propose the LPFP processor, which was designed to ac-

celerate CNN inference quantized with 8-bit floating-point. By decomposing one DSP into

four LPFP multipliers, the LPFP processor greatly improved the per DSP throughput. To
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be specific, compared with seven FPGA accelerators on VGG16 and Yolo, the LPFP pro-

cessor improves average throughput by 3.5× and 27.5× and average throughput per DSP by

4.1× and 5×, respectively.

We further compressed the CNNs with mixed precision data representation while main-

taining quantization accuracy. The FPGA processor MP-OPU was also improved to support

operations with mixed precision data during runtime. The experimental results show that

MP-OPU achieves 12.9× latency reduction and 2.2× better throughput per DSP for con-

ventional CNNs, while 7.6× latency reduction and 2.9× better throughput per DSP for

lightweight CNNs, all on average compared with existing FPGA accelerators/processors,

respectively.

Starting from 2020, we expand our work from CNNs to GCNs. The GCN inference phase

was first optimized with the proposed LW-GCN. We first developed the PCOO format to

compress the sparse matrix so that computation and storage was reduced. Based on the

PCOO format, we proposed the unified PE architecture to accelerate both SpMM and MM.

Compared with existing CPU, GPU and state-of-the-art FPGA-based accelerator, LW-GCN

reduces latency by up to 60×, 12× and 1.7× and increases power efficiency by up to 912×,

511× and 3.87×, respectively. Moreover, compared with Nvidia’s latest edge GPU Jetson

Xavier NX, LW-GCN achieves speedup and energy savings of 32× and 84×, respectively.

Finally, we expand the support of GCN inference to GCN training to overcome the chal-

lenges in GCN training. We improved the PCOO format to reduce the bit width needed of

empty rows, thus reducing the total storage requirements of the sparse matrices. Moreover,

we developed the SkeletonGCN based on the improved PCOO format, and the unified PE

architecture is improved to support SpMM, MM and MM with transpose efficiently. Eval-

uated on Alveo U200 FPGA board, SkeletonGCN can achieve up to 11.3× speedup while

maintaining the same training accuracy with 16-bit fixed-point data representation com-

pared with existing FPGA-based accelerator on the same network architecture. In addition,

SkeletonGCN is 178× and 13.1× faster than state-of-the-art CPU and GPU implementation
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on popular datasets, respectively.
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