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Abstract

Background—Renal sympathetic denervation (RD) is a promising method of neuromodulation 

for the management of cardiac arrhythmia.

Objective—We tested the hypothesis that RD is antiarrhythmic in ambulatory dogs because it 

reduces the stellate ganglion nerve activity (SGNA) by remodeling the stellate ganglion (SG) and 

brain stem.

Methods—We implanted a radiotransmitter to record SGNA and electrocardiogram in 9 

ambulatory dogs for 2 weeks, followed by a 2nd surgery for RD and 2 months SGNA recording. 
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Cell death was probed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assay.

Results—Integrated SGNA at baseline, 1 and 2 months after RD were 14.0±4.0, 9.3±2.8 and 

9.6±2.0 μV, respectively (p=0.042). The SG from RD but not normal control (N=5) dogs showed 

confluent damage. An average of 41±10% and 40±16% of ganglion cells in the left and right SG, 

respectively, were TUNEL-positive in RD dogs compared with 0% in controls dogs (p= 0.005 for 

both). Left and right SG from RD dogs had more tyrosine hydroxylase-negative ganglion cells 

than left SG of control dogs (p= 0.028 and 0.047 respectively). Extensive TUNEL positive neurons 

and glial cells were also noted in the medulla, associated with strongly positive glial fibrillary 

acidic protein staining. The distribution was heterogeneous, with more cell death in the medial 

than lateral aspects of the medulla.

Conclusion—Bilateral RD caused significant central and peripheral sympathetic nerve 

remodeling and reduced SGNA in ambulatory dogs. These findings may in part explain the 

antiarrhythmic effects of RD.

Keywords

nervous system; sympathetic; catheter ablation; arrhythmia; neuromodulation

Recent studies showed that neuromodulation may be effective in controlling cardiac 

arrhythmias.1, 2 Renal sympathetic denervation (RD) is one of the promising methods of 

neuromodulation in arrhythmia control.3 RD was reported to decrease norepinephrine 

spillover and muscle sympathetic-nerve activity4, 5 and may be useful in controlling 

electrical storm and atrial fibrillation.6, 7 In the latter studies, the effects of RD persisted for 

weeks or months after a single procedure. The mechanisms of persistent antiarrhythmic 

effects remain unclear. Huang et al8 showed that stimulating the sympathetic nerves around 

the renal artery may enhance the function of the left stellate ganglion (LSG). However, no 

studies directly measured the stellate ganglion nerve activity (SGNA) in ambulatory animals 

before and after RD to determine if RD reduces sympathetic outflow. The purpose of the 

present study was to perform SGNA recording in ambulatory dogs and histological studies 

of the SG and brain stem to test the hypothesis that RD causes SG and brain stem 

remodeling and reduces SGNA.

Methods

The study protocols were approved by the Institutional Animal Care and Use Committee. A 

detailed method section is included in an Online Supplement. Nine dogs were used as the 

experimental group for RD followed by SGNA, subcutaneous electrocardiogram (ECG) and 

blood pressure (BP) recording over a 2-month period using an implanted radiotransmitter. 

The SG and brain stem were harvested for histological analyses. Five normal dogs were used 

for histological controls. The SG were stained with antibodies against tyrosine hydroxylase 

(TH), growth-associated protein 43 (GAP43), hematoxylin and eosin and Masson’s 

trichrome. Cell death was probed by terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) assay. The TUNEL assay was also used to determine the cell death in 

medulla. To detect the reactive astrocytosis, we performed glial fibrillary acidic protein 

Tsai et al. Page 2

Heart Rhythm. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(GFAP) stains in medulla.9, 10 An additional 2 dogs underwent brain stem 18F-2-Fluoro-2-

deoxyglucose (18F-FDG) positron emission tomography–magnetic resonance imaging (PET/

MRI) before and after RD to detect functional changes of the brain stem.

Results

Renal Sympathetic Denervation

Up to 6 ablations at 8 watts for 120 s each were successfully performed in bilateral renal 

arteries in 6 of 9 dogs. The results of these 6 dogs were used for statistical analyses. Right 

unilateral RD was performed in 3 dogs that had small (<2 mm diameter) dual left side renal 

arteries. There was luminal indentation after RF energy application when the vessel diameter 

was less than 4mm, but no significant renal arterial stenosis was found in any dog. Figure 1 

shows examples of renal angiogram before, during and after RD.

Nerve Activities and Blood Pressure Recording

Table 1 shows nerve activities, RR interval and BP recorded by the radiotransmitter. The 24-

hr average SGNA (aSGNA) at 1 and 2 months after RD were significantly reduced as 

compared with baseline (p= 0.042). The 24-hr average integrate vagal nerve activity (iVNA) 

at 1 month and 2 months after RD was non-significantly reduced from baseline (p= 0.115). 

There were no significant changes of 24-hr average RR interval, systolic BP and diastolic 

BP at 1 and 2 months after RD. The plasma norepinephrine level was 0.146 (CI, 0.077–

0.215) ng/mL at baseline and 0.098 (0.041–0.155) ng/mL at 2 months after RD (p= 0.500).

The heart rate variability (HRV) and baroreflex sensitivity (BRS) were also performed to see 

the autonomic balance before and after RD. The standard deviation of normal to normal R-R 

intervals (SDNN) before and after RD were 295 (CI, 259–330) ms and 306 (CI, 241–371) 

ms respectively; the low frequency to high frequency ratio (LF/HF) before and after RD 

were 0.73 (CI, 0.38–1.09) and 0.56 (CI, 0.25–0.87) respectively; the BRS phase-rectified 

signal averaging (BRSprsa) before and after RD were 10 (CI, 3–16) and 11 (CI, 5–16) ms/

mmHg respectively. None of the above comparisons were statistically significant. These 

findings might be partially explained by our previous study11 which showed that HRV 

parameters poorly correlates with SGNA in ambulatory dogs.

Supplemental Figure 1A–B shows that these ambulatory dogs normally have paroxysmal 

atrial tachycardia (PAT) episodes, defined as an abrupt (> 50 bpm increment) increase or 

decrease in the heart rate, that persisted for at least 5 s, with a rate of > 150 bpm during the 

tachycardia. There were no ventricular arrhythmias. Among the 545 episodes of PATs 

analyzed, 543 (99.6%) episodes were preceded by SGNA. The patterns of SGNA 

discharges12 were high amplitude spike discharges in 180 episodes (33%) and low amplitude 

burst discharges in 363 episodes (67%). The mean PAT episodes were 30 (CI, 19–41)/d, 14 

(CI, 7–20)/d and 15 (CI, 7–22) times/d, respectively, at baseline, 1 and 2 months after RD 

(C) (p= 0.009). The duration of PAT were 269 (CI, 134–403) s/d, 118 (CI, 65–172) s/d and 

131 (CI, 60–202) s/d, respectively, at baseline, and 1 and 2 months after RD (D) (p=0.115). 

RD did not change the AT rate. 545 AT episodes in 9 dogs. Supplemental Figures 1C–E 

illustrate these changes.
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Histological Findings of Renal Nerve After Renal Sympathetic Denervation

Figure 2 shows typical examples of renal sympathetic nerve damage induced by RD. Panel 

A shows a hematoxylin-eosin stained section demonstrating normal media and injured 

media of the renal artery, with traumatic neuroma formation (arrowhead) with a region of 

nerve sprouting. Panel B shows neointima formation in the injured media region of the same 

renal artery. The traumatic neuroma (arrowhead) in Panel A is shown at higher 

magnification in Figures 2C. There were pyknotic nuclei and vacuolization of cytoplasm in 

the cells within the traumatic neuroma. The perineurium region shows nerve sprouting. 

Tyrosine hydroxylase (TH) staining (Figures 2D) showed TH-positive nerve structure in the 

traumatic neuroma.

Stellate Ganglion Remodeling

The SG from RD showed large regions of injury (Figure 3A). Multiple ganglion cells 

showed pyknotic nuclei and contracted cytoplasm (black arrow) in the Masson’s trichrome 

stained sections (Figure 3A, B). These changes were not observed in any SG from the 

normal dogs. TH staining (Figure 3C and 3D) of the same region shows the presence of 

multiple TH-negative cells (arrowhead) in the region. The morphology of the TH-negative 

cells (pyknotic nucleus and contracted cytoplasm) suggested cell death. To further confirm 

cell death, we probed the ganglion cells with terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL) staining (Figures 3E and 3F). There were multiple TUNEL 

positive ganglion cells in that region, confirming the presence of cell death. In contrast, none 

of the ganglion cells from normal dogs were TUNEL positive. The Confocal image (Figure 

4A) showed TUNEL-positive (green) nuclei in both TH-positive (red) and TH-negative 

(yellow arrow) ganglion cells. TH-positive and TUNEL negative ganglion cells were 

observed in control SG (yellow arrowhead). An average of 41% (CI, 32%–49%) and 40% 

(CI, 26%–54%) of ganglion cells in the LSG and right SG (RSG), respectively, of the RD 

dogs were TUNEL-positive. In comparison, none of the ganglion cells in control dogs were 

TUNEL positive (p= 0.005; Figure 4B). TH-negative ganglion cells accounted for 19% (CI, 

14%–24%) and 15% (CI, 13%–18%) of the cells in the LSG and the RSG, respectively. 

They were significantly more than that of the controls (10%; CI, 6%–13%, p= 0.028 and 

0.047 respectively; Figure 4C). In two dogs with unilateral right side RD, the LSG showed 

0% and 28% of TUNEL positivity, respectively. The density of GAP43 immunoreactivity in 

the LSG and RSG were 7616.1 (CI, 3089.7–12142.5) μm2/mm2 and 7205.1 (CI, 1808.2–

12601.9) μm2/mm2, respectively, in the RD group. The density of GAP43 immunoreactivity 

in the LSG was 7500.7 (CI, 1250.4–13751.1) μm2/mm2 in the control group. There were no 

difference in GAP43 immunoreactivity between RD-LSG, RD-RSG and control dogs (p= 

0.917).

Remodeling in Brain stem

Figure 5A shows a TUNEL stained medulla at high level. This image was generated by 

combining multiple images taken from the confocal microscope. The red rectangle indicates 

part of “damaged zones”, defined by regions in the brain stem with multiple TUNEL-

positive cells. The white rectangle indicates part of “non-damaged zones” where TUNEL 

staining was negative. In all five levels of the brain stem, the TUNEL-positive cells were 
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heterogeneously distributed. Figure 5B shows a schematic of TUNEL-positivity. Dark blue 

crosses mark the damaged zones. Figure 5C and 5D show the high magnification view of red 

and white rectangles in Figure 5A, respectively. Filled arrowhead and arrow in Figure 5C 

indicate the TUNEL positive neuron and neuroglia, respectively. The TUNEL positive 

neuroglia were glial fibrillary acidic protein (GFAP) positive (red), suggesting strong glial 

cell reaction. The percentage of neurons that were TUNEL positive was much higher in 

damaged zones (54.8; CI, 42.1–67.5) than non-damaged zones (3.0; CI, −2.3–8.2, p=0.043). 

The percentage of glial cells that were TUNEL positive was much higher in damaged zones 

(35.1 CI, 22.4–47.9) than non-damaged zones (4.9; CI, 1.0–8.8, p=0.043) (Figure 5E). 

Supplemental Figure 2 shows the GFAP stain of damaged and non-damaged zones, 

respectively. Brown color indicates the GFAP positive glial cell. The densities of GFAP 

immunoreactivity are higher in the damaged zones than in non-damaged zones in the RD 

group (Supplemental Figure 2C). All layers of the brain stem showed similar heterogeneous 

distribution of the TUNEL and GFAP positivity. The following structures in brain stems 

from RD dogs showed positive stains: nuclei of raphe, nucleus solitaries and tract, medial 

and lateral reticular nuclei, medial lemniscus, vagal dorsal motor nucleus, nucleus 

ambiguous and commissural sensory nucleus of vagus. Most of the involved areas were 

relevant to the autonomic nervous system. Consistent with the histological results, PET/MRI 

showed reduced 18F-FDG uptake at 1 week and 8 weeks after RD in both dogs studied 

(Supplemental Figures 3 and 4).

Discussion

We demonstrated in ambulatory canines that bilateral RD caused significant brain stem and 

bilateral SG remodeling, including neuronal cell death and active glial cell reaction at 8 

weeks after the procedure. These changes were associated with reduced 18F-FDG uptake in 

brain stem, left aSGNA and atrial tachyarrhythmia episodes. We propose that neural 

remodeling in the brain stem and SG may partially explain the antiarrhythmic effects of RD.

Connection between the Renal Sympathetic Nerve and the Stellate Ganglia

Trans-synaptic (transneuronal) degeneration is a phenomenon in the central and peripheral 

nervous system that may remain active both at the level of the insult and in the remote brain 

structures up to 1 year post-trauma.13 These progressive changes may underlie some of the 

long-term functional consequences after initial injury. Figure 6 summarizes the various 

direct and indirect connections between renal sympathetic nerve and the SG based on the 

literature search. Meckler et al14 showed that approximately 10% of bilateral renal 

sympathetic neurons in cats originated from the thoracic chain ganglia (stellate through 

T13). Because of the connections between these two structures, RD may directly result in 

retrograde cell death of the SG. In addition, application of fluorescent dyes in the renal 

nerves resulted in fluorescent labeling of the sympathetic cell bodies in paravertebral and 

prevertebral ganglia.15–17 The latter nerve structures connected to the thoracic spinal 

cord.18, 19 Because the sympathetic preganglionic neurons that projected to the SG were 

distributed in spinal segments T1-T10,20 they had ample opportunities to interact with the 

preganglionic cells that connected indirectly with the sympathetic nerve fibers around the 

renal artery. There are other possible connections that might contribute to the transneuronal 

Tsai et al. Page 5

Heart Rhythm. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



degeneration. For example, the ganglion cells of renal afferent nerves were located in 

thoracic and lumbar spine dorsal root ganglia21 that connect with the posterior and lateral 

hypothalamic nuclei and locus ceruleus in the brain stem.22, 23 Because brain stem is also 

connected with the lateral horn of the thoracic spinal cord that innervates the SG,24, 25 it is 

possible for the transneuronal degeneration to spread from the brain stem to the 

preganglionic sympathetic neurons in the lateral horn and reach the SG. Because 

transneuronal degeneration may remain active for prolonged periods of time, the effects of 

RD on arrhythmia control may persist for months after the procedure.

Renal Sympathetic Denervation and Paroxysmal Atrial Tachycardia

We26 have previously reported that normal dogs may have spontaneous PAT episodes both at 

baseline and after rapid atrial pacing. These PAT episodes were preceded by the SGNA. 

Therefore, PAT episodes are relevant measures of neuromodulation procedures such as 

cryoablation of the SG27 and vagal nerve stimulation (VNS).28, 29 These findings are 

consistent with the results of the present study, which showed that RD suppressed PATs 

through SG damages.

Clinical Implications

Our study helps to provide a mechanistical basis of the antiarrhythmic effects of RD.3 In 

addition, RD may be helpful in controlling other types of arrhythmias known to be 

controllable by SG ablation. Absence of BP effects have been observed in the present study 

and in previous clinical studies,6, 30 suggesting that hypotension may not be a side effect of 

RD.

Study Limitations

Due to the limitation of the DSI transmitters, we were able to record only from the LSG and 

not both SG. However, because RSG was not accessed or recorded, the neural damage and 

cell death in the RSG cannot be attributed to the damage caused by the recording 

procedures. Second, we only recorded for 2 months after RD. It remains unclear if the 

effects of RD on SGNA can persist for > 2 months. Our dogs did not have hypertension, 

cardiomyopathy or sleep apnea. Therefore, the results of the present study do not rule out the 

possibility that RD is effective in BP control in pathological conditions. A recent study 

suggested that renal nerve stimulation can be used as an acute end point for RD.31 However, 

we did not perform renal nerve stimulation during the procedure. We observed only an 

insignificant decrease in serum norepinephrine level, consistent with that reported by Linz et 

al.32 These findings suggest that the serum norepinephrine levels may have limited 

sensitivity in detecting the changes of norepinephrine release in various organs. Finally, we 

do not have long term follow up information to study the possible complications of RD.

Conclusions

Bilateral RD reduced SGNA and is associated with significant SG and brain stem 

remodeling. RD is a promising method of reducing sympathetic outflow and may therefore 

be effective in controlling arrhythmias triggered by sympathetic nerve activities.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Angiograms of the renal artery
A was taken before ablation. B shows ablation catheter inserted into the main right renal 

artery, proximal to the renal artery bifurcation. C shows the ablation catheter was withdrawn 

gradually to the proximal segment of the right renal artery during the ablation procedure. D 
shows no evidence of significant spasm, thrombosis or stenosis after ablation.

Tsai et al. Page 9

Heart Rhythm. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Typical examples of renal nerve injury induced by RD
A shows renal artery and sympathetic nerves in a dog with bilateral RD. H&E stain of the 

renal artery at low magnification (A) shows NM and IM of the renal artery, along with 

traumatic neuroma (arrowhead) in a region of NS. B shows a high magnification view of the 

renal artery wall with H&E staining. There was traumatic NI overlying the IM. C shows a 

high magnification view of the traumatic neuroma (arrowhead) with H&E staining. The 

traumatic neuroma cells contain pyknotic nuclei and vacuolization in endoneurium, with 

surrounding nerve sprouting. D shows TH staining (brown) of the traumatic neuroma at high 

magnification. (Panel A = 20X; B = 40X; C= 200X; D = 400X). H&E stain = Hematoxylin 

and eosin stain; IM = injured media; NI = neointima; NM = normal media; NS = nerve 

sprouting; RD = renal sympathetic denervation; TH = tyrosine hydroxylase.
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Figure 3. Histology of the LSG in a dog with bilateral RD
A shows Masson’s trichrome staining of the SG. There were multiple injured ganglion cells 

characterized by pyknotic nuclei and contracted cytoplasm. B shows a high magnification 

view of the red box area in A. C shows TH staining. Multiple TH-negative ganglion cells 

were present. D shows a high magnification view of the area marked by a red box in C. An 

arrowhead points to a ganglion cell that stained negative for TH. E is a confocal image of the 

same LSG with TUNEL and TH double staining from the area marked by a yellow box area 

in C. Green indicates positive TUNEL stain while red indicates positive TH stain. Blue 

indicates positive DAPI staining of the nuclei. Several TUNEL positive ganglion cells were 

observed. Those cells had pyknotic cytoplasm and stained negative for TH, compatible with 

the findings in C. F shows the zoom-in view of E. There were four TUNEL positive cells, 

including two that stained negative and two stained positive for TH. The magnification of 

panels A–F were 100X, 200X, 100X, 200X, 400X and 800X, respectively. DAPI = 4′,6-

diamidino-2-phenylindole; LSG = left stellate ganglion; SG = stellate ganglion; TH = 

tyrosine hydroxylase; TUNEL = terminal deoxynucleotidyl transferase dUTP nick end 

labeling.
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Figure 4. TH and TUNEL double staining of both SG
A shows confocal microscope images of TH and TUNEL double staining of the LSG of a 

control dog, the LSG of a RD dog (RD-LSG) and the RSG of a RD dog (RD-RSG). Green 

shows positive TUNEL stain, red indicates the positive TH stain and blue is the DAPI stain 

of the nuclei. The control ganglion cells were mostly TH-positive (yellow arrowhead in 

Control) and never TUNEL-positive. The TUNEL-positive ganglion cells might be stained 

either positive or negative for TH (yellow arrowhead in RD-LSG). B shows the percentage 

of TUNEL-positive ganglion cells in different groups of dogs. The TUNEL-positive 

ganglion cells were present in RD dogs but not in control dogs. There were no differences of 

percent TUNEL-positive cells between RSG and LSG in RD dogs. C shows the percentage 

of TH-negative ganglion cells in different groups of dogs. The TH-negative ganglion cells 

significantly increased in both SG in RD dogs as compared with control. There were no 

differences of percent TH-negative cells between RSG and LSG in RD dogs. * p< 0.05 

compared with control by Wilcoxon rank-sum test. DAPI = 4′,6-diamidino-2-phenylindole; 

LSG = left stellate ganglion; RD = renal sympathetic denervation; RSG = right stellate 

ganglion; SG = stellate ganglion; TH = tyrosine hydroxylase; TUNEL = terminal 

deoxynucleotidyl transferase dUTP nick end labeling.
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Figure 5. Immunofluorescence microscopy images of the brain stem at L1 in a bilateral RD dog
A shows confocal microscope image of TUNEL staining of the entire left half of the brain 

stem by combining images taken with 10X objective. The TUNEL positivity (green) was 

mostly distributed in the medial half of the brain stem. B shows a schematic of TUNEL 

positivity (dark blue cross) in different color-coded structures. C shows the TUNEL and 

GFAP double staining in high TUNEL-positivity area of Panel A (red box). Green indicates 

positive TUNEL stain, red indicates positive GFAP stain and blue is the DAPI stain of the 

nuclei. An arrowhead points to a TUNEL-positive neuron while an arrow points to a 

TUNEL-positive glial cell. There was high level of glial reaction as indicated by the strongly 

positive GFAP staining. D shows the same staining of the white box area in panel A. There 

were no TUNEL-positive or GFAP-positive cells in that region. Panel E shows the 

percentage of TUNEL-positive neurons and glial cells in “damaged zone” and “non-

damaged zone” in bilateral RD dogs. The percentage of TUNEL-positive neuron and glial 

cells significantly increased in “damaged zone”. (Panel A = scanning and merging of 100X 

images; Panel C and D = 800X). * p< 0.05 compared with non-damaged zone by Wilcoxon 

Signed Ranks Test. DAPI = 4′,6-diamidino-2-phenylindole; GFAP = glial fibrillary acid 

protein; L1 = level 1; RD = renal sympathetic denervation; TUNEL = terminal 

deoxynucleotidyl transferase dUTP nick end labeling.
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Figure 6. Schematics of possible connections among different nerve structures
There are multiple pathways to connect renal sympathetic nerves with the stellate ganglion. 

Both preganglionic and postganglionic sympathetic fibers may innervate the renal artery.
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Table 1

Effects of renal sympathetic denervation on nerve activities, RR interval and blood pressure.

Baseline 1M after RD 2M after RD

aSGNA (μV) 14.0 ± 4.0 9.4 ± 2.8* 9.6 ± 2.0*

aVNA (μV) 12.6 ± 5.0 8.2 ± 2.6 8.0 ± 1.8

aSGNA/iVNA 1.32 ± 0.43 1.29 ± 0.38 1.38 ± 0.55

RR interval (ms) 778 ± 54 746 ± 63 786 ± 79

SBP (mmHg) 121 ± 9 115 ± 6 117 ± 8

DBP (mmHg) 81 ± 9 78 ± 7 80 ± 7

1M = one month; 2M = two months; DBP = diastolic blood pressure; aSGNA = average stellate ganglion nerve activity; aVNA = average vagal 
nerve activity; RD = renal sympathetic denervation; SBP = systolic blood pressure.

*
p< 0.05 compared with baseline (Wilcoxon Signed Ranks test)
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