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Design and performance estimates for the l'OASIS experiment magnetic 
spectrometers 

G. Dugan,* A. Misuri,t and W. Leemans 
Center for Beti.m Physics, Lawrence Berkeley National Labomtory, Berkeley, CA 94708t 

(Dated: November 19, 2001) 

Two double-focusing magnetic spectrometers will be used to momentum analyze the electron beam 
produced by the !'OASIS laser plasma wakefield accelerator. One spectrometer, based on a round 
pole magnet, has an operating range up to 50 MeV Jc, with a resolution in the 1-2% range. The other 
spectrometer, based on a wedge dipole magnet, has better resolution (about 0.5%) but an operating 
range limited to below 18 MeV /c. This note describes the optical design of the spectrometers, 
and provides detailed estimates of performance features such as dynamic range, operating range, 
calibration, resolution, acceptance, and aberrations 

I. INTRODUCTION 

In this note, the design of two double-focusing magnetic spectrometers is described, and the spectrometer 
performance is detailed. The spectrometers are to be used for the momentum analysis of electrons produced 
from the !'OASIS laser wakefield plasma accelerator. A schematic layout of the spectrometer system is shown 
in Fig. 1, which indicates all the spectrometer-related components and distances, but is not to scale. A to-scale 
drawing is shown in Fig. 2. The first spectrometer magnet, called the "round pole magnet", is a model3473-70 
GMW Associates Laboratory Electromagnet. The pole cap is cylindrical, with al50 mm diameter. The second 
spectrometer magnet, called the "pacman magnet", is a standard wedge-pole C-dipole. 

\ 

Pacman magnet 

'"'"~'"' \ 
Kapton window 

467 
Laser-plasma wakefield 

4.5" Range (19) accelerator gas jet 

6"diameterpiP8 

Window(10) 

FIG. 1: Layout of the round pole and pacman spectrometers (not to scale) All dimensions in mm 

*also at Laboratory for Nuclear Studies, Cornell University, Ithaca, NY 14853 
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FIG. 2: Layout of the round pole and pacman spectrometers (to scale). The black dots indicate the calculated positions 
of the horizontal focus. Dimensions are in mm 

II. TRANSPORT MATRICES FOR WEDGE BENDING MAGNETS 

The standard formalism for the first-order optical properties of wedge bending magnets is given in [1, 2]. The 
general geometry is shown in Fig. 3, taken from [I]. The first-order thick lens transport through the body of a 

FIG. 3: Geometry of a symmetric wedge bending magnet 

uniform field wedge magnet is given by 

X(s + pa) = Mbody (a, p) X(s) 



in which 

( 

x l ( cosa 
x' _sino: 
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In these equations, the z coordinate is out of the page, ol is the path length difference from the reference 
trajectory, and ~ is the relative momentum difference from the central momentum. In the thin lens (impulse) 
approximation, the first order edge focusing is described by the matrix 

( 

1 0 
tan ,8 l 

0 0 
Medge (/3,p} = 0 0 

0 0 
0 0 

0 
0 
1 

tan(/1-1/>} 

op 
0 

~ ~ ~) 0 0 0 
1 0 0 
0 1 0 
0 0 1 

The edge angle /3 is shown in Fig. 3. For positive /3, the edges are defocusing in the bend plane and focusing 
in the non-bend plane. The angle 1/J corrects for the finite length fringe field associated with a finite magnet 
gap G. To lowest order in %, it is given by , ~ 

1/J =KG (1 +sin2 /3) 
p 

in which K is given by the following integral over the fringing field of the magnet, 

K = G~5 j dsBz (s) [Bo- Bz (s)], 
end 

(1) 

where Bo = Bz (0} is the central field. K = i for a linear fringe field. The overall transport through the magnet 
~~~~ ~ 

M (/3, p) = Medge (fJ,p) Mbody (a, p) Medge (/3, p) 

III. DESIGN OF THE ROUND POLE SPECTROMETER 

A. Geometry and linear optics 

Fig. 4 illustrates the geometry of the round pole magnet, for which we assume that the magnetic field is 
azimuthally symmetric. (This a8sumption is supported by three-dimensional ANSYS magnetic field calculations, 
and also by comparisons between the field measurements, discussed below, and a two-dimensional POISSON 
model of .the magnetic field)[3, 4]. / 

The simplest model for the field corresponds to a hard-edge model in which a uniform vertical field of 
magnitude Bo extends out from the origin of the Cartesian coordinate system to an effective radius R. For a 
given particle momentum p, the bending radius p is given in terms of the central field Bo and the momentum 
by 

p [GeV] 
Bop [T m] = 0.2998 (2) 

For a given field (i.e, fixed Bo and R}, a given bend angle a, and a given value of the parameter ~ (see 
Fig. 4), there ~ a unique value of the bend radius corresponding to the trajectory illustrated in Fig. 4. The 
bend radius can be found from the geometry given in Fig. 4. We have 

L = 2psin~, 
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Object (x 0 y d 

FIG. 4: Geometry of the round pole magnet. The ideal trajectory, and its extensions, is shown in red. 

and 

So we have for the bend radius 

The central momentum for this bend radius can then be calculated from Eq. (2). 
This value of the bend radius can then be substituted into the transport matrices described in Section II to 

compute the optics. From the geometry shown in Fig. 4, we have 

2 . a 2R. 'Y 2·-l(P. a) 2·-l(.JR2-fl.2) psm 2 = sm 2 ==> 'Y = sm R sm 2 = sm R 

and 

The parameter D., which determines where the trajectory transits the magnet, is the only free parameter. 
The "design" of this spectrometer then consists of finding a value of D. corresponding to the condition of double 
focusing at the image point. This value will depend on the distance s0. In practice, what is fixed is the distance 
between the object and the intersection of the incoming and outgoing trajectories, i.e., the distance So = s0 + sm 
in Fig. 4. This distance will be called the object distance. The distance s0 may be derived from this using 

a a 
Sm = p tan 2 ==> s0 = So - p tan 2 

The coordinates -of the object are given by 

a -a a 
X 0 = -S0 COS- -psin- = -S0 cos-

2 2 2 

Yo= -so sin i +D.= -S0 sin ~ + Q +D. 

(3) 

(4) 
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in which Q = p sin ~ tan ~. The coordinates of the image are 

a . a S a x·=s·cos-+pstn-= ·cos-
' 

1 2 2 • 2 
. a A 

y; = -s;sm2 +u 

in which S; = s; + Sm is the image distance. The overall transport matrix from object to image is given by 

T(s;,s0 ) = D(s;)M(.8,p)D(s0 ) {5) 

in which 

[! 

s 0 0 

0 ") 
l 0 0 0 0 

D(s) = 0 l s 0 0 
0 0 l 0 0 
0 0 0 l 0 
0 0 0 0 l 

is the matrix for a drift space. The requirements for point-to-point focus at the image point in the bend plane 
an~ non-bend plane are, respectively, 

T12 (s;u, So) = 0 
T34 (s;z,So) = 0 (6) 

These equations may be solved to give the distances S;u and Siz for a focus in the bend plane and non-bend 
plane. When Siu = S;z we have the required double focus condition. The focal lengths of the magnet itself in 
the bend and non-bend plane are given respectively by 

l 
fu=-­

M21 

l 
Jz =- M43. 

Measurements of the magnetic field of the round pole magnet were made using a Hall probe. These data may 
be used to find the value of the effective radius R. Fig. 5 shows the measured magnetic field Bz vs. r. 

ll,;(Tt 

0.6 

0.5 \ 
0.4 \ . 
0.3 

0.2 

0.1 

r(IJill.l 
so 100 150 200 250 300 

FIG. 5: Measured vertical magnetic field vs. radius for the round pole magnet, for a current of 35 A. The dots are the 
measured data, and the red line is an exponentially smoothed interpolation function used in the numerical calculation 
of the trajectories. 

The effecti'-:e radius is defined by 

00 

J Bz (r) dr 
R=o ~B::-z-;-:(0:-:-)-
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From the data shown in Fig. 5, we find R=ll7.3 mm. From Fig. 1, the object distance is 8 0 =1.142 m. The bend 
angle imposed by the vacuum chamber is a= 55°. The central field (see Fig. 5) is Bo =0.67 T (corresponding 
to 35 A in the magnet). The magnet gap is G=58 mm, and the value of K computed from Fig. 5 using Eq. (1) 
is K=0.4175. 

Using these values, Fig. 6 gives the central momentum, Fig. 7 the focal lengths fu and fz, and Fig. 8 the 
image distances S;u and S;z, vs. the parameter ~- For ~=-20.23 mm, the image distances in both planes are 
equal, at S;u = S;z =1.675 m. The central momentum at this value of~ is 50.26 MeV fc. 

- 0 

-40 

Momentum(MeV/c) 

50.5 

50 

49.5 

49 

48.5 

-20 20 

FIG. 6: Central momentum vs. 11 
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-2001 
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FIG. 7: Focal lengths vs. 11. Blue corresponds to the non-bend plane, red to the bend plane. 

B. Linear lattice functions 

Considering the spectrometer system to be a beam transport line, the- linear lattice functions f3x, /3y, and 
the momentum dispersion 1J may be calculated from the transport matrices. The initial value of the lattice 
functions {30 (taken to be the same in both planes) may be estimated by making some assumptions about the 
initial beam phase space. The full angular spread of the beam from the laser plasma wakefield accelerator 
can be as large as 40 mra.d. However, as discussed below, the spectrometer cannot transmit this large angular 
spread without very significant optical aberrations. So, we will assume that the beam is collimated to an rms 
angular spread of o-0=0.010 rad. We take the initial rms beam size to be roughly that of the laser spot a-0 = 
6 J.Lm. Then /30 = ~ = 0.6 mm. The corresponding geometric emittance is c: = o-0 o-0 = 0.06 J.Lm. We also 

"'o 
assume no initial position-angle correlation. Then we can calculate the evolution of the lattice functions, and 
the associated beam sizes, through the spectrometer. Fig. 9 shows the lattice functions, and Fig. 10 the beam 
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100 

50 

-22 -20 -18 -16 

FIG. 8: Distances S;u (red) and S;u (blue) vs ~- Blue corresponds to the non-bend plane, red to the bend plane. 

{3 (Jan) 

2 If\ 

1.5 

1 

0.5 

500 1000 1500 2000 
s(nun) 

FIG. 9: Lattice functions {3, (red) and {3y {blue) for the round pole spectrometer system 

o(mm) 

10 

500 1000 1500 2000 2500 
s(mm) 

FIG. 10: Rms beam sizes a, (red) and ay {blue) for the round pole spectrometer system_ 

sizes, given by cr = V£11. Because of the very large aspect ratio of the initial phase space, the lattice function f3 
rises to a more than a km before being brought down by the spectrometer magnet focusing field. The dispersion 
is shown in Fig. 11. 
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l){mm) 

1500 

1250 

1000 

750 

500 

250 

500 1000 1500 2000 2500 
s(mm) 

FIG. 11: Dispersion function 7J for the round pole spectrometer system 

C. Direct integration of the equations of motion 

1. Numerirol solution technique 

As Fig. 5 shows, the magnetic field of the round pole magnet is mostly fringe. Given this situation, it is 
unclear how well the thin lens approximation for the fringing field will work. Therefore, it seemed prudent to 
check the first order results by a direct solution of the equations of motion. This will also automatically include 
all geometric and chromatic aberrations. The equation of motion for an electron of charge -e, momentum p, 
and velocity v, in a field B, is 

dp 
- =-evxB 
dt 

In the Cartesian coordinate system shown in Fig. 4 (positive z is out of the paper), the equations of motion 
become 

II 1 [ 'B 'B l x = - (Bop) y z - z Y 

II 1 [ 'B 'B l y = -(BoP) z x- x z 

II 1 { 'B 'B l z = -(Bop) x Y- Y x 

in which primes denote differentiation along the trajectory coordinate l = vt. Bop is given by Eq. (2). The fields 
to be used in these equations may be derived from the field shown in Fig. 5, with the following assumptions. As 
noted above, we assume azimuthal symmetry in a cylindrical coordinate system centered on the origin shown 
in Fig. 4. We also assume midplane symmetry, so that the vertical component of the magnetic field may be 
written in the form · 

Bz (r, z) = Bzo (r) + Bzl (r) z2 + ... 

Keeping only the terrns shown in the previous equation, and requiring that the field satisfies the Maxwell 
equations 

leads to the following result for the radial field component: 

dBzo z3 dBz1 
Br(r,z) = z-d· + --d- + ... 

r 3 r 
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and the following expression for Bz1: 

B .( ) = -~ [~ dBzo d2 Bz0] 
zl r 2 r dr + dr2 · 

The field components in the Cartesian system are given by 

_ xBr ( .JX2+Y2, z) 
Bx(x,y,z)= ~ 

yx2 +y2 

yBr ( .JX2+Y2, Z) 
By(x,y,z)= ~ 

yx2 +y2 

Bz (x,y, z) = Bz ( Jx2 + y2,z) 

Using these relations in the trajectory equations will treat the fringe field correctly to all orders in x and y, and 
to third order in z. 

The equations of motion have been solved using Mathematica's NDSolve function, starting at the point given 
by Eqs. {3) and (4). The solution is obtained iteratively as follows. For given values of~ and 8 0 , and a trial 
value of p, the trajectory is calculated, and the total bend angle is determined. The value of p is then adjusted 
to make the total bend angle equal to a= 55°. This determines the reference trajectory and central momentum 
for the chosen value of ~- To evaluate the focusing properties of the system, we must first transform from the 
(x, y) system to the curvilinear coordinate system in the bend plane (u, s) shown in Fig. 3. The orthogonal 
coordinate of a point (x, y) is 

u (x, y, s) = (y- Yo (s)) cosO (s)- (x- xo (s)) sinO (s) 

in which (xo (s), Yo (s)) is the reference trajectory, given numerically as described above, and tanO (s) = ~:tl· 
The orthogonal coordinate of a general trajectory is u (x (l), y (l), s) in the bend plane, and z (l) in the non-bend 
plane. To evaluate these in terms of the reference trajectory coordinate s, we use 

l = s + <Sl, 

in which <Sl is the first order path length difference, given implicitly by Eq. (5). Explicitly, for s >So+ pa, we 
have 

<Sl = x (O)sina + x'(O) (p(l- cos a) +s0 sina) + dp p(a- sin a) 
p 

We will neglect higher order tenns in the dependence of the path length on the initial coordinates. 
A trajectory which initially deviates from the reference trajectory by a transverse displacement u 0 and a 

small transverse angle u0 has initial x, y coordinates and angles 

x (0) = Xo- uo sinOo, y (0) =Yo+ uo cosOo 

x' (0) = cos Oo - u~ sin Oo, y' (0) = sin Oo + u~ cos 00 . 

The trajectory equations may be solved with these initial conditions. Let us call the resulting trajectory 
coordinate orthogonal to the reference trajectory at the image u; (uo, u0, s). For a point-to-point focus, the 
image point in the bend plane then occurs at a coordinate Stot,u given by the solution of the equation 

U; (0, u~, Stot,u) = U; (0, -u~, Stot,u) . 

A similar relation gives the image coordinate in the non-bend plane: 

z; (0, z~, Stat,z) = z; (0, -z~, Stot,z) 
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FIG. 12: Trajectories computed by numerical integration, for an idealized field, as a check on the numerical solution. The 
red curves correspond to trajectories in the bend plane, relative to the reference trajectory; the initial values are u~ = ±1 
mrad. The black curves are trajectories in the non-bend plane, corresponding to z~ = ±1 mrad. 

2. Test of the numerical technique 

As a check of the numerical integration routines, the central trajectory has been computed for the following 
idealized field: 

{ 
B0 ifr < Ro} 

Bz (r, z) = 0 if r ~ Ro 

{ 

0 ifr<Ro-Q } 
Br (r, z) = -~ if Ro- ¥-:::; r ~ Ro + ¥-

0 if r ~ Ro + ¥-
This field corresponds to the assumption made in deriving the first-order transport matrices: a uniform B z field 
with a hard edge, and a Br fringe field providing vertical focusing. The edge focusing matrix given above in 
Section II. assumes the thin lens approximation, so we must take the magnet gap to be small compared to 
the bend radius (about 250 mm). We take G=5 mm, and take K = ~, appropriate for a linear fringe field. 
Otherwise, we use the geometry in Fig. 1 (S0 =1142 mm) and the field parameters used in Sec. IliA (Bo=0.67 
T, R=ll7.3 mm). We also take~= -20.23 mm. 

The central trajectory is numerically calculated and the bending radius associated with a 55° bend calculated 
as described above. The result gives a central momentum of 50.26 MeV jc, just as in the linear case. 

Fig. 12 shows four trajectories, computed by numerical solution of the differential equations of motion. The 
red curves correspond to trajectories in the bend plane, relative to the reference trajectory; the initial values 
are u~ = ±1 mrad. The black curves are trajectories in the non-bend plane, corresponding to z~ = ±1 mrad. 
The bend plane images at Stot,u = 2.796 m from the object. Note that the trajectories do not intersect at zero 
offset; this is due to horizontal aberrations. In the non-bend plane, the image is at Stot,z = 1.903 m. 

The distance Stot is the total distances along the reference trajectory. To relate this to the image distance 
S;, we use 

Q 

Stot = S 0 + pa + s; = So + pa + S; - 2p tan 2 =? 

S; = Stot- (So+ pa- 2ptan ~) 

Using this equation, we find that the image distances Si in the bend and non-bend plane, are, respectively, 
1.674 m and 0.782 m. The linear optics equations predict respective values of 1.675 m and 0.785 m, in good 
agreement. The vertical focus is much close to the object here than in the solution described in Section IliA 
because of the much shorter idealized fringe field, required to make a sensible comparison between the numerical 
solution and the thin-lens edge transport matrix. 
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3. Application to the measured field of the round pole magnet 

The central trajectory was then numerically calculated using an exponentially smoothed interpolation function 
to represent the measured magnetic field (see Fig. _5), starting at 8 0 =1142 mm, and for a= 55c. For several 
values of .6., the bending radius associated with a 55° bend was calculated as described above, and the position 
of the focus in the bend plane and the non-bend plane was calculated. It was found that for .6. =~19.1 mm, 
both foci occurred at almost the same image distance. For this value of .6., the central momentum was found 
to be 49.74 MeV /c. · 

Trajectory(mm.} 

0. 5 

500 
s(m) 

-0.5 

-1 

FIG. 13: Trajectories computed by numerical integration, for the measured field, for ~=-19.1 mm. The red curves 
correspond to trajectories in the bend plane, relative to the reference trajectory; the initial vaiues are u~ = ±1 mrad. 
The black curves are trajectories in the non-bend plane, again corresponding to z~ = ±1 mrad. 

Fig. 13 shows four trajectories, computed by numerical solution for this value of!::.. The red curves correspond 
to trajectories in the bend plane, relative to the reference trajectory; the initial values are u0 = ±1 mrad. The 
black curves are trajectories in the non-bend plane, corresponding to z~ = ±1 mrad. The bend and non-bend 
plane image at (Stot,u, Stot,z) = (2. 785, 2. 782} m from the object. 

The distance Stat is the total distance along the reference trajectory, which is no longer circular within the 
magnet. The image distance Si must be computed in this case as follows: 

Using this equation, we find image distances of (S;u, S;z) = (1.668, 1.664) m. From Fig. 1, the phosphor for 
viewing the beam is located at 8=1661 mm, 5 mm from the average focal point. The goometry and first order 
optical properties of the round pole spectrometer are summarized in Tables I and II. 

·TABLE 1: Round pole spectrometer geometrical parameters for the double focusing condition 

-Magnet a {J p Bo Po G K R L ~ 

deg. deg. mm T MeV/c mm mm mm mm 

Hard edge approx. 55 17.57 250.228 0.67 50.26 58 0.4175 117.3 231.09 -20.23 

Exact num. integ. 55 18.042 247.79 0.67 49.744 116.0 228.83 -19.06 

4- Round pole magnet alignment 

Fig. 14 shows the trajectories in the vicinity of the round pole magnet. In order for the central trajectory to 
enter the magnet at the required value of LS. for double focusing, the relative position of the vacuum chamber 
and the round pole magnet had to be adjusted slightly from its original position. In Fig. 14, the original center 
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TABLE II: Round pole spectrometer first order optical parameters for the double focusing condition 

Magnet So 
mm 

Hard edge approx. 1142 
Exact num. integ. 1142 

"Horizontal magnification 
&vertical magnification 

fu fz 

mm mm 

669.4 680.4 

S;u s •• Tu {Siu, So)" Taa (s;z, So) b 

mm mm 

1674.5 1674.5 -1.47 -1.46 
1668.4 1664.47 

FIG. 14: Trajectories and vacuum chaniber, in the vicinity of the round pole spectrometer. The blue lines are the 
calculated trajectories; the center line is the reference orbit, and the other two lines represent trajectories which differ 
from the reference orbit by ±15· mrad. The black 75 mm radius circle corresponds to the magnet's pole. The red straight 
lines are the vacuum chamber. The red circle represents the original location of the magnet's pole, centered at the red 
cross-hairs. The required position, to which the magnet was moved, is at the origin. The green lines represent the ideal 
reference orbit, and its extensions; the green circle is the effective radius of the equivalent hard-edge field. Dimensions 
are in mm. 

of the round pole magnet is indicated by the yellow crosshairs; the required position of the center is at the 
origin. The total required shift of the center of the magnet is about 8 mm in x and 5 mm in y. Fig. 15 shows 
the complete layout of the round pole spectrometer from object to image 

D. Aberrations and momentum resolution 

Aberrations to second order have been calculated using the analytical formulae and matrix approach described 
in [1]. To second order, the dependence of the position at the image on the trajectory initial angles u0 and z0, 
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FIG. 15: Round pole spectrometer: trajectories (blue line) and vacuum chamber (red lines), showing object and image 
(red dots). Dimensions are in mm. · 

and the momentum deviation w-, are given by 

. 2 

u; =Fool w- + F2oo (u~)2 + Fo2o (z~) 2 + Fw1 w-u0 + F002 ( ~) 

z; = G01oz~ + Gou w-z~ + Guoz~u0 

(7) 

(8) 

in which u; is the bend-plane transverse coordinate , and z; is the non-bend-plane transverse coordinate, both 
evaluated at the bend-plane image point. The nomenclature chosen for the higher order coefficients associates 

a coefficient (F;1k,G;1k) with the dependence of (u;, z;) on (u0)i (z~)i ( w-) k. 

Aberration effects have also been calculated using the numerical techniques based on the measured field 
described above in Section III C 1. A series of trajectories, spanning a range of initial angles in u0 and z0 of 
±15 mrad, and a range in w- of ±5%, have been numerically computed, and the dependence of u; and z; on u0, 
z~ and w- has been fit to functions of the form 

and 

( )

2 
I 1 1 op 1 1 2 1 1 3 op 1 I op I 

z; = Gowz0 + Guoz0u + Gou-z0 + G210 (u0 ) z0 + Go3o (z0) + Gnt-z0u0 + Go12 - z0 p p p 

I I 3 I 3 I Op I 2 I up_ I 3 Op I I /)p 1 " ( )2 ( )3 +G13ou0 (z0) + G310 (u0 ) z0 + G211 p (u0 ) z0 + Go31 p (z0 ) + G112 p z0u0 + Go13 p z0 

These are the most general forms, consistent with midplane symmetry of the field, up to fourth order. Tables III 
and IV present the second order numerical fit coefficients, together with the analytical results. The second 
order fit coefficients generally agree well with the second order analytic results. 

The higher order coefficients quantify cubic and quartic nonlinearities; these are given in Tables IV- VII. 



TABLE III: Round pole spectrometer, linear and second order bend-plane aberration coefficients 

Calculation 

Analytical 
Numerical 

F10o 
mm 
0.0 
-2.2 

Fool 
mm 
1578 

1540.05 
62065 
77419 

Fo2o 
mm 

-70074 

-78866 

F1o1 

mm 
10092 
10672 

14 

Foo2 
mm 

-1430 
-1336 

TABLE IV: Round _pole spectrometer, linear, second and third order non-bend-plane aberration coefficients 

Calculation 

Analytical 
Numerical 

527262 

-139925 

Ct3o 

mm 
9.97x106 

Gota Guo Con c21o Coao Cut 
mm mm mm mm mm mm 
0.0 -139281 2545 

2.1 -154169 181 358988 -315837 124057 

TABLE V: Round pole spectrometer, third order bend-plane aberration coefficients, 

F12o 

mm 
295946 -5415 

Fw2 
mm 

-15070 

Fo21 

mm 
65328 

TABLE VI: Round pole spectrometer, fourth order bend-plane aberration coefficients 

-Ll27x 107 

Fo4o 
mm 

1.83x 106 -965377 -L47x106 

F121 

mm 
-152119 

mm 
27245 

Fo22 
mm 

21883 

Ftoa 
mm 
-528 

TABLE VII: Round pole spectrometer, fourth order non-bend-plane aberration coefficients 

5.19x 106 -822292 

Co31 

mm 
805652 

C112 

mm 
-110855 

IV. DESIGN OF THE PACMAN SPECTROMETER 

A. ·Geometry and linear optics 

Co12 

mm 

1822 

Fooa 

mm 
817 

Foo4 
mm 

Co13 
mm 

-3783 

The geometry of the small C-magnet (pacman) is shown in Fig. 16. For a given field (i.e, fixed Eo and L), 
and a given bend angle a, there is a unique value of the bend radius corresponding to the trajectory illustrated 
in Fig. 16. We have for the bend radius 

L 
p=--

2sin~ 
(9) 

and the central momentum can then be calculated from Eq. (2). The angles in Fig. 16 are related by -y = a- 2(3. 
The value of the bend radius can then be substituted into the transport matrices. The value of the angle {3 

is the only remaining free parameter. If one were designing a new magnet, this angle would be varied to find 
a value corresponding to the condition of double focusing at the image point. This value will depend on the 
object distance 80 • In the case of the existing pacman magnet, the value of (3 is already determined. Hence we 
would not necessarily expect to realize the exact double focusing condition. However, as described below, we 
are not far off. 

The coordinates of the object and image are given by 

a . a S a 
X 0 = -S0 COS 2- psm2 =- oCOS 2 (10) 



and of the image, by 

y 

FIG. 16: Geometry of the pacman magnet 

. a 
Yo= -So Sin 2 

a a a 
x· = s· cos- + psin- = S· cos-

' ' 2 2 ' 2 
. a 

y; = -s;sm2 

with Sm = ptan ~' So= 8 0 + Sm, S; = 8; +Sm. 

15 

(11) 

For the pacman magnet, the bend angle is a = 90°, and an estimate of of the edge angle, based on a direct 
measurement of the pole tip geometry, is /3 = 28.25°. The magnetic field of the pacman magnet has been 
measured with a Hall probe. The data are shown in Fig. 17. From this data, the effective length L of the 
magnet can be estimated. 

Vertical Field (T) 

-so 100 150 20~ 250 

FIG. 17: Measured fringe field of the pacman magnet. The zero of the v coordinate corresponds to the physical edge of 
the pole tip. Current =150 A. The red line indicates the fitted Enge function, Eq. (12). The best fit parameters were 
a 1 =0.004 T, a2=0.293 T, aJ=-0.69936, a4~4.7099, as=-2.5752, a6=1.1388 

The effective length is found to be 28.3 mm longer than the physical length across the pole (directly measured 
to be 258 mm), giving £=286.3 mm. The bend radius can than be found from Eq. (9) to be p=202.5 mm. 
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To evaluate the first order focal properties using Eq. (5) above, we must determine the fringing field integral, 
Eq. (1), which can be found from Fig. 17. The magnet gap is 44 mm, and the fringing field integral is found 
to be K =0.328. From Fig. 1, the object distance 80 = 1921 mm. The image distances can then be determined 
from Eq. (6) above. The image distance in the bend plane is found to be Siu=407.1 mm, and in the non-bend 
plane it is Siz =397.4 rom. Although the bend plane and non-bend-plane focus occur at different distances, the 
performance is not significantly degraded due to this, since the aberratious dominate. This is discussed below 
in Section IV D. 

B. Linear lattice functions 

Using the same assumptions as stated in Sec. III B, above, we can calculate the evolution of the lattice 
functions, and the associated beam sizes, through the pacman spectrometer. Fig. 18 shows the lattice functions, 
and Fig. 19 the beam sizes, given by u = .jE{J. The dispersion is shown in Fig. 20. 

(3 (km) 

7 

6 

5 

4 

3 

2 

1 

1500 
s (mrn) 

FIG. 18: Lattice functions f3:x: (red) and {3y (blue) for the pacman spectrometer system 
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FIG. 19: Rms beam sizes U:x: (red) and ay (blue) for the pacman spectrometer system 

C. Direct integration of the equations of motion 

The technique discussed above in Section III C 1 for the numerical integration of the equations of motion for 
the round pole magnet may be applied to the pacman magnet, using the ~easured field given in Fig. 17. In 
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FIG. 20: Dispersion function 1/ for the pacman spectrometer system 

this case, the field was fitted to an Enge-type function of the form 
a2 

Bm(v) =at+ ( 2 3) 
1 + exp a3 + a4 1J + as ( ~) + a6 ( ~) 

(12) 

with G=magnet gap=44 mm. The resulting fit is shown in Fig. 17. The only additiona.I complication is in the 
treatment of the pole edges. Each pole edge is considered to be a segment of the arc of a circle of radius R. 
(See Fig. 16). The left edge has a center at C1, and the right edge has a center at C2. The coordinates of the 
centers are 

'Y L 'Y 
xc, = Rcos 2- 2' Xc2 = -xc,, yc, = Yc2 = Yc = Rsin 2 

Let the measured vertical magnetic field shown in Fig. 17 be Bm (v), with v=O at the pole tip edge. Then the 
magnetic field at a distance r from the appropriate center point C is 

Bzo (r) = Bm (r- R). 

Using this field, the vertical and radial field components may be calculated as described above in Section III C 1. 
The field coordinates in the Cartesian system shown in Fig. 16 are then derived using 

(x- xc) Br ( Jcx- xc)
2 + (y- yc) 2 ,z) 

Bx (x, y, z) = ----;=='========--....:.__ 
Jcx-xc)2 +(y-yc)2 

(y- Yc) Br ( J (x- xc)
2 + (y- yc)

2
, z) 

By (x, y, z) = -------.=========--~ 
V(x- xc)2 + (y- Yc)

2 

Bz(x,y,z) =Bz ( Jcx-xc)
2

+(y-yc)
2
,z) 

in which C = C2 if x < 0 and C = C1 if x > 0. The equations of motion have been solved starting at the point 
given by Eq. (10) and (11), with a= 90°, 80 =1921 mm, and s0 = 1720 mm. The radius of curvature of the 
pole tip is estimated as follows. On Drawing 18M653, of the proposed new pacman magnet, the pole tip radius 
is indicated as 1086 mm. Since the existing pacman is purported to be a half-scale version of this, we take the 
.pole tip radius to be about half this: R=530 mm. (A direct measurement from the curvature of the pole tip 
gives a radius of curvature of 520 mm, with a few tens of mm error). This defines the magnet geometry fully. 
We take the central field to be Bo=0.297 T (from Fig. 20), corresponding to 150 A in the magnet. Numerical 
solution of the central trajectory then gives p=200.2 mm, implying a central momentum of 17.83 MeV/c for 
this field. The images are found at the distances (S;u, S;z) =(410.7, 396) mm. The trajectories are shown in 
Fig. 21. From Fig. 1, the phosphor screen for viewing the beam is located at 8=402.5, very close to the average 
focal point. The geometry and first order optical properties of the pacman spectrometer are summarized in 
Tables VIII and IX. 
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Trajectory(mm) 

s(m) 

-2 

-4 

FIG. 21: Trajectories computed by numerical integration, for the measured field of the pacman magnet. The red curves 
correspond to trajectories in the bend plane, relative to the reference trajectory; the initial values are u~ = ±1 mrad. 
The black curves are trajectories in the non-bend plane, corresponding to z~ = ±1 mrad. 

TABLE VIII: Pacman spectrometer geometrical parameters 

Magnet a (3 p Bo Po G K R L 6. 
deg. deg. mm T ~•feV/c mm mm mm mm 

Hard edge approx. 90 28.25 202.46 0.297 18.03 44 0.3278 530 286.32 0 

Exact numer. int. 90 28.25 200.205 0.297 17.826 283.13 0 

TABLE IX: Pacman spectrometer firrt order optical parameters 

Magnet So fu fz Siu S;, Tn (siu, So) 4 Taa (s;z, so) b 

mm mm mm rom mm 

Hard edge approx. 1921 284.6 356.0 407".1 397.4 -0.18 -0.25 

Exact numer. int. 1921 410.7 396.0 

aHorizontal magnification 
bVertical magnification 

D. Aberrations 

Aberrations to second order have been calculated using the analytical formulae and matrix approach described 
in {1]. As discussed above in Section III D, a series of trajectories, spanning a range of initial angles in u~ of ±15 
mrad and in z0 of ±9 mrad, and a range in ~ of ±5%, have been numerically computed, and the dependence 

of Ui and Zi on u~, z0 and ~ has been fit to functions of the form described in Section IIID. Tables X and 
XI presents the results of the second order numerical fit coefficients, together with the analytical results. The 
second order fit coefficients agree well with the second order analytic results. The higher order coefficients 
quantify cubic and quartic nonlinearities; these are given in Tables XI- XIV. 

V. PERFORMANCE OF THE ROUND POLE SPECTROMETER 

A. Dynamic range 

The dynamic range of the spectrometer is the range of momenta which can be measured with a given setting of 
the magnet current. This is determined by the dispersion at t.he focus, and by the range of physically observable 
distance in the bend plane at the focus. The window on which the beam will be observed is about 140 mm 



Calculation 

Analytical 
Numerical 

Calculation 

Analytical 
Numerical 

60985 

327329 

G13o 

mm 

932161 

TABLE X: Pacman, linear and second order bend-plane aberration coefficients 

F10o Foo1 F2oo Fo2o Fto1 

mm mm mm mm mm 

0.0 517 -265 -13334 5049 
0.22 510.7 -11.8 -11621 4976 

TABLE XI: Pacman, linear, second and third order non-bend-plane aberration coefficients 

Go10 Guo Con G21~ Go3o Gn1 

mm mm mm mm mm mm 

-41 -33885 2482 
-66 -29507 2040 38027 -749725 -3151 

TABLE XH: Pacman spectrometer, third order bend-plane aberration coefficients 

mm mm 

-90579 17075 

Fw2 
mm 

-6263 

Fo21 

mm 

13719 

TABLE XIII: Pacmari spectrometer, fourth order bend-plane aberration coefficients 

F04o 
mm 

122138 618002 

F3o1 

mm 

33370 

F121 

mm 

-90579 

F202 
mm 

-34558 

Fo22 

mm 

'-15272 

Fto3 
mm 

6877 

TABLE XIV: Pacman spectrometer, fourth order non-bend-plane aberration coefficients 

G310 G2u Go3I Gn2 

mm mm mm mm 

1.20xl06 -623496 75922 57889 
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FIG. 22: Relative momentum vs. distance at the focus 
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Foo2 
mm 

-459 
-449 

Gm2 

mm 

-1185 

Foo3 
mm 

473 

Foo4 
mm 

-508 

Go13 

mm 

-174 

wide. Fig. 22 shows the calculated relative momentum vs. distance at the focus. From that figure, the dynamic 
range of the spectrometer is roughly -4.5% to 5%. 
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B. Central momentum vs. magnet current 

Neglecting saturation effects, there is a linear relation between the central momentum and the magnet current. 
The central momentum is 49.74 MeV fc for a central field of 0.67 T, which is attained at a current of 35 A. 
Thus, the relation between the central momentum and the current, neglecting saturation, is 

·[MeV] p -c- = 1.421I(A). 

The published curves(5) of field vs. current, for a 58 mm gap, indicate that the magnet is not saturated at 35 
A, so this linear relation should be accurate for lower currents. 

C. Momentum resolution 

To second order, the dependence of the· horizontal trajectory co-ordinate at the focus on the momentum 
deviation and the initial trajectory angles at the source is given by Eq. (7): 

op 1 2 I 2 op I (op) 2 

u; = Fool- + F2oo (u0) + Fo2o (z0) + F101 -u0 + Foo2 -
p p p 

The last two terms are typically small (see Table III); neglecting these, we can solve for the momentum deviation 

op U;- ( F2oo (uo)
2 + Fo2o (z0)2) 

p Fool 

Consider a collection of trajectories, all with the same momentum deviation, and arriving at the same horizontal 
trajectory coordinate, but starting with different initial angles. The average value of the momentum deviation 
we would measure is 

The last two terms in the numerator represent a correction to the momentum/position correlation indicated in 
Fig. 22, due to aberrations. The standard deviation in the momentum measurement is 

n(;)= 1 

Fool 
Fioo ( \ uo 4) - \ u0 2 

)) + FJ20 ( \ z0 4) - \ z0 2)) 

The smallest momentum separation which we can clearly resolve is the momentum resolution. Let us take this 
to be equal to two standard deviations of the measurement. For a Gaussian distribution in the initial angles, 

for which \ zo
4

) = 3\ Zo
2
)

2
, and taking\ Uo 2) :::::: \ Zo

2
), the resolution is 

R = 2D (op) = 2¥'2 I z~2 ) Jnoo + FJ2o. 
P \ Foo1 

Fig. 23 shows the resolution vs. J \ z02
) for the round pole spectrometer. The values of the coefficients used 

have been taken from Table III (exact). 

D. Sensitivity of the non-bend-plane aberrations to moments of the source vertical angular 
distribution 

To second order, the non-bend-plane coordinate at the image point is related to the initial angles and the 
momentum deviation by Eq. (8): 

G 1 c op 1 c 1 1 z; = o1ozo + on -zo + uozouo 
p 
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0.5 

FIG. 23: Momentum resolution (in %) vs. /W), for the round pole spectrometer 

Let us consider the collection of trajectories comprising the beam, and work at the central momentum ( Q.E. = 0). 
p 

The first moment of the distribution at the image point is given by 

(z;) = Cow (zG) + Guo (zhu~) . 

We would expect that all odd moments of the initial vertical angle distribution would be zero, if the direction 
of the laser which generates the beam lies in the magnetic median plane. Then 

(z;) ~Guo (z~u~) 

If the angular distribution of the electrons emerging from the source ls cylindrically symmetric, then there is 
no correlation between u~ and zG, and 

(z;) ~Guo (zG) (u~) = 0 

If, however, there is an angular asymmetry in the source distribution, so that the horizontal angle is related to 
the vertical angle by 

u~ = u~ +t:zh 

in which u0 is the uncorrelated piece, then 

(z;) ~Guo (zGu~) = Gno (zb (u~ + cz')) =Guo£ ( zh2
) (13) 

The horizontal-vertical coupling represented by the Guo aberration coefficient thus manifests itself as a net 
shift of the vertical position. 

The second moment of the distribution at the image point is 

(zi) = G~10 ( zG
2

) + Gi10 ( zG2u~ 2 ) + 2Gow ( zG2u~) 

= G~10 ( z~2 ) + Gi10 ( zh
2 (u~ + t:zG)

2
) 

= G5w ( zh
2

) + Gi10 ( ( zh
2

) ((u~)2) + £ 2 (zh
4
)). 

If we further approximate ((u0)2 ) ~ ( z0
2

) and ( z0
4

) = 3 ( zf/) 
2 

(for a Gaussian distribution), then 

(z;} ~ G~10 ( zh
2

) + Gi10 ( z~2 ) 
2 

(1 + 3c2
). (14) 

Together with Eq. (13), Eq. (14)may be used to find ( z02
) and E. 

To illustrate the sensitivity for the round pole spectrometer, Fig. 24 shows the dependence of (z;) onE, for 

several values of J ( z0 2). Fig. 25 shows the dependence of ~ on J ( zG 2 ), for several values of E. In 

practice, for accurate results the higher order aberration terms must be include in Eq. (13) and Eq. (14). In 
the figures, the calculations have been done including all terms up to fourth order. 
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FIG. 24: Dependence of (z;) on €, for several values of ~, for the round pole spectrometer. Red line: ~=3 

mrad; green line, ~=6 mrad; blue line ~=9 mrad 
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FIG. 2!'i: Dependence of vf(if} on ~· for several values of €, for the round pole spectrometer. Red line: €=0; green 

line, €=0.5; blue line, €=1 

E. Focal point spot size simulations 

To provide some estimates of the expected characteristics . of the beam spot at the focus, a collection of 
trajectories representing the beam has been tr:acked through the spectrometer by numerical solution of the 
equations of motion. The physical acceptance of the spectrometer, limited by the vacuum chamber, is about 
±30 mrad in z' and (+22, -15) mrad in u'. However, as discussed above in Sections VC and VD, allowing such 
a large range of vertical angles seriously degrades the momentum resolution of the spectrometer, and would 
result in a vertical spot size of many centimeters. For this reason, we assume that both the initial vertical and 
horizontal angles are collimated to ±15 mrad. A series of 300 trajectories has been calculated, corresponding 
to a point source, with a uniform distribution in u0 and in z0 over the ranges cited above. All these trajectories 
have a momentum equal to the central momentum. Fig. 26 shows the distribution of these trajectories at the 
focal point in u and z. Fig. 27 and Fig. 28 show the histograms of the projections of this distribution onto the 
u and z axes. 

These calculations were repeated for 300 trajectories with momenta 2% higher, and 2% lower, than the 
_ reference momentum. Fig. 29 shows the distribution of these trajectories at the focal point in u and z. Fig. 30 

shows the histogram of the projection of this distribution onto the u axis. 
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FIG. 26: Distribution of 300 trajectories at the focus, in u and z 
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FIG. 27: Histogram of the projection of Fig. 26 onto the u-axis. The standard deviation is 7.4 mm. 
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FIG. 28: Histogram of the projection of Fig. 26 onto the z-axis. The standard deviation is 11.2 mm. 
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FIG. 29: Distribution of trajectories at the focus, in tt and z, for three different momenta (red: central momentum; 
green: 2% high; blue, 2% low). The rectangle indicates the outline of the phosphor screen on which the beam will be 
observed. 
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FIG. 30: Histogram of the projection of Fig. 29 onto the u-axis 

VI. PERFORMANCE OF THE PACMAN SPECTROMETER 

A. Dynamic range and central momentum vs. magnet current 

1. Dynamic mnge 

The dynamic range of the spectrometer, the range of momenta which can be measured with a given setting 
of the magnet current, is determined by the dispersion at the focus, and by the range of physically observable 
distance in the bend plane at the focus. The window on which the beam will be observed is about 65 mm wide. 
Fig. 31 shows the calculated relative momentum vs. distance at the focus. From that figure, the dynamic range 
of the spectrometer is roughly -7% to + 7%. 

2. Centml momentum vs. magnet current 

Using p=200.2 mm and Eq. (2), the relation between the momentum and the central field is given by 

p [M:V] = 60.02B [T] 
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FIG. 31: Relative momentum vs. distance at the focus for the pacman spectrometer 
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FIG. 32: Relation between current and central momentum, for the pacman magnet 
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The central field of the magnet has been measured vs. current with a Hall probe. Using this information, and 
the relation above, Fig. 32 shows the relationship between the central momentum and the magnet current. 

The DC resistance of the magnet was measured to be 75 mil. When cooled with a water flow of 0.27 ~' the 
mm 

temperature rise across the magnet was measured to be 6T[0 CJ = 0.00124 (I[A])2
• Operation beyond about 

160 A results in temperature rises above 30° C and is not recommended. 

B. Momentum resolution 

We use the same definition of momentum resolution as described in Sec. V C above: Fig. 33 shows the 

momentum resolution vs. J ( zh2
) for the pacman spectrometer. The values of the coefficients used have been 

taken from Table X (exact). 

C. Sensitivity of the non-bend,.plane aberrations to moments of the source vertical angular 
distribution 

To illustrate these sensitivities for the pacman spectrometer, Fig. 34 shows the dependence of {zi) on £, for 

several values of J ( zh2
). Fig. 35 shows the dependence of _V(Z!) on J ( zh2

), for several values of E. In all 
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FIG. 33: Momentum resolution (in %) vs. ~~ for the pacman spectrometer 

cases, the calculations have been done including all terms up to fourth order. 
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FIG. 34: Dependence of {z;) onE, for several values of ~~ for the pacman spectrometer. Red line: ~=3 

mrad; green line, ~=6 mrad; blue line ~=9 mrad 

D. Focal point spot size simulations 

A collection of trajectories has also been tracked through the pacman spectrometer. The acceptance of the 
magnet is limited by the size of the vacuum chamber at the magnet entrance, which imposes the limits lu'l < 15 
mrad, and jz'l < 9 mrad. A series of 300 trajectories has been calculated, corresponding to a point source, with a 
uniform (random) distribution in u and in z over the ranges cited above. All these trajectories have a momentum 
equal to the central momentum. Fig. 36 shows the distribution of these trajectories at the (horizontal) focal 
point in u and z. Fig. 37 and Fig. 38 show the histograms of the projections of this distribution onto the u and 
z axes. 

These calculations were repeated for 300 trajectories with momenta 1% higher, and 1% lower, than the 
reference momentum. Fig. 36 shows the distribution of these trajectories at the focal point in u and z. Fig. 40 
shows the histogram of the projection of this distribution onto the u axis. 
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FIG. 35: Dependence of J"W} on ~· for several values of €, for the pacman spectrometer.Red line: £=0; green 

line, €=0.5; blue line, £=1 
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FIG. 36: Distribution of trajector!es at the focus, in u and z 
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:FIG. 37: Histogram of the projection of Fig. 36 onto the u-axis. The standard deviation is 0.3 mm. 
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FIG. 38: Histogram of the projection of Fig. 36 onto the z-axis. The standard deviation is 1.4 mm 
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FIG. 39: Distribution of trajectories at the focus, in x andy, for three different momenta (red: central momentum; green: 
1% high; blue, 1% low). The rectangle indicates the outline of the phosphor screen on which the beam will be observed. 
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FIG. 40: Histogram of the projection of Fig. 39 onto the u-axis 
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VII. CONCLUSION 

Two magn,etic spectrometers will be used to momentum analyze the electron beam produced by the l'OASIS 
laser wakefield accelerator. In this note, the optia~.l design of the spectrometers is described, and performance 
features of these spectrometers have been analyzed. One spectrometer, which uses a magnet with a round 
pole, is capable of momentum analysis with a maximum central momentum in excess of 50 MeVfc. For a 
given setting of the field, it has a dynamic range of about 11%, acceptance (limited by aberrati9ns) of about 
±15 mrad, and momentum resolution of about 1.5% at this acceptance. The other spectrometer is limited in 
momentum analysis capabilities to a maximum central momentum of about 18 MeV fc. For a given setting of 
the field, it has a dynamic range of about 14% and an acceptance (limited by vacuum chamber) of about ±15 
mrad in the bend plane and ±9 mrad in the noncbend plane. It has a momentum resolution of about 0.5% at 
this accepta.nce. 
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