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Recent studies have suggested that the first arrival of humans in the Americas

during the end of the last Ice Age is associated with marked anthropogenic

influences on landscape; in particular, with the use of fire which, would

have given even small populations the ability to have broad impacts on the

landscape. Understanding the impact of these early people is complicated

by the dramatic changes in climate occurring with the shift from glacial to

interglacial conditions. Despite these difficulties, we here attempt to test the

extent of anthropogenic influence using the California Channel Islands as a

smaller, landscape-scale test bed. These islands are famous for the discovery

of the ‘Arlington Springs Man’, which are some of the earliest human remains

in the Americas. A unifying sedimentary charcoal record is presented from

Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary

sections from eight key localities. Radiocarbon dating was based on thin,

fragile, long fragments of charcoal in order to avoid the ‘inbuilt’ age problem.

Radiocarbon dating of 49 such fragments has allowed inferences regarding the

fire and landscape history of the Canyon ca 19–11 ka BP. A significant period

of charcoal deposition is identified approximately 14–12.5 ka BP and bears

remarkable closeness to an estimated age range of the first human arrival on

the islands.

This article is part of the themed issue ‘The interaction of fire and mankind’.
1. Detecting anthropogenic fire signals in the geological record
Significant evidence exists for human use of fire dating as far back as 0.8–1.0 Myr

from sites in South Africa, where burnt bone with butchery marks has been dis-

covered [1,2]. By ca 400 ka BP, similar evidence of hearths is found at sites across

Europe, including Beeches Pit in eastern England, which also includes the sugges-

tion of fireside stone tool production [3,4]. Such evidence of direct human

interaction with fire (see also [5]) is rare in the archaeological record, particula-

rly at open, rather than cave or more sheltered, sites [6]. Whereas modern

hunter–gatherer communities globally use fire at the landscape scale [7–11],

understanding how fire was used as a tool by past human populations is a com-

plex task, particularly in geographical regions with abundant natural ignition

sources, including Mediterranean climates.

One increasingly important approach is to investigate very long Quaternary

records to improve existing knowledge of fire history over long timescales, includ-

ing over multiple glacial–interglacial cycles. These types of investigation usually

attempt to detect anomalous levels of charcoal content and other products from
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the ‘combustion continuum’, such as black carbon [12,13], and

relate this to corresponding spatial and temporal patterns in the

archaeological record (e.g. [14–16]). This approach allows

detailed comparison between climatically similar periods

(e.g. interglacials) where people are known to have been pre-

sent and periods where they were probably absent (e.g. [17]).

However, long terrestrial records are often limited geographi-

cally, particularly in areas that have undergone repeated

Quaternary glaciation.

Alternatively, marine records are increasingly used to

identify potential anthropogenic burning in the past (e.g.

[18]). Marine records typically have more straightforward

depositional histories (i.e. are often isotaphanomic), allowing

for easy calculation of charcoal concentrations, which are typi-

cally reported as number, area or volume. Although marine

records are undeniably valuable, they also have limitations,

such as complex or undefined charcoal source areas. Such

limitations can make reliable interpretation difficult, particu-

larly as it is often micro-charcoal, less than 125 mm [19],

which is the charcoal size fraction present at sites distal from

terrestrial source areas. There are many challenges of interpret-

ing microcharcoal fragments in palaeorecords [20]; studies in

pollen source areas are also informative, with some suggesting

that marine pollen records are heavily biased towards pollen

from higher mountain areas and river outflows [21,22].

Another issue is that pollen source areas may change signifi-

cantly over time in marine records [23]. Thus, it is always

desirable to combine these data with fire records from proximal

terrestrial sequences.

For the Late Quaternary, the spatial coverage of terres-

trial palaeorecords improves markedly and, during the last

approximately 50 kyr, radiocarbon dating allows reasonable

chronologies to be formed. The majority of Quaternary char-

coal records covering this time come from lacustrine or peat

bog sequences, mostly with relatively straightforward deposi-

tional histories, allowing the construction of charcoal statistics

such as charcoal accumulation rates (CHAR) [24]. Because

these records minimize local variations, they contribute to

regional and global syntheses of charcoal patterns over time

(e.g. [25–27]). For example, in New Zealand (which was colo-

nized approx. 1280 AD), anthropogenic fire detected in

terrestrial archives comes as asynchronous increases in char-

coal contemporaneous with a wave of human arrival across

the country [28,29]. Detecting the clear arrival of people and

the associated shift in fire regime in this region was helped

by (i) New Zealand’s low background of natural wildfire and

(ii) the relatively stable climate during this period.

Less attention has been focused on understanding fire

regimes over millennial timescales recorded in more complex

sedimentary environments, such as fluvial deposits, probably

because depositional heterogeneity precludes simple age

models and generation of statistical indices such as CHAR.

This is unfortunate as these settings have long been recog-

nized as rich sources of archaeological information (e.g.

[30]) and are excellent records of longer-term landscape evol-

ution [31]. Often, secondary geomorphic effects associated

with wildfire, such as post-fire erosion, are preserved in this

part of the landscape sedimentary system [32–35].

Within this investigation, we look to use these more

complex sedimentary environments, specifically a fluvial fill

sequence, attempting to answer questions surrounding the

potential presence or absence of anthropogenic fire signals.

Our case study is the northern California Channel Islands
during the last glacial–interglacial transition (LGIT), ca 15–

10 ka BP. Before outlining our work in detail, first the North

American context is introduced, in terms of the key environ-

mental and archaeological evidence and also the complexities

of investigating human–fire interactions during this timeframe.
2. Fire and the arrival of people in North
America

It is well understood that intentional landscape burning has

been practiced by humans in North America over much or

all of the Holocene [36–40]. More controversial is the sugges-

tion that the first arrival of humans in the Americas during

the end of the last ice age can be associated with non-trivial

anthropogenic influences on landscape, in particular with the

use of fire [41,42]. Proponents of this idea suggest that even

small transient human populations could have had broad

impacts on ignition-limited portions of the landscape [41].

The Late Pleistocene Clovis culture is the oldest well-

defined archaeological techno-complex of North America

and is thought to have appeared ca 13.4 ka BP and disappeared

around approximately 12.7 ka BP [43–49]. Despite the fairly

short interval, Clovis technology is found over a large spatial

range [49]. Less-secure evidence of a human presence in the

Americas during the two millennia before Clovis (approx.

15.5 until approx. 13.8 ka BP) has also been suggested

(e.g. [50–52]) and hotly debated [53–57]. The exact timing of

human arrival in the Americas remains uncertain.

Understanding the impact of the human vanguard into

North America is further complicated by the contemporaneous

changes in climate during the LGIT [58–62]. In particular, the

Younger Dryas cold event (ca 12.9 ka BP) [63–66] contributed

to rapid environmental shifts at a key time during human arri-

val in, and/or migration through, the Americas. Against the

backdrop of these broad-scale climatic events, diachronous

changes in vegetation types, burning patterns and megafauna

populations have been suggested as evidence of human

impacts from Alaska to southern parts of North America (see

[41] for full discussion). An example of this is a sharp veg-

etation shift from herb tundra to shrub tundra associated

with a sharp increase in burning occurring 14–13 ka cal BP

[67]. Other authors have also noted charcoal spikes following

reductions in megaherbivore populations and resultant effects

on fuel-load changes, and suggest that these may be fire-regime

shifts indirectly related to human activity [68,69].

A synthesis of 35 palaeofire records from over North Amer-

ica identified a general increasing charcoal influx trend

throughout the LGIT, which halted during the Younger

Dryas [70]. These two steps in the continental-scale climate

record mostly track with the known climatic shifts of this

period. These authors do, however, note a steep increase in

charcoal influx around 13.2 ka BP which, although wide-

spread, is not represented continent-wide. This coincides

with the appearance of Clovis people; however, it is suggested

that the range of sites and the high elevation of some of those

sites make a causal link to humans unlikely [70].

In summary, detecting the use of fire by the first popu-

lations entering North America is complicated by (i) the

nature of wildfire, which is sporadic and difficult to predict

on short timescales; (ii) the wide range of Pleistocene environ-

ments and mosaic landscapes present over North America;

and (iii) uncertainties in the precise timing of human arrival
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in different regions. This uncertainty relates to both chrono-

logical uncertainties (usually related to radiocarbon dating)

as well as the accidental nature of the archaeological record,

which includes variable and often significant lag times

between first arrival and first evidence [71].
 cietypublishing.org
Phil.Trans.R.Soc.B

371:20150167
3. The Northern California Channel Islands
The Northern Channel Islands are located off the coast of

southern California and are formed of four islands (ranging

in size from ca 3 to 250 km2; figure 1). From largest to smal-

lest, the islands are Santa Cruz, Santa Rosa, San Miguel and

Anacapa. During the last glacial period, glacioeustatic sea

level merged these islands into one large landmass known

as ‘Santa Rosae’ Island (shown in figure 1c) [72]. At the

Last Glacial Maximum, Santa Rosae was approximately

four times larger than the combined area of the present-day

islands, but was still separated from mainland California by

2–4 km at the closest point [73].

The Northern Channel Islands contain extensive thick and

extensive Quaternary deposits as well as evidence of human

occupation fully spanning the Holocene. Among the abundant

archaeological materials on Santa Rosa Island, Phil C. Orr dis-

covered two human femora deposited in fluvial sediments at

the mouth of Arlington Springs Canyon. These human remains

have become known as ‘Arlington Springs Man’ [74]. Collagen

from these and other associated materials, such as charcoal,

have since been radiocarbon dated. The most recent direct

date comes from [75] (10 960+80 radiocarbon years BP) and

is recalibrated here using the most recent international cali-

bration curve, IntCal13 [76,77], equivalent to 13 020–12 700

cal yrs BP (2s range). Archaeological material is widespread

and abundant on the Northern Channel Islands, including evi-

dence early in the record from Daisy Cave and Cardwell Bluffs

on San Miguel Island and sites 512 and 706 from the northwest

side of Santa Rosa Island (shown in figure 1) [78–82]. In sum-

mary, the archaeological record of California’s Channel Islands

has become an important source of information for under-

standing these earliest coastal peoples [82]. The chronological

data from these sites have been used within this study (see

Material and methods).

The palaeoenvironmental record of the Northern Channel

Islands around the LGIT mostly comes from sedimentary,

macrobotanical and palynological records. The Sauces

Canyon palaeobotanical site on Santa Cruz Island includes

specimens of Douglas fir (Pseudotsuga menziesii), Santa Cruz

Island pine (Pinus muricata f. remorata), Bishop pine (Pinus
muricata) and Gowen cypress (Cupressus goveniana) [83] species

radiocarbon dated from around 17 cal ka BP and younger [84].

Evidence for diverse woodland communities also comes from

pollen records from Daisy Cave on San Miguel Island, Cañada

de los Sauces on Santa Cruz Island and from Soldedad Pond on

Santa Rosa Island. These pollen assemblages document wide-

spread conifer forests during the Late Pleistocene, probably

existing until ca 12 cal ka BP, when the predominant conifer

cover was replaced by mixed grassland and scrub communities

[78,85,86]. The exact nature of this ecosystem transition,

between forested to largely open conditions, remains unclear

because no continuous high-resolution pollen record has yet

been studied which crosses this boundary. This has precluded

a detailed understanding of this shift and its interplay with cli-

mate change, human arrival and changing fire regimes through
the onset of the Holocene. The endemic Channel Islands pygmy

mammoth (Mammuthus exilis) also became extinct during this

interval, with the last dated evidence of mammoths overlap-

ping the radiocarbon ranges proposed for Arlington Man

(approx. 13 ka BP) [87,88].

Several workers have noted charcoal fragments present in

the extensive fluvial and alluvial fill sequences of the North-

ern Channel Islands, but this palaeofire record has been only

minimally studied [89–93]. Pinter & Anderson noted high

abundances of macrocharcoal fragments from sites across

the Channel Islands and suggested that they could have

been the result of large wildfires, perhaps triggered by the

first human colonizers [94]. More recently, Kennett et al.
working from the basis of one sedimentary section from

Arlington Canyon on Santa Rosa Island proposed a single

wildfire event relating to an extra-terrestrial impact [95],

although this has been hotly debated [91,92].

The Northern Channel Islands currently experience fairly

low levels of natural wildfire, with few events recognized in

the recent past [96]. The Western Transverse Ranges region of

coastal California, of which these islands are a part, experiences

few convective storms during the summer and relatively moist

winters, which results in some of the lowest lighting-induced

fire frequency in North America [36,97]. The Mediterranean cli-

mate of the islands does, however, promote ecosystems which

are susceptible to burning even if they lack natural ignition

sources [93,98].

The climate of the Northern Channel Islands during the

LGIT was moister and cooler than the present day [78,85,86],

which promoted the mosaic woodland systems observed in

the pollen and palaeobotanical record, and probably further

reduced the potential for wildfire events compared with the

present [98,99]. A recent study by Pigati et al. [100] on San Nico-

las Island does, however, record evidence of natural wildfire

between 25 and 37 ka BP, which suggest a similar fire return

interval to the present.

Island settings have long been thought to be particularly

sensitive to environmental changes, particularly to invasive

species (including humans). This sensitivity is due to

resource limitations and because endemic flora and fauna

have been isolated from natural competition for long periods

of time. Indeed islands are often viewed by scientists as ‘natu-

ral laboratories’ that allow ecological and other theories to be

formed or tested [93]. The much-studied archaeological

record and rich sedimentary record of the Northern Channel

Islands make for an excellent test bed for considering the

impacts of the first human arrival upon fire regimes.
4. Approach and research rationale
Here, we investigate the Arlington Canyon sedimentary

sequence on Santa Rosa Island because (i) it is the canyon

from which the Arlington Springs Man remains were recov-

ered [74], and it is thus closely associated with the earliest

evidence of human presence on the islands; (ii) sedimentary

charcoal in Arlington Canyon has been noted by several

research groups [92,95]; and (iii) although much attention has

been focused on single isolated sites (Arlington Springs

by Johnson et al. [75]; and the Younger Dryas purported

impact horizon [95,101,102]), surprisingly little research has

been done on a unifying analysis of the many kilometres of

exposed sedimentary stratigraphy in Arlington Canyon. This
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is absolutely necessary because of the complexity of the various

depositional environments present in the canyon, in particular

in understanding its fluvial facies and architecture. Here,

we present radiocarbon results which refine the temporal
understanding of these sediments, an important goal on the

way to building a more robust stratigraphy [103], as well as

providing insights to the temporal extent of wildfire on the

Northern Channel Islands of California.
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Late glacial fire histories are most often based upon

sequences where sediments were deposited in a largely

uniform manner, such as in lakes, with constant sediment

accumulation rates and charcoal that are calculated against

volume and time (e.g. influx/yr). Charcoal in fluvial sediments

cannot be interpreted in this way, as both deposition rates and

sediment textures may vary significantly. Despite these chal-

lenges, reconstructing fire history from these environments

has advantages, in particular being able to directly connect

the charcoal record to geomorphic responses to fire [32–

35,104–106]. Streams and floodplains are also landscape

systems that humans would have regularly used (and indeed

often also contain archaeological materials).
 rans.R.Soc.B
371:20150167
5. Material and methods
The area of interest in this study is Arlington Canyon (figure 1)

which lies on the NNW side of Santa Rosa Island, with nearly con-

tinuous Late Quaternary fluvial deposits stretching 4 km from the

mouth of the canyon. Arlington Canyon itself is incised into a

sequence of uplifted Quaternary coastal terraces [107]. The Late

Pleistocene to Holocene sedimentary deposits form a fluvial fill

terrace that was subsequently incised, exposing vertical to near-

vertical cliff sections, often approximately 20–30 m in height [92].

These outcrops are widespread through the canyon, allowing

detailed sampling and analysis. Over four field seasons, eight key

localities have been identified, systematically described and

sampled for palaeoenvironmental analysis (see figure 2 for key

dated sections and the electronic supplementary material for

more information). Because of the lateral sedimentary variability,

we described multiple sections at most localities in order to fully

characterize the sedimentary architecture. At all sections, the occur-

rence of visible charcoal fragments was carefully recorded and

sampled. Charcoal-bearing units were categorized in the field as

either (i) large charcoal fragments present, (ii) small charcoal pre-

sent, or (iii) charcoal fragments rare. Sediment samples were also

analysed in the laboratory for macro- and microcharcoal content.

Radiocarbon dating on charcoal does not capture the date of the

burning event, but rather the date at which the plant or woody

material ceased to fixate atmospheric CO2 via photosynthesis

[13]. Gavin for example, found that charcoal dates on a fire from

Vancouver Island were 0–670 years older than the known age of

the fire; this is due to the ‘inbuilt’ age of the wood prior to burning

[108]. In addition, radiocarbon ages in sedimentary sequences do

not necessarily represent the age of deposition of the sediment,

but rather the age of the material being dated, which in some

cases may be older. Because charcoal is chemically inert and some-

times mechanically robust, it can sometimes survive erosion from

an older deposit, transport through the fluvial system and redepo-

sition, yielding the well-known challenge of ‘old’ charcoal dates

(i.e. [109]). For this reason, we relied solely on fragile charcoal

fragments such as thin charred twigs or pieces with small axes or

other material that exists in the litter layer and can be charred by

wildfire (such as seeds, carbonaceous spherules and coprolites;

see [92] for definitions of these forms) for dating. Thin twigs or

pieces with axes measuring only a few millimetres are less likely

to survive subsequent reworking without fragmenting.

Charcoal pieces were radiocarbon dated by two different lab-

oratories: the Keck Carbon Cycle Accelerator Mass Spectrometry

Laboratory at University of California Irvine and the Oxford

Radiocarbon Accelerator Unit, RLAHA, at the University of

Oxford. Samples processed at the University of Oxford used the

methods outlined by Brock et al. [110]. All radiocarbon ages (14C

yBP) were corrected for isotopic fractionation prior to reporting fol-

lowing the conventions of [111]. The new radiocarbon dates here

are presented in the electronic supplementary material.
Because terrestrial plants exchange with atmospheric CO2,

there is no reservoir effect, and charcoal ages from terrestrial

vegetation may be calibrated to calendar years using the atmos-

pheric IntCal13 radiocarbon calibration curve [13,76], as can the

archaeological (bone) samples of the terrestrial species (M. exilis,

human and goose). The marine samples (shells) required cali-

bration using the Marine13 radiocarbon calibration curve [76],

with an additional local marine reservoir correction (‘Delta_R’) of

225+35 years [81]. The Bayesian statistical software OxCal

v. 4.2 [74] was used and, for the archaeological samples, a simple

single ‘Phase’ model was applied for each of the individual

human occupation sites, thus providing a ‘Start’ Boundary for the

human occupation at each individual site. A subsequent Phase

was applied, cross-referencing the Start Boundaries of each of the

human-occupied sites, as well as adding in the single 14C dates

from SRI-706 and of Arlington Springs Man. The Start Boundary
of this latter Phase therefore estimates the first human appearance

date on Santa Rosae.
6. Results and interpretations
(a) Nature of the sedimentary charcoal record
Figure 2 shows the sedimentary context and the associated

charcoal record for Arlington Canyon. Charcoal fragments

were preserved over a large range of depositional energies,

including pebbly matrix-supported sediments to fine silts;

coarser gravels tended not to contain charcoal. The lower por-

tions of the Arlington Canyon sequence include a range of

depositional facies, from coarse channel lags to low-energy

overbank deposits. The upper portions of the sequence are

nearly uniformly fine-grained, with multiple dark palaeosol

horizons dated to the Holocene [91]. Because of this variability,

many sections across Arlington Canyon were sampled and

analysed in order to fully characterize the fluvial architecture

and complex depositional and erosional history of this

sequence.

Most of the charcoal present within these sequences was

transported and deposited by water. If we use modern systems

as a guide, it appears that most charcoal was moved from

burned areas via overland flow; usually, the first rainstorm

after a fire event is the most important for transferring this

newly formed charred material through the sedimentary

system [112–114]. Charcoal fragments display complex sedi-

mentation and transport characteristics which can be affected

by: (i) the wide variety of sizes, (ii) the type of material that

was charred, and (iii) the temperature at which the charcoal

formed [112,115,116]. These factors all influence the lag time

between charring and deposition. The distribution of charcoal

in fluvial sediments is also strongly influenced by taphonomic

processes (e.g. [35,117]). Fluvial processes transport charcoal

by both suspended and bed load, and often, during deposi-

tion, charcoal fragments can be concentrated into lenses,

cross-bedding structures, or more broadly dispersed in sedi-

ments [116]. These types have all been observed in the

Arlington Canyon record.

Given the charcoal size distribution and depositional con-

text, the large majority of sedimentary charcoal in Arlington

Canyon was transported by water and is thus related to fire

events within the catchment, although incorporation of

minor amounts of wind-borne charcoal cannot be ruled out.

Many studies have shown that charcoal fragments larger

than 125mm can be transported significant distances by aeolian

processes (approx. 1–25 km; [19,118–120]). We examined the
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detailed distribution of charcoal, noting not only its size distri-

bution, but also the plant organs preserved. What was clear

was that the charcoal varied considerably through the

sequences representing multiple wildfire events over a con-

siderable period of time rather than being reworked from a

single fire event. We noted particularly the number of less

than 1 mm diameter charred axes present in some samples

that would have probably fragmented during reworking. We

therefore selected small axes of herbaceous plants or small-

diameter twigs for radiocarbon dating to eliminate the problem

of ‘old wood’.

Multiple dark-coloured palaeosol horizons are superim-

posed upon the finer-grained sediments that generally

comprise the uppermost half of the Arlington Canyon fill

sequence (see sites Ip, V, VIIb and VIIc; figure 2) and locally

deeper in the stratigraphy. These palaeosol horizons occur

along depositional and erosional contacts, draping over the

palaeo-land surface. These palaeosols contain very little or no

charcoal, and their dark colours are the result of translocation

and concentration of dark minerals and pedogenic clay, typical

of mollisolic soil formation.

The distribution of charcoal through Arlington Canyon

makes clear that this is a record of more than one fire event

(e.g. SI figure 1). Unlike Kennett et al. [95], we find no evidence

for one high-intensity fire. Indeed scanning electron

microscopy (SEM) and reflectance analysis carried out by

Scott et al. [92] document only low-temperature surface fires.

While it is always possible that higher-temperature fires

(e.g. crown fires) occurred on the Northern Channel Islands

during the latest Pleistocene, no sedimentary or charcoal

evidence currently exist to confirm such fire behaviour.
(b) Dating the charcoal sedimentary record
Here, we present 49 radiocarbon dates from Arlington Canyon.

Other charcoal dates are available, in particular from Kennett

et al. [95], but we have not included these because we have

sampled Kennett’s AC003 site using our own methods and

sediment characterization. Unlike in lacustrine and peat

records, fluvial records cannot be used to generate fire return

interval via charcoal concentrations and accumulation rates.

Direct dating of charcoal may reveal discrete wildfire events.

However, during the LGIT, chronological precision can pre-

clude separation of fire events occurring within 200–300

years of each other (for example, in many pine forests the fire

return interval is often less than 100 years [35]).

For each locality, we attempted to date the full stratigraphic

range of charcoal-bearing units in order to gain knowledge of

the age of the first and last wildfire event. Radiocarbon samples

were also taken from intermediate charcoal layers where dis-

crete or significant charcoal was present. Figure 2 shows the

sections that were dated and the distribution of dated horizons.

Age reversals are sometimes present within the sequences, a

well-known problem within fluvial systems. However, for

the purposes of this study, these dates are still included as

they still represent chronological evidence of fire ( just not

contained in sediment of contemporaneous age).

Figure 3 shows the distribution of calibrated ages from

Arlington Canyon (presented at 95.4% confidence limits).

The large majority of age determinations from Arlington

Canyon range between 14 and 12.5 ka BP, with a small

number of earlier dates, from 19 to 14 ka BP; and only one char-

coal date is present after 12.5 ka BP. The lack of charcoal after
12.5 ka BP is unlikely to be due to a lack of sediment of this

age in Arlington Canyon but rather to a lack of datable (i.e.

large enough) charcoal being found (e.g. figure 2, section Ip).

The preponderance of ages between 14 and 12.5 ka BP

cannot be used as evidence of increased wildfire frequency,

only that deposition and/or preservation of charcoal in the

Arlington Canyon sedimentary record appears to become

more common during this time interval. Such shifts in charcoal

abundance can be explained by a number of mechanisms, the

most likely being: (i) a change in fluvial dynamics, sedimentol-

ogy or palaeo-environment leading to increased deposition

and/or preservation; (ii) an increase in the production of char-

coal, perhaps related to ecosystem changes in the contributing

watershed; or finally (iii) a shift in fire regime. This is also true

of the lack of charcoal after 12.5 ka BP, which could relate to a

change in fuel source. Based upon existing pollen records, we

suggest that the sharp drop-off in sedimentary charcoal after

12.5 ka BP results primarily from the transition from conifer

forests that were widespread on the Northern Channel Islands

through the Late Pleistocene to the grassland cover that has

dominated the islands through the Holocene [78,85,86].

In summary, charcoal occurrence in the fluvial aggradational

sequences of Santa Rosa Island, and elsewhere, reflect a complex

mosaic of causal mechanisms and overlapping palaeoenviron-

mental changes over time. Combined with other proxies, the

Arlington Canyon sequence does track broad, landscape-level

changes through the terminal Pleistocene and into the Holocene.

Now that these shifts have been recognized, future research

should aim to examine pre- and post-14 ka BP fire regimes on

the islands. This could include the following lines of examin-

ation: (i) what material and which species were burning; and

(ii) the systematic measurement of charcoal reflectance, which

records the minimum burn temperature.
(c) Wider significance
A number of significant events occurred on the Northern

Channel Islands during the LGIT that are worth exploring

is some detail in relation to the ‘landscape shifts’ identified

above. Megafauna are important herbivores and can have sig-

nificant impacts on vegetation composition, fuel loads and

the resulting fire regimes [69]. On the Channel Islands, the

endemic pygmy mammoth (M. exilis) would have been an

important component of the landscape. Radiocarbon dating

evidence of the presence of this species has been calibrated

here using the new IntCal13 calibration curve in figure 3

and shows the last occurrence of M. exilis is around 12.9 ka

BP, thus post-dating the landscape shift documented here at

approximately 14 ka BP. Two ages of mammoths, one

directly dated bone and the other associated charcoal

[87,88,121], also coincide with current age estimates for

‘Arlington Springs Man’ [75]. Recalibration of these dates

using IntCal13 strengthens the case made by Agenbroad

et al. [88] that the island pygmy mammoth and humans

were contemporaries on Santa Rosa Island (figure 2).

These dates both post-date the landscape shift seen at 14 ka

BP by approximately 1 ka. A closer correspondence is, however,

seen between the estimated first appearance of humans on

Santa Rosae (figure 3), which has been calculated by cross-refer-

encing the Start Boundaries calculated for the dated

archaeological evidence and the age range where a large

number of charcoal radiocarbon dates are returned (approx.

14–12.5 ka BP). This is particularly compelling considering
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that this timeframe appears to cross multiple climatic shifts (i.e.

the onset and end of the Younger Dryas, for example). We also

note that the estimated first appearance of humans on Santa

Rosae, 13 590–12 720 years BP (at 95.4% confidence limits)

bears a closeness to the onset and disappearance of the Clovis

Culture as dated from mainland North America (approx. 13.4

to approximately 12.7 ka BP; [49]), although it must be stated

that no evidence of the Clovis culture has ever been found on

the California Channel Islands.

This time period also coincides with global climate events as

well as with local vegetation shifts. Both onshore pollen records

and nearby offshore marine cores document a large shift from

Pinus-dominated to Quercus-dominated pollen assemblages

and an increase in herbaceous taxa at approximately 14 ka BP

[98], which may relate to the Bølling–Allerød interstadial

(ca 14.7–12.9 ka BP [122–124]). Improving the current compari-

sons between the Channel Islands and the Santa Barbara Basin

palaeorecords in more chronologically robust way (e.g. denser

dating of this vegetation transition, calculation of age errors

and use of updated radiocarbon calibration curves) may shed

more light on these questions.

Another way to test the question of climatic versus human

impacts on wildfire may be to study fluvial sediments from

the Islands dating to previous interstadial events, thought to

have a similar climatic signature to the Bølling–Allerød

(a.k.a., Greenland Interstadial (GI) 1; [125]), e.g. GI8 and GI12,

with onsets of approximately 38.2 and approximately 46.8 ka

BP, respectively [122,126,127]. Currently, it is unclear if such

aged sequences are preserved in alluvial Island sediments.

However, a recent study by Pigati et al. on San Nicolas Island,

80 km to the south of the Northern Channel Islands, documen-

ted several ‘burn events’ in sediments dating to 25–37 ka BP,

which overlaps with several known interstadial events. Pigati

et al. [100] found that wildfires were significant enough to be pre-

served in the geological record at least every 300–500 years; this

is broadly comparable to modern pre-anthropogenic values.

Unfortunately, the nature of the sedimentary archive, as well

as difference in modern climate between Santa Rosa and San

Nicolas Island, means these data are not suitable for comparison

but does perhaps point a way forward to disentangling natural

wildfire systems with ones that have been altered by humans.
7. Key findings
— Fire was part of the Arlington Canyon landscape long before

the arrival of humans (to at least 18.5 ka BP in the deposits

studied here). Similar fluvial fill sequences elsewhere on

Santa Rosa and Santa Cruz Islands contain charcoal dating

back to 26.5 ka BP, and charcoal on San Nicolas Island,

80 km to the south, date back to approximately 37 ka.
— Complex sedimentary sequences can record important

fire history information, yet this source has been under-

used within Quaternary palaeofire research.

— Charcoal dating results suggest two significant landscape

shifts within Arlington Canyon: (i) an increase in sedimen-

tary charcoal at approximately 14 ka BP, followed by (ii) a

decline at approximately 12.5 ka BP. In the first case, it is

not possible to say whether the frequency of wildfire

events increased during this transition, or changes in

sedimentary processes prevailed. Potential explanations

include enhanced fluvial activity/deposition, an increase

in flammable fuels available on the landscape, or a shift in

fire regime. Similarly, the reduction in charcoal deposition

at approximately 12.5 ka BP cannot necessarily be inter-

preted as a reduction in wildfire but probably relates to a

reduction in trees as a fuel source as noted from pollen

records covering this period [78,85,86].

— Sedimentary charcoal (i.e. evidence of burning) is most

abundant within the Arlington Canyon record between

approximately 14 and approximately 12.5 ka BP. This is

chronologically offset from any single climate event

during the LGIT, such as the Bølling–Allerød interstadial

(ca 14.7–12.9 ka BP), the Younger Dryas climatic deterio-

ration (ca 12.9 ka), and the Holocene onset (ca 11.7 ka BP;

[122–124]). This does not preclude a causal link between

burning and climatic change, as there may be leads and

lags in terrestrial response. However, we note that the tran-

sition at 14 ka BP does correspond with an estimated age of

the first human appearance on the islands, calculated via a

synthesis of the pre-existing archaeological evidence.
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