
 
 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

 

 

Chondroitinase ABC Administration in a Non-Human Primate Model of Spinal 

Cord Injury: Functional and Anatomical Assessment 

 

 

A thesis submitted in partial satisfaction of the 

requirements for the degree Master of Science  

 

in 

 

Biology 

 

by 

 

Justine Jane Liang 

 

 

Committee in charge: 

 Professor Ephron Rosenzweig, Chair 
 Professor Kathleen French, Co-Chair 
 Professor Stefan Leutgeb 

 

 

2016 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

 

The thesis of Justine Jane Liang is approved, and it is acceptable in quality and form 

for publication on microfilm and electronically: 

 

 

 

 

 

 

 

 

 

Co-Chair 
 

 

 

 

Chair 
 

 

 

 

University of California, San Diego 

2016 

       

 



iv 

DEDICATION 

I would like to dedicate this thesis to my parents, who have fully supported me in all 

my educational pursuits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

TABLE OF CONTENTS 

Signature Page……………………………………………………………………. iii 

 

Dedication…………………………………………………………....……………. iv 

 

 Table of Contents…………………………………………………...……………. v 

 

List of Figures…………………………………………………………………...... vi 

 

Acknowledgements………………………………………………………………. vii 

 

Abstract of the Thesis………….……………...…………………………………. viii 

 

I. Introduction……………………………………………..…………………………. 1 

 

II. Materials and Methods…………………………………..………………………. 6 

 

III. Results…………………………………………………………………………...... 14 

 

IV. Discussion…………...…………………………………….……………………… 27 

 

References………………………………………………………………………… 32 

 

 



vi 

LIST OF FIGURES 

Figure 1.  Schematic of ch’ase delivery and experimental design………….......19 

 

Figure 2.  Lesion extents are consistent between and within ch’ase and control 

subjects…………………………………………………………………….20 

 

Figure 3.  CSPGs are removed 2 weeks after ch’ase injections, but as expected, 

CSPGs reconstitute by 6 months post-injection……………………….21 

 

Figure 4.  CST distribution and regions of interest to assess increased axonal 

growth……………………………………………………………………...22 

 

Figure 5.  Trend towards increased corticospinal tract sprouting in ch’ase versus 

control………………………………………………………………….......23 

 

Figure 6.  No increased raphespinal tract sprouting in ch’ase versus control….24 

 

Figure 7.  E-cage shows possible trend toward increased functional recovery in 

ch’ase versus control……………………………………………………..25 

 

Figure 8.  Brinkman board analysis shows no increased functional recovery in 

ch’ase versus control……………………………………………………..26 

 

 

 



vii 

ACKNOWLEDGMENTS 

I would first like to acknowledge Dr. Ephron Rosenzweig for his support as the 

chair of my committee. His mentorship and guidance for the past three years have 

shaped me into a better scientist and student. 

I would like to acknowledge Dr. Mark Tuszynski for his support and guidance in 

placing my research in a clinical perspective. He pushed my thesis to a higher standard 

of excellence through his insightful advice on interpreting my results. 

I would like to thank Janet Weber for her patience and unwavering support as 

she taught me many histological and laboratory techniques. 

I would like to thank Dr. John Brock for his humor and good nature, mixed well 

with his perceptive advice. 

I would like to thank the entire Tuszynski lab for all the advice, fun, and 

encouragement over the past couple of years. 

I would like to thank Dr. Ernesto Salegio from UC Davis and Carlos Almeida from 

UCSF, whom have provided me the raw behavioral data that I have analyzed in this 

thesis. 

I would finally like to thank Dr. Kathleen French and Dr. Stefan Leutgeb for 

serving on my committee. 



 

viii 

ABSTRACT OF THE THESIS 

 

Chondroitinase ABC Administration in a Non-Human Primate Model of Spinal Cord 

Injury: Functional and Anatomical Assessment 

 

by 

 

Justine Jane Liang 

Master of Science in Biology 

 

University of California, San Diego, 2016 

Professor Ephron Rosenzweig, Chair 

Professor Kathleen French, Co-Chair 

 

Several factors contribute to the lack of repair following spinal cord injury, such 

as the lack of growth-promoting factors, poor intrinsic central nervous system 

regeneration abilities, and inhibition due to the glial scar1. The glial scar contains a class 

of inhibitory extracellular matrix molecules, chondroitin sulfate proteoglycans (CSPGs), 

which create a physical and chemical barrier to axon regeneration and sprouting. 

Previous studies showed that administration of an enzyme, chondroitinase ABC (ch'ase), 

can remove this inhibition and promote functional and behavioral recovery in smaller 



 

ix 

animal models. To aid in translation to clinical trials, we examined whether ch'ase 

administration in a rhesus monkey model of spinal cord injury promoted such recovery. 

As of now, 9 of the 12 subjects were analyzed and we found a trend towards anatomical 

and behavioral recovery in ch'ase administered subjects. The trend toward increased 

corticospinal tract sprouting in ch’ase subjects may demonstrate that the success of 

ch’ase in smaller animal models is not unfounded. However, the behavioral recovery is 

not as distinct, and perhaps more optimization of ch’ase treatment is required in the 

monkey model before translation to clinical trials. Further conclusions can be drawn 

once the remaining 3 subjects have been analyzed and assessed. However, despite the 

incomplete dataset and low n, there are interesting trends in the data that may influence 

whether the ch’ase treatment will move on to clinical trials.  

 



 

1 
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Limitations to spinal cord injury therapies 

300,000 people in the United States live with spinal cord injury (SCI); the majority 

of SCIs are the result of motor vehicle accidents2. SCI can result in: loss of movement, 

loss of sensation, and heightened chronic pain and spasticity. This debilitating disorder 

is both costly and taxing for patients and family members. The damage following injury is 

often permanent; current treatments rely on alleviating symptoms in lieu of repairing the 

damaged circuitry. Despite advancements in rehabilitation and support for people with 

SCI, there is still no effective treatment for SCI. This is largely due to the limited 

regeneration potential of the adult central nervous system (CNS) that prevents axonal 

regrowth1 and subsequent repair of neural circuitry.  

 

Inhibition due to the glial scar 

After initial neuron injury and axon death, glial scar formation is one of the main 

components that inhibit regeneration in an injured spinal cord. Glial cells accumulate and 

surround the injury site to stabilize and seal the wound3. However, this creates both a 

chemical and physical barrier to regenerating axons. Inhibitory molecules are secreted 

by this glial scar, of which one class are chondroitin sulphate proteoglycans (CSPGs)4. 

CSPGs, which include brevican, versican, neurocan, and phosphacan, are an abundant 

class of proteins found in the nervous system. These proteoglycans are extracellular 

matrix molecules that are upregulated following CNS injury, which then create a growth-

inhibitory matrix5. CSPGs are made of a glycoprotein core with covalently attached 

chondroitin sulfate glycosaminoglycan (GAG) side chains3,5. This GAG sugar chain is the 

major inhibitory component of this protein. CSPG expression increases immediately 

post-injury6 and forms lattice-like structures called perineuronal nets (PNNs)7. PNNs 

physically wrap around neurons and further inhibit growth and plasticity.
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Removal of inhibitory glial scar promotes regeneration in smaller animal models 

One method to remove this inhibitory CSPG barrier is the application of an 

enzyme, chondroitinase ABC (Ch’ase), which can digest the inhibitory extracellular 

matrix. Ch’ase is a bacterial enzyme, derived from Proteus vulgaris, which cleaves the 

inhibitory GAG sugar chain from the CSPG protein core5. It has been shown that de-

glycosylation promotes sprouting in corticospinal and serotonergic descending pathways 

following dorsal column-lesioned rats on both intact and injured sides8, as well as 

collateral sprouting from the intact side. Therefore, to assess the potential of ch’ase 

administration as a strategy to promote sprouting in an injured spinal cord in a larger 

animal model, we will utilize ch’ase treatment in an adult rhesus monkey model of spinal 

cord injury.  

 

Rhesus monkey model of SCI and corticospinal tract layout 

 Over the years, our lab here at UCSD collaborated extensively with UCSF, UC 

Davis, UCLA, and UC Irvine in creating a rhesus monkey model for various therapies in 

SCI. As there are distinct differences between rodent and primate spinal cord systems, a 

nonhuman primate model is critical to assess a potential therapy before moving on to 

clinical trials9. Several distinct differences between rodent and primate spinal cord 

systems include: size, corticospinal tract (CST) distribution, function, and inflammatory 

response10,11. In the intact primate CST, many axons branch and decussate across the 

cervical spinal cord midline, which creates bilateral terminations. Each primate CST 

axon extends multiple collaterals, which is different in rats, as 96-98% of their CST 

projections decussate in the medullary pyramids and midline crossing is minimal12.  

Over the years, we have developed a clinically relevant C7 hemisection lesion 

model. We found that primates that received C7 hemisections that removed 90% of 
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projecting CST axons displayed a remarkable degree of spontaneous plasticity and 

reconstituted the CST axon density in the gray matter below the lesion to a remarkable 

60% of normal levels12. This is entirely different compared to the corticospinal tract 

layout in rats, as they reconstitute very little (3-5%) of the CST axon density after a 

cervical hemisection. In the primate, CST axons extensively decussate across the spinal 

cord midline, allowing for a retention of supraspinal influence below a lateral 

hemisection12.  

 

Assessment of chondroitinase ABC administration in a monkey model of spinal 

cord injury 

This project evaluates the outcomes of ch’ase administration, and whether it has 

the potential to move forward to future clinical trials. Previous studies12 have 

demonstrated that the corticospinal tract does sprout and regenerate following SCI in 

monkeys. Therefore, perhaps ch’ase administration during this period of plasticity 

following SCI can enhance those effects. To do so, we observed whether spinal cord 

injured rhesus monkeys improved anatomically and functionally following ch’ase 

treatment. Anatomical recovery was assessed by examining sprouting in the 

corticospinal tract and raphespinal (serotonergic) tracts. In addition, our subjects 

underwent behavioral training and testing to assess for improvement in hand function 

following a right C7 hemisection lesion. Our results from the incomplete data set (9 of 12 

subjects) indicate a trend towards increased anatomical and behavioral recovery in 

ch’ase administered subjects without statistical significance. This opens further 

questions as to whether removing CSPG inhibition is sufficient to promote growth in the 

intrinsic regeneration-aversive programming in the larger animal adult spinal cord. Given 

that there are other factors that contribute to the lack of regeneration following SCI, 
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perhaps ch’ase administration will be more effective and pronounced in combination 

therapies such as with neural stem cell grafts. However, our results still provide a useful 

piece of analysis that can aid in future assessments of ch’ase in the monkey model as 

well as consideration of whether this treatment can move on to clinical trials. 
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II: Materials and Methods 
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Subjects 

 12 male rhesus monkeys (Macaca mulatta) were used as subjects in this study 

(6-11 years old; mean age 8.6 years ± 1.35 years). 9 have been fully processed and 

analyzed; the remaining 3 (2 control, 1 ch’ase) have received tracer injections and will 

be sacrificed at the end of July. Of the 9 animals, they were divided into two groups: 

Group 1 was ch’ase (n=5) and Group 2 was control (n=4). All surgical and experimental 

procedures in these experiments were carried out using the principles outlined by 

Laboratory Animal Care (National Institutes of Health Publication 85–23, revised 1985) 

and were approved by the Institutional Animal Care and Use Committee (IACUC). 

Subjects were housed at the UC Davis National Primate Research Center.  

 

Lesion Surgery 

All subjects were sedated with 1 mg/kg ketamine intramuscularly, and anesthetized with 

1.5–2.5% isoflurane. During surgery, body temperature, heart rate, respiration rate, and 

blood pressure were closely monitored and maintained. The caudal portion of the C5 

dorsal lamina and the entire C6 dorsal lamina were removed. The dura was slit along the 

midline and retracted gently. A surgical micro-knife was mounted on a stereotaxic arm, 

positioned at the spinal midline, midway between the C5 and C6 dorsal laminae. This 

corresponds to the C7 spinal cord segment. The stereotaxic manipulator was used to 

lower the blade through the entire dorsoventral extent of the spinal cord, without 

severing the ventral artery. This initial cut established the medial position of the lesion. 

The lesion was then completed using microscissors under microscopic observation by 

the surgeons (M.H.T.; Y.S.N.) to ensure lesion completeness laterally and ventrally. All 

subjects retained bowel, bladder, and autonomic function after SCI. 
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Ch’ase Treatment 

Four weeks after SCI, the lesion site was re-exposed, and additional 

laminectomy and longitudinal dural incision was performed to expose the C7-C8-T1 

spinal cord. Hand-assembled nested silica cannulae (240 and 150 µm outside diameter, 

www.molex.com) were attached to a NanoFil 100 µl syringe (www.wpiinc.com) filled with 

20 U/ml chondroitinase ABC (a gift of Acorda Therapeutics, Ardsley, New York) in ice-

cold saline solution. The syringe was mounted in a syringe pump attached to a 

stereotaxic frame. 5 µl of chondroitinase was injected into the spinal cord parenchyma at 

each of 10 sites caudal to the SCI site. Rostrocaudal position: the first site was 1 mm 

caudal to the lesion border, each additional site was 1.5 mm further caudal. Mediolateral 

position: 0.7 medial to the medial edge of the dorsal root entry zone (DREZ) on the right 

side of the spinal cord. At each of these sites, the cannula was lowered into the spinal 

cord parenchyma and the 5 µl of chondroitinase was injected in two portions (2.5 µl 

each): one injection 2.5 mm deep, then a second injection 3.5 mm deep. Injection rate 

was 0.5 µl/min. After the deeper injection at each site, we waited 2 min before 

withdrawing the cannula. As with the initial SCI, the dura was sutured, then the overlying 

muscle and skin were sutured in layers.  

Three control subjects received injections of saline only, and one control subject did not 

undergo the treatment surgery. 

  

Anterograde tracing of corticospinal tract axons 

Subjects were sedated with 1 mg/kg ketamine intramuscularly and anesthetized 

with 1.5-2.5% isoflurane. A frontoparietal craniotomy was performed to expose the left 

motor cortex. 300 nL of lysine-fixable biotinylated dextran amine (BDA; 10% in PBS; 

10,000 molecular weight; Molecular Probes, Eugene, OR) was injected with a pulled 

http://www.molex.com/
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glass micropipette (outside diameter at tip ≈40 μm) attached to a picospritzer (Parker 

Hannifin, Fairfield, NJ). The injection sites were areas of the motor cortex that 

innervated: the hand and arm (84 injections in 28 locations, 1.5 and 2.5 mm anterior to 

the central sulcus, spanning a territory from 13.3 to 24.5 mm lateral to the sagittal sinus 

and at depths in each site of 2.0, 3.5, and 5.5 mm), the trunk (11 injections in 11 

locations, 1.5 mm anterior to the central sulcus, spanning a territory from 3.9 to 12.5 mm 

lateral to the sagittal sinus and at a depth of 2.2 mm), and the foot and lower extremities 

(32 injections were made at 20 locations, 2 and 3 mm lateral of the sagittal sinus, 

spanning a territory from 1 to 11 mm anterior to the junction of the central sulcus and the 

sagittal sinus and at depths ranging from 1.8 to 6.5 mm). After tracer injection, the 

excised piece of cranium was replaced and the incision closed. Of the 9 subjects, 8 

received BDA injections; one of the ch’ase subjects was too sick to undergo the tracer 

surgery. 

 

Sacrifice and tissue processing 

Six weeks after tracer injections, subjects were sedated with 1 mg/kg ketamine 

administered intramuscularly, deeply anesthetized with intraperitoneal pentobarbital (25–

30 mg/kg, to effect) and transcardially perfused for 10 minutes with 1% 

paraformaldehyde at 4°C (in 0.1 M phosphate buffer, pH 7.4), then for 50 minutes with 

4% paraformaldehyde at 4°C (total perfusion volume of ≈8 L). The entire spinal cord was 

dissected from the spinal column. The spinal cord was postfixed in 4% 

paraformaldehyde for 5–6 hours, transferred to 10% glycerin (in 0.1 M phosphate buffer) 

for 12–24 hours, then placed in 20% glycerin. 

The spinal cord dura was removed, and the spinal cord was cut in the transverse 

plane into blocks 1–1.5 cm long. Blocks containing segments C3 and C8–T1 were 
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sectioned in the transverse plane on a freezing microtome set at 40-μm intervals. Tissue 

sections were stored at −20°C in TCS (25% glycerin, 30% ethylene glycol in 0.05 M 

phosphate buffer).  

Transverse sections from segments C3 and C8 (three sections per segment per animal), 

were selected for BDA labeling.  

 

Behavioral testing 

 Bimanual Brinkman Board 

 A custom-made plexiglass box with two small openings (i.e., one for each arm) 

was hung at the front of each animal’s cage. The opening for the right hand had access 

to 5 interchangeable Brinkman boards of increasing difficulty, starting with a plate that 

contained 2-slopped wells (easiest), 2-non_slopped wells, 4-non_slopped wells, 6-

non_slopped wells and 9-non_slopped wells (hardest). Using their left hand 

(unimpaired), animals pushed a lever that opened the lid covering each of the plates on 

the right side, allowing for bimanual engagement and food item retrieval with right hand 

only. All animals (N = 8) were scored while they were in-cage. They were scored as: no 

attempt (0 points), attempt (1 point), pickup and drop (2 points) and successful transfer 

to mouth (3 points). Scores were calculated as successful transfer to mouth and 

expressed as a percentage. All animals were given one minute to clear each board. For 

time to clear analysis, only 6 of 8 subjects had recorded data. 

 E-cage 

 All subjects were scored in an open field task that was developed previously to 

assess general motor function and locomotion, climbing, and object manipulation9. 

Animals entered a large open wire-mesh cage (7 feet ×10 ft ×6 ft [height, width, depth]) 

through a chute where they could ascend a series of four elevated perches to reach a 
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food reward placed inside a hollow rubber toy (filled with food such as peanuts, raisins, 

small pieces of dried fruits, etc.; The Kong Company, Golden, Co), on the top most 

perch. Locomotor activity was evaluated while the animals traversed the perches, as 

well as on the floor of the open cage. Climbing was assessed during food retrieval from 

a series of five cups hanging at different heights (1.5, 2.7, 3.5, 4.3, and 4.7 ft) on the 

front of the cage. Object manipulation was assessed during manipulation of the 

Kong® (hollow toy) and during the consumption of a large food item (e.g., apple or 

orange). Body and limb posture, wrist, hand, and individual finger movements were 

assessed during manipulation of the objects both on and off the ground. Scoring of 

functional recovery was done by our UC Davis collaborators13. Scoring in the exercise 

cage was recently described by Salegio et al (2016), and details a 72-point scale where 

animal can score a maximum of 34 points during general locomotion, climbing 16 points 

and object manipulation 22 points. All scores were expressed as percent of functional 

recovery. Animals were placed in the exercise cage 2 times/week with at least one 

session/week scored live. 

 

Immunohistochemistry 

For WFA detection, sections were washed in TBS and then quenched at 0.6% 

H2O2 in TBS for 30 minutes at room temperature. The sections were then washed with 

TBS and incubated in WFA-biotin (1:1000; reduced form; sigma L1766) and TBS-

containing 0.25% Triton-X100, overnight at 4°C. Afterwards, sections were washed in 

TBS and incubated with Vector Elite ABC kit for 1 hour at room temperature. The 

sections were then washed in TBS and developed with DAB and NiCl2. Sections were 

dehydrated and coverslipped with DPX mounting medium.  
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Nissl: transverse sections were taken in 1-12 throughout the entire cord for nissl. 

The sections were washed in TBS and fixed in buffered 4% paraformaldehyde for 1 hour 

at room temperature. Then, the sections were washed and mounted to dry overnight 

before nissl staining in 0.25% thionin.  

BDA: sections were washed in TBS and incubated in 0.6% H2O2 in 100% 

methanol for 30 minutes at room temperature. After another wash with TBS, sections 

were incubated in Vector ABC elite solution in TBS containing 0.25% Triton-X100 

overnight at 4C. After washing, sections were developed with DAB and NiCl2. Sections 

were mounted, dehydrated, and coverslipped with DPX mounting medium. 

5HT, TH: Transverse sections near C8 (hand area) were pre-treated with 50% 

methanol for 30 min at room temperature, washed in TBS, and blocked with TBS 

containing 5% normal donkey serum and 0.25% Triton-X100, for 1 hour at room 

temperature. Sections were incubated overnight in primary antibodies against serotonin 

(5HT; ThermoFisher; 1:5000; goat) and tyrosine hydroxylase (TH; ThermoFisher; 1:250; 

mouse) in TBS containing 0.25% TX100 and 5% donkey serum. Sections were washed 

with TBS and incubated in ThermoFisher Alexa-Fluor (594 and 488 nm at 1:500)-

conjugated donkey secondary antibodies for 1 hour. Sections then were washed with 

TBS, mounted on slides, and coverslipped with Mowiol mounting medium. 

 

Image capture and manipulation of images 

Images were captured on the Keyence BZ-X700 (Keyence, Woodcliff Lake, NJ) 

digital microscope using the z-stack function and xy stitching. Raw images were then 

stitched together using the Keyence Analysis software and merged through the full-focus 

image analysis software (BZ-II, Keyence). For immunofluorescent 5HT analysis 

purposes, the images were captured with a haze reduction setting to reduce background 
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level labeling. Brightness and contrast were adjusted for optimal viewing using Adobe 

Photoshop CC 2014 (Adobe Systems, San Jose, CA).  

 

Quantification of axonal growth (BDA, 5HT) 

 All quantifications were performed with the treatment groups blinded, using 

ImageJ 1.41c (Wayne Rasband, National Institutes of Health, rsb.info.nih.gov/ij/). A 

custom-written script was created (J.J.L), derived from the methods used in Rosenzweig 

et al (2009). Regions of interest were drawn using border-defining images taken to 

highlight the gray matter. A total of 5 ROIs were drawn, which include the right gray 

matter, right dorsal horn, right ventral gray matter, right motor pool, right intermediate 

zone, and left dorsolateral tract. Right intermediate zone and right motor pool are 

subsets of right ventral gray matter; right dorsal horn and right ventral gray are subsets 

of right gray matter. The image was auto-thresholded and measured in each ROI for the 

pixel density. BDA densities were then normalized to the averaged left dorsolateral tract 

axon counts taken from the cervical 3 segment of each corresponding animal. The C3 

axon counts were performed on ImageJ using CellCounter. BDA axon length was 

quantified by using the skeletonize function on ImageJ. 5HT axon density quantifications 

were conducted in a similar manner. All images were corrected for brightness and 

contrast equally to reduce background noise. A modified script (J.J.L.) was used to 

quantify the 5HT sections. Using nissl images to help identify motor pools, the left and 

right motor pools were drawn to create ROIs.  

 

Statistical analysis of results 

 Graphs were generated and statistical analysis was performed using GraphPad 

Prism v7 (GraphPad Software Inc, La Jolla, CA).  
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III: Results 
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Administration of ch’ase in rhesus monkeys 

 One month after receiving right C7 hemisection lesions, subjects received 10 

injections (ch’ase or saline) throughout the C8-T1 segments of the spinal cord (Figure 1). 

Three months later, all subjects received BDA tracer injections in the left motor cortex to 

label the right descending corticospinal tract. Six weeks after the tracer injections, 

subjects were sacrificed and their tissue processed and analyzed. All hemisected 

subjects showed complete disruption of corticospinal tract projections to the right spinal 

cord (Figure 4). The lesion resulted in loss of right hand function and leg function post-

injury. Left hand fine motor control and locomotion was unaffected.  

Lesion reconstructions demonstrate that lesions were consistent between and 

within subjects (Figure 2). In addition, all 10 injection sites below the lesion through C8-

T1 were found in every subject. Subjects did not suffer from detectable increased 

damage due to injections. Thus, differences between subjects in anatomical and 

behavioral data are not due to experimental methods and treatment delivery.  

In a preliminary study where subjects were sacrificed two weeks after receiving 

ch’ase injections, we observed CGPG removal (Figure 3) on the entire right side of the 

spinal cord below the lesion. However, as expected long term, these inhibitory 

perineuronal nets have reconstituted; the mean gray values are no different between 

ch’ase and that of control (Figure 3). 

 

Anatomical analysis of corticospinal tract sprouting caudal to injury 

 Anatomical analysis revealed no significant increase in corticospinal tract axons 

in ch’ase compared to control subjects. Three months after subjects received injections 

of ch’ase or saline, they received 127 injections of biotinylated dextran amine (BDA) in 

the left motor cortex, to label the right corticospinal tract. Six weeks later, they were 
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sacrificed and their tissue processed. BDA-labeled axons were quantified by subdividing 

a transverse section of the spinal cord below the lesion (around the C8 hand area) into 

five regions of interest in the right gray matter (Figure 4). In this analysis, 8 of the 9 

subjects were used (Ch’ase = 5, control = 3) as one of the control animals had 

complications and was sacrificed before the BDA was able to trace the corticospinal tract 

to term. The author created a custom-written script that would trace the BDA-labeled 

axons and eliminate background signal. Quantifications were normalized to axon counts 

of areas outside the effect of the treatment within subjects. Quantifications of 

corticospinal tract growth indicated that there was a trend towards a higher CST axonal 

growth in ch’ase subjects compared to control subjects (Figure 5A; right IZ p = 0.30), but 

these values are not statistically significant. However, there is a notable 1.5-fold increase 

in axon growth in ch’ase administered subjects compared to that of control. Corticospinal 

tract axon density was also assessed to determine if there was an increase in axon 

caliber (Figure 5B). However, while there was increased CST density in the right 

intermediate zone in that of ch’ase compared to control, the values are not statistically 

significant and do not show a trend as seen in the axon length (Figure 5A).  

 

Anatomical analysis of other descending motor systems caudal to injury 

 As corticospinal tract sprouting is often the least likely – and last – to occur 

following SCI, we examined whether sprouting due to other descending motor systems 

could account for any observed improvements in behavior. Another descending motor 

pathway is the raphespinal tract, which originates from the brain stem. These pathways 

are serotonergic positive, which we labeled for using immunofluorescence (Figure 6A, 

6B). 5HT axon terminals are often localized to the dorsal horn, ventral horn, and 

intermediate zone14. They contribute to the neuronal network of the central pattern 
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generator as well as specific locomotion programs required to determine the specific 

velocity, magnitude, and duration of movement14. Therefore, main right and left motor 

pools were quantified for any increased serotonergic axon density (Figure 6B, 6D). 

Regions of interest were drawn based upon adjacent nissl sections that marked the 

motor pools. There was no significant difference in 5HT axon density in ch’ase (n=4) 

versus control subjects (n=5). However, in both groups, the right motor pool density is 

similar to that of the left motor pool (Figure 6C; ratio of right MP to left MP = 0.92, 0.91; 

ch’ase, control respectively). Ch’ase administration does not appear to have a significant 

difference in increased serotonergic axon sprouting. 

 

Assessment of functional recovery in ch’ase versus control 

 To determine whether ch’ase subjects improved more compared to control 

subjects, we tested the subjects in a behavioral exercise cage. Subjects (n=8) were 

placed in an open field where they could walk, climb, and manipulate food or objects 

spontaneously. Although both groups improved over time, ch’ase subjects were not 

significantly better at these tasks (Figure 7A). In all four scores (of overall, climbing, 

object manipulation, and locomotion), both groups improved over time (p < 0.0001; 

repeated measures ANOVA), but no significant differences were observed between 

groups. Scores taken from weeks 15-22 (last binned timepoint) were not statistically 

significant (unpaired two-tailed t-test; overall p = 0.24; Figure 7B). However, the data 

shows a possible trend toward improved behavioral function in ch’ase versus control.  

The subjects were also tested in a bimanual Brinkman board. Subjects had to 

push a lever with their left hand to allow the right hand to access the brinkman board 

filled with treats. The board was composed of wells of varying difficulty (sloped/non-

sloped). The brinkman board retrieval rate data was very bimodal (Figure 8A). 
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Therefore, we examined the time to clear the board as well as an indication of whether 

the subjects improved in completing the task quicker (Figure 8B). However, as with the 

retrieval rate, the data is extremely variable within conditions, and there is no detectable 

difference with the data that has been processed. In addition, some of this time to clear 

data had not been recorded for two ch’ase subjects. An unpaired two-tailed t-test taken 

from behavioral sessions from weeks 16-22 indicates that there was no statistically 

significant difference (n=6). Therefore, the bimanual Brinkman board analysis shows that 

there was no increased functional recovery in ch’ase versus control.  
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Figure 1. Schematic of ch’ase delivery and experimental design. 12 rhesus 
monkeys received right C7 hemisection lesions. One month later, they received 10 
injections of either ch’ase or saline 1mm below the site of the lesion in the gray matter in 
areas C8-T1 of the spinal cord. Three months after the injections, the subjects received 
injections of BDA into the left motor cortex to label the right corticospinal tract (subjects 
also received injections of D-488 into the right motor cortex to label the left CST, but 
those quantifications were not performed in this thesis). In this thesis, 9 of the 12 
subjects have been processed and analyzed, and 8 of them have complete behavioral 
and anatomical analyses.  
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Figure 2. Lesion extents are consistent between and within ch’ase and control 
subjects. (A) shows a representative image of the lesion extent in an animal. The image 
was taken from a transverse section of the spinal cord at the C7 lesion area. The lesion 
spans 4 nissl sections, which are spaced in a 1:12 series. (B) shows the reconstructions 
that were created from the nissls and combined to show the maximal extent of damage. 
Controls and ch’ase subjects were consistent in lesion extent.  
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Figure 3. CSPGs are removed 2 weeks after ch’ase injections, but as expected, 
CSPGs reconstitute by 6 months post-injection. CSPGs were labeled with WFA 
antibody. Images were captured caudal to the lesion and near the site of injections. (A) 
shows a subject that was enrolled in a previous short-term study that was sacrificed 2 
weeks after receiving the 10 ch’ase injections. The subject had received a right C7 
hemisection lesion and received the ch’ase injections caudal to the lesion 1 month later. 
(B and C) show representative subjects from the current study (long-term). These 
subjects were sacrificed 6 months post-lesion. CSPGs reconstitute by 6 months post-
injury. 
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Figure 4. CST distribution and regions of interest to assess increased axonal 
growth. The figure shows the CST distribution above and below the lesion in a 
representative subject. CST was labeled with BDA injected into the left motor cortex. 
Above shows a typical CST distribution that is more concentrated around the 
intermediate zone and right dorsolateral tract. As expected, below the lesion a majority 
of the right dorsolateral tract axons were cut and not visible. Dotted lines highlight the 
regions of interest (ROIs) that were drawn for subsequent analysis. However, in each of 
the ROIs, there is variability between axon density. Panel (A) shows the dorsal horn, (B) 
shows the intermediate zone, and (C) shows the motor pool. As seen in above lesion, 
the intermediate zone (B) has the highest CST density. 
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Figure 5. Trend towards increased corticospinal tract sprouting in ch’ase versus 
control. We derived 5 ROIs to examine the CST axonal growth (shown in Figure 4). The 
gray matter ROI includes the sub-ROIs of dorsal horn and ventral gray matter, and the 
ventral gray matter contains sub-ROIs of the motor pool and intermediate zone. Values 
obtained from the ImageJ macro was normalized to the left dorsolateral tract hand-
counted axons. An unpaired two-tailed t-test showed that there was no statistical 
significance. (A) shows the axonal length per section, and (B) shows the pixel density. 
There was no statistical significance in increased CST density as well.  
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Figure 6. No increased raphespinal tract sprouting in ch’ase versus control. 
Sections were taken around the C8 region to assess any increases in 5HT-labeled 
axons of the raphespinal tract. (A) shows the overall image, the white box displays the 
right motor pool where quantifications were performed. Inset shows the close up of 5HT-
positive fibers. (B) shows the qualitative similarity between ch’ase and control right 
motor pools in 5HT density. It is important to note that the brightly labeled circles are the 
autofluorescence from motor neurons. The custom-written ImageJ script filtered out 
these autofluorescence and quantified only the fibers. (C) shows the quantifications that 
were obtained from the script. The right motor pool was normalized to the left (shown as 
“right MP/left MP”). There was no statistical significant difference between the two 
(unpaired two-tailed t-test; p=0.92). (D) shows the difference between the left and right 
motor pools in a subject from each group. There is no visible difference in axon density. 
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Figure 7. E-cage shows possible trend toward increased functional recovery in 
ch’ase versus control. The e-cage overall score is made of sub-scores of climbing, 
object manipulation, and locomotion. (A) shows that both groups improve significantly 
over time but there is no statistically significant difference between the ch’ase and 
control. (Repeated measures two-way ANOVA). (B) shows the last binned data point of 
combined behavioral sessions from weeks 15-22 post-lesion in control versus ch’ase. 
Again, there was no significant difference, however there is a possible trend towards 
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increased ch’ase recovery, especially in the overall, climbing, and object manipulation 
scores but not in locomotion. 

 
Figure 8. Brinkman board analysis shows no increased functional recovery in 
ch’ase versus control. (A) shows a typical raw data sheet from one representative 
subject to demonstrate the scoring of the Brinkman board percent retrieved data. The 
board is made up of varying wells (e.g. sloped, non-sloped, four-configuration, six-
configuration, and nine-configuration). Data from the percent retrieved was very bimodal 
and not a sensitive measure of recovery. Therefore, we examined the time to clear the 
board as a means of detecting any differences in functional recovery. (B) shows a plot 
from a representative animal. The wells “sloped” were plotted as “easy”, “four-
configuration” as “medium”, and “nine-configuration” as “hard”. This subject in particular 
improved over time. The dashed dashed lines represent the pre-lesioned average time 
to clear for each of the difficulties (green, easy, sloped, 4 seconds; yellow, medium, four-
configuration, 11 seconds; red, hard, nine-configuration, 17 seconds). (C) compares the 
time to clear the Brinkman board. There is no measurable statistical significance and no 
clear trend in ch’ase or control behavioral recovery. 
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IV: Discussion 
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We have demonstrated that with the 9 subjects that have been processed and 

analyzed, there is a trend of increased corticospinal tract axon growth in ch’ase 

compared to control, and a possible trend in functional recovery, but no measurable 

increased improvement in behavioral outcomes. After the three remaining subjects 

(ch’ase =1; control = 2) are sacrificed and processed, we can reach a more definite 

conclusion on ch’ase effects on functional and anatomical recovery. However, it is 

important to note that ch’ase did not have any adverse effects either on both anatomical 

and behavioral measures. 

  Our anatomical assessment of ch’ase administration showed that there was a 

trend toward increased CST axon growth in ch’ase compared to control. Previously, we 

found that the rhesus monkey CST exhibits significant and substantial spontaneous 

plasticity following spinal cord injury. This intrinsic sprouting is mainly due to collaterals 

of the intact side that have either already been present on the right side. This is strikingly 

different in the rat CST, where axons simply do not regenerate. The human CST is 

similar to that of the monkey, and our experimental design has taken in translational 

difference between rats and monkey models. However, given our study with a very low 

n, we still observed a trend towards increased CST axonal growth in ch’ase treated 

subjects. While it is not significant, once the remaining 3 subjects are sacrificed and 

processed, we can reach a more definite conclusion. The strongest trend toward 

increased axonal growth was especially in the intermediate zone, an area where is also 

densest prior to injury. The intermediate zone is a region where many motor neurons are 

present. This increase is promising in the context of both a low N and that the CST is 

thought to be the most relevant to functional recovery. A power analysis was conducted 

to determine the number of subjects required for a statistically significant result. 52 total 

subjects would need to be enrolled, 26 ch’ase and 26 control. Further quantifications of 
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midline crossers will determine whether there are collateral sprouts from the intact side 

to examine other sources of sprouting. In addition, synapse analysis through colabeling 

of synaptophysin and BDA-labeled CST will examine whether there are functional 

synaptic connections in the potential circuitry.  

 Anatomical analysis of 5HT-expressing raphespinal tract fibers in the motor pools 

did not show an increased density in ch’ase versus control. In humans, some 

raphespinal tract axons make monosynaptic connections with alpha motor neurons, 

which can contribute to the spinal circuitry through collaterals15. In addition, while 

previous studies of ch’ase in rat models of SCI have shown an increased 5HT density, in 

the human and primates, the raphespinal tract is smaller. Perhaps there was no 

observable increased density in this particular descending motor system, but analysis of 

other descending motor systems can determine if there are other effects as well. For 

example, tyrosine-hydroxylase labeling of the cerulospinal tract, which were assessed in 

other SCI studies, can be conducted to quantify any increased density as well. 

 E-cage behavioral assessment of ch’ase administration showed that there was a 

possible trend towards increased functional recovery in ch’ase compared to control. 

Given that there is no observed significance as seen by the high variability in the 

subjects’ behavioral outcomes, once the 3 subjects are processed, a clearer conclusion 

can be drawn. Subsequent analysis through a principal components test will reduce 

variability and elucidate the relationship between functional and anatomical measures. 

However, subjects do significantly improve over time and there is no observed 

detrimental effect of ch’ase in any of the behavioral measures. This lends to the potential 

safety of ch’ase injections and that our methods of delivery of the bacterial enzyme did 

not introduce increased damage. While groups appeared to plateau at different points 

towards the last binned data session (Weeks 15-22 post-lesion), an unpaired two-tailed 
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t-test demonstrated that the last data point was not significant, lending to the variability 

between subjects. However, there was no observed increase in locomotion, which 

corresponds to the sites of ch’ase delivery, which were centered primarily in the C8-T1 

area of the spinal cord that is responsible for hand function.  

The Brinkman board analysis showed no increased functional recovery in ch’ase 

compared to control. Assessment of the time to clear the board showed no statistical 

significance in the differences between groups. While the Brinkman board is a 

behavioral test of hand pincer function, it appears that there was no observable effect. 

Two subjects that have complete anatomical and e-cage behavioral data did not have 

the time to clear recorded, and thus with a total n=6, it seems that a definitive conclusion 

is premature. The remaining subjects enrolled in the study will be analyzed and 

processed by Fall 2016.  

Despite our incomplete dataset, there are interesting trends in the data. As these 

results will influence whether ch’ase moves on to clinical trials, it introduces important 

analyses and considerations. First, given that our method is a one-time injection of 

ch’ase delivered intraparynchemally, it may be likely that the increased CST axonal 

growth may not be enough to promote functional plasticity that is observable by 

behavioral measures. Previous rat models of ch’ase delivery was primarily intrathecal 

and utilized ports with repeated infusions of ch’ase. Give the possible high-dosage 

delivered intraparynchemally, and complete CSPG degradation 2 weeks after injection, it 

is plausible that ch’ase is sufficient for some anatomical recovery but not enough time for 

functional recovery. As CSPGs do reconstitute after, perhaps prolonging the period of 

optimal plasticity will improve the actual functional connections that are created. Second, 

while we waited 1 month after injury to deliver ch’ase, as it was clinically relevant to the 

typical recovery following SCI, previous studies administered ch’ase following a few days 
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after injury. Perhaps an earlier treatment timepoint will show a more pronounced effect 

due to ch’ase. Third, there are other factors that contribute to lack of repair following 

SCI, which lends to why SCI treatments are so difficult to develop and optimize. Factors 

include: the inactive growth program of CNS neurons, myelin-associated inhibitors, and 

lack of neurotrophins (growth-promoting factors)1. Perhaps targeting the inhibitory 

molecules that make up the glial scar is not sufficient to promote observable functional 

recovery in the rhesus monkey model. Ch’ase may be more effective in combination 

therapies such as with human neural stem cell grafts. Our lab is optimizing and 

evaluating human neural stem cell grafts in a rhesus monkey model of SCI, and it may 

be a potentially promising combination therapy, given the increased anatomical CST 

plasticity and possible trend towards functional recovery observed in ch’ase-

administered subjects. 

In conclusion, despite the low n, we still observed trends that could potentially 

lead to observable anatomical and behavioral effects of ch’ase-treated subjects. Monkey 

studies are extremely costly and time-consuming, given the support, care, and treatment 

necessary for these animals. However, despite the variability between subjects and 

complications that arose throughout the study, it will be interesting to re-evaluate the 

data once the other three subjects have been assessed. Still, there are other 

assessments that can be built upon the work thus far, which can influence whether 

ch’ase administration will move on to clinical trials. 
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