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Developing a computationally efficient but accurate building energy simulation (BES) model is im-
portant in order to accelerate building design optimizations, retrofit analysis, and development and
evaluation of advanced control algorithms where a number of iterations over a long simulation period
are required. For this purpose, identification approaches that develop simplified models from building
simulation datasets could replace detailed energy simulation software. However, those approaches re-
quire extensive computational time at the front to generate necessary data sets and train models for
sufficient reliability. An alternative approach that utilizes model order reduction (MOR) methods to
directly extract a lower dimensional model from a detailed physics-based model consisting of a number
of differential equations is attractive to avoid the pre-simulation requirement. Among many MOR ap-
proaches, the balanced truncation method has been most reliably and popularly applied to the building
science field. However, it can not be practically applied to a large-scale building with many zones due
to computational and data storage requirements. To overcome the problem, this paper introduces the
Krylov subspace method to the building science field. Technical issues of applying the Krylov subspace
method to building applications are addressed and a suitable algorithm that overcomes those challenges is
presented. To demonstrate reliability of the algorithm, comparisons between the resulting reduced-order
model (ROM) and a high fidelity model developed from a commercially available BES software for a
60-zone case study building are provided. The ROM was a factor of 100 faster than the high fidelity
model but with high accuracy.

Keywords: building simulation, building load, reduced order model, Krylov subspace method, model
order reduction

1. Introduction

The building sector consumes up to 40% of total energy consumption and 70% of electrical energy
in many developed countries. Developing models which predict accurate dynamics of building
loads and zone air temperatures are important for investigating more energy efficient solutions
for buildings through building design optimization, retrofit analysis, sensitivity and uncertainty
analysis, and real-time building control.

High fidelity building simulation tools, such as TRNSYS (Klein et al. 2004) and EnergyPlus
(Crawley et al. 2000), calculate building performance based on solution of thousands of equations
for each computation time step even for a medium-sized building. As a result, the direct usage
of the high fidelity tools might be restricted for some practical applications, such as design and
control optimization, particularly when a number of iterations of monthly or annual simulations are
required. Therefore, computationally efficient but accurate building simulation models that could
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replace high fidelity building simulation models are useful to accelerate those applications.
Many researchers have investigated data-driven modeling approaches (gray- or black-box mod-

eling approaches) utilizing classical statistical methods, system identification or machine learning
techniques to replace detailed energy simulation software: Refer to review papers of Foucquier
et al. (2013); Li and Wen (2014) for various data-driven modeling methods and applications. How-
ever, these inverse modeling approaches require extensive computational time on the front end to
generate the necessary data sets for training the model to ensure both reliability and high accuracy.

An alternative approach, namely model order reduction (MOR), that converts a high dimensional
dynamic model to a reduced-order model (ROM) is attractive, since it completely bypasses the
pre-simulation requirement for training by exploiting information contained in an original dynamic
model. Many MOR techniques including the proper orthogonal decomposition, balanced realization
method, singular perturbation method and moment matching approximation have been developed
and investigated in the fields of computational fluid dynamics, mathematics, and control. See
Antoulas et al. (2001) for a MOR survey paper and Antoulas (2005) for theoretical details.

Many studies of MOR methods applied to buildings can also be found in the literature. Palomo
et al. (1997) investigated several state transform methods to select a suitable reduction technique for
thermal building models. The authors also applied a MOR method to design an optimal controller
(Palomo Del Barrio et al. 2000). In the paper, a reduced-order linear time invariant (LTI) model
for a multi-zone building was developed from a detailed description of the wall dynamics based on a
finite volume or finite difference method. Ménézo et al. (2002) proposed a state aggregation method
which develop a lower dimensional model for each wall and construct a multi-zone model from the
reduced wall models. Deng et al. (2010) proposed a method to reduce complicated thermal networks
by aggregating a number of nodes into “super-nodes”. The proposed method is based on model
reduction of Markov chains. Goyal and Barooah (2012) also started from a simplified wall model
for wall dynamics described as 3R2C (three resistances and two capacitances) in order to obtain
a reduced-order zone model. A multi-zone model is constructed from the simplified wall models
and then a balanced truncation method is applied to further reduce the dimension. A model-order
reduction method to treat nonlinearities appearing from water vapor balance equations was also
presented. Picard et al. (2017) utilized the balanced truncation method to have a reduced order
building envelop model to construct and test performance of a model predictive controller (MPC).

Among the variety of MOR techniques applied to buildings, the balanced truncation method
(Moore 1981) could be one of the most reliable and popular methods when a system behaves
linearly1 (Palomo et al. 1997; Goyal and Barooah 2012; Kim and Braun 2015; Del Barrio et al. 2000;
Plessis et al. 2011; Gao et al. 2008; Picard et al. 2017; Ioli et al. 2017). The method calculates the
singular values of the Hankel operator determined by balancing the observability and controllability
gramians of an original linear time invariant (LTI) system. Then, dynamic states that are hardly
controllable and hardly observable detected by the singular values are truncated. Compared with
other MOR methods, it has unique features that are 1) the generated ROM preserves original
system properties, such as stability, controllability and observability, and 2) it provides a way of
estimating truncation errors for a ROM.

Despite the desired characteristics of the balanced truncation method, the computational cost to
generate a ROM is significant, because the balancing process needs to solve two matrix equations,
i.e. the Lyapunov equations of the full-order system of which computation cost for generating a
ROM increases with O(n3) where n is the state dimension (Laub 2005). For a large-scale building
such as schools, office buildings, multi-family apartments, it is not unusual to have the state dimen-
sion higher than 103. For example, consider a 30-zone building where each zone has 6 surfaces and
each surface consists of an average of 3 different wall layers (materials). With two temperature nodes
for each layer, the state dimension for the building becomes at least 1110 = (30× (6× 3× 2 + 1)).

1Although some authors argue that the bilinear term for the heat flow in the zone air energy balance makes a building system
nonlinear and hence a number of available linear MOR techniques is limited for building applications (Deng et al. 2014), it is

not true since it becomes linear when the bilinear term is treated as an input to the system.
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Figure 1. Proposed MOR approach

Since the computation time for the balanced truncation method increases cubically with the state
dimension, it may not be feasible to apply the MOR method for large-scale buildings, especially
when parametric studies or optimization for design are needed.

Surprisingly, very few MOR methods that can systematically handle high dimensional buildings
have been to the building energy simulation field. In this paper, we introduce a MOR method,
i.e. the Krylov subspace method, as an alternative to the balanced truncation method for large-
scale building applications. Technical issues of applying the Krylov subspace method to buildings
are addressed and a general algorithm to overcome the challenges is developed and presented. To
demonstrate its reliability and high performance, comparisons of building load predictions and
computational requirements to a high fidelity model from a commercial BES software for a 60-zone
building are provided.

2. System of Interest

In this paper, we are considering dynamics of building envelope systems that map to building loads
or zone air temperature profiles from internal heat gains and weather conditions. Building HVAC
systems are excluded in this paper, since they are typically modeled with nonlinear algebraic
equations which are out of the scope of general MOR methods. To complete building energy
simulations, a ROM for a building envelope system should be coupled to a building HVAC system.
We refer to the paper of Kim et al. (2013) for a case study of integrated ROM and HVAC models.

3. Methodology

The overall approach that we are proposing to obtain a ROM for a building envelope system as
an alternative to data-driven approaches is depicted in Figure 1. It starts from extracting physical
parameters of a building envelope system, such as wall layer (material) properties, layer composition
for a wall and wall tilt/azimuth angles, from an input file of a commercial BES tool, e.g. *.bui for
TRNSYS and *.idf for EnergyPlus. Then, a full thermal network model for the building envelope
system is constructed based on the data. The full model is passed to a MOR algorithm to generate
a ROM. Since MOR algorithms do not require simulations with a computationally heavy model
for training but only requires matrix operations, the approach fundamentally differs from any
data-driven approaches.

Although the main focus of this paper is on a MOR algorithm, it is necessary to describe the LTI
(linear time invariant) system model generator in the figure. This is because the first and essential
step to replace a high fidelity model with a ROM is to construct a reliable full LTI model. The full
LTI model should be sufficiently accurate when compared with building energy simulation software.
The following section describes a formula to build such a LTI model from building parameters.

3.1. Full LTI model for Building Envelope System

The LTI model formulation of Kim and Braun (Kim and Braun 2012, 2015) that converts a complex
building thermal network (see Figure 2) to a LTI system quadruple (A,B,C,D) is adopted and
is briefly summarized in this section. The methodology considers heat flows of a complex building
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Figure 2. Thermal network unit (Kim and Braun 2015); see appendix for each nomenclature

Figure 3. Notation for conduction through walls

thermal network as depicted in Figure 2. Some of the important assumptions used to construct the
network unit are:

• The temperature of each surface or surface segment and of its cross section is uniform.
• A room is well-stirred.
• Each wall emits or reflects diffusely and is gray and opaque.
• Air is nonparticipating media to radiation.
• Heat transfer is one dimensional.
• Conduction between window and window frame is neglected (1-D assumption)

The main approach to develop a full LTI model is from the complex thermal network is to linearize
long-wave radiation exchange and group the states (temperatures) and fundamental equations in
the form of a state-space representation. For clarification, fundamental energy balance equations
are shown in this paper. We refer to Kim and Braun (2015) for more detailed descriptions.

A finite volume formulation is used to describe the heat conduction through walls. Notations for
the formation are shown in Figure 3. For any jth node in a wall except the first and last nodes, an
energy balance leads to

ρijC
i
jw

i
j

dT ij
dt

= hLcd|ijT ij−1 − (hLcd|ij + hRcd|ij)T ij + hRcd|ijT ij+1 + qigen,j (1)

where hLcd|ij = kL|ij/wL|ij represents the heat transfer coefficient between the jth and the (j − 1)th

nodes. kL|ij is thermal conductivity at the left surface of the jth node in the ith wall, wL|ij is

distance from the (j − 1)th node to the jth node in the ith wall, and qigen,j is an energy source

(W/m2) inside the jth finite control volume that belongs to the ith wall. ρij and Cij are density and
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thermal capacitance at the jth node in the ith wall, respectively.
For any ith outside wall (connected to the external ambient) belonging to an individual zone, the

heat balance equation at the surface is

ρi1C
i
1w

i
1

dT i1
dt

= hicv,ex(Ta − T i1) + hRcd|i1(T i2 − T i1) + αi1q
i
SW + qiLW , (2)

where T i1 represents the wall temperature of the first node which is set to be an outside surface of the
wall. qiSW and qiLW represent short wavelength solar irradiation and net long wavelength radiation
exchange with the environment, respectively. hcv,ex is a convective heat transfer coefficient at the
outside surface of a wall and Ta is outdoor air temperature, respectively. αi1 is solar absorbance for
the external surface of the ith wall.

With the assumptions that the outside surface is gray and diffuse and the air is a non-participating
radiation media, the net long wavelength interactions with the environment can be expressed as

qiLW = σεi1F
i
sky(T

4
sky − T i1

4
) + σεi1F

i
grd(T

4
grd − T i1

4
), (3)

where σ, ε and F are Stefan-Boltzmann constant, emittance and view factor, respectively. Using a
linear approximation of the long-wave heat exchange term gives

ρi1C
i
1w

i
1

dT i1
dt

= −(hicv,ex + hRcd|i1 + hirad,ex)T i1 + hicv,exT
i
2 + qi1, (4)

where hirad,ex = 4σεi1(F iskyT̄
3
sky + F igrdT̄

3
grd), T̄sky = (Tsky + T1)/2, T̄grd = (Tgrd + T1)/2 and qi1 =

hicv,exTa + 4σεi1(F iskyT̄
3
skyTsky + F igrdT̄

3
grdTgrd) + αi1q

i
SW .

The mean temperatures for long-wave exchange between the surface and sky and surface and
ground are assumed to be the same for all outside surfaces.

For the Ith zone and ith wall, the energy balance equation for the inside surface is

ρinC
i
nw

i
n

dT in
dt

= hicv,in(Tz − T in) + hLcd|in(T in−1 − T in)− qinet,rad, (5)

where qinet,rad is net radiative flux out of the inside wall. The radiosity method is utilized to express
the net flux assuming the walls are gray, diffuse and opaque. The same linearization method used
in Eqn. 3 is employed leading to

~qnet,rad = Ã−1[B̃ ~Tn − ~ho], (6)

where Ãij = δij
εj
− ρj

εj
Fij , B̃ij = 4σ(δij − Fij)T̄ 3. Fij is view factor from i to j surface, δ is the

Kronecker delta, ρ is reflectance and ~ho is external radiative source. A similar formulation for the
treatment of long-wave interactions is shown in Modest (2003). In Eqn. 6, radiosity does not appear

explicitly, which is convenient for building simulation. Since the ith component of ~ho represents an
external radiative source acting on the ith surface, the effects of internal sources and transmitted
solar energy through windows are treated in a consistent manner. For any shaped room, the net
radiative flux can be explicitly calculated as a function of surface temperatures if the view factors
and the external radiative sources are known.

Since equations of (1), (4) and (5) for all nodes for all walls together with the zone air balance are
linear, a LTI model can be developed for each zone. To treat mass-less wall layers, e.g. insulator,
either an exact approach such as Ghiaus (2013) or a simpler approach which assigns arbitrary
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small values to ρij or Cij is needed2. Then, a LTI model for a multi-zone building is constructed

from the zonal LTI models with connectivity information (e.g. the Ith zone, the ith outside wall
are connected to the J th zone, the jth outside wall). This multi-zone LTI model includes a doubly
bordered block diagonal matrix where the off-diagonal blocks indicate the thermal coupling between
zones. For more detailed descriptions, refer to (Kim and Braun 2015).

The final LTI model for a multi-zone building has the following standard form.

Go :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t).

(7)

3.2. Introduction of Moment Matching Problem and Krylov Subspace Method

The Krylov subspace method is originated from the eigenvalue problem for a large system in the
field of mathematics and numerical analysis, and there are a variety of different algorithms (for more
descriptions of algorithms for the eigenvalue problem, see (Sorensen 1997; Dahlquist and Björck
1974)). Therefore, full understanding of the method and algorithms would require an intensive
mathematical background and significant time. In this paper, the focus is on describing the key
concepts to provide a key concept, overall issues of the moment matching problem, and an overall
work flow of the Krylov subspace method showing how this method solves the moment matching
problem. We refer to the textbook of Antoulas (2005) for rigorous descriptions of various MOR
algorithms, and Gugercin (2003); Salimbahrami and Lohmann (2002) for the moment matching
problem and Krylov subspace method. It is assumed that the system quadruple of an LTI dynamic
system, (A,B,C,D), is available.

The problem definition of MOR for a LTI system is to construct lower order matrices for Eqn. 9,
from the original system of Eqn. 8.

Go :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(8)

Gr :

{
ẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t) +Dru(t)

(9)

where the state x(t) ∈ Rn, xr(t) ∈ Rr and r � n. In other words, we want to reduce the state
dimension from n to r while maintaining the original input-output relation as much as possible.

To explain the moment matching (MM) problem, consider the Laurent series expansion of a
transfer function G(s) = C(sI −A)−1B +D in the neighborhood of s0 in a complex plane.

G(s) = η0(s0) + η1(s0)(s− s0) + · · ·+ ηk(s0)(s− s0)k + · · · (10)

where ηj is called the jth moment of G at s0. It is assumed that there are no poles within a
neighborhood of s0.

The MM problem is to construct (Ar, Br, Cr, Dr) such that the first k moments of Gr, denoted
as ηr,0(s0), ηr,1(s0), · · · , ηr,k−1(s0) , exactly match those of Go, i.e. ηo,0(s0), ηo,1(s0), · · · , ηo,k−1(s0).
A conceptual figure of the MM problem is shown in Figure 4. Compared with the balance trunca-
tion method, the moment matching problem at a single point is essentially a local approximation
problem of a function.

2The latter approach is adopted in this paper for the simplicity
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Figure 4. Conceptual diagram of the Moment Matching Problem

Since the moments have different expressions of the system quadruple (A,B,C,D) at different
center points, i.e.

η0(s0) = D, ηj(s0) = CA(j−1)B , if s0 = 0 (11)

η0(s0) = −D, ηj(s0) = −CA−jB, if s0 =∞ (12)

η0(s0) = −D, ηj(s0) = −C(A− s0I)−jB if s0 /∈ {0,∞,Λ(A)} (13)

where Λ(A) is the spectrum of A, the MM problem becomes one of finding (Ar, Br, Cr, Dr) such
that

CrAr
(j−1)B r = CA(j−1)B , (∀j ∈ {1, 2, · · · , k}), ifs0 = 0 (14)

CrAr
−jBr = CA−jB (∀j ∈ {1, 2, · · · , k}), ifs0 =∞ (15)

Cr(Ar − s0I)−jBr = C(A− s0I)−jB (∀j ∈ {1, 2, · · · , k}), ifs0 /∈ {0,∞,Λ(A)} (16)

The MM problems at s0 = 0, s0 = ∞ and s0 /∈ 0,∞,Λ(A) are known as Padé approximation,
partial realization and rational interpolation problems, respectively.

The Krylov subspace method is one of the most numerically efficient and stable algorithms for
the MM problem. It seeks a lower dimensional subspace namely the Krylov subspace where 1)
original dynamics are projected onto and 2) partial moments of the projected dynamic system
equate to those of the original dynamic system.

In order to show how the Krylov subspace method works, consider a simple case, the partial
realization problem (s0 = ∞) for a single input system that is B ∈ Rn×1. Solution steps of the
Krylov subspace method may be described in the following three steps.

Step 1 : Define Krylov subspace(s)
Given the system (A,B,C), define a (input) Krylov subspace as follows.

K := span col [B,AB, · · · , A−kB] (17)

where span col represents the column span, i.e. K is the space spanned by column vectors
of the matrix [B,AB, · · · , A−kB].

Step 2 : Define basis of a Krylov subspace
Define V ∈ Rn×k as a basis of K (in the form of a matrix) and choose any W T ∈ Rk×n

as a left inverse of V , i.e. W TV = I.

7
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Step 3 : Project original dynamics on the subspace
Construct the reduced order system matrices (Ar, Br, Cr, Dr) by the Petrov-Galerkin
projection with V and W . That is,

Ar = W TAV,Br = W TB,Cr = CV,Dr = D. (18)

The key point is that the resulting (Ar, Br, Cr, Dr) is able to match up to the kth moment. To see
this, consider the first moment of Gr at s0 = ∞. It is ηr,1(∞) = CrBr = (CV )(W TB). From the
definition of the Krylov subspace (see the 1st step, Eqn. (17) ), B can be expressed as B = V ζ for
some ζ ∈ Rr. Therefore, CrBr = (CV )(W TB) = (CV )(W TV ζ) = CV ζ = CB. The biorthorgonal
condition of W TV = I is used in the derivation. This shows the first moments of Gr and Go are
equal. Now consider ηr,2(∞) = CrArBr. Using Eqn. (18), ηr,2(∞) = CV ·W TAV ·W TB. Again
there exists ζ(∈ Rr) s.t. B = V ζ. Therefore ηr,2(∞) = CV · W TAB. Since AB ∈ K from the
definition of the Krylov subspace, it can be also expressed as AB = V ζ ′ for some ζ ′(∈ Rr). This
leads to ηr,2(∞) = CV ζ ′ = CAB = ηo,2(∞). By applying the same process, it can be shown that
the Krylov subspace method is able to match up to the kth moment.

Although the partial realization problem for a single input system is used for simplicity, the
procedure solves more complex moment matching problems with different choices of a Krylov
subspace in the 1st step. For example, for the rational interpolation problem, we define a Krylov
subspace as follows.

K := span col [(s0I −A)−1B, (s0I −A)−2B, · · · , (s0I −A)−kB]. (19)

The different choice is from the fact that moments are expressed differently as shown in Eqn. (11).
It can be proven that the steps of the Krylov subspace of Eqn. (19) solve a rational interpolation
problem.

The remaining problem for the Krylov subspace method is how to construct V and W in a nu-
merically efficient manner in the 2nd step. Ideally, the Gram-Schmidt process (or QR factorization)
can be applied to form a basis of the Krylov subspace, but it is not numerically reliable since
(s0I −A)−jB, for the rational interpolation problem as an example, converges very quickly to the
largest eigenvector as the exponent j increases, resulting in a badly conditioned matrix. To under-
stand this numerical issue, it is helpful to recall that the Power method approximates the largest
eigenvalue and eigenvector of a matrix. Therefore, for generating a numerically reliable basis V of
a Krylov subspace, the Arnoldi or Lanczos algorithms are typically used rather than the Gram-
Schmidt process (Householder 2006). Like the QR factorization, the Arnoldi method sequentially
generates an orthonormal basis for an updated column vector (for single input systems) by per-
petually projecting it onto the subspace spanned by the previous orthonormal basis. However, for
the method, the updated vector is not the multiplication of the matrix power of (s0I −A)−j with
B, but is the multiplication of (s0I −A)−1 with the latest orthogonal basis which allows avoiding
the numerical issue of the Gram-Schmidt process.

The Arnoldi algorithm for the rational interpolation problem for a single input system can
be expressed as follows (Antoulas 2005). vj represents the jth orthonormal basis with respect
to a previous orthonormal basis set contained in the jth Krylov sequence, i.e. (A − s0I)−jB.
For the Arnoldi algorithm, W is equal to V . Since V as a result of the Arnoldi algorithm is an
orthonormal basis for a Krylov subspace, the biorthonormality condition of W TV = I in the 2nd

step is automatically satisfied.

3.3. Solution of applying the Krylov Subspace Method for Building Applications

It is important to mention that there are a variety of different choices for the 1st and 2nd steps
to solve a MM problem resulting in a large number of approaches In addition, there are several
technical issues in applying the Krylov method for multi-zone buildings applications. That is, not

8
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Algorithm Arnodi algorithm for a rational interpolation problem (single input system)

# inputs: (A,B), s0, k
# outputs: V,W T

Solve (A− s0I)v1 = B.
v1 ← v1/||v1||.
V ← v1.
Solve (A− s0I)w = v1.
p1 = (I − V V T )w.

for 1 ≤ j ≤ k − 1 do
vj+1 = pj/||pj ||
V ← [V, vj+1]
Solve (A− s0I)w = vj+1

pj+1 = (I − V V T )w
end for

W T = V T

all MM approaches in the MOR literature are suitable for handling large-scale buildings and one has
to be carefully selected.. In this section, we present a complete solution , i.e. a choice of algorithms,
to handle those issues for generating a ROM for large scale buildings, which is one of the main
contribution of this paper.

3.3.1. Algorithm to handle general a MIMO structure

For building applications, the Krylov subspace method should handle general multi-input multi-
output (MIMO) systems because building dynamics are driven by various indoor and outdoor heat
sources and have a number of outputs which could be zone air temperatures or heating/cooling
loads depending on an application.

The Arnoldi algorithm is preferable for building applications compared with the Lanczos algo-
rithm because of the difficulty and complexity of the Lanczos procedure for general MIMO systems
that are non-symmetric and have different numbers of inputs and outputs, i.e. m 6= p, (Gugercin
2003).

For the MIMO case, one may attempt to extend the Anordi algorithm for SISO systems shown in
the previous section by simply treating the matrix B as a block of vectors. In this case, the updated
coordinate, vj , will be a matrix rather than a vector. However, this approach could fail because
it may yield rank deficiency and redundancy in the projection matrices (Gugercin 2003). More
precisely, the resulting V may be not a full rank such that V TV 6= I. Therefore, modification(s)
of the Arnordi algorithm must be made for an appropriate deflation of V for MIMO systems. We
adopt the method proposed by Boley (1994) to overcome this challenge. In this method, block
vectors are updated without considering rank deficiency and the deflation is made by using the
Gram-Schmit process and a rank revealing process at each iteration of the Arnodli procedure. We
present the following algorithm which is a modified version of Boley’s algorithm.

The operator qr acts on a matrix and extracts only linearly independent column vectors after
the QR factorization using the Gram-Schmit process of the matrix. The presented algorithm is
mathematically the same as the Boley’s method but numerically more efficient because it avoids
an internal iteration which requires a number of matrix multiplications. The modification is helpful
to further reduce the computation time for obtaining V .

3.3.2. Selection of a Krylov subspace

As mentioned, there are different Krylov spaces to the input Krylov subspace, i.e. Eqn. (17) for
the partial realization problem and Eqn. (19) for the rational interpolation problem, that can also

9
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Algorithm MIMO Arnodi algorithm for a rational interpolation problem

# inputs: (A,B), s0, k
# outputs: V,W T

Solve (A− s0I)v1 = B.
v1 ← qr(v1). # rank deflation and scale
V ← v1.
Solve (A− s0I)w = v1. p1 = (I − V V T )w.

for 1 ≤ j ≤ k − 1 do
vj+1 = qr(pj) # rank deflation and scale
V ← [V, vj+1]
Solve (A− s0I)w = vj+1

pj+1 = (I − V V T )w
end for

W T = V T

solve the same MM problem. A different choice would result in different numerical computation
and performance. Therefore, in order to apply the Krylov method to buildings, an appropriate
Krylov subspace should be defined. It turns out the choice of the input Krylov subspace could
lead to poor performance for large size buildings. This is because there are many inputs for a
building envelope system that include internal heat gain for each zone, solar irradiation for each
orientation of an external wall, direct and diffuse parts of transmitted solar radiations for each type
and orientation of a window. Since, in order to match the first kth moments, the state dimension r
of a reduced system is required to be around k ×m, the resulting ROM projected onto the input
Krylov subspace still has a high dimension for a given k. On the other hand, if we enforce r to be
small, the condition of r ≈ k ×m implies that k needs to be small resulting in a poor accuracy
of the ROM. This problem can be overcome simply but effectively by using the output Krylov
subspace (or extended observability matrix) which is defined for a rational interpolation problem
by

K = span col [(s0I −AT )−1CT , (s0I −AT )−2CT , · · · , (s0I −AT )−kCT ]. (20)

To construct an orthonormal basis for the output Krylov subspace, the presented MIMO Arnoldi
algorithm can be used with inputs of (AT , CT ).

3.3.3. Handling multiple interpolation points

For many situations, dynamics of building envelope system in both low and high frequency ranges
are of interest: Matching in a low frequency range is important for building load calculation under
a fixed setpoint and matching in a high frequency range associated with zone air dynamics is im-
portant for control applications. Therefore, it is of interest to match moments at multiple frequency
points to have increased reliability as depicted in Figure 5. In the framework of the MM problem,
it is equivalent to obtain Gr of which

ηr,i(s0) = ηo,i(s0) ∀i ∈ {0, 1, · · · , k0}, (21)

ηr,j(s1) = ηo,j(s1) ∀j ∈ {0, 1, · · · , k1},

· · ·

for some k0, k1, · · · .
Fortunately, the Krylov subspace method can easily handle this MM problem. It is well known

that a dynamic model projected onto the unions of all Krylov subspaces associated with s0, s1, · · · ,
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Figure 5. Conceptual diagram of the Moment Matching Problem at multiple points

can meet the goal of matching moments at multiple points. More precisely, the rational interpolation
problem at multiple points can be solved by finding a set of basis of the Krylov subspace defined
at each point.

3.3.4. Final algorithm

The final algorithm that we propose combines the algorithms above from Section 3.3.1 to 3.3.3,
and is compactly presented below.

Algorithm Final algorithm

# inputs: A,C, s0, s1, · · · , sn, k0, · · · , kn
# outputs: V,W T

V = empty matrix # initialization

for 1 ≤ i ≤ n do
Vi = MIMOArnoldi(AT , CT , si, ki)
V ← [V, Vi]

end for

V ← qr(V )

”MIMOArnoldi” is the block Arnoldi algorithm presented in Section 3.3.1. Once V,W T is defined
after the final algorithm, the ROM can be obtained by performing the Petrov-Galerkin projection,
i.e. Eqn. (18).

4. Case Study

4.1. Comparison between Balanced Truncation Method and Krylov Subspace
Method

Although characteristics of the balanced truncation method and Krylov subspace method have been
studied in the literature, we present a simple numerical experiment result to illustrate numerical
behaviors of the methods for the readers who are not familiar with MOR. An arbitrary stable
SISO LTI model, denoted as Go := (A,B,C,D), was generated by a random continuous test model
generator, rss, in Matlab. A is a n×n matrix. To ensure all poles are located on the left half plane,
the Gershgorin circle theorem (Meyer 2000) was used to adjust diagonal entities of the A matrix.
ROMs were generated from the balanced truncation method and the Krylov subspace method.
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Figure 6. Numerical test comparisons between the balanced truncation method and Krylov sub-
space method for arbitrary stable systems

Reduced-order dimensions r were set to 100 for both approaches, and s0 was set to 10−2 for the
Krylov subspace method. As an accuracy measure, a relative H2 norm error, defined below, was
used to measure the truncation error.

RelativeH2 norm error :=
||Go −Gr||2
||Go||2

(22)

where ||G||2 :=
√

1/2π
∫∞
−∞ Trace(G(jw)∗G(jw))dw for all stable transfer functions, G. The sub-

scripts, o and r, represent the original and the reduced system, respectively.
All numerical experiments were run with Matlab version R2010a on a desktop computer with

a quad core 3.10 GHz CPU, 3.16 GB RAM and Windows 32- bit systems. The memory available
for Matlab was 791 MB.

Figure 6 shows comparisons of the relative norm errors and ROM generation times for various
n. (Gb, Gk) represent ROMs for the balanced truncation and Krylov methods, respectively. In the
first subfigure, the H2 norm errors of Gb are very small (< 10−10). This is because the Hankel
singular values for many systems decay extremely rapidly and the specified r (= 100) is sufficiently
high enough. On the other hand, the H2 norm errors of Gk are much higher within [0.026, 0.110]
even with the same r. This confirms that the balanced truncation method is superior to the Krylov
method in terms of global accuracy. However, the computing times to generate ROMs for the
balanced truncation method are much higher than those of the Krylov method as shown in the

12



March 27, 2020 Journal of Building Performance Simulation Krylov˙JPBS˙Respond2Reviewers˙2nd

Figure 7. Bode magnitude plot comparisons between true and reduced-order models

Table 1. Comparisons between two MOR methods

Balanced Krylov
Numerical cost (flops) O(n3) O(r2n)
Range of applicability up to order few thousand up to several ten/hundred thousands

Iterative method No Yes
Numerical reliability for large n No Yes
Accuracy of the reduced system More Less

Preserving stability Yes No
Reliable stopping criterion Yes No

second subfigure. More importantly the balanced truncation method could not be applied when n
was over about two thousand due to excessive memory requirements. However, the Krylov method
was applicable for a ten thousand state without causing any issues with reasonable computing
times as shown in the figure. This is because the balanced truncation method computes exact
solutions of the two Lyapunov equations, i.e. reachability and observability grammians, requiring
dense computations, and therefore can be carried out for systems of a modest dimension. On the
other hand, the Krylov subspace method is iterative in nature and hence can be applied to very
high order systems.

The poorer accuracy of Gk compared with Gb should not be exaggerated. Figure 7 shows com-
parisons of the Bode magnitude plots for n = 500. As indicated by the H2 norm error, Gb is very
close to Go with negligible errors over all frequency range. On the other hand, Gk perfectly match
to Go nearby the specified local frequency point s0 = 10−2(rad/s) but has some errors for a higher
frequency region. The errors do not look significant in the bode plot and Gk should be sufficiently
accurate for many situations.

Table 1 from Salimbahrami (2005) summarizes general comparisons between the two MOR ap-
proaches. Except for reduced computational loads, there are no advantages of the Krylov subspace
method regarding the quality of a reduced-order model. Therefore, the balanced truncation method
should be considered first for model-order reduction. However, when a system of interest is very
large such that the balanced truncation method is impossible to apply due to a limited source of
computing power (see the case study below), the Krylov subspace method should be utilized.
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Figure 8. External view of Building 101 (3D Google Map)

4.2. Case Study Results and Discussion

4.2.1. Case study building description

For testing the validity of the process from the TRNSYS input file interface to the reduced-order
LTI model generator, dynamic responses of a ROM and TRNSYS model for a multi zone building
were compared. A multi-zone (59-zone) commercial building located at the Philadelphia Navy
Yard was used to test feasibility and performance with respect to the accuracy and computational
requirements. Figure 8 shows an external view of the building. Some characteristics used in the
modeling include:

• 55,000 square feet of total floor area
• 3 occupied floors with a basement and attic spaces and a total of 59 zones
• 18 different types of layers used for wall construction that primarily consist of concrete,

insulation board, plaster board, and brick
• window-area ratio: about 20%
• 6 different types of walls having various combinations of the layer types
• TMY2 weather data for Philadelphia
• Values of 17.77 [W/m2-K] and 3.05 [W/m2-K] were used for convective heat transfer coeffi-

cients at the outside and inside surfaces, respectively

The original LTI model (Go) which predicts building heating/cooling load profiles of individual
zones under responses of indoor and outdoor conditions was developed through a TRNSYS inter-
face and LTI model generator shown in Figure 1. The TRNSYS interface is to extract necessary
building parameters from a TRNSYS model input file, *.bui, to automatically construct a full LTI
model described in Section 3.1. This tool allows handling general building models which consist of
thousands of parameters. For more information about the tool, refer to Kim et al. (2018).

The 59-zone model has 59 outputs (p) for zonal building loads, and 151 inputs (m) including
internal gain for each zone, outdoor air temperature, sky temperature, ground temperature, solar
irradiation depending on building surface orientations, and transmitted direct and diffuse solar
irradiation depending on window orientations and types. The state dimension (n) is over 4000.

The final algorithm presented in Section 3.3.4 was applied to Go with two frequency points s0 ≈ 0
and s1 = 1/(60 × 10) and k=3. A resulting ROM (Gr) had the state dimension of r = 354. The
point s0(≈ 0) captures DC-gains of Go which are critical for building load calculations under a
fixed temperature setpoint. On the other hand, s1 is to capture faster dynamic responses , e.g.
weather or internal gain profiles.

The computing times for each step of the process are shown in Table 2. All computation times
are based on a quarter-core 3.10 GHz with 3.16 GB memory desktop computer. The time required
to extract parameters from a BES input file and to form the full LTI model is negligible: It
took only one sec to build the entire system matrices. The ROM generation took the majority of
the processing time. However, it should be noticed that it is not feasible to apply the balanced
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Table 2. Computation times for interface, and full and reduced order LTI model generators for a
60-zone building

Interface LTI generator ROM generation
Computation time (sec) 0.70 0.35 58.52

Table 3. A one-year simulation time comparisons for a 59-zone building

TRNSYS ROM Computation time savings
computation time (sec) 241.39 1.06 99.56 (%)

Figure 9. Load comparisons between TRNSYS and full-order models for a heating period (heating
(+), cooling (-))

truncation method for this application due to the high dimensionality.
A one-year simulation time comparison between TRNSYS and the ROM is provided in Table 3.

They are 241.38 sec for TRNSYS and 1.06 sec for the ROM. Note that computational time for
solution of differential equations is highly dependent on the differential or difference equation solver
algorithm. The computational times are based on an ODE (ordinary differential equation) solver of
MATLAB. Performance judgment with respect to simulation time relative to TRNSYS is difficult.
Furthermore, one of the most important differences between the state-space representation and
TRNSYS is that the former is continuous, but the latter is represented using discrete equations.
Therefore, the time comparisons could vary depending on solver algorithms, but the ROM provides
a factor of 100 faster computation for various ode solvers.

The total computation time that includes everything associated with the ROM generation and
simulation is interesting especially for a parametric study, e.g. retrofit analysis, and building design
optimization. The approach still gives significant time savings of 75.32 % and is around 4 times
faster. This is because the reduction in computation time for annual simulation is much greater
although the ROM generation time seems to be significant. The results indicate that there are
significant computation time savings potential utilizing the Krylov subspace method for building
simulations of large-scale buildings, if Gr is accurate enough.

Sample model output comparisons between TRNSYS, Go and Gr are shown in Figure 9 to 11
which show example comparisons of total building load profiles for peak heating days, mild days,
and peak cooling days, respectively. The setpoints for all zones were set to 23 oC in calculating
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Figure 10. Load comparisons between TRNSYS and full-order models for a mild period (heating
(+), cooling (-))

Figure 11. Load comparisons between TRNSYS and full-order models for a cooling period (heating
(+), cooling (-))

buildings loads. It can be confirmed that Go and Gr are almost identical. There are differences
between Gr and TRNSYS results, especially for the heating season. Through parametric study,
the differences were found to be associated with the treatment of windows in the full LTI model.
It is expected that these differences could be mostly eliminated by using a consistent approach for
the windows. Nonetheless, the fulll LTI model and ROM clearly capture major dynamics of the
baseline building load.

Overall performance comparisons are summarized in Table 4. Together with Table 2 and 3, the
case study results demonstrate that the proposed Krylov subspace algorithm together with the
overall work flow works efficiently and accurately with differences of less than 5% compared to
TRNSYS.
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Table 4. Comparisons of predicted building load for one-year simulation

TRNSYS Go Gr Relative ERR of Gr
w.r.t. TRNSYS [%]

Peak heating load [kW] 327.20 341.56 340.65 4.11
Peak cooling load [kW] 244.72 247.18 249.99 2.15

Annual heating load [MWh] 771.69 808.78 810.00 4.96
Annual cooling load [MWh] 183.76 175.02 176.22 4.09

5. Conclusions

The balanced truncation method which is one of the most popular and reliable model order reduc-
tion methods in the literature is computationally very demanding or not feasible for application to
large-scale buildings. This paper introduced an alternative method, the Krylov subspace method,
to the building energy simulation field that can effectively and reliably reduce high dimensional
building dynamics. A complete algorithm from the literature of control and numerical analysis was
identified, modified and presented for building applications. A case study for a 60-zone building
was carried out. In this study, the lower order model gave results that were about a factor of 100
reduction in computational time compared to a conventional building energy simulation software
but with differences less than 5%. The differences were primarily due to differences in the way
windows were treated and not due to the reduced-order modeling approach. The computational
requirements for generating the ROM are small enough such that this approach would be useful
for general building simulations, particularly when considering parametric studies, optimization for
design and control assessment where a number of iterations for a long term energy simulation is
required.

Nomenclature

LTI linear time invariant system
MOR model order reduction
ROM reduced order model
SISO single input single output LTI system
MIMO multi input multi output LTI system
n state dimension of an original LTI system
r state dimension of a reduced original LTI system
m the number of inputs for a LTI system
p the number of outputs for a LTI system
Go transfer function for an original LTI system
Gr transfer function after a model order reduction
ηo coefficients of the Laurent series expansion of Go
ηr coefficients of the Laurent series expansion of Gr
K a Krylov subspace
V a basis of a Krylov subspace
W a left inverse of V
sj a complex number
k a desired number of moments to be matched
vj a coordinate of a basis
H2 Hardy two norm
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