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Transport of neutral and charged solutes in imidazolium-functionalized 

poly(phenylene oxide) membranes for artificial photosynthesis 

 
Sarah M. Dischinger, Shubham Gupta, Blaine M. Carter, and Daniel J. Miller* 

 

Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, 

CA, 94720 

*danieljmiller@lbl.gov, +1 (510) 495-2353 

 

Abstract     

Anion exchange membranes (AEMs) play an essential role in artificial photosynthesis devices, 

which photoelectrochemically convert CO2 and water into useful products. AEMs allow the 

transport of charge carriers between electrodes while minimizing the transport of CO2 reduction 

products (e.g., ethanol). Fundamental transport studies in AEMs relevant to artificial 

photosynthesis are uncommon. Herein, we describe the preparation of an imidazolium-

functionalized poly(phenylene oxide) membrane. Membrane transport properties were controlled 

by systematic variation of the degree of imidazolium functionalization, which induced changes 

in the membrane water volume fraction. Ethanol permeability and ionic conductivity increased 

with membrane water volume fraction. Consequently, membranes of relatively high ionic 

conductivity exhibited relatively high ethanol permeability, presenting a tradeoff in the transport 

properties desirable for artificial photosynthesis applications. This work seeks to enable 

optimization of AEMs for artificial photosynthesis through systematic study of membrane 

structure (water volume fraction) and its relevance to alcohol transport and electrolyte ion 

conductivity. 
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1. Introduction 

The (photo)electrochemical conversion of CO2 using solar energy (i.e., artificial 

photosynthesis) is of growing interest as a means to produce valuable products, such as non-

petroleum based liquid fuels and chemical feedstocks.1–4 Artificial photosynthesis devices 

typically consist of an anode and a cathode separated by an ion exchange membrane and liquid 

electrolyte.5–8 As CO2 (introduced as a humidified gas or dissolved in the liquid electrolyte) is 

reduced to gaseous or liquid products at the cathode, water is oxidized to oxygen at the anode.5,6 

Near-neutral or alkaline electrolyte conditions usually favor CO2 reduction (CO2R) to C2+ 

products over the competing hydrogen evolution reaction.6,9–11 The electrolyte charge carrier 

between the anode and cathode in the liquid electrolyte is commonly bicarbonate or carbonate, 

although supplemental electrolyte charge carriers are sometimes employed.7,9,12–14 Given that the 

primary electrolyte charge carriers are anions, anion exchange membranes (AEMs) are often 

employed in artificial photosynthesis devices because they more readily promote anion transport 

between the electrodes than cation exchange membranes.6,15 High charge carrier transport fluxes 

support high device current densities and reduce polarization losses.6,16  

While the range of potential CO2R products is large, products of specific interest are 

alcohol fuels (e.g., methanol and ethanol) due to their high energy density and market value 
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relative to energy input.3,5,17 Crossover of products from the cathode to the anode lowers overall 

device efficiency because these reduced species may undergo oxidation at the anode, which leads 

to product loss and wasted energy.18–21 Therefore, a membrane that transports 

carbonate/bicarbonate ions while minimizing the transport of small product alcohols is expected 

to enable high efficiency artificial photosynthesis devices.6,16,21 Achieving highly selective 

transport (i.e., high rates of electrolyte ion transport and low rates of product alcohol transport) is 

challenging because increasing the transport of an electrolyte charge carrier is often correlated 

with increased transport of other species through the membrane.22 For example, an increase in 

conductivity within a series of AEMs correlated with an increase in co-ion transport, decreasing 

the permselectivity of the membrane.23 This phenomenon is encountered in gas separation, 

desalination, and other membrane separations, and is commonly referred to as the 

selectivity/permeability tradeoff.23–25 Relatively few studies have explicitly investigated the 

selectivity/permeability trade-off as it pertains to artificial photosynthesis device performance; 

however, such studies would contribute to the development of devices that are commercially 

viable.14,22 

Despite widespread usage, commercial availability, and multiple reviews of AEMs, a 

comprehensive understanding of how AEM structure correlates with transport phenomena has 

not been realized.19,20,26–31 While the market availability of these materials has made them 

popular in (photo)electrochemical CO2R studies, the proprietary nature of these materials makes 

it difficult to ascertain a detailed understanding of how membrane chemistry and structure affect 

device performance vis-à-vis water, electrolyte ion, and CO2R product transport.6,17,32 By 

employing a material platform with chemical and/or structural parameters that can be tuned in a 

systematic fashion, it may be possible to begin understanding how membrane composition 
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affects the efficiency and productivity of artificial photosynthesis devices. This understanding 

could enable synthesis of membranes tailor-made for this purpose or improved decision making 

when choosing from commercially available materials. While several studies have correlated salt 

transport to AEM structural and chemical properties, few studies have explored uncharged solute 

(e.g., alcohol) transport through AEMs.22,23,31,33–37 More studies are needed to understand the 

complexity of transport through diverse membrane materials in a range of applications, including 

artificial photosynthesis.4,14   

 Imidazolium-functionalized poly(phenylene oxide)-based membranes offer a platform 

that enables explicit study of membrane structure and transport properties within the context of 

artificial photosynthesis. Poly(phenylene oxide) (PPO)-based AEMs are of interest for artificial 

photosynthesis devices because, in other applications, they have demonstrated high conductivity 

and relatively robust alkaline stability.20,38–40 PPO is also advantageous because it is relatively 

inexpensive, commercially available, and can be easily functionalized with a variety of chemical 

moieties.23,40–44 Functionalization of the PPO with cationic imidazolium or quaternary 

ammonium groups converts this neutral polymer into an anion exchange material; imidazolium 

and quaternary ammonium functional groups have demonstrated relatively high conductivities 

and stability in alkaline conditions, offering potential for use in artificial photosynthesis 

devices.42,45–47 The work presented here focuses on imidazolium-functionalized PPO. While the 

studies referenced above investigated the role of various structural attributes of the polymer on 

membrane conductivity and alkaline stability, only one considered small uncharged solute 

transport.43 However, the conflicting transport goals of the AEM in artificial photosynthesis 

devices (i.e., high electrolyte ion conductivity and low CO2R product permeability) require an 

understanding of the correlation between charged and uncharged solute transport in these 
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materials. Therefore, further studies on imidazolium-functionalized PPO materials would 

contribute to optimization of AEMs for artificial photosynthesis devices.   

 This work aims to advance the understanding of charged and uncharged solute transport 

through AEMs by examination of structure-transport relationships relevant to artificial 

photosynthesis devices via an un-crosslinked imidazolium-functionalized PPO material platform. 

The chemical structure of the imidazolium-functionalized PPO was modified by varying the 

degree of functionalization (i.e., ion exchange capacity). Localizing this work within the context 

of artificial photosynthesis, the conductivity of bicarbonate (a primary charge carrier in CO2R) 

and the permeability of ethanol (a target CO2R product) were studied with respect to polymer 

functionalization.5,6 As rates of solute transport appear to be strongly linked to AEM water 

uptake, 22,23 the transport of bicarbonate and ethanol was also correlated with the structural 

parameter of membrane water volume fraction. While the counterion of interest for artificial 

photosynthesis devices is bicarbonate, it is informative to consider the properties of membranes 

in the bromide form because, as will be shown below, the variation of counterion results in a 

difference of water uptake without changing the ion exchange capacity of the material. 

Therefore, by comparing the performance of membranes in both the bicarbonate and bromide 

forms, it is possible to consider the structure (i.e., water volume fraction) of the membrane apart 

from its ion exchange capacity, so as to elucidate the impact of these factors on membrane 

performance. To contextualize these results, the transport properties of the imidazolium-

functionalized PPO membrane were compared with the commercial AEM Selemion AMV.  
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2. Experimental 

2.1 Materials 

Poly(2,6-dimethyl-phenylene oxide), diethyl ether, and methanol (99%) were purchased 

from Sigma Aldrich and used as received. N-bromosuccinimide (NBS) and potassium 

bicarbonate (99%) were purchased from Alfa Aesar and used as received. Azobisisobutyronitrile 

(AIBN) (Matrix Scientific, 97%), chlorobenzene (Millipore, 99%), 1-methyl-2-pyrrolidone 

(NMP, JT Baker, 99%), 1-methylimidazolium (TCI, 99%), and ethanol (Koptec, 99%) were used 

as received. Deionized (DI) water was supplied by an EMD Millipore Milli-Q Integral 3 water 

purification system (18.2 MΩ cm at 25 °C, 1.2 ppb TOC). Selemion AMV (AGC Engineering 

Co., Ltd.) was stored in DI water until use. 

 

2.2 Membrane Preparation 

An example synthesis of brominated PPO is as follows. Poly(2,6-dimethyl-phenylene 

oxide) (10 g), dry NBS (9.9 g), and AIBN (0.4 g) were dissolved in chlorobenzene (200 mL) in a 

500 mL round-bottom flask with a stir bar and reflux condenser. The reaction temperature was 

maintained at 135 ºC for at least 4 h. The brominated PPO was recovered via precipitation in 

methanol and dried under vacuum (<1 Torr, 40 ºC). 1H NMR (Bruker AscendTM 500) was used 

to confirm the purity of the product (see Figure S1 in the Supplemental Information). The 

number of brominated methyl groups was adjusted by varying the amount of NBS added.  

 Imidazolium-functionalized PPO (ImPPO) was synthesized as follows. Brominated PPO 

(3.1 g) was dissolved in NMP (23 mL) with 1-methylimidazolium (1.3 g) in a 100 mL round-

bottom flask with a stir bar and reflux condenser. The reaction temperature was maintained at 80 

ºC for at least 12 h. ImPPO was precipitated in diethyl ether and then dried under vacuum (<1 
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Torr, 40 ºC). Enough 1-methylimidazolium was added to convert all pendant bromine to 

imidazolium; this conversion was evaluated by 1H NMR (see Figure S2 in the Supplemental 

Information). 1H NMR was also used to evaluate the purity of each compound and the degree of 

functionalization χ (i.e., the percent of methyl pendants with an imidazolium attached) (see 

calculations in the Supplemental Information). The ion exchange capacity (IEC) (i.e., the 

concentration of imidazolium moieties in the dry polymer) was calculated from the degree of 

functionalization of the polymer, as shown in the Supplemental Information. Multiple 

publications on PPO-based AEMs have calculated IEC values from 1H NMR spectra that are 

within 10% of the values determined via a titration method, another common technique for IEC 

determination.45,48–50 

Membranes were fabricated by dissolving ImPPO-χ (0.3 g) in NMP (~5.5. g) at room 

temperature. The solution was filtered through a 1-µm PTFE filter (Thermo Scientific) into a 

Teflon dish 6 cm in diameter that was pre-wetted with methanol. The membranes were dried at 

80 ºC for about 2.5 days. Membranes were stored sealed until use. 

 The bromide counterion in the ImPPO-χ membranes was exchanged to bicarbonate by 

soaking ImPPO-χ membranes in aqueous 1 M potassium bicarbonate solution for 48 h, replacing 

the exchange solution three times. During this process, the pH was monitored to ensure that no 

significant shift in carbonate speciation had occurred. The pH was found to vary from 8.3 to 9.0. 

Even at the highest pH measured, the concentration of bicarbonate was still an order of 

magnitude greater than the concentration of carbonate.51 Subsequently, the membrane was 

soaked in DI water for at least 24 h, or until the membranes reached a constant hydrated weight. 

The water was replaced at least once during DI soaking. Samples were stored in DI water until 

further use. The complete reaction scheme, including ion exchange, is presented in Figure 1.  
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Figure 1. Synthetic route and final structure of ImPPO-χ, where χ is the percent methyl groups 

functionalized. One or both of the methyl groups on any aromatic ring may be functionalized. 

 

For water uptake and density measurements, membranes were dried under vacuum (<1 

Torr, 40 ºC) until a constant dry weight was achieved. Completeness of ion exchange was 

evaluated by elemental analysis of the dry membrane cross section using energy dispersive 

spectroscopy (Bruker Quanteax 200 EDS) paired with scanning electron microscopy (SEM FEI 

Quanta 250 FEG). The commercial Selemion AMV anion exchange membrane was exchanged 

to bicarbonate and using the same procedure. Selemion AMV was exchanged to bromide using 

the same procedure except that the anion exchange solution was an aqueous 1 M sodium 

bromide solution.22  

 For the following characterizations, at least three individually-prepared membranes were 

evaluated, and the errors presented in each figure represent one standard deviation, calculated via 

error propagation analysis.52  
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2.3 Water Uptake  

Membranes were soaked in DI water until they reached a constant weight (at least 48 h). 

Hydrated membranes were blotted with a Kimwipe before each weight measurement to remove 

liquid on the surface and returned to DI water between measurements to ensure that the 

membranes were always fully hydrated. Once the hydrated weight was measured, the membranes 

were dried under vacuum (< 1 Torr, 40 ºC) until they reached a constant weight (at least 48 h). 

When a constant dry weight was measured, the thickness and diameter of each sample were also 

measured in order to calculate the density of the dry membrane.  

Water uptake, w, was calculated as follows:23 

 
Equation 1 

where mh is the mass of the water-swollen membrane and md is the mass of the dry membrane. 

Assuming volume additivity, which has been shown to be reasonable for several charged 

polymer systems, water volume fraction (ϕw) was calculated as follows: 23,53 

 

Equation 2 

where ρw is the density of water (1 g/cm3) and ρp is the density of the dry membrane. While the 

ion exchange capacity (IEC) is the concentration of imidazolium groups in the dry polymer, the 

IEC does not necessarily accurately represent the concentration of charged moieties in the water-

swollen membrane. The fixed charge density, i.e., the concentration of imidazolium groups, Ci, 

in the water-swollen membrane, was calculated as follows: 23 
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Equation 3 

 

2.4 Ethanol Permeability 

Ethanol permeability in the water-swollen membranes was measured using a standard 

diffusion cell (Adams and Chittenden Scientific Glassware, Berkeley CA). An in situ ATR-FTIR 

probe (Mettler-Toledo ReactIR 15 with a shallow tip 9.5 mm DSun AgX DiComp probe) was 

used to detect the evolving ethanol concentration in the receiver cell (initially containing DI 

water). The diffusion cell halves were jacketed and a recirculating water bath was used to 

maintain the temperature of the diffusion cell at (25.0 ± 0.7) ºC. The initial donor cell 

concentration was 1 M ethanol in DI water. Permeability was calculated by fitting the time-

resolved concentration data in the receiver cell to the Yasuda model.36 The details of this 

experimental apparatus and associated methods have been previously published and are included 

in the Supplemental Information.36,54 

 

2.5 Ionic Conductivity  

In-plane conductivity of the water-swollen membranes was measured by potentiostatic 

electrochemical impedance spectroscopy using a four-point conductivity cell (BekkTech BT-

110). The cell was submerged in DI water at room temperature. A Biologic VSP-300 potentiostat 

was used to vary the AC voltage about the open circuit potential at an amplitude of 80 mV. 

Measurements were collected over a frequency range of 0.5 MHz to 0.1 Hz. The membrane 

resistance (R) was taken as the impedance intercept with the real axis on a Nyquist plot.42,55 (See 
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Supplemental Information for more detail.) Membrane conductivity (κ) was calculated from 

resistance as follows:56–58 

 
Equation 4 

where l is the length between the sensing probes, z is the width of the sample, and δ is the 

thickness of the sample. 

 

3. Results and Discussion 

3.1 Physical characterization of the membrane 

 PPO was functionalized with 1-methylimidazolium to three degrees of functionalization. 

The maximum degree of functionalization was limited to 24 % because membranes at higher 

degrees of functionalization dissolved in water during water uptake experiments. Analysis by 1H 

NMR confirmed that functionalization occurred only at the benzyl position, rather than at the 

aryl position.44 1H NMR analysis also confirmed that, for all degrees of functionalization, the 

conversion of brominated PPO to ImPPO was greater than 95 %. Figure 1 presents the structure 

of the family of ImPPO-χ materials prepared. The degree of functionalization, χ, (i.e., the percent 

of methyl pendants that had imidazolium moieties) was calculated from the 1H NMR spectra as 

the ratio of peak areas associated with the methylene hydrogens (around 5.3 ppm) and the methyl 

hydrogens (around 2.0 ppm) (see calculation in the Supplemental Information).59 One or both of 

the methyl pendants on any aromatic ring may be functionalized with imidazolium; χ is the 

percent methyl groups functionalized (rather than the percent aromatic rings functionalized).  

The speciation of carbonate in the anion exchange soak solution was monitored by pH; in 

all cases, the concentration of bicarbonate was at least an order of magnitude greater than that of 

carbonate, suggesting that bicarbonate was the majority counterion in the AEMs.6,51 Elemental 
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analysis via energy dispersive spectroscopy of the cross section of the exchanged ImPPO-χ 

membranes detected insignificant signal associated with the presence of bromide, demonstrating 

that the exchange of the bromide anion for bicarbonate anion was nearly complete. It should be 

noted, however, that when Selemion AMV was subjected to the same ion exchange procedure, 

an incomplete exchange of anions was observed (see Figure S3 in the Supplemental 

Information), suggesting that some chloride remained in the membrane even after exchange. It is 

unlikely that changing the soak conditions would achieve complete exchange in the Selemion 

membranes, since these membranes were already soaked in the exchange solution for over 48 

hours and the exchange solution was changed at least three times during the soak. Therefore, 

these membranes were used after being subjected to the same anion exchange procedure as the 

ImPPO membranes. 

Table 1 provides some of the physical properties of the ImPPO-χ materials in the 

bicarbonate form as well as those of commercial Selemion AMV. While the Selemion AMV 

membrane is reinforced by a PVC mesh, other studies have concluded that any effect of such 

reinforcement on the material transport properties is small.31 Therefore, the effects of the mesh 

were not considered separately, and the properties of Selemion that are discussed herein are 

properties of the composite membrane, as have been reported elsewhere.60 To provide context 

for the values presented in Table 1, the typical range of IEC in ion exchange membranes is 0.1 – 

2.7 meq./g while the typical range of water uptake is 9 – 180%.19,27,31,42    
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Table 1. Series of ImPPO-χ materials and commercial Selemion AMV. All properties are given 

for membranes in the bicarbonate form. χ was determined by 1H NMR. IEC was calculated based 

on χ. Density was calculated from geometric measurements. 

Polymer ID χ (%) 

IEC 

(mmol/g dry 

polymer) 

Dry Membrane 

Density 

(g/cm3) 

Dry Membrane 

Thickness  

(µm) 

Water Uptake  

(%) 

ImPPO-11 11 1.4 1.0 ± 0.1 100 ± 20 19 ± 3 

ImPPO-19 19 2.1 1.1 ± 0.1 130 ± 10 61 ± 4 

ImPPO-24 24 2.4 1.0 ± 0.1 130 ± 20 209 ± 9 

Selemion AMV  1.85 30 1.13 ± 0.04 104 ± 2 15 ± 2 

 

 

3.2 Transport in ImPPO-χ membranes 

3.2.1 Water uptake 

Solute permeability in water-swollen polymers can be described within the framework of 

free volume theory as described by the Yasuda model, where the free volume is the space 

available for solute transport between polymer chains.28,61–63 An important assumption of this 

model is that, in a hydrated membrane, water fills all of the available free volume elements, and 

that the degree of hydration is strongly correlated with the free volume.28,61–63  Specifically, all 

else being equal in the polymer, the size of the free volume regions increases with degree of 

hydration of charged polymers, thereby increasing the solute’s mobility.35,63 Charged polymers 

often swell (i.e., increase in degree of hydration) significantly in aqueous environments because 

the ionic groups attached to the polymer backbone are highly solvated by water.28 Therefore, 

understanding solute transport in the charged ImPPO-χ materials begins with understanding their 

water uptake. 

The degree of functionalization and the counterion influenced the water uptake of 

ImPPO-χ membranes (Figure 2a). Water uptake increased with increasing degree of 
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functionalization. This result can be explained by the solvation of greater numbers of charged 

moieties present in more highly-functionalized materials, and corroborates results reported for 

other ion exchange materials.22,23,33,37 Additionally, membranes in the bicarbonate form generally 

sorbed more water than those of the same degree of functionalization in the bromide form, 

showing similar results to those reported elsewhere.64 One factor that may contribute to this 

difference in water sorption is the difference in hydration number between the counterions: 

bromide typically has a hydration shell of six water molecules, while bicarbonate has a hydration 

shell of seven or eight water molecules.64–66  

While water uptake itself does not provide direct information about the number or size of 

free volume elements within the membrane, it does permit calculation of the membrane water 

volume fraction, which correlates with the free volume available for solute transport.63 Following 

the trend in water uptake, membranes with a higher degree of functionalization had a higher 

water volume fraction (Figure 2b). Due to the greater degree of water uptake by membranes in 

the bicarbonate form than those in the bromide form, membranes in the bicarbonate form also 

had a greater water volume fraction. The structure of the ImPPO-χ membrane (specifically, the 

free volume available for solute transport) varied with the degree of functionalization and the 

counterion associated with imidazolium. By considering bromide as a counterion in this study, it 

was possible to vary the water volume fraction of the material without changing the material’s 

degree of functionalization. Therefore, though bromide counterions would likely not be 

encountered in artificial photosynthesis devices, it enabled an additional way to vary the 

structural properties and observe the impact of those structural changes on transport through the 

membrane.  
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ImPPO-χ membranes of higher degrees of functionalization had higher concentrations of 

charge in the dry polymer, but due to concurrent increases in water uptake, did not always have 

higher charge density of the swollen membrane (i.e., fixed charge density). The fixed charge 

density influences the concentration of mobile charge carriers in the membrane and, therefore, 

the conductivity.23,35 For the bromide form ImPPO-χ materials, an increase in degree of 

functionalization resulted in a moderate increase in fixed charge density when the degree of 

functionalization was increased from 11 to 19 %, and no change in fixed charge density when the 

degree of functionalization was increased further to 24 % (Figure 2c). For membranes in the 

bicarbonate form, the fixed charge density did not increase with an increase in the degree of 

functionalization from 11 to 19 %, and decreased as the degree of functionalization was further 

increased to 24 %.  This decrease in fixed charge density can be attributed to a very high degree 

of water uptake (cf., Figure 2a and Equation 3) at the highest degree of functionalization. Similar 

trends of decreasing fixed charge density with increasing degree of functionalization have been 

observed in other polymer families.33 
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Figure 2. Water uptake (a), water volume fraction (b), and  fixed charge density (c) as a function 

of degree of functionalization, χ, for ImPPO-χ materials in Br- (blue circles) and HCO3
- (orange 

triangles) forms. 

 

3.2.2 Ethanol permeation 

One of the primary functions of the membrane in artificial photosynthesis devices is to 

prevent product migration between the electrodes.6 Ethanol is one aqueous CO2R product of 
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interest, and its migration to the anode can potentially compromise device efficiency due to re-

oxidation to CO2 and product loss.5,6,13,16,21 Therefore, membranes with low ethanol permeability 

are likely advantageous for artificial photosynthesis devices. Within the family of ImPPO-χ 

materials, membranes with high degrees of functionalization exhibited higher ethanol 

permeabilities than membranes with lower degrees of functionalization (Figure 3). Additionally, 

membranes in the bicarbonate form exhibited higher ethanol permeabilities than membranes of 

the same degree of functionalization in the bromide form.  

 

Figure 3. Ethanol permeability as a function of degree of functionalization, χ, for ImPPO-χ 

materials in Br- (blue circles) and HCO3
- (orange triangles) forms.  

 



18 
 

As mentioned above, ethanol moves through the membrane via available free volume 

elements as proposed by Yasuda et al.61,62 The average diffusion coefficient of a solute i in a 

hydrated membrane is related to the inverse of the membrane water volume fraction (ϕw) as 

follows: 

 
Equation 5 

where D0,i is the diffusion coefficient of solute i in pure water and B is an empirical constant.61 

The diffusion of a solute in the hydrated membrane is linked to its permeability through the 

solution-diffusion model, which describes the permeability of a solute in a dense (i.e., non-

porous) membrane as the product of its diffusivity and solubility in the membrane.67  The 

exponential relationship between permeability and inverse water volume fraction shown in 

Figure 4 suggests that available free volume principally governs ethanol transport in this family 

of ImPPO-χ materials. Such a relationship has been observed for small solutes (e.g., simple salts 

and small organic molecules) in other dilute or semi-dilute (i.e., highly hydrated) charged 

polymers.22,37,68 To provide a point of comparison with a commercial membrane frequently 

employed in artificial photosynthesis devices, Selemion AMV is included in Figure 4. Selemion 

AMV, in both the bicarbonate and bromide forms, exhibited a relatively low ethanol 

permeability that was comparable to an ImPPO-χ material with a similarly low water volume 

fraction. No strong correlation was observed between ethanol permeability and fixed charge 

concentration (Figure S6 in Supplemental Information), which is unsurprising because the 

transport of uncharged solutes has been shown to be largely unaffected by the presence of fixed 

charged groups in studies of charged and uncharged membranes.37 Within the family of ImPPO-χ 

materials studied herein, the water uptake varied with fixed charge concentration. To more 
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explicitly study the impact of fixed charge concentration on ethanol permeability, materials of 

varied fixed charge concentration with similar water uptakes should be studied.  

 

Figure 4. Ethanol permeability as a function of inverse water volume fraction for ImPPO-χ 

(filled symbols) and Selemion AMV (empty symbols) membranes in Br- (blue circles) and 

HCO3
- (orange triangles) forms. The line is a regression on the ImPPO-χ membrane data.  

 

3.2.3 Ion Conductivity 

 The bicarbonate anion is the dominant charge-carrying electrolyte species in many 

recently reported CO2R devices, and its transport across the membrane is essential to maintain 

device operation.6,32 Within the family of ImPPO-χ materials, membranes with high degrees of 

functionalization exhibited higher conductivities than those with low degrees of functionalization 
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(Figure 5). Furthermore, membranes in the bromide form exhibited lower conductivities than 

membranes of the same degree of functionalization in the bicarbonate form (Figure 5).  

 

Figure 5. Ionic conductivity as a function of degree of functionalization, χ, for ImPPO-χ 

materials in Br- (blue circles) and HCO3
- (orange triangles) forms.  

 

According to the Nernst-Einstein equation (Eqn 6), membrane conductivity is a function 

of the concentration of mobile ions in the membrane and the diffusivity of these ions, as 

follows:60  

 
Eqn. 6 

where F is Faraday’s constant, R is the ideal gas constant, T is the absolute temperature, Ci is the 

concentration of ionic species i, and Di is the diffusion coefficient of ionic species i. In the 
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context of the methods used herein, the mobile ion available to contribute to conductivity is the 

counterion, whose concentration, based on electroneutrality, is proportional to the fixed charge 

density of the membrane. Given that smaller ions typically have higher diffusivities than 

relatively larger ions, it is expected that a membrane with a smaller counterion would exhibit a 

higher ionic conductivity than a membrane with a larger counterion, as has been reported 

elsewhere.64,69 However, in this family of ImPPO-χ materials, membranes with the larger 

bicarbonate counterion exhibited higher conductivities than membranes with the smaller bromide 

counterion.70,71 Considering Eqn. 3 (fixed charge concentration) and Eqn. 5 (solute diffusion 

coefficient), it is clear that ionic conductivity also depends on water volume fraction. As the 

water volume fraction increases (due to an increased degree of functionalization or a change in 

the counterion species) the fixed charge concentration decreases and the solute diffusion 

coefficient increases. Therefore, the fixed charge (and mobile counterion) concentration and the 

solute diffusion coefficient play opposite roles in determining the effect of increasing water 

volume fraction on ion conductivity.35 Within the family of ImPPO-χ materials prepared herein, 

conductivity depended exponentially on inverse water volume fraction (Figure 6), in agreement 

with the free volume theory and other studies of AEMs.22,23,61,62 These results suggest that 

changes in the structure of the membrane (specifically the free volume available for solute 

transport) impacted the conductivity of the membrane to a greater degree than changes in ion 

concentration or size. The bicarbonate and bromide forms of the Selemion AMV membrane 

exhibited ionic conductivities similar to that expected for ImPPO-χ membranes of the same 

water volume fraction, as demonstrated in Figure 6 by their proximity to the regression of the 

ImPPO-χ results. 
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Figure 6. Ionic conductivity as a function of inverse water volume fraction for ImPPO-χ (filled 

symbols) and Selemion AMV (empty symbols) membranes in Br- (blue circles) and HCO3
- 

(orange triangles) forms. The line is a regression on the ImPPO-χ membrane data.  

 

No significant correlation was observed between conductivity and fixed charge density 

(Figure S7 in the Supplemental Information), which is not surprising given that previous studies 

have documented both an increase and a decrease in conductivity with increasing fixed charge 

density.23,35 These conflicting results could be explained by competing consequences of water 

uptake, as discussed above in the context of the Nernst-Einstein equation. In the case of the 

family of ImPPO-χ materials presented herein, the absence of a trend between ionic conductivity 
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and fixed charge density suggests that the increase in free volume counterbalances the effect of 

decreased mobile charge concentration on ionic conductivity.   

 

3.3 Consideration of the ImPPO-χ material platform for artificial photosynthesis devices 

As mentioned in the introduction, the most desirable AEMs for artificial photosynthesis 

have both a high conductivity of charge carriers and a low permeability to the liquid products.6 

Within the family of ImPPO-χ materials, water volume fraction significantly impacted both the 

ionic conductivity and ethanol permeability, where both increased with increasing water volume 

fraction. Consequently, an increase in ionic conductivity was correlated with an increase in 

ethanol permeability (Figure 7). A trade-off between ionic conductivity and CO2R product 

permeability can be identified in regard to device operation: beneficial increases in ionic 

conductivity may be offset by a simultaneous detrimental increase in CO2R product 

permeability. While it is difficult to quantify the selectivity of the membrane (i.e., transport of 

bicarbonate over ethanol) given the difference of driving forces between these two solutes in this 

context, future work may gain value from measuring the simultaneous transport of both solute 

species in these materials under applied potentials and ethanol concentration gradients typically 

encountered in photosynthesis devices. In light of the widespread use of Selemion AMV in 

studies on artificial photosynthesis devices, membranes of similar conductivities would also be 

expected to support artificial photosynthesis device performance.6,7,15,32,72 As the conductivity of 

Selemion AMV is similar to those of ImPPO-χ materials with low degrees of functionalization 

(Figure 7), future development of membranes for artificial photosynthesis may focus on 

materials with relatively low conductivity in order to reduce product crossover. 
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Figure 7. The tradeoff between ethanol permeability and ionic conductivity for ImPPO-χ (filled 

symbols) and Selemion AMV (empty symbols) membranes in Br- (blue circles) and HCO3
- 

(orange triangles) forms. The line is included to guide the eye over ImPPO-χ data. 

 

While this work demonstrates that water impacts the transport of liquid products and 

charge carriers through the membrane, the transport of water itself through the membrane may 

become an important parameter in artificial photosynthesis devices, specifically in those based 

on membrane-electrode assemblies (MEAs). For example, in MEAs in which the cathode feed is 

humidified gas and the anode contacts aqueous electrolyte, water diffuses from the anode across 

the membrane to the cathode. If the transport of water across the membrane is too great, liquid 

water can flood the cathode, inhibiting CO2R.13 Alternatively, in MEAs in which both anode and 
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cathode are fed humidified gas, the membrane may dehydrate, leading to a loss of ionic 

conductivity and deterioration of cell performance.13 Considering such situations, the membrane 

water uptake, which correlates with water permeability via the water volume fraction, may play a 

critical role in managing water availability inside artificial photosynthesis devices.13,63 

 

Conclusions 

A family of ImPPO-χ polymers were synthesized and subsequently fabricated into 

membranes to enable a structure-transport study relevant to artificial photosynthesis. The 

membrane chemical structure was varied by changing the degree of imidazolium 

functionalization. Increased degree of functionalization induced an increase in water uptake, 

suggesting a change in the membrane’s physical structure (i.e., an increase in the free volume) as 

the water volume fraction changed. An increase in the water volume fraction was correlated to an 

increase in both the ionic conductivity and the ethanol permeability according to the free volume 

theory. Consequently, ethanol permeability increased with ionic conductivity, leading to a trade-

off in the transport parameters desirable for artificial photosynthesis (i.e., high ionic conductivity 

and low CO2R product permeability). In light of the structure-property relationships discussed 

herein, future studies of the ImPPO-χ membrane platform in test-bed artificial photosynthesis 

devices may enable a valuable correlation between the ex situ properties studied herein and 

device performance. More studies should also be performed to understand the difference in 

transport properties between Selemion and the ImPPO-χ materials. 
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