
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems**Research 
partially supported by the National Science Foundation under Grant no. CCR-0311084 and 
Grant no. ECS-0622253, and by the Air Force Office of Scientific Research u...

Permalink
https://escholarship.org/uc/item/02v5n8b3

ISBN
9781424414987

Authors
Sanfelice, Ricardo G
Teel, Andrew R
Sepulchre, Rodolphe

Publication Date
2007-12-01

DOI
10.1109/cdc.2007.4435010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02v5n8b3
https://escholarship.org
http://www.cdlib.org/


A Hybrid Systems Approach to Trajectory Tracking Control
for Juggling Systems∗

Ricardo G. Sanfelice, Andrew R. Teel, and Rodolphe Sepulchre

Abstract— From a hybrid systems point of view, we provide
a modeling framework and a trajectory tracking control design
methodology for juggling systems. We present the main ideas
and concepts in a one degree-of-freedom juggler, which consists
of a ball bouncing on an actuated robot. We design a hybrid
control strategy that, with only information of the ball’s s tate at
impacts, controls the ball to track a reference rhythmic pattern
with arbitrary precision. We extend this hybrid control str ategy
to the case of juggling multiple balls with different rhythmic
patterns. Simulation results for juggling of one and three balls
with a single actuated robot are presented.

I. I NTRODUCTION

Mechanical systems with impacts are nonsmooth dynami-
cal systems with trajectories that have intervals of continuity
(flow) and points of discontinuity (jumps). Several frame-
works for modeling these systems have been proposed in
the literature, including Poincaré map modeling [3], [14],
[15], [12], dynamical systems with unilateral constraints[1],
[15], [2], and measure differential inclusions [7].

Following the framework in [4] (see also [5], [10]), we
model mechanical systems with impacts ashybrid dynam-
ical systemswhere flows are given by a differential equa-
tion/inclusion and jumps by a difference equation/inclusion,
on specific subsets of the state space. In this paper, we focus
our attention on a particular class of mechanical systems
with impacts:juggling systems. Juggling systems consist of
a plant, given by one or many objects, controlled at impacts
by anactuated robot[3], [6].

The problem of stabilization of juggling systems to rhyth-
mic patterns has received great attention from the engineering
and neuroscience community because of its relevance in
robotics and nature. A widely used benchmark juggling
system for this type of task is theone degree-of-freedom
juggler, which consists of a ball bouncing vertically on an
actuated one degree-of-freedom robot. Notable referenceson
this topic include the feedback control strategies in [15],
[12], [9] and the open-loop strategies in [11], [8] for phase-
lock stabilization to rhythmic patterns. Our novel modeling
framework for juggling systems, which permits the combi-
nation of both continuous-time and discrete-time featuresin

R.G. Sanfelice: Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, MA 02139,sricardo@mit.edu(research
performed at the Department of Electrical and Computer Engineering,
University of California, Santa Barbara); A.R. Teel: Department of Electrical
and Computer Engineering, University of California, SantaBarbara, CA
93106-9560,teel@ece.ucsb.edu; R. Sepulchre: Department of Electrical and
Computer Science (Montefiore Institute), Université de Liège, 4000 Liège,
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the control algorithm and uses an extended time domain for
the system solutions (calledhybrid time domain), allow us
to accomplish trajectory tracking tasks as well. We propose
a hybrid control strategy for the one degree-of-freedom
juggler which, by relying only on measurements of the ball
state at impacts, tracks (well-posed) reference trajectories
with arbitrary precision. Additionally, the trajectory tracking
control strategy is not limited to plants with a single juggling
object; it also solves the problem of stabilizing multiple balls
to different rhythmic patterns.

To the best of our knowledge, there are no previous results
in the literature that solve the (multiple-object) trajectory
tracking problem for juggling systems. Additionally, the
modeling and control design techniques we introduce in this
paper can be extended to more general mechanical systems
with impacts, including applications ranging from control
of walking and jumping robots to robotic manipulators and
beyond.

II. H YBRID MODELING OF JUGGLING SYSTEMS

A. General model and solution concept

We consider juggling systems withplant given by

ẋ1 = f1(x1) , (1)

where x1 = [x⊤

11 x⊤

12]
⊤ ∈ R

n1 is the state, andactuated
robot given by

ẋ2 = f2(x2, u) , (2)

where x2 = [x⊤
21 x⊤

22]
⊤ ∈ R

n2 is the state andu ∈ R
m

is the control input. The componentsx11 and x21 of the
statesx1 andx2 correspond to the position state, while the
componentsx12 andx22 correspond to the velocity state of
the plant and actuated robot, respectively. Letx := [x⊤

1 x⊤

2 ]⊤

andf(x, u) := [f1(x1)
⊤ f2(x2, u)⊤]⊤.

The impact law between the plant and the actuated robot
is given by the difference equations

x+
1 = g1(x), x+

2 = g2(x) , (3)

wherex+

1 , x+

2 denote the value of the statex1, x2 after the
impact. Letg(x) := [g1(x)⊤ g2(x)⊤]⊤. The impacts between
the plant and the actuated robot are assumed to occur when,
for a continuously differentiable functionh : R

n1+n2 → R,
the statex and the inputu satisfy

h(x) = 0 and 〈∇h(x), f(x, u)〉 ≤ 0 . (4)



We interpret the juggling system above as the hybrid
system

ẋ = f(x, u) h(x) ≥ 0 , (5)

x+ = g(x) h(x) = 0 and 〈∇h(x), f(x, u)〉 ≤ 0, (6)

wheref and the state constraint in (5) define theflow map
and flow set, respectively, andg and the state constraints
in (6) define thejump mapand jump set, respectively. We
follow the framework for hybrid systems in [4], [5] where
solutions are given onhybrid time domainsby hybrid arcs.
A set E is a hybrid time domainif for all (T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, . . . J}) is acompact hybrid time domain,
i.e. it can be written as

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 . . . ≤ tJ .
A hybrid arc x is a function defined on a hybrid time
domaindomx mapping to a state space such thatx(t, j) is
locally absolutely continuous int for eachj, (t, j) ∈ domx.
The notation used in (5)-(6) is suggestive of the meaning
of solutions. Vaguely, for an inputu : domu → R

m, a
hybrid arc x : domx → R

n is a solution to a hybrid
system (5)-(6) ifdomx = domu andx(t, j) satisfies: (C1)
ẋ(t, j) = f(x(t, j), u(t, j)) andh(x(t, j)) ≥ 0 for almost all
t in every nontrivial interval[tj , tj+1], (t, j) ∈ domx, and
(C2) x+(t, j) := x(t, j + 1) = g(x(t, j)), h(x(t, j)) = 0,
and 〈∇h(x(t, j)), f(x(t, j), u(t, j))〉 ≤ 0 for all (t, j) such
that (t, j), (t, j + 1) ∈ domx. For more details, see [4], [5].

B. One degree-of-freedom juggler

For the one degree-of-freedom juggler depicted in Fig-
ure 1, the dynamics of the ball (plant) are given by Newton

x11

x12 < 0

x21

x22 > 0

u

0

Fig. 1. One degree-of-freedom juggler: one ball (plant) andactuated robot.
Their positions are denoted byx11, x21 and their velocities byx12, x22,
respectively.

laws

ẋ1 =

[

x12

−γ

]

=: f1(x1) , (7)

wherex1 := [x11 x12]
⊤ ∈ R

2, x11 is the height,x12 is the
velocity of the ball, andγ is the gravity constant. The mass
of the plant is denoted bym1. The actuated robot is assumed
to have double integrator dynamics given by

ẋ2 =

[

x22

u

]

=: f2(x2, u) ,

wherex2 := [x21 x22]
⊤ ∈ R

2, x21 is the height,x22 is the
velocity of the actuated robot, andu ∈ R is the control input.
The mass of the actuated robot is denoted bym2.

Impacts are modeled by an impact rule with conservation
of momentum [1], [13]:

x+
12 − x+

22 = −e(x12 − x22) ,

m1x
+

12 + m2x
+

22 = m1x12 + m2x22 ,

where e ∈ (0, 1) is the restitution coefficient. Letλ =
m1

m1+m2

. Then, the update law at impacts velocities is
[

x+

12

x+
22

]

=

[

λ − (1 − λ)e (1 − λ)(1 + e)
λ(1 + e) 1 − λ − λe

] [

x12

x22

]

=: Γ(λ, e)

[

x12

x22

]

,

while the update law for positions is given by

x+

11 = x11, x+

21 = x21 .

The impacts between the ball and the actuated robot occur
whenx11 = x21 andx12 ≤ x22.

Then, the one degree-of-freedom juggler system in Fig-
ure 1 is given by the hybrid systemH with flows

ẋ11 = x12, ẋ12 = −γ
ẋ21 = x22, ẋ22 = u

}

x11 − x21 ≥ 0 ,

and jumps

x+
11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

x22

]

x+

21 = x21

x+
22 =

[

0 1
]

Γ(λ, e)

[

x12

x22

]































x11 − x21 = 0
andx12 − x22 ≤ 0 .

Note that for this system, the flow and jump sets, denoted
by C andD, respectively, can be defined as in (5)-(6) with
h(x) := x11 − x21 (the condition〈∇h(x), f(x, u)〉 ≤ 0
becomesx12 − x22 ≤ 0):

C :=
{

x ∈ R
4 | x11 − x21 ≥ 0

}

,

D :=
{

x ∈ R
4 | x11 − x21 = 0, x12 − x22 ≤ 0

}

.

III. T RAJECTORYTRACKING WITH HYBRID CONTROL

In this section, we introduce a trajectory tracking problem
for the one degree-of-freedom juggler in Section II-B and
propose a hybrid control strategy that solves it. The main
ideas and concepts are applicable when solving trajectory
tracking problems for more general classes of mechanical
systems with impacts.

A. Reference trajectories for tracking

We generate rhythmic juggling patterns with the hybrid
systemHr given by

ṙ1 = r2, ṙ2 = −γ r1 − r∗1 ≥ 0 ,

r+
1 = r1, r+

2 = −r2 r1 − r∗1 = 0 andr2 ≤ 0 ,

wherer∗1 is the reference height parameter. Letr := [r1 r2]
⊤.

Given an initial conditionr0, r0
1 ≥ r∗1 , the solutionr to Hr



defines a reference trajectory for tracking on a hybrid time
domain dom r. The referencer has impacts atr1 = r∗1 ;
velocity after the impact given by minus the velocity before
the impact, where the velocity value after the impact defines
the reference velocity parameterr∗2 ; and impact period given
by Tr = 2r∗2/γ. To guarantee that the reference trajectories
are “well-posed” (in the sense that they can be tracked by
H), the flow map ofHr is given by (7). Figure 2 depicts a
reference trajectoryr with r∗1 , r∗2 > 0.

B. Finite-timeε-tracking

We are interested in practical tracking of the ball position
given a reference signalr generated byHr. Both x1 andr
are given on hybrid time domains which do not necessarily
need to be the same. Bytrackingbetweenx1 andr we mean
that their graphs are close after a finite amount of time.

Definition 3.1 (finite-timeε-tracking): Given ε ≥ 0 and
hybrid arcsx1 : domx1 → R

2, r : dom r → R
2, x1 and r

areε-close afterT ≥ 0 if
(a) for all (t, j) ∈ domx1 with (t, j) � (T, J) for someJ ,

(T, J) ∈ domx1, there exists(t′, j′) ∈ dom r, |t−t′| ≤
ε, and

|x1(t, j) − r(t′, j′)| ≤ ε, (8)

(b) for all (t, j) ∈ dom r with (t, j) � (T, J) for someJ ,
(T, J) ∈ dom r, there exists(t′, j′) ∈ domx1, |t−t′| ≤
ε, and

|r(t, j) − x1(t
′, j′)| ≤ ε . (9)

When this property holds forx1 and a given reference
trajectory r, we will call it finite-time ε-tracking, and we
will say that “x1 finite-timeε-tracksr”. With an appropriate
offset of x1 andr, finite-time ε-tracking corresponds to the
notion ofgraphical closenessof solutions to hybrid systems
introduced in [4] (see also [5]).

C. Problem statement and control strategy

We want to solve the following control problem:

(⋆) Given a level of tracking accuracyε > 0 and a reference
trajectory r generated byHr, the ball state component
x1 of the solutions toH finite-timeε-tracks the reference
trajectory r with only measurements ofx1 at impact
times.

To solve it, we propose the following control algorithm (see
Figure 2):
• Algorithm for Single-ball Juggling : At every impact

between the ball and the actuated robot (say, it occurs at
hybrid time (t0, 0) and that after the jump, the hybrid time
is (t0, 1)):
Step 1)Compute the apex time of the trajectory describing
the ball position (x11) resulting from the impact (denote this
time by ta);
Step 2) Solve for the time of the next two consecutive
impacts afterta in the reference signalr. Denote these
impact times byt′1 andt′2, respectively. Ift′1 = ta then define
(t1, t2) to be either(t′1, t

′

2) or (t′1 + Tr, t
′

2 + Tr). Otherwise,
(t1, t2) = (t′1, t

′
2).

Step 3) Compute the ball trajectoryx1 at (t1, 1) (thus,
assuming no impacts between timet0 and t1);
Step 4)Compute the value of the statex2 at (t1, 1), denoted
by x′

2, required for the value ofx1 after the impact at(t2, 2),
that is,x1(t2, 3), to be equal to the reference trajectoryr;
Step 5)Generate avirtual reference trajectoryz that at time
(t1, 1) is equal to the value ofx2, given byx′

2, computed in
Step 4).

Finally, the control law applied to the actuated robot is
designed so thatx2 tracks the virtual reference trajectory
computed in Step 5).

Note that Steps 1)-5) can be computed by explicitly
solving the dynamics ofH. The virtual reference trajectory
in Step 5), denoted byz, is a trajectory that satisfies the
dynamics of the actuated robot. At the impact time, it is
reset to a value that guarantees that, when tracked by the
actuated robot, the next impact occurs at the appropriate
time (at this time instant,x2 is equal to x′

2). Figure 2

0 t0 t1 t2 t

Fig. 2. Main control idea to track a reference trajectoryr (r1 component
plot in red, dashed). At the impact att = t0, the controller computes
the resulting ball position trajectoryx11 (blue, dashed) at timet1 and the
required value of the statex2 at t1 such that the next desired impact time
t2 of the reference,x1 equalsr. The virtual reference trajectoryz (black)
resulting from this computation is tracked by the actuated robot (green,
dashed).

depicts the computations in Steps 1)-5) that the control
algorithm performs at the impact at(t0, 0). For simplicity,
the trajectories are plotted projected to the ordinary timeaxis
t of their hybrid time domain.

D. Hybrid controller

We implement the control algorithm above in a hybrid
controller, which we denote byHc. Its state is given byz =
[z1 z2]

⊤ ∈ R
2, the virtual reference state. The controller

performs three main tasks:

• At every impact, perform computations in Step 1)-4).
• At every impact, resetz to a value such that the

continuous dynamics ofz generate a virtual reference
trajectory that matches the impact constraint in Step 4).

• In between impacts, control the actuated robot to track
the virtual reference trajectoryr.

We define the continuous dynamics of the statez by a
copy of the dynamics of the actuated robot. Then, the flows
of Hc are given by

ż1 = z2, ż2 = α (10)



where α < 0. This constant is chosen so that thez1

components of the solution to (10) are described by con-
cave parabolas (see [9] for a rigorous robustness analysis
regarding the selection of such parameter). The jump map
for Hc is given by

[

z1

z2

]+

∈ κc(x1, z, r) (11)

whereκc : R
2 × R

2 × R
2 →→ R

2 is a set-valued mapping,
as it will become clear in the next section, that updates the
statez for the generation of the virtual trajectory. The output
of the controller is given by

u = κ(x2, z) ,

whereu is the control input to the actuated robot andκ : R
2×

R
2 → R

2. As (11) suggests, the hybrid controllerHc uses
only the statesx1, z and reference information at impacts for
the update ofz.

The closed-loop system resulting from controlling the
juggling systemH with the hybrid controllerHc can be
written as the following hybrid system, which we denote
by Hcl, with state spaceO := R

6:

ẋ11 = x12, ẋ12 = −γ
ẋ21 = x22, ẋ22 = κ(x2, z)
ż1 = z2, ż2 = α







x11 − x21 ≥ 0 ,

x+

11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

x22

]

x+
21 = x21

x+
22 =

[

0 1
]

Γ(λ, e)

[

x12

x22

]

[

z1

z2

]+

∈ κc(x1, z, r)















































x11 − x21 = 0
and

x12 − x22 ≤ 0 .

E. Control design and main results

To design the update lawκc of the hybrid controllerHc,
we initially replace the dynamics of the actuated robot inH
by the dynamics of the statez in Hc. That is, we consider
the hybrid system

ẋ11 = x12, ẋ12 = −γ
ż1 = z2, ż2 = α

}

x11 − z1 ≥ 0 ,

x+

11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

z2

]

[

z1

z2

]+

∈ κc(x1, z, r)























x11 − z1 = 0
and

x12 − z2 ≤ 0 .

We denote this system byHv meaning virtual juggling
system. The control design idea is to define the set-valued
mapκc such that the control task (⋆) is accomplished forHv

and then design the control lawκ, which acts on the actuated
robot, to accomplish asymptotic tracking betweenx2 andz
during flows. To that end, we first state the following result
for the solutions toHv. Below, by feasible initial condition

of Hv we mean any initial condition for which solutions to
Hv never reachx11 = z1, x12 = z2.

Lemma 3.2: For every feasible initial condition
[x0

11 x0
12 z0

1 z0
2 ]

⊤ of Hv, the next impact occurs at
time (t1, 0), wheret1 is given by the nonnegative solution
to

z0
1 = −

γ + α

2
t21 + (x0

12 − z0
2)t1 + x0

11 . (12)

Moreover, the position and velocity of the ball after the
impact at (t1, 0), denoted byx11(t1, 1) and x12(t1, 1), re-
spectively, are given by

x11(t1, 1) = −
γ

2
t21 + x0

12t1 + x0
11, (13)

x12(t1, 1) =
[

1 0
]

Γ(λ, e)

[

x0
12 − γt1

αt1 + z0
2

]

. (14)

Lemma 3.2 can be shown by solving explicitly forx1 and
z. In fact, (12) follows from solving the system backward
in time from the jump condition ofHv, (13) follows since
at jumps, thex11 component of the solution is mapped to
itself, and (14) is derived from the impact rule inHv.

Let J : R
2 × R

2 × R
2 →→ R

2 be the set-valued mapping

J(x1, z, r) :=














r2+r∗

2

γ
if ax12+bz2

γ
<

r2+r∗

2

γ
{

r2+r∗

2

γ
,

r2+r∗

2

γ
+ Tr

}

if ax12+bz2

γ
=

r2+r∗

2

γ

r2+r∗

2

γ
+ Tr if ax12+bz2

γ
>

r2+r∗

2

γ
,

a =
[

1 0
]

Γ(λ, e)

[

1
0

]

, b =
[

1 0
]

Γ(λ, e)

[

0
1

]

.

Our control algorithm first computes the time for the
next impact t1 in Step 1) and then computes Step 2)-5)
to generate a virtual trajectory. Regarding Step 1), the set-
valued mappingJ defines the time(s) to the next impact,
given by t1, from the current state. If the apex time of the
trajectoryx11 is smaller than the time for the next impact of
the reference, thent1 is given by the next impact time of the
reference. If, instead, the apex time of the trajectoryx11 is
larger than the time for the next impact of the reference, then
the impact is postponed for one periodTr. Whent1 is equal
to the apex time, both times are possible and, therefore,J is
set valued. Regarding Step 2)-5), for eacht1 ∈ J(x1, z, r),
the reset valuez∗ for z is computed by two applications of
Lemma 3.2. We do this by settingx1(t2, 3) = r∗, t1 + Tr

(see Figure 2). Then, the set-valued mappingκc is given for
eachx1, z, r ∈ R

2 by all pointsz∗ = [z∗1 z∗2 ]⊤ satisfying

z∗1 ∈ −
γ + α

2
t̃2 + (ax12 + bz2 − z∗2)t̃ + x11

z∗2 ∈
r∗1 + γ

2
T 2

r + γ

2
t̃2 − (ax12 + bz2)t̃ − x11

bTr

+
(aγ − bα)t̃ − a(ax12 + bz2)

b
for eacht̃ ∈ J(x1, z, r) .

The control lawκ is designed so that the trajectories of the
actuated robot system track the virtual reference trajectories.



In a perfect tracking scenario, when the error between the
actuated robot state and the virtual trajectory is zero, the
control algorithm achieves finite-time0-tracking. This is
actually the case for the virtual juggling systemHv.

Theorem 3.3: For each reference trajectoryr generated
from Hr and each feasible initial condition ofHv, each
solution toHv is bounded and thex1 component finite-time
0-tracks the reference trajectoryr. Moreover, the trajectories
coincide after three impacts.

In general, there is an error betweenx2 andz. Let e1 :=
x21 − z1, e2 := x22 − z2. Then, the error system is

ė1 = e2, ė2 = u − α .

Givenk1, k2 > 0, a particular choice of the control lawκ to
accomplish the tracking betweenx2 andz is given by

κ(x2, z) = α − k1(x21 − z1) − k2(x22 − z2) .

We now state the main result of this section. As defined
for Hv, feasible initial conditions forHcl correspond to
initial conditions from which solutions toHcl never reach
the conditionx11 = x21, x12 = x22.

Theorem 3.4: For each compact setK ⊂ O, eachε > 0,
and each reference trajectoryr generated fromHr, there
existsk1, k2 ∈ R such that each solution toHcl starting
from K that is feasible is bounded and thex1 component
finite-timeε-tracks the reference trajectoryr. Moreover, only
three impacts are required forx1 and r to beε-close.

Remark 3.5:The proof of Theorem 3.3 follows from the
construction of the update lawκc, which is designed so
that the ball component of solutions toHv converge to the
reference trajectory in finite time. To show Theorem 3.4,
we establish that, on compact sets, the error between the
nominal trajectories and the trajectories with perturbed im-
pact time (by a mismatch betweenx2 and z) vanishes
with the mismatch betweenx2 and z. Then, the desired
tracking precision given byε can be obtained by choosing
fast enough converging tracking lawκ so that at the impact
times, the state of the actuated robot is within appropriate
level of perturbation. This condition is satisfied by selecting
large enough parametersk1, k2 of the tracking lawκ. Using
this same proof technique, we are also able to show that
the closed-loop system is robust to measurement noise,
computation errors, and observer-based output feedback. Due
to space constraints, we do not pursue this here.

F. Simulations

We simulate the closed-loop systemHcl with a reference
trajectory generated byHr with r∗1 = 0 m, r∗2 = 10 m/s, and
initial condition r0 = [0 m 10 m/s]⊤.

Figure 3 shows a simulation of the closed-loop system. For
simplicity, we present the trajectories projected to the ordi-
nary timet axis. The ball trajectory approaches the reference
trajectory in the neighborhood of the time corresponding to
the third bounce. Note that the parameters of the control law
κ steer the actuated robot to a very small neighborhood of

0
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−30

t
Fig. 3. Simulation of closed-loop systemHcl. System parameters:m1 =
1 Kg, m2 = 9 Kg, e = 0.8, γ = 9.8 m/s2. Controller parameters:
α = −9.8, k1 = 2000, k2 = 100. Initial condition: x11(0, 0) = 5 m,
x12(0, 0) = 1 m/s, x21(0, 0) = −1 m, x22(0, 0) = 0 m/s. The trajectory
of the ball (blue) impacts with the actuated robot (trajectory in green). Finite-
time ε-tracking is achieved at the third bounce when the ball trajectory
approaches the reference trajectory (red, dashed). The virtual referencez is
depicted with black, dashed line.

0

0 2 4 6 8

10

10 12

−10

−20

20

30

−30

−40

−50

−60

−70

t

Fig. 4. Simulation of closed-loop systemHcl. System parameters:m1 =
1 Kg, m2 = 9 Kg, e = 0.8, γ = 9.8 m/s2. Controller parameters:
α = −9.8, k1 = 2000, k2 = 100. Initial condition: x11(0, 0) = 5 m,
x12(0, 0) = −8 m/s, x21(0, 0) = −1 m, x22(0, 0) = 0 m/s. The
trajectory of the ball (blue) impacts with the actuated robot (trajectory
in green). Finite-timeε-tracking is achieved at the third bounce when the
ball trajectory approaches the reference trajectory (red,dashed). The virtual
referencez is depicted with black, dashed line.

the virtual reference. This level of closeness can be made
arbitrarily small by choosing large enoughk1 andk2.

The simulation in Figure 4 is for the same reference
trajectory but for different initial conditions of the ball. It
illustrates the decision that the controller makes when the
apex time of the trajectory after the first bounce is larger than
the next impact of the reference trajectory. As a difference
to the simulation in Figure 3, the second impact is planned
for t1 = 4r∗2/γ rather than fort1 = 2r∗2/γ.

IV. T HE MULTIPLE-BALLS JUGGLING CASE

In this section, we consider the multiple ball juggling
problem. Suppose we are givenn reference trajectories,n
balls, and one actuated robot. Our goal is the following:

(⋆⋆) Given a level of tracking accuracyε > 0 and n
reference trajectories generated byHr with distinct impact
times, thei-th ball state componentxi

1 of the solutions to



the closed-loop system finite-timeε-tracks thei-th reference
trajectory ri with only measurements ofxi

1 at impact times.

We propose a strategy that combines the control algorithm
introduced in Section III to plan the impacts for each ball
individually and uses additional logic to select the ball to
control. LetQ := {1, 2, . . . , n} and q be a logic state,q ∈
Q. Let zq ∈ R

2 be the virtual reference state of theq-th
ball. The reference trajectory forq-th ball is generated by
the hybrid systemHq

r . We assume that for eachq, Hq
r is

defined asHr. For problem(⋆⋆), we further assume that the
reference trajectories are such that the impact times do not
occur at the same time and that they have the above ordering
property: everyn impacts, each reference trajectory has only
one impact, and the order is preserved. The control logic for
multiple-ball juggling is as follows.

• Algorithm for Multiple-ball Juggling : At an impact
between theq-th ball and the actuated robot:
Step 1)With reference trajectoryrq , compute Step 1)-5) of
theAlgorithm for Single-ball Jugglingto obtainzq∗. Update
the statezq with this value.
Step 2)Update the logic stateq by q+= mod (q, n) + 1.
Step 3)Apply to the actuated robot a control law that tracks
the virtual referencezq.

We implement this logic in a hybrid controller and obtain
the closed-loop systemHM

cl given by

ẋ1
11 = x1

12, ẋ1
12 = −γ

ẋ2
11 = x2

12, ẋ2
12 = −γ

...
...

ẋn
11 = xn

12, ẋn
12 = −γ

ẋ21 = x22, ẋ22 = κ(x2, z
q)

ż1
1 = z1

2 , ż1
2 = α

ż2
1 = z2

2 , ż2
2 = α

...
...

żn
1 = zn

2 , żn
2 = α































































xq
11 − x21 ≥ 0 ,

[

xq
12

x22

]+

= Γ(λ, e)

[

xq
12

x22

]

[

zq
1

zq
2

]+

∈ κc(x
q
1, z

q, rq)

q+ = mod (q, 2) + 1























xq
11 − x21 = 0

and
xq

12 − x22 ≤ 0 ,

where in the jump map and jump set, we have omitted the
states that remain constant during flows and jumps.

By construction, the closed-loop systemHM
cl inherits the

same properties than the ones ofHcl in Theorem 3.4. The
main difference in the multiple trajectory tracking problem is
that feasible initial conditions need to satisfy more restrictive
constraints: everyn impacts, each ball has impacted only
once, and the order is preserved.

We will just mention that the controller construction
for multiple (and consequently, for the single-ball case)
trajectory tracking is such that the conditions for nominal
robustness of hybrid systems in [4] and [5] hold.

Figure 5 shows simulations results for three-balls juggling.
The reference trajectories have a120deg phase difference
between each other. The plots show that each ballε-tracks
the corresponding reference trajectory after the third impact.
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Fig. 5. Simulation of the closed-loop systemHM
r for three balls. System

parameters:m1

1
= m2

1
= m3

1
= 1 Kg, m2 = 9 Kg, e = 0.8, γ =

9.8 m/s2. Controller parameters:α = −9.8, k1 = 2000, k2 = 100. For the
given initial conditions, the trajectories approach theirrespective reference
trajectories (in red, dashed) at their third bounce.
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