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RESEARCH ARTICLE

Bayesian parameter estimation for dynamical

models in systems biology

Nathaniel J. LindenID, Boris KramerID*, Padmini RangamaniID*

Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego,

California, United States of America

* bmkramer@ucsd.edu (BK); prangamani@ucsd.edu (PR)

Abstract

Dynamical systems modeling, particularly via systems of ordinary differential equations, has

been used to effectively capture the temporal behavior of different biochemical components

in signal transduction networks. Despite the recent advances in experimental measure-

ments, including sensor development and ‘-omics’ studies that have helped populate pro-

tein-protein interaction networks in great detail, modeling in systems biology lacks

systematic methods to estimate kinetic parameters and quantify associated uncertainties.

This is because of multiple reasons, including sparse and noisy experimental measure-

ments, lack of detailed molecular mechanisms underlying the reactions, and missing bio-

chemical interactions. Additionally, the inherent nonlinearities with respect to the states and

parameters associated with the system of differential equations further compound the chal-

lenges of parameter estimation. In this study, we propose a comprehensive framework for

Bayesian parameter estimation and complete quantification of the effects of uncertainties in

the data and models. We apply these methods to a series of signaling models of increasing

mathematical complexity. Systematic analysis of these dynamical systems showed that

parameter estimation depends on data sparsity, noise level, and model structure, including

the existence of multiple steady states. These results highlight how focused uncertainty

quantification can enrich systems biology modeling and enable additional quantitative analy-

ses for parameter estimation.

Author summary

Mathematical models of biological signal transduction networks have been widely used to

capture the temporal behavior of such systems. Calibrating these models to increasingly

available experimental data is essential to ensure that models accurately portray biological

phenomena. However, measurement noise, the inability to measure all biochemical spe-

cies in a system, and the lack of detailed knowledge about all reactions make model cali-

bration difficult and can introduce errors. In this study, we propose a principled and

complete computational framework to enable model calibration in the face of these chal-

lenges. Therein, we quantify any uncertainties (potential errors) in the calibrated model.

We apply the framework to a series of example models demonstrating various dynamic
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regimes common in biology (limit cycles and steady states) to highlight how our method

provided additional context and insights to modeling-based studies.

Introduction

Mathematical modeling is an integral part of systems biology; indeed, the use of approaches

from dynamical systems analyses resulted in a paradigmatic shift in our understanding of bio-

chemical signal transduction and enabled the identification of the emergent properties of a sig-

naling network [1–4]. Additionally, mathematical models allow us to investigate the dynamics

of biological systems beyond what is experimentally possible [5–8]. A classical approach to

modeling the dynamics of signal transduction is the use of systems of ordinary differential

equations (ODEs) [9, 10]. Often these equations include nonlinear functions to capture com-

plex biochemical interactions using Michaelis-Menten kinetics and Hill functions for coopera-

tive binding [11]. One of the ongoing challenges in developing and constraining predictive

models of signal transduction has been the estimation and identification of the kinetic parame-

ters associated with these reactions and quantifying the associated uncertainty [12–14]. The

use of rigorous, quantitative approaches to estimate kinetic parameters and their uncertainties

is in its early stages in systems biology [12, 15–18] even though such methods are far more

prevalent in the greater computational science community under the field of uncertainty

quantification (UQ) [19–22].

There are many sources of uncertainty in dynamical systems modeling of signal transduc-

tion, including the model structure itself, the values of model parameters, and the quality of

the data used for model calibration. Uncertainty in the model equations, known as model

form or topological uncertainty [23–26] often arises during model development. However, the

reaction fluxes for many biochemical reactions (ODE formulations) can be established in

terms of classical rate equations [9–11]. The more significant challenge is establishing suitable

model parameters, including the kinetic rate constants, for various flux terms [16]. Direct mea-

surement of these parameters often occurs in isolated reaction systems and does not capture

the complexity of the entire network of reactions represented by the models. Estimating these

biological parameters and identifying any remaining uncertainties requires selecting a statisti-

cal model and then learning the distribution of these parameters from available data [19, 27].

From this viewpoint, the biological parameters are random variables that either have paramet-

ric or nonparametric distributions. However, parameter estimation is complicated by the

noisy, sparse (few time points), and incomplete nature of data found in systems biology (few

or select readouts due to experimental limitations) that introduce uncertainties in the biologi-

cal parameters [14, 28–31]. In the face of these complicating factors, there is a need for statisti-

cal modeling of parameters that enables uncertainty quantification.

A comprehensive parameter estimation and UQ framework should consider the impact of

structural parameter identifiability and parameter sensitivity [16, 29, 32–34]. Structural param-

eter identifiability analysis reveals which of the parameters can be estimated given a specific

dynamical systems model and a set of measurable outputs [28, 29, 35, 36]. A parameter is glob-

ally structurally identifiable if there is only one unique model output for each value of that

parameter [29]. Parameters that do not meet this criterion are deemed structurally nonidentifi-

able and cannot successfully be estimated from the specified model outputs. Structural noni-

dentifiabilities can arise due to complex nonlinear equations and incomplete experimental

data that only measures a subset of the system’s states. Additionally, parametric sensitivity

analysis [19, 37, 38] quantifies how sensitive a model output is to variations in the model
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parameters. Gutenkunst et al. [28] found that most models in systems biology contain parame-

ters with a wide range of sensitivities, which they termed ‘sloppy’. Despite this challenge, sensi-

tivity analysis helps rank the set of identifiable parameters by their contributions to specified

model outputs, [39] as was done in Mortlock et al. [40] for the prolactin-mediated JAK-STAT

signaling pathway. This analysis enabled them to select a subset of 33 out of 60 total parameters

that significantly contribute to variations in the model outputs.

Commonly used methods to estimate parameters for systems biology models include fre-

quentist [17] and Bayesian approaches [18]. In the frequentist setting, parameter estimation is

formulated as an optimization problem, and the solution to the parameter estimation problem

is the set of parameters that best recapitulates the data [19]. Additionally, frequentist

approaches quantify uncertainty via estimated confidence intervals around the optimal param-

eters [19, 41, 42]. In contrast, in the Bayesian perspective, parameters are assumed to be ran-

dom variables whose unknown probability distributions, called posterior distributions,
quantify the probability of assuming any value in the parameter space [19, 21, 27]. The advan-

tage of Bayesian approaches comes from their ability to characterize the entire posterior distri-

bution and quantify the uncertainty in parameter estimates via credible intervals [27]. Many

methods have been developed for Bayesian parameter estimation [18, 43–49] that all aim to

characterize the posterior distribution, by leveraging Bayes’ rule [19, 27]. For example, Mort-

lock et al. [40] successfully used Bayesian estimation to study the uncertainty in the model pre-

dictions and assess the statistical significance of their modeling results.

Despite the successes of Bayesian parameter estimation in systems biology [12, 15, 16, 18],

failure to account for all sources of uncertainty in a model can significantly inhibit parameter

estimation and uncertainty quantification [16, 26, 28]. Thus, a comprehensive framework for

UQ in systems biology should include rigorous accounting of uncertainties in the model struc-

ture, nonidentifiable parameters, mixed parameter sensitivities, and noisy, sparse, or incom-

plete experimental data. While identifiability and sensitivity analyses are typically performed

prior to parameter estimation [16, 29], accounting for model form uncertainty requires us to

consider a stochastic model instead of a deterministic one [23, 26, 30, 50]. One promising

approach to account for model form uncertainty is the Unscented Kalman filter Markov chain

Monte Carlo (UKF-MCMC) method [26, 51]. This method includes statistical models for

noisy data and model form uncertainty simultaneously; however, it has not been adapted for

dealing with the unique challenges in system biology. Similarly, the parameter estimation and

model selection method in [30] accounts for model form uncertainty with extended Kalman

filtering but does not provide complete uncertainty estimates because it takes a frequentist

approach for parameter estimation. Thus, there is a need for a framework that combines struc-

tural identifiability analysis, global sensitivity analysis, a statistical model for data and model

form uncertainty, and Bayesian parameter estimation for comprehensive UQ of dynamical

models in systems biology.

The novelty of this work lies in the comprehensive workflow we have developed to advance

the current state of the art for uncertainty quantification in systems biology. Additionally, the

proposed framework accounts for uncertainty in the data and model structure by building on

the Bayesian framework and the UKF-MCMC method [26, 51]. Our proposed workflow

begins with structural identifiability analysis [36, 52] and global sensitivity analysis [37, 53] to

eliminate parameters that cannot be learned from the measurements or that are not affecting

the model outputs and then extends UKF-MCMC for systems biology by leveraging the con-

strained interval unscented Kalman filter (CIUKF) [54]. Taken together, each of these steps

quantitatively addresses uncertainties encountered during model development and calibration

to improve predictive modeling in systems biology.
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The remainder of this paper details our comprehensive workflow for uncertainty quanti-

fication in systems biology and presents several examples to highlight this analysis. First, in

Section 1 we introduce the proposed framework and provide the mathematical details

needed to understand and apply the approach. Next, in Section 2 we apply this framework to

three systems biology models of increasing complexity, including a simple two-state model

[55], a model of the core mitogen-activated protein kinase (MAPK) signaling pathway [56],

and a phenomenological model of synaptic plasticity to capture long-term potentiation/

depression [57]. We found that even in simple models, estimation of parameters depends on

the level of data noise and data sparsity. Finally, the framework enables uncertainty quantifi-

cation for model structures that include non-linearities and multistability. In all of these

cases, we leverage identifiability and sensitivity analyses to narrow the subset of parameters

for estimation and then use Bayesian estimation to determine the role of model structure in

parameter estimation. These results establish an uncertainty quantification-focused

approach to systems biology that can enable rigorous parameter estimation and analysis.

Lastly, in Section 3 we discuss these findings in the context of the three examples, address

challenges in applying Bayesian methods, and provide directions for future UQ in systems

biology.

1 Materials and methods

This section describes the technical details of the comprehensive framework for uncertainty

quantification (see Fig 1) proposed in Section 1.1. Next, Section 1.2 introduces dynamical sys-

tems biology models and the parameter estimation problem. Sections 1.3 and 1.4 respectively

overview structural identifiability and global sensitivity analyses to reduce the dimension of

the parameter space. Then Section 1.5 introduces Bayesian estimation, Section 1.6 outlines the

CIUKF-MCMC algorithm, and Section 1.7 describes the constrained interval unscented Kal-

man filter in detail. Following this, Section 1.8 discusses how to construct prior distributions

and Section 1.9 details Markov chain Monte Carlo sampling. Lastly, Section 1.10 discusses out-

put uncertainty propagation with ensemble modeling, Section 1.11 highlights choosing point

estimators for the parameters, Section 1.12 delineates synthetic data generation and Section

1.13 outlines limit cycle analysis.

1.1 Framework for comprehensive uncertainty quantification for

dynamical models in systems biology

This section previews the proposed comprehensive framework for parameter estimation and

uncertainty quantification of dynamical models in systems biology. Fig 1 outlines the frame-

work and its components, which are then described in much more detail in the subsequent

sections. The proposed framework follows three main steps. First, we assume that dynamical

models of intracellular signal transduction (panel A1 in Fig 1) use classical biochemical rate

laws, such as mass action kinetics, Michaelis-Menten kinetics, and Hill functions [9–11] (panel

A2 in Fig 1). The key challenge to applying these models is estimating the associated parame-

ters, such as the rate constants k and Vmax, equilibrium coefficients Km and KA, and Hill coeffi-

cients n in panel A2 in Fig 1, from available experimental data (panel A4 in Fig 1). The

comprehensive framework uses Bayesian inference to estimate a statistical model (a probability

distribution; see Fig 1B) for the model parameters given a set of noisy measurement data and a

specific model form.

We argue that identifiability and sensitivity analysis are necessary steps to perform before

parameter estimation (panel B1 in Fig 1). To eliminate uncertainty due to nonidentifiable

parameters, we perform global structural identifiability analysis using the Structural
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Identifiability Analyzer (SIAN) [36, 52] (see Section 1.3 for details). The nonidentifiable

parameters are fixed to their nominal values from the literature or based on their physiological

ranges. Next, variance-based global sensitivity analysis [19, 37] is performed to rank the identi-

fiable parameters in order of their contributions to the variance of the model outputs (see Sec-

tion 1.4 for details). A subset of the identifiable parameters with the largest sensitivity indices

is selected for parameter estimation. The remaining model parameters are then fixed to their

nominal values in the same fashion as nonidentifiable parameters.

Bayesian parameter estimation completely characterizes uncertainty in the model parame-

ters by estimating a nonparametric statistical model. Bayes’ rule (see panel B2 in Fig 1) pro-

vides the best guess distribution, called the posterior distribution, for the parameters starting

from an initial guess (the prior distribution) that is transformed by the available experimental

Fig 1. A comprehensive Bayesian parameter estimation and uncertainty quantification framework for dynamical models in systems biology. (A)

Model development in systems biology begins with model construction and data collection. Dynamical models in systems biology typically involve a

system of ODEs that capture the dynamics of the concentrations of different chemical species in the system (A1). The reaction rates associated with

these concentration changes are usually mass action, Michaelis Menten kinetics, or cooperative kinetics represented by the Hill equation (A2). The free

parameters in these models include kinetic rate constants, e.g. k, Vmax, equilibrium constants, e.g. Km, KA, and Hill coefficients, e.g. n. These parameters

are first constrained by best guess values based on physiological ranges and typical values of model parameters from the literature (A3). Finally, the

model needs experimental data for validation; this data can either be from published work or new experiments. (B) Parameter preprocessing and

Bayesian parameter estimation with the CIUKF-MCMC algorithm. First structural identifiability and global sensitivity analyses on the entire parameter

set reduce the set of free parameters that can be estimated (B1). Next, we perform Bayesian parameter estimation for this reduced set of parameters to

learn their posterior distributions. The posterior distribution is the parameter distribution conditioned on the data (B2). Bayes’ rule relates the posterior

distribution to the product of the prior distribution and the likelihood function. The prior distribution encodes known information about the

parameters and the likelihood function (which requires simulating the model) measures the misfit between predictions and the data. A state-

constrained Unscented Kalman filter approximates the likelihood function to account for uncertainty in the model equations. Although Bayes’ rule

provides a means to evaluate the posterior distribution at specific points in the parameter space, we use Markov chain Monte Carlo (MCMC) sampling

(B3) to characterize the entire distribution. (C) The posterior distributions enable uncertainty analysis of model outputs through ensemble simulation.

We perform simulations using the posterior parameter samples to propagate parameter uncertainty through the model (C1). Statistical analysis of the

ensemble enables us to compute uncertainty intervals and study various system behaviors, for example, the statistics of the steady state values (C2).

https://doi.org/10.1371/journal.pcbi.1010651.g001
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data with the likelihood function. The likelihood function measures the mismatch between the

data and the model predictions and returns higher probabilities for parameter sets that pro-

duce outputs closer to the data. We use the CIUKF-MCMC algorithm [26, 51] to approximate

the likelihood function and account for uncertainty in the model formulation, data, and

parameters. Markov chain Monte Carlo sampling, with either delayed rejection adaptive

Metropolis [58] or the affine invariant ensemble sampler [59], generates a set of samples that

represents the posterior distribution (panel B3 in Fig 1).

Lastly, we leverage the posterior distribution to quantify how uncertainty in the model

parameters affects uncertainty in the model predictions (Fig 1C). An ensemble simulation

with the parameter samples generates sets of trajectories (see panel C1 in Fig 1) that capture

the uncertainty in the predicted dynamics. Computing uncertainty intervals such as the 95%

credible intervals presented in panel C2 in Fig 1 provides a visualization of this uncertainty.

Notably, credible intervals are different from confidence intervals because credible intervals

capture a specified percentage of the samples whereas confidence intervals are random vari-

ables that capture regions where estimators will lie at a specified probability level [27] (see

Fig 2 for an example of a credible interval). Additionally, statistical analysis of the ensemble

enables quantitative analysis of computational modeling results in the same way that run-

ning multiple experimental trials enables analysis of experimental results. Before discussing

the methods that enable comprehensive uncertainty quantification in the following sections,

the next section formally introduces parameter estimation for dynamical models in systems

biology.

Fig 2. Examples of point estimates depicted on an arbitrary probability density function (black line). The MAP (maximum a posteriori) point is

located at the most probable point (blue dashed line). The long tail of the distribution shifts the mean (gray dotted line) away from the MAP point.

Secondary modes (red dashed-dotted line) can effect the quality of a point estimate. Additionally, the green shaded region highlights the 95% credible

interval, the region between the 2.5th and 97.5th percentiles, that is used to capture the uncertainty in an estimate.

https://doi.org/10.1371/journal.pcbi.1010651.g002
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1.2 Parameter estimation for systems biology models in the form of

partially-observed systems of ordinary differential equations

We consider nonlinear ordinary differential equation models of the form

dxðtÞ
dt

¼
X

i

fiðxðtÞ; θf Þ ð1Þ

yðtÞ ¼ h ðxðtÞ; θhÞ þ ηðtÞ; ηðtÞ � N ð0;ΓðθGÞÞ; ð2Þ

where x 2 Rd
�0

is the state vector of nonnegative species concentrations and y 2 Rm
is the vec-

tor of potentially incomplete, m� d, measurements of x. The functions fið�; �Þ : Rd
� Rp

! Rd

govern the rates of the involved biochemical reactions and are derived using biochemical the-

ory (see panel A2 in Fig 1 for example terms). Further, θf 2 R
pf is the vector of biological

model parameters, including but not limited to rate constants, binding coefficients, and equi-

librium coefficients. The function hð�; �Þ : Rd � Rp ! Rm is the measurement function that

maps from the states to the set of observables (experimental data), where θh is the vector of

associated parameters. Lastly, the measurements y(t) are corrupted by independently and

identically distributed (iid) Gaussian measurement noise ηðtÞ 2 Rm
with zero mean and

covariance matrix Γ 2 Rm�m
. The covariance matrix is parameterized by θG 2 R

m
such that

ΓðθGÞ ¼ diagðθGÞ. The parameter space is then defined as the multidimensional space of all

possible values of θ ¼ ½θf , θG], e.g., θ 2 Rpfþm.

In this work, we make several simplifying assumptions to the model in Eqs (1)–(2). First,

we assume that the measurement function h(�;�) is linear and that all the parameters in θh are

known, so Eq (2) becomes

yðtÞ ¼ HxðtÞ þ ηðtÞ; ð3Þ

with H 2 Rm�d. Second, we assume that the initial condition x(t = 0) = x0 is known, so it is

excluded from parameter estimation.

Although Eqs (1)–(2) define a continuous-time dynamical system, we mostly deal with dis-

crete observations. The set of n measurements Yn ¼ fy1
; . . . ; yng denotes the experimental

data taken at time instances t1,� t2, . . .,� tn, where yk ¼ Hxk þ ηk. In this discrete setting, xk

is the state vector at time tk and ηk is an independent realization of the measurement noise.

Additionally, the set of states at the discrete measurement times defined above is

Xn ¼ fx1; . . . ; xng. Note that the full (internal) states may not be available for estimation, only

the measurements.

We can now define the problem setting of the proposed parameter estimation framework.

This work assumes that the model form is known and seeks to estimate the model parameters

and associated uncertainties by learning a probability distribution for the parameters. The fol-

lowing problem statement formalizes the parameter estimation problem.

Problem 1 Given a known model form as in Eq (1) and a set of noisy, sparse and incom-
plete, experimental measurements Yn ¼ fy1

; . . . ; yng at time instances t1� t2, . . .,� tn,
estimate the complete probability distribution, pðθjYnÞ, for the model parameters
θ ¼ ½θf ; θG�

>
.
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The next section outlines the structural identifiability and global sensitivity analyses per-

formed to reduce the dimension of θ before estimating parameters.

1.3 Global structural identifiability analysis with the structural

identifiability analyzer (SIAN)

Structural identifiability analysis determines if parameters can be uniquely estimated from the

available measurement function [29]. Structural identifiability is a mathematical property of

the model itself and does not consider the quality or quantity of the available experimental

data. The following definition from [60] provides an intuitive condition for global structural

identifiability and can be shown to be equivalent to alternative definitions [33, 36].

Definition 1 (Global structural identifiability [60]) A parameter θi is globally structurally
identifiable if, for almost all θ 2 Rp and for all times t> 0,

yðt; θ0Þ ¼ yðt; θÞ ) y
0

i ¼ yi;

where θ0 ¼ ½y0
1
; . . . ; y

0

i; . . . ; y
0

p�
>

and θ ¼ ½y1; . . . ; yi; . . . ; yp�
>

.

Global structural identifiability, as in Definition 1, implies that a parameter θi can be

uniquely identified from data. If a parameter is globally structurally identifiable, then there is a

single unique value of that parameter that gives each observed output value with the same ini-

tial conditions [36]. Alternatively, a parameter may be locally structurally identifiable if the

condition in Definition 1 only holds in a local neighborhood, VðyiÞ, of parameter space around

θi, e.g., for yi 2 VðyiÞ [29, 33, 36]. This condition implies that a finite number of values of a

locally identifiable parameter can give the same output values [36]. Lastly, if a parameter is

nonidentifiable, then infinitely many values of that parameter can give the same model output.

While models with locally structurally identifiable and nonidentifiable parameters are still

valid over the entire parameter space, the existence of such parameters can confound success-

ful parameter estimation. Many computational methods have been developed to assess struc-

tural identifiability [29, 33, 36, 61] for ODE-based models. In this work, we use the differential

algebra and power series-based approach presented in [36, 52], because the method specifically

assesses global identifiability. The SIAN (Structural Identifiability ANalyser) software [52] pro-

vides a numerical implementation of the approach proposed in [36]. The SIAN algorithm for

assessing global structural identifiability uses a combination of symbolic and probabilistic

computation [36, 52]. First, SIAN uses Taylor expansions of the model equations to obtain a

polynomial representation of the system. Second, the algorithm truncates the polynomial sys-

tem to produce a minimal system containing all parameter identifiability information. Third,

SIAN solves the identifiability problem for a single parameter set that is randomly selected to

guarantee correctness up to a user-specified probability level p (see Theorem 5 in [36]). Fourth,

the algorithm uses the results in the third step to separate the parameters into globally identifi-

able, locally identifiable, and nonidentifiable sets. SIAN is implemented in Maple (Maplesoft,

Waterloo, ON) and Julia (The Julia Project [62]). We refer the reader to [36] for additional

mathematical details on SIAN.

We use the Julia implementation of the SIAN algorithm with the default probability of cor-

rectness, p = 0.99 (available at https://github.com/alexeyovchinnikov/SIAN-Julia). Further-

more, we set the additional p_mod parameter to 229−3 to enable the algorithm to run faster

[63]. Any parameters that are not globally structurally identifiable are fixed to nominal values

informed by the available literature following identifiability analysis. While these parameters

may convey meaningful biological information, nonidentifiability implies that it is mathemati-

cally impossible to identify them from the available data. Next, global sensitivity analysis is

used to further reduce the set of identifiable parameters.
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1.4 Variance-based global sensitivity analysis

Parametric sensitivity analysis quantifies the contributions of the model parameters to varia-

tions in the model output [19, 37]. Specifically, global sensitivity analysis aims to quantify the

effects of the model parameters on the output quantity of interest over the entire parameter

space [19, 37] and is well suited for studying parameters in nonlinear models [32, 37]. This

work applies Sobol’s method [53] for variance-based sensitivity analysis because it provides a

quantitative output to rank parameters and leverages the prior distributions defined for the

parameters. Sobol sensitivity analysis decomposes the variance of model outputs based on con-

tributions from individual parameters and interactions between parameters [37, 53]. The total

variance of the output quantity f ðθÞ is

D ¼
Z

Rp
f 2ðθÞdθ � f 2

0
; ð4Þ

where f0 ≔
R

Rp f ðθÞdθ is the mean of the output. The following definition for the analysis of

variance (ANOVA) representation provides an expansion for the output variance in a high-

dimensional representation (HDMR), also known as a Sobol representation [19, 53].

Definition 2 (Analysis of variance (ANOVA) representation [19, 37, 53]) The ANOVA
expansion states that the output function f ðθÞ, for θ 2 Rp defined as θ = [θ1, θ2, . . ., θp]>, can be
represented as

f ðθÞ ¼
X

i

fiðyiÞ þ
X

i<j

fi;jðyi; yjÞ þ . . .þ f1;2;...;pðy1; y2; . . . ; ypÞ;

where the zero-, first-, and second-order terms are defined recursively as

f0 ¼

Z

Rp
f ðθÞdθ

fiðyiÞ ¼
Z

Rp
f ðθÞdy�i � f0

fi;jðyi; yjÞ ¼
Z

Rp
f ðθÞdy�fi;jg � fiðyiÞ � fjðyjÞ � f0;

respectively. The recursion is extended further for increasing numbers of parameters to compute
higher-order terms. This definition assumes that the contribution terms are orthogonal (see Def 1
in [53]), and the notation�i refers to the set excluding index i, for example: dy�i ¼ fdy1, . . .,

dyi� 1, dyiþ1, . . ., dypg.
The ANOVA representation (see Def 2) expands the total variance, Eq (4), as

D ¼
Xp

i¼1

Di þ
X

1�i<j�p

Di;j; ð5Þ

where the variances Di and Di,j are

Di ¼

Z

Rp
f 2

i ðyiÞdyi and Di;j ¼

Z Z

Rp
f 2

i;jðyi; yjÞdyidyj:

Note that it is possible to compute higher-order variances by increasing the dimension of the

integral and following the recursion in Def 2, however we limit our discussion to second-order

or lower variances for brevity. The first and second-order Sobol sensitivity indices are then
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defined using the variance terms in Eq (5) as

Si ¼
Di

D
and Si;j ¼

Di;j

D
:

The first-order sensitivity index Si quantifies the fraction of the total variance attributed to

parameter θi, and the second-order sensitivity index Si,j quantifies this for the interactions

between θi and θj. Lastly, the total-order sensitivity is

STi ¼ Si þ
Xp

j¼1

Si;j;

which quantifies all contributions from parameter θi on the output variance.

This work uses the UQLab toolbox [64, 65] to perform Sobol sensitivity analysis in Matlab

(MathWorks, Natick, MA) and the DifferentialEquations.jl package [66] for anal-

ysis in Julia. Both softwares use Monte Carlo estimators to compute Sobol sensitivity indices

from parameter samples (see [19, 37] and references therein for details). In Matlab, unless oth-

erwise specified, first and total sensitivity indices are computed using Sobol pseudo-random

sampling (e.g. SOpts.Sobol.Sampling = ‘sobol’) and the default estimator

(SOpts.Sobol.Sampling = ‘janon’), see [65] for details. Additionally, the number

of samples, SOpts.Sobol.SampleSize, is set specifically for each problem in Section 2.

In Julia, we perform similar Sobol sampling with QuasiMonteCarlo.jl (https://github.

com/SciML/QuasiMonteCarlo.jl) with the SobolSample() sampler, and the default esti-

mator for the sensitivity indices, e.g. Ei_estimator set to :jansen1999.

Sobol sensitivity analysis computes sensitivity indices for scalar output quantities rather

than for an entire trajectory. Thus, we define quantities of interest (QoI) for each problem that

capture the biologically relevant information in a trajectory, such as the steady state value of a

certain biochemical species. Using the computed sensitivity indices for the given QoI, we rank

the parameters and aim to find the most influential parameters by selecting those with the

greatest sensitivity indices. The critical challenge is selecting a cutoff point that separates the

influential parameters from the complete set. To do so, we chose a threshold corresponding to

a pronounced decline in the sensitivity index value or a logical value of that index, for example,

Si� 0.1. All parameters with sensitivity indices above the cutoff value are left free for estima-

tion, and the remaining parameters are fixed to their nominal values. The following section

recasts the parameter estimation problem (Problem 1) in the Bayesian framework to estimate

the free, influential parameters.

1.5 Bayesian parameter estimation

Bayesian parameter estimation solves Problem 1 by considering the model parameters, θ, as

random variables that do not have a pre-specified parametric distribution. Note that paramet-

ric distributions have probability density functions that are fully described by a closed-form

parametric equation, such as a normal distribution that is characterized by its mean and vari-

ance. The approach characterizes the posterior probability distribution for the parameters

pðθjYnÞ conditioned on a given dataset Yn and provides the best guess probability distribution

for θ given the data. We can use Bayes’ rule to express the posterior distribution as

pðθjYnÞ / pðθÞLðθ; YnÞ; ð6Þ

where pðθÞ is known as the prior distribution, and Lðθ; YnÞ is the likelihood function (see

panel B2 in Fig 1 for a visual representation of Bayes’ rule).
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Intuitively, Bayes’ rule updates our best guess about the distribution of the model parame-

ters as new data is being incorporated. The prior distribution pðθÞ represents the best guess
before any data are collected and encodes any assumptions on the parameters. For instance,

the prior may convey the physiological ranges for parameter values or may weigh known val-

ues more heavily (see Section 1.8). The likelihood function Lðθ; YnÞ ¼ pðYnjθÞ updates our

belief state by measuring the misfit between the data and model predictions with a specific

parameter set. Parameter sets that are more likely to occur will produce model predictions that

better match the data and thus have higher likelihood probabilities. For example, although the

prior in panel B2 in Fig 1 places more probability on smaller values of θ, the likelihood in

panel B2 in Fig 1 places more probability mass towards larger values. It is important to note

that evaluation of the likelihood function requires model simulations. For example, assuming

Gaussian measurement noise with zero mean, a possible likelihood function is

Lðθ; YnÞ ¼
1

ð2pÞ
m
2 jΓj

1
2

Yn

k¼1

exp �
1

2
jjyk � Hx̂kjj

2

Γ

� �

; ð7Þ

where x̂k is the predicted state at time tk with the parameters θ, |�| denotes the matrix determi-

nant, and the C-weighted norm is defined as jjajj2C≔ a>C� 1a, where C is a symmetric positive

definite matrix. Lastly, the posterior distribution conveys the best guess after collecting and

incorporating the data Yn into the statistical model and can be further refined if more data are

included. In panel B2 in Fig 1, the posterior illustrates how the likelihood function re-weights

the prior to update our belief state.
A fundamental difficulty in Bayesian parameter estimation is that Bayes’ rule only enables

evaluating the posterior distribution at specific points in parameter space. This is in contrast

to, for example, the formula for a Gaussian distribution (with mean μ and standard deviation

σ)

pðxÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp

� ðx � mÞ2

s2

� �

that can be analytically evaluated at all values of x. Therefore, parameter samples are drawn

from the posterior help to characterize the distribution over the entire parameter space. Mar-

kov chain Monte Carlo (MCMC) algorithms enable sampling from arbitrary distributions,

such as the posterior distribution (see Section 1.9 for details). Before performing Bayesian esti-

mation the next section introduces the constrained interval unscented Kalman filter Markov

chain Monte Carlo (CIUKF-MCMC) algorithm that accounts for uncertainty in the model

and the data.

1.6 Constrained interval unscented Kalman filter Markov chain Monte

Carlo (CIUKF-MCMC)

Complete uncertainty quantification of dynamical models in systems biology must account for

uncertainty in the model form, parameters and noisy data. In [26], Galioto and Gorodetsky

suggest adding a process noise term to Eq (1) to account for model form uncertainty in the sys-

tem. Following this suggestion, the model in Eqs (1–2) is recast as a discrete time stochastic

process

xk ¼ cðxk� 1; θf Þ þ ξk; ξk � N ð0;SðθSÞÞ ð8Þ

yk ¼ Hxk þ ηk; ηk � N ð0;ΓðθGÞÞ; ð9Þ
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where k is the discrete time index for tk, and ψ(�;�) is the discrete state propagator that evolves

the state from time tk−1 to time tk. Additionally, ξk and ηk are Gaussian process and measure-

ment noise (stochastic noise processes) with covariances SðθSÞ and ΓðθGÞ, respectively. The

discrete state propagator ψ(�;�) in Eq (8) is the discrete operator that evolves the state according

to the differential equation in Eq (1), and, for example, could be a forward-Euler finite-differ-

ence approximation. This work deploys the Matlab function ode15s() to construct a state

propagator that guarantees the necessary stability to handle systems biology models.

Bayesian estimation of the model parameters, θ ¼ ½θf ; θS; θG�
>

, of the extended system in

Eqs (8)–(9) accounts for uncertainty in the data, model, and parameters. The introduction of

process noise increases the dimension of the parameters to estimate by requiring estimates for

θS. Further, the addition of stochastic process noise means the state variables are random vari-

ables; Bayes’ rule for this system becomes

pðθ;XnjYnÞ / pðθÞLðθ; Yn;XnÞ; ð10Þ

to account for the additional uncertainty in the states. The key step of the UKF-MCMC algo-

rithm is the marginalization of uncertainty in the states out of Eq (11) to enable estimation of

the parameter posterior distribution [26].

The UKF-MCMC algorithm begins by constructing an expression for the joint likelihood

of the states and the parameters, Lðθ; Yn;XnÞ. Two probability distributions implied by the

stochastic system in Eqs (8)–(9) are needed to define an expression for the joint likelihood.

First, the probability of the current state xk given the past state xk−1 is

pðxkjxk� 1; θf ;SðθSÞÞ ¼
exp �

1

2
jjxk � cðxk� 1; θf Þjj

2

S

� �

ð2pÞ
d
2jSðθSÞj

1
2

;
ð11Þ

where the norm kxk � cðxk� 1; θf Þk
2

S
quantifies the misfit between the past state and the pre-

dicted current state. Next, the probability of a measurement yk given xk is

p ykjxk;ΓðθGÞ
� �

¼

exp �
1

2
jjyk � Hxkjj

2

Γ

� �

ð2pÞ
m
2 jΓðθGÞj

1
2

;
ð12Þ

where the norm kyk � Hxkk
2

Γ quantifies the residual between the measurement and the true

states. By combining Eqs (11) and (12) the joint likelihood is

L θ; Yn;X nð Þ ¼
Yn

k¼1

exp �
1

2
jjxk � cðxk� 1; θf Þjj

2

S

� �

ð2pÞ
d
2jSðθSÞj

1
2

�

exp �
1

2
jjyk � Hxkjj

2

Γ

� �

ð2pÞ
m
2 jΓðθGÞj

1
2

2

6
6
4

3

7
7
5: ð13Þ

Marginalizing out the uncertain states by integration yields the likelihood for the uncertain

parameters

Lðθ; YnÞ ¼

Z

Rd
�0

� � �

Z

Rd
�0

Lðθ; Yn;XnÞdx1 . . . dxn: ð14Þ

However, there is no obvious computationally tractable approach to integrate over a set of

uncertain states directly. Theorem 1, stated below, provides a recursive algorithm to marginal-

ize the states out of the likelihood, e.g., to perform the integration in Eq (14). Although
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Theorem 1 assumes that the initial condition is uncertain (and it is therefore estimated), we do

not use that estimate in this work, as we start with a known initial condition x0.

Theorem 1 (Marginal likelihood (Theorem 1 of [26] and 12.1 of [67])) Let Yk denote the
set of all observations up to time tk as defined in Section 1.2. Let the initial condition be uncertain
with distribution pðx0jθÞ. Then the marginal likelihood is defined recursively in three stages:
for k = 1, 2, . . .

1. Predict the new state from previous data

p xkþ1jθ;Yk

� �
¼

Z

Rd
�0

p xkjθ;Ykð Þ
exp � 1

2
jjxk � cðxk� 1; θf Þjj

2

S

� �

ð2pÞ
d
2jSðθSÞj

1
2

dxk;

2. update the prediction with the current data

p xkþ1jθ;Ykþ1

� �
¼ p xkþ1jθ;Yk

� � exp � 1

2
jjyk � Hxkjj

2

Γ

� �

ð2pÞ
m
2 jΓðθGÞj

1
2

;

3. and marginalize out uncertainty in the states

Lkþ1 θjYkþ1

� �
¼

Z

Rd
�0

p xkþ1jθ;Yk

� � exp � 1

2
jjyk � Hxkjj

2

Γ

� �

ð2pÞ
m
2 jΓðθGÞj

1
2

dxkþ1:

The recursion defined in Theorem 1 closely resembles a Bayesian filter [67]; thus, it is evalu-

ated with Kalman filtering algorithms [26]. For linear models, the standard linear Gaussian

Kalman filter can be used to evaluate the recursion (see Algorithm 2 in [26]). However, exact

solutions to the recursion are not possible if the model or measurement processes are nonlin-

ear. Therefore, approximations such as extended Kalman filters (EKF), unscented Kalman fil-

ters (UKF), or ensemble Kalman filters (EnKF) [26, 67] must be employed. The original

implementations of the UKF-MCMC algorithm use the UKF [68] for this approximation

because the UKF is generally stable and can handle nonlinear models and measurement

processes [26, 51]. However, the UKF is not suitable for systems biology models because it

ignores constraints on the state variables, such as the nonnegativity of chemical concentra-

tions. Section 1.7 describes the constrained interval unscented Kalman filter (CIUKF) [54]

implemented in this work to enforce state constraints during filtering. Thus, we refer to the

UKF-MCMC from [26] that uses the constrained interval unscented Kalman filter [54] as

CIUKF-MCMC.

1.7 Constrained interval unscented Kalman filter (CIUKF)

We implement the constrained interval Unscented Kalman filter (CIUKF) [54, 69] algorithm

to enforce all state constraints in CIUKF-MCMC. This algorithm assumes that the state is sub-

ject to an interval constraint xLB� x� xUB. Since we only seek to enforce nonnegativity in sys-

tems biology, the interval constraint is 0� x�1. We choose the CIUKF over alternative

state constrained Kalman filters [54, 70] because it enforces constraints in both the predict and

update steps of the algorithm and retains the same structure as the standard UKF [67]. We out-

line the steps of the CIUKF below.
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The CIUKF algorithm predicts the state xk + 1 from all preceding measurement data Yn.

Following the structure of the linear Kalman filter, CIUKF is a recursive algorithm that iterates

over all data and performs prediction and update steps at each time point [67]. For simplicity,

we outline a single iteration of the CIUKF that moves the state forward in time from xk to xk

+ 1. Let Cxx
k be the state covariance matrix at time tk, SðθSÞ be the process noise covariance

matrix, ΓðθGÞ be the measurement noise covariance matrix, and θf be the model parameters.

There are two steps to the CIUKF, prediction, and update.

First, the prediction step uses the the interval constrained unscented transform [54, 69] (the

state-constrained equivalent to the unscented transform [68, 71]) to predict the state and its

covariance matrix at the next time point after propagation by the nonlinear model, e.g., Eq (8).

The interval constrained unscented transform constructs a set of sigma points that capture the

covariance Cxx
k at time tk. Each sigma point is propagated in time by the nonlinear model to

approximate the new state and its covariance at the next time tk+ 1. The set of 2d + 1 sigma

points, X , is given by

X ð0Þk ¼ xk ð15aÞ

X ðiÞk ¼ xk þ xi½
ffiffiffiffiffiffiffi
Cxx
k

p
�i ð15bÞ

X ðiþdÞk ¼ xk � xiþd½
ffiffiffiffiffiffiffi
Cxx
k

p
�i; ð15cÞ

where ξi is the ith sigma point coefficient, [A]i is the ith column of A,
ffiffiffiffi
A
p

is the matrix square

root of A, and i = 1, . . .d. The sigma point coefficients ξi control the distances of the sigma

points around the initial state xk and are chosen to ensure that no sigma points violate the state

constraints. They are

xi ¼ minð½X�iÞ ð16Þ

Xði; jÞ ≔

ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

if Sði; jÞ ¼ 0

min
ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

;
xLB � xk
Sði; jÞ

� �

if Sði; jÞ < 0

min
ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

;
xUB � xk
Sði; jÞ

� �

if Sði; jÞ > 0

8
>>>>>>>><

>>>>>>>>:

ð17Þ

S ≔ ½
ffiffiffiffiffiffiffi
Cxx
k

p
�

ffiffiffiffiffiffiffi
Cxx
k

p
�; ð18Þ

where λ is a parameter of the algorithm. Alternatively, in the standard unscented transform,

the coefficients are all equal to
ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

[68, 71]. Next, a set of weights, wi, are assigned to each
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sigma point as

w0 ¼ b ð19aÞ

wi ¼ axi þ b ð19bÞ

a ≔
2l � 1

2ðd þ lÞð
Pd

i¼1
xi � ð2d þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

Þ
ð19cÞ

b ≔
1

2ðd þ lÞ
�

2l � 1

2
ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

ð
Pd

i¼1
xi � ð2d þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
d þ l
p

Þ
; ð19dÞ

where ξi are as defined in Eqs (16)–(18). Importantly the sum of the weights equals one,
P2d

i¼0
wi ¼ 1. The prediction step then uses the nonlinear model, Eq (8), to propagate each

sigma point forward in time

X̂ ðiÞ
k ¼ cðX

ðiÞ
k ; θf Þ ð20Þ

for i = 0, . . ., 2d. The prediction mean x�k and covariance C�xxk are then respectively computed

as

x�k ¼
X2n

i¼0

wiX̂
ðiÞ
k ð21Þ

Cxx�
k ¼

X2n

i¼0

wi½X̂
ðiÞ
k � x�k�½X̂

ðiÞ
k � x�k�

>
þ SðθSÞ: ð22Þ

Eqs (15)–(22) describe the constrained interval unscented transform that approximates the

mean and covariance of the state after propagation by the nonlinear model. The prediction

mean, Eq (21), and covariance, Eq (22), provide the predicted state and its covariance, respec-

tively, that are then updated using the available data yk.

The update step begins by constructing a new set of sigma points centered around x�k,
where

X �ð0Þk ¼ x�k ð23aÞ

X �ðiÞk ¼ x�k þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ l
p

� ffiffiffiffiffiffiffiffi

Cxx�
k

q �

i
ð23bÞ

X �ðiþdÞk ¼ x�k �
ffiffiffiffiffiffiffiffiffiffiffi
nþ l
p

� ffiffiffiffiffiffiffiffi

Cxx�
k

q �

i

: ð23cÞ

Additionally, a new set of weights are

wðmÞ0 ¼
l

d þ l
; wðmÞi ¼

1

2ðd þ lÞ
;

wðcÞ0 ¼
l

d þ l
þ ð1 � a2 þ bÞ; wðcÞi ¼

1

2ðd þ lÞ
;

where fwðmÞi g are used to compute the mean and fwðcÞi g are used to compute the covariance
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matrix. These weights are indeed equal for all sigma points and are equivalent to those used in

the standard UKF. Next, the measurement function is applied to each sigma point, yielding a

set of predicted measurements

Y�ðiÞk ¼ hðX �ðiÞk ; θhÞ;

where the measurement function h(�;�) is possibly nonlinear with parameters θh. Then the

mean and covariance matrices of the predicted measurements are computed with the weighted

sums,

y�k ¼
X2n

i¼0

wðmÞi Y�ðiÞk

Cyy�
k ¼

X2n

i¼0

wðcÞi

�

Y�ðiÞk � y�k

��

Y�ðiÞk � y�k

�>

þ Γ

Cxy�
k ¼

X2n

i¼0

wðcÞi

�

X �ðiÞk � x�k

��

Y�ðiÞk � y�k

�>

;

and the Kalman gain is

Kk ¼ Cxy�
k

�

Cyy�
k

�� 1

:

Lastly, the updated state xk + 1 is found by solving the following constrained nonlinear optimi-

zation problem,

xkþ1 ¼ arg min
x

f ðxÞ ð24aÞ

subject to xLB � x � xUB; ð24bÞ

where the objective function is

f ðxÞ ¼ ½yk � hðx; θhÞ�Γ
� 1½yk � hðx; θhÞ�

>
þ ½xk � x�k�ðC

xx�
k Þ

� 1
½xk � x�k�

>
: ð25Þ

This optimization problem can be solved in Matlab using the fmincon() optimizer. Addi-

tionally, the updated covariance matrix is given by

Cxx
kþ1
¼ Cxx�

k � KkC
yy�
k K>k :

In offline state estimation problems, such as CIUKF-MCMC, this filter is iterated over all avail-

able data, e.g. from time t0 to time tn if n data points are available [26, 51].

In practice, the CIUKF algorithm is substantially more compute-intensive than the stan-

dard UKF [54] because the CIUKF update step involves solving a constrained nonlinear opti-

mization problem, e.g., Eq (24). However, the objective function in Eq (25) can be simplified

given the linear measurement assumptions made in Section 1.2. The simplified objective func-

tion becomes

f ðxÞ ¼ ½yk � Hx�Γ� 1½yk � Hx�> þ ½xk � x�k�ðC
xx�
k Þ

� 1
½xk � x�k�

>
: ð26Þ

Expanding this and recognizing that minimizing f(x) = y(x)+ b is equivalent to minimizing f
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(x) = y(x), gives

f �ðxÞ ¼ x>
�

H>Γ� 1Hþ ðCxx�
k Þ

� 1

�

x � 2

�

y>k Γ� 1Hþ x�kC
xx�
k

�

x; ð27Þ

which is equivalent objective function to Eq (26) and is a quadratic form. Thus, the con-

strained optimization problem in Eq (24) becomes a quadratic program when using Eq (27) as

the objective function. We use the quadprog() function in Matlab to solve the quadratic

program with the ‘Algorithm’ option set to ‘trust-region-reflective’. We

keep all other settings for the solver as defaults. As expected, solving the quadratic program is

substantially more efficient than solving the general nonlinear problem.

Throughout this work, we set λ = 1, α = 1 × 10−3, and β = 1 for the CIUKF. Furthermore

the Cholesky decomposition, A = L L>, is used to compute the matrix square roots in Eqs (15)

and (23), because covariance matrices are always positive definite. Additionally, we compute

all covariance matrices as P� ¼ 1

2
ðPþ P>Þ þ 2 I, where � = 1 × 10−10, to ensure all they remain

symmetric positive definite. The next section discusses how to choose prior distributions for

Bayesian estimation.

1.8 Prior distribution

The prior distribution, pðθÞ encodes our belief state about parameters before collecting data

and performing Bayesian estimation [19, 27]. The form of the prior distribution allows us to

incorporate varying levels of prior knowledge into our models. If the values of a parameter are

known, informative priors can be used to shift to the possible values for that parameter

towards the known values [27]; for example, a log-normal prior distribution can be used to

center the prior around experimental measurements of a parameter [72]. However, the Bayes-

ian inference literature often warns that informative priors should only be used in combina-

tion with good information on the parameter values [27] as it can take a large amount of data

to overcome a “bad” prior. Alternatively, noninformative or weakly-informative priors reflect

a lack of good prior knowledge about the parameters. For example, if we only know a parame-

ter’s physiological ranges, we could construct a uniform prior that states there is an equal prob-

ability of any parameter value within this range. Noninformative or weakly-informative priors

rely on the data to provide information on the parameters, so the choice of such priors is often

safer when prior knowledge of the parameters is limited [27].

In applying the CIUKF-MCMC algorithm, this work constructs prior distributions for two

sets of parameters, the biological model parameters, and the noise covariance parameters. We

choose to use uniform priors for the biological model parameters, θf, to replicate the typical

modeling setting where only the possible ranges for model parameters are known. S1, S2 and

S4 Tables list the upper and lower bounds of all biological model parameters. Furthermore, we

follow the choices in [26] and use right-half-normal priors for the measurement and process

noise covariance parameters, θS and θG, respectively (this is further motivated in Section 7.1 of

[73]). The choice of covariance and upper bound of these priors was found to significantly

affect the convergence of MCMC sampling. Thus, the prior distributions for the noise covari-

ance parameters were scaled to match the respective state variable. For example, the prior for a

measurement noise covariance θSi that corresponds to measurements fyi
1
; yi

2
; . . . ; ying would

be a right-half-normal distribution with mean zero and standard deviation equal to a fraction

of the standard deviation σyi of the data. The prior is then ySi � Right-Half-Normalð0; bsxiÞ

truncated to ½0; sxi �
>

, where b< 1 and sxi is the standard deviation of the state xi. We chose

b ¼ 1

3
unless otherwise specified. These choices are motivated by the observation that
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measurement noise and process noise covariances will always be smaller than or equal to the

covariance of the available data if there is any meaningful information in the data. The next

section introduces MCMC sampling to characterize posterior distributions that use CIUKF to

approximate the likelihood function.

1.9 Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) algorithms enable sampling from arbitrary probability

distributions [19, 74–76]. The key idea of MCMC is to construct a Markov chain of samples

θ1
; θ2

; . . . ; θN
whose distribution converges to the target distribution, pðθÞ, that we wish to

sample [27, 75]. We apply MCMC sampling to Bayesian parameter estimation by constructing

a Markov chain where the target distribution is the posterior distribution, that is

pðθÞ ¼ pðθjYnÞ. In this work, we use two MCMC sampling algorithms, delayed rejection

adaptive Metropolis (DRAM) [58] and affine invariant ensemble sampler (AIES) [59]. These

samplers build upon the classical Metropolis-Hastings algorithm [77, 78] that we introduce in

Section 1.9.1. We outline DRAM in Section 1.9.2 and AIES Section 1.9.3. Lastly, we discuss

convergence assessment with the integrated autocorrelation time [59] in Section 1.9.5. We

focus these discussions on the practical aspects of MCMC and refer the reader to [19, 27, 75]

for additional theoretical details.

1.9.1 Metropolis-Hastings. The Metropolis-Hastings (MH) algorithm [77, 78] constructs

a Markov chain whose probability distribution is guaranteed to converge to the target distribu-

tion and forms the foundation for a large family of MCMC samplers [27, 75]. The MH algo-

rithm consists of two steps, a proposal and an accept-reject step, repeated to draw the set of

samples θ1
; θ2

; . . . ; θN
. The Markov chain starts with an initial sample θ0

that the user

chooses. We outline one iteration of the MH algorithm moving from step i to step i+ 1.

The first step in Metropolis-Hastings, called the proposal step, is to propose a new sample

θ�. We draw θ� from the proposal distribution qðθ�jθi
Þ. The proposal distribution is specific to

each MCMC algorithm, but, for example, could be a normal distribution centered around the

previous sample such that θ� � N ðθi
; s2IÞ where σ is specified (this is random walk Metropo-

lis (RWM) [75]).

Next, the accept-reject step decides if the proposal is accepted, set θiþ1
¼ θ�, or rejected, set

θiþ1
¼ θi

. In the MH algorithm, this decision is probabilistic, e.g., the proposal is accepted or

rejected with acceptance probability aðθ�jθi
Þ. The acceptance probability is

aðθ�jθi
Þ ¼ min 1;

pðθ�Þ
pðθi
Þ

qðθi
jθ�Þ

qðθ�jθi
Þ

� �

; ð28Þ

which guarantees that the stationary distribution of the samples (the distribution that the sam-

ples converge to in the infinite sample limit) equals the target distribution [27, 75]. These

steps, propose and accept-reject, are repeated until the distribution of the set of samples has

converged to its stationary distribution. Although convergence is guaranteed in the infinite

sample limit [27, 75], assessing convergence in practice is nontrivial. We chose to use an

approach from [59] that uses the integrated autocorrelation time to asses convergence as out-

lined in Section 1.9.5 (see [19, 27, 75] for additional approaches).

1.9.2 Delayed rejection adaptive Metropolis (DRAM). The delayed rejection adaptive

Metropolis (DRAM) algorithm is based on the random walk Metropolis algorithm and com-

bines delayed rejection with adaptive Metropolis [58]. DRAM closely follows the Metropolis-

Hastings algorithm but specifically uses a Gaussian proposal distribution such that

θ� � N ðθi
;CÞ, where C is the covariance matrix. Delayed rejection (DR) [58, 79] and adaptive
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Metropolis (AM) [58, 80] are two modifications to the random walk Metropolis algorithm that

help to improve the convergence rate of the Markov chain.

First, delayed rejection adds an additional round of Metropolis-Hastings (propose and

accept-reject) if the first proposal is rejected. That is, if θ� is rejected a new proposal, θ�2 �
q2ðθ

�2
jθ�; θi

Þ is drawn, where q2(�) is the new proposal distribution. The new proposal distri-

bution is also Gaussian, however the covariance is scaled to a fraction of the original proposal

covariance, e.g. q2ðθ
�2
jθ�; θi

Þ ¼ N ðθi
; gCÞ, where γ< 1 and is a tuning parameter of the algo-

rithm [58]. Thus the second proposal is closer to the previous point and is more likely to be

accepted. DRAM evaluates the new proposal with a Metropolis-Hastings accept-reject step

with the acceptance probability

a2ðθ
�2
jθ�; θi

Þ ¼ min 1;
pðθ�2Þ
pðθi
Þ

qðθ�jθ�2Þ
qðθ�jθi

Þ

ð1 � aðθ�jθ�2ÞÞ
ð1 � aðθ�jθi

ÞÞ

� �

;

where α(�|�0) is as defined in Eq (28). Although most implementations impose a single DR step

[19], delayed rejection can be repeated more than once, where the proposal distribution and

acceptance probability are modified accordingly at additional each round.

Adaptive Metropolis acts separately from delayed rejection and aims to move the proposal

distribution closer to the target distribution [58], by replacing the covariance matrix of the

proposal, C, with the covariance matrix of the samples. In practice, adaptation begins after a

set number of i0 samples have been drawn and updates the covariance matrix at every step as

Ci ¼
C0 i � i0
spCov½θ1; . . . ; θi� þ sp�I i > i0;

(

where C0 is the initial covariance matrix, sp is an algorithm tuning parameter that is often set

to sp = 2.382/p [58, 74] where p is the dimension of θ, and � is a small positive number.

We implement the DRAM algorithm with a single round of delayed rejection following

[26] with γ = 0.01, i0 = 200, and � = 1 × 10−10. Furthermore, the initial covariance matrix C0 is

tuned to accept between 20–40% of proposals. We refer the reader to [19, 58] for further details

on DRAM and tuning the initial covariance matrix. Additionally, each Markov chain is initial-

ized to the MAP point by using fmincon() (default options except: ‘UseParallel’ set

to true and ‘MaxFunctionEvaluations’ set to 10, 000) in Matlab to minimize the

negative log-posterior (equivalent to maximizing the posterior) as in [26].

1.9.3 Affine invariant ensemble sampler (AIES). While random walk Metropolis-based

algorithms such as DRAM can adequately sample complex posterior distributions, these meth-

ods will show very slow convergence when the target distribution is highly anisotropic [59].

The posterior distribution with CIUKF-MCMC in systems biology are anisotropic because the

scales of model parameters can vary by several orders of magnitude, and the noise covariance

parameters often have different scaling than the model parameters. Fortunately, AIES provides

an algorithm to sample such anisotropic distributions [59] effectively. The motivation for

affine invariance is that anisotropic distributions can be transformed to isotropic distributions

with an affine transformation. Thus an algorithm that is invariant to such transformations will

effectively sample an isotropic distribution when sampling an anisotropic distribution [59].

The AIES algorithm differs from DRAM and random walk Metropolis because it leverages

an ensemble of Markov chains rather than a single chain. Each chain in the ensemble of Ne
Markov chains is called a walker, and we denote the set of walkers at step i with fθi

1
; . . . ; θi

Neg

where the subscript is the walker index and the superscript is the step-index. Note that the

number of walkers must be larger than the dimension of θ that is Ne> p, for θ 2 Rp
. At the
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end of N steps, a set of Ne Markov chains with N samples is obtained. The first chain in the

ensemble is, for example, θ1

1
; θ2

1
; . . . ; θN

1
. Note that the total ensemble will have N�Ne samples.

Each step of the AIES algorithm involves a proposal and a Metropolis-Hastings update for

each chain in the ensemble. One iteration of these steps to move from i to i + 1 for a single

walker, θi
n, is outlined below and these steps are repeated to update the entire ensemble.

First, a proposal for the current walker θi
n is chosen using the stretch move [59] that ensures

affine invariance of the sampler. The stretch move proposes a new point that lies along the line

θ�n ¼ θi
k þ Z � ðθ

i
n � θi

kÞ

that connects the current walker θi
n and another walker in θi

k randomly chosen from the

ensemble. Here, Z is a random variable that is sampled following

gðzÞ ¼
1
ffiffiffi
z
p if

1

a
� z � a

0 else;

8
<

:

where a> 1 is an algorithm tuning parameter that the user must specify.

Second, the proposal is accepted or rejected using a Metropolis-Hastings-like accept-reject

step. The acceptance probability is

aðθ�njθ
i
nÞ ¼ min 1;Zp� 1

pðθ�nÞ
pðθi

nÞ

� �

;

where Z is as defined above, and p is the dimension of θ. This formulation of the acceptance

probability guarantees convergence to the target distribution [59].

We use the Matlab implementation of the AIES algorithm [81] from the UQLab tool-

box [64]. Unless otherwise specified, the ensemble size is Ne = 150 because we observed

improved sampling with a large ensemble. To accelerate sampling, the likelihood is evaluated

for each ensemble member in parallel using a parallel for loop (e.g., parfor in Matlab) with

at most 24 parallel threads. Additionally, default value of a = 2 is used for the stretch move tun-

ing parameter. Lastly, each Markov chain in the ensemble is initialized to a random point

drawn uniformly over the support of the prior.

1.9.4 Markov chain burn-in. In MCMC, Markov chains (or ensembles of chains) often

display an initial transient, called burn-in, before converging to their stationary distributions

[19, 27, 76]. Importantly, these samples during burn-in are not distributed according to the

stationary distribution and should therefore be excluded from the final set of samples. Com-

mon practice in the MCMC literature is to simply discard these initial samples to remove the

effects of burn-in [19, 27]. The choice of the burn-in length is often nontrivial and is best

informed by an analysis of the Markov chain [76]. Unless otherwise specified the integrated

autocorrelation time (described below) dictates the number of samples to discard as burn-in

in this work. Specifically, we compute the integrated autocorrelation time after collecting

many samples and set the burn-in length to 5–10 times the computed value.

1.9.5 Convergence assessment with the integrated autocorrelation time. A key chal-

lenge in Markov chain Monte Carlo sampling is determining the appropriate number of sam-

ples N to collect. In this work, we use the integrated autocorrelation time [59, 76] to determine

when the Markov chain has approximately converged to its stationary distribution. We outline

the theory and motivation behind the integrated autocorrelation time for a single Markov

chain and refer the reader to [59] for a discussion of ensemble methods. The use of the inte-

grated autocorrelation time is motivated by the typical use of MCMC sampling to compute an
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expectation

E½x� ¼
Z

xpðxÞdx:

Given a Markov chain of length N, we can estimate the expectation with the Monte Carlo esti-

mator

m̂ ¼
1

N

XN

i¼1

xi:

In general it is common to consider the variance of m̂, varðm̂Þ, as the estimation error [59].

This variance is given by

varðm̂Þ ¼
varðxÞ
N=ts

;

where the integrated autocorrelation time τs is given by

ts ¼
X1

T¼� 1

CsðTÞ
Csð0Þ

:

Here, the autocovariance function Cs(T) with lag T 2 N is given by

CsðTÞ ¼ lim
t�!1

cov½xt�þT ; xT�;

where t� 2 N. Thus, the Monte Carlo estimation error is proportional to integrated autocorre-

lation time for a fixed chain length. The integrated autocorrelation time can be interpreted as

the time it takes for the samples in a Markov chain to become uncorrelated [76]. Additionally,

the effective number of samples, Neff, can be defined using the integrated autocorrelation time

as, Neff = N/τs.
In this work, we use the integrated autocorrelation time for two purposes. First, the compu-

tation of the integrated autocorrelation time is used to choose the correct burn-in length. We

compute the integrated autocorrelation time after collecting many samples and then discard

between 5–10 times τs as burn-in. Second, after discarding the initial samples, the integrated

autocorrelation time helps to determine if enough samples have been collected, e.g., Neff is

large. Should the effective sample size be small, the MCMC sampler is run longer to collect

more samples. We compute the integrated autocorrelation time using a Matlab function asso-

ciated with [82] (available at https://www.physik.hu-berlin.de/de/com/UWerr_fft.m) with

default algorithm parameters. We compute τs for each parameter and take the maximum of

these values. For an ensemble, we compute the mean τs for the walkers of each parameter and

take the maximum value of the means. After completing MCMC and evaluating the chains, we

leverage the posterior samples to quantify uncertainty in model predictions.

1.10 Ensemble simulation and output uncertainty analysis

Markov chain Monte Carlo sampling provides a set of samples, fθ̂1; . . . θ̂ng, that converge in

distribution to the posterior distribution (e.g. panel B3 in Fig 1). One is often interested in

how uncertainty in the parameter estimates, which is conveyed by the posterior distribution,

propagates to uncertainty in the model predictions. Fortunately, an ensemble of simulations

(see panel B1 in Fig 1) distributed according to the posterior can be run using the posterior

samples. This approach to uncertainty propagation is known as sampling-based uncertainty

propagation [19] and is feasible because the simulation of dynamical systems biology models is

computationally efficient. We refer the reader to [40, 83] for examples of sampling-based

uncertainty propagation in systems biology.
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Each simulation is run by solving the differential equation with the ode15s() integrator

in Matlab with a unique sample from fθ̂1; . . . θ̂ng for the parameters. We use default tolerances

for the integrator and supply the Jacobian matrix (specify the ‘Jacobian’ option) to

improve computations. We compute the Jacobian by hand and evaluate it with the same

parameter as the differential equation.

Following ensemble simulation, statistical analyses of the ensemble of predicted trajectories

and any relevant quantities of interest (QoI) can be performed. For example, panel B2 in Fig 1

highlights the uncertainty in the trajectory with 95% credible intervals to show the region

where 95% of the trajectories fall. Additionally, we compute the statistics of relevant QoIs,

such as the steady state values or limit cycle period, from the ensemble. The next section dis-

cusses how to choose single point estimates that best represents the estimated parameters.

1.11 Parameter point estimates from posterior samples

One often wants to compute a point estimate for each of the parameters in addition to charac-

terizing the entire posterior distribution (black line in Fig 2). Common choices for point esti-

mates in Bayesian statistics include the mean, median, or mode of the posterior distribution

[27]. Fig 2 highlights the mean and mode (denoted MAP), along with a secondary mode that

may confound choosing a point estimator. The mode of the posterior distribution is a strong

choice because it provides the most probable set of parameters and is often called the maxi-

mum a posteriori (MAP) point. However, the mean or median may provide better point esti-

mates when the posterior is multimodal (there are multiple modes).

These point estimates are computed from posterior samples acquired via MCMC sampling.

While sample statistics, such as the mean and median, are computed directly from the samples,

computing the MAP point requires estimating the posterior of the probability density function

and finding the maximal point. Direct computation of the sample mode will not yield the

MAP point because the parameters are continuous random variables, so no two-parameter

samples are expected to be identical. One approach to estimate the MAP point involves com-

puting a histogram of samples and using the center of the bin with the most associated proba-

bility as the MAP. However, we found that the histogram of posterior samples is often noisy

and can be sensitive to the bin size, so that the MAP estimate may be erroneous. We chose to

take an alternative approach that fits a kernel density estimator [84] to approximate the poste-

rior distribution and subsequently computes that MAP point. The kernel density estimator

provides a non-parametric approximation of the posterior distribution and, intuitively,

smooths the posterior histogram. We use the ksdensity() function for kernel density esti-

mation in Matlab. The ‘support’ option is set to be the region bounded by the prior distri-

bution and the ‘BoundaryCorrection’ option is set to use the ‘reflection’
method to account for these bounds. Lastly, we use the default values for the ‘Bandwidth’
unless otherwise specified. All other options are kept to the defaults as defined in the

Matlab documentation. The MAP point is the point with maximum probability in the

ksdensity() output. The next section moves from the details of CIUKF-MCMC and

Bayesian estimation to outline how synthetic data is generated for the examples in this paper.

1.12 Synthetic data generation for numerical experiments

The synthetic data in this work aims to replicate noisy data found in biological experiments.

We generate noisy synthetic data by drawing samples from deterministic model simulations

and simulate measurement noise by adding independently and identically distributed (iid)

perturbations to each sample. First, a nominal set of biological model parameters and an initial

condition are chosen for data generation. These values become the ground truth for the
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estimation problem, and are informed by the available literature when possible. Next, a

numerical solution to the system provides true trajectories of the state variables. Unless other-

wise specified the ode15s() integrator in Matlab is used with default tolerances, and the

Jacobian matrix is supplied (specify the ‘Jacobian’ option with the analytical Jacobian

Matrix) to improve computations. We then apply the measurement function and sub-sample

the true trajectory to simulate sparse sampling. Lastly, we corrupt the data by adding a realiza-

tion of an iid noise stochastic process to each sample. To meet the assumptions of the

CIUKF-MCMC algorithm (see Section 1.6) we use mean-zero, normally distributed perturba-

tions with the diagonal covariance matrix, Γ. We chose the entries of Γ to be proportional to

the variances of the respective state variables, e.g.

Γ ¼ b

varðx1
0
; . . . ; x1

nÞ 0

. .
.

0 varðxd
0
; . . . ; xdnÞ

2

6
6
6
4

3

7
7
7
5
;

where b is a positive constant typically chosen to be less than one that controls the noise level.

The last section discusses how to compute the amplitude and period of a limit cycle oscillation.

1.13 Limit cycle analysis

Limit cycle amplitude and period are used to characterize limit cycle oscillations for global sen-

sitivity and output uncertainty analysis. These quantities are relevant in intracellular signaling

because the strength and timing of signals, amplitude and period, respectively, are thought to

encode different inputs [85]. The limit cycle amplitude, ylca, quantifies the difference between

the maximum and minimum values of the oscillations and is defined as

ylca≔ xmax � xmin; ð29Þ

where xmin and xmax denote the minimum and maximum values of the state x over a single

complete oscillation. Further, the limit cycle period, yperiod, is the time to complete an oscilla-

tion and is defined as

yperiod≔ t� , xðtÞ ¼ xðt þ t�Þ for all t: ð30Þ

To compute these quantities we find trajectories that show limit cycle oscillations and then

extract the two quantities of interest. This approach leverages the findpeaks() function

that returns the locations of the local maxima (peaks) in a trajectory for these computations in

Matlab. The findpeaks() function can also find the local minima by applying it to the neg-

ative of the trajectory.

The first task in computing the limit cycle features is to detect actual limit cycle oscillations.

A trajectory is discarded if it reaches a fixed point (steady state) when no peaks are detected

(findpeaks() returns an empty set). Next, the difference between the heights of the identi-

fied peaks is used to discard trajectories that show decaying oscillations to a fixed point. A

threshold on one half of this difference, called for the helpPeakThreshold, is set to 17.0

unless otherwise specified; a trajectory is discarded if its difference in peak values exceeds this

threshold. Any remaining trajectories will show limit cycles or will contain numerical artifacts

which are falsely detected as limit cycles.

Lastly, the limit cycle amplitude and period are computed. The limit cycle amplitude is the

mean difference between each pair of detected peaks and minima that correspond to one oscil-

lation of the limit cycle. The limit cycle period is then computed as the mean time between two
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peaks and the time between two minima. Trajectories with numerical artifacts are eliminated

by discarding those with a limit cycle amplitude that is smaller than the LCAminThresh,

with a range of limit cycle values greater than the Decaythresh or those that return no limit

cycle period (e.g., the empty matrix on Matlab). Unless otherwise specified, we set the LCA-
minThresh to 1.0 and the Decaythresh to 5.0. These computations assume that the

period of the limit cycle is stable and that no frequency modulation occurs. We note that a

small number of oscillating trajectories can be misclassified as fixed points due to numerical

errors in the simulated trajectory. We specifically observed this when there was large peak-to-

peak variability. However, misclassification is rare, so we do not attempt manual relabelling of

these trajectories.

2 Results

We applied the Bayesian parameter estimation framework to three different models that repre-

sent signal transduction cascades of increasing biological and mathematical complexity. Sec-

tion 2.1 uses the first model, a simple kinetic scheme, to describe a series of computational

experiments that illustrate the effects of measurement noise and data sparsity on estimation

uncertainty (Fig 3). Next, we tested our framework on two models that are more representative

of the nonlinearities and overparameterization observed in systems biology models. Section

2.2 analyzes a representative model of the mitogen-activated protein kinase (MAPK) pathway

[56] that exhibits multistability depending on the choice of model parameters, and Section 1 in

S1 Text uses this model to illustrate the necessity of structural identifiability and global sensi-

tivity analyses. Finally, Section 2.3 analyzes a simplified model of synaptic plasticity [57] that

illustrates the effects of higher parameter uncertainty even in phenomenological biological

representations.

2.1 Measurement noise and sparsity increase estimation uncertainty in a

simple model of signal transduction

The first model we consider is a relatively simple two-state model from [55] shown in Fig 3A.

The governing equations for this model are

dx1ðtÞ
dt

¼ � ðk1e þ k12Þ � x1ðtÞ þ k21 � x2ðtÞ þ b � uðtÞ ð31aÞ

dx2ðtÞ
dt

¼ k12 � x1ðtÞ � k21 � x2ðtÞ; ð31bÞ

where the states are x(t) = [x1(t), x2(t)]>, the biological model parameters are θf ¼ ½k1e; k12;

k21; b�
>

, and u(t) is the input function. The input function (illustrated in Fig 3A)

uðtÞ ¼
t þ 0:5 if 0 � t � 1

1:5e1� t if t > 1

(

;

ensures that all four biological model parameters are structurally identifiable because the input

function has at least one nonzero derivative [55]. S1 Table lists the nominal parameter values

and the initial condition was x0 = [0.5, 0.5]>. Sensitivity analysis was not performed on this

model because the state variables are linearly dependent on the parameters.

Synthetic data with full state measurements (see Section 1.12) was used to perform two

parameter estimation experiments—one with increasingly noisy data and another with

increasingly sparse data—to investigate how measurement noise and data sparsity affect
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Fig 3. Parameter estimation for a simple two-state model. (A) Top row: Network diagram of the two-state model with states, x1(t), x2(t), input

function u(t), and four unknown parameters, θf ¼ ½k1e; k12; k21; b�>. Bottom row: Trajectories of the input function u(t) and corresponding state

trajectories. The input has at least one non-zero derivative to ensure that all model parameters are globally structurally identifiable following [55]. (B)

Marginal posterior distributions of the model parameters show increasing uncertainty in the parameter estimates (e.g. widening and flattening) with

increasing levels of additive normally distributed measurement noise with mean zero. We control the noise level by setting the noise covariances to the

specified percentage of the standard deviation of each state variable. The dashed black vertical lines indicate each parameter’s nominal (true) value.

Marginal posteriors are visualized by fitting a kernel density estimator to 20,000 MCMC samples obtained using CIUKF-MCMC with the delayed

rejection adaptive Metropolis (DRAM) MCMC algorithm after discarding the first 10,000 samples as burn-in. (C) Posterior distributions of the

trajectory of x1(t) reflect increasing parameter estimation uncertainty in panel B. The true trajectory (solid black line) shows the dynamics with the

nominal parameters, dashed black lines show that trajectory with the most probable set of parameters (MAP point), and the empty circles show the

noisy data at the specified noise level. The 95% credible interval shows the region between the 2.5th and 97.5th percentiles that contains 95% of the 5,

000 trajectories. (D) Marginal posterior distributions of the model parameters show increasing uncertainty (widening and flattening) with increasing

data sparsity (fewer samples). We simulate data sparsity by sampling the simulation from 0� t� 2 with three time steps, Δt = 0.05 (40 experimental

samples), Δt = 0.1 (20 experimental samples) and Δt = 0.2 (10 experimental samples). Marginal posteriors are fit to 20,000 MCMC samples obtained as

in panel B. (E) Posterior distributions of the trajectory of x1(t) reflect increasing parameter estimation uncertainty seen in panel D.

https://doi.org/10.1371/journal.pcbi.1010651.g003
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parameter and output uncertainty. The noise levels of each dataset were controlled by taking a

fraction of the maximum values of the true trajectory for the corresponding state variables. In

each estimation experiment, we chose the prior distributions as outlined in Section 1.8 and

used CIUKF-MCMC (Section 1.6) with DRAM (Section 1.9.2) to draw 30,000 posterior sam-

ples conditioned on this noisy data. To ensure sample counts were constant across noise and

sparsity levels, we chose a constant burn-in length of 10,000 samples to discard from every

Markov chain (see Section 1.9.4 for details). S2 Fig shows the Markov chains for the measure-

ment noise experiments, and S3 Fig shows those for data sparsity experiments. The following

remark highlights an important distinction between data points and MCMC samples.

Remark 1 Data points are different than MCMC samples. The experiments in this work pro-
duce at most 40 (simulated) data points, i.e., noisy measurements of the states, for parameter
estimation. However, MCMC algorithms draw 10,000s–1,000,000s of sample parameter sets to
characterize the posterior distribution, which requires evaluating the likelihood and, therefore,
simulating the model.

A first hypothesis we tested was that noisy data increases uncertainty because measurement

noise limits the ability to constrain the dynamics of the state variables. To test this hypothesis,

we performed Bayesian parameter estimation from synthetic data with increasing measure-

ment noise (circle marks in Fig 3C). We observed that the marginal posterior distributions in

Fig 3B (kernel density estimator fit to the posterior samples as in Section 1.11) widen and flat-

ten with increasing noise levels, indicating increased uncertainty. However, the most probable

value for each parameter, the MAP point, lies close to the nominal parameter values (dashed

lines in Fig 3B) for every noise level, suggesting that the data provide information about the

parameter irrespective of the noise level. Additionally, Fig 3C shows that the width of the 95%

credible interval for the dynamics of x1(t) grew as the noise increased from the lowest level

(2.5%) to 5.0% and then remained similarly wide at the highest values (see S1 Fig for the

respective trajectories of x2(t)). While the uncertainty bound did not widen above the 5.0%

noise level, the shape of the trajectories began to shift further from the truth (dotted line in Fig

3C), indicating the estimates began to take on a bias. These experiments validated our hypoth-

esis that even in a simple dynamical system measurement noise increases estimation uncer-

tainty of kinetic parameters.

Next, we hypothesized that data sparsity (fewer data points) would increase the uncertainty

in parameter estimates. To test this, we fixed the measurement noise to the 2.5% level (see Fig

3) and varied the number of measurements (e.g., the sampling rate) that were included in the

data used for estimation. We tested three sparsity levels with 40 experimental samples

(Δt = 0.05), 20 experimental samples (Δt = 0.1) and 10 experimental samples (Δt = 0.2) over

the simulation time 0� t� 2. Fig 3D highlights the widening of the estimated marginal poste-

rior distributions for each model parameter as we decreased the number of data points

(increased sparsity). Additionally, Fig 3E shows that the increased parameter estimation uncer-

tainty translates to increased uncertainty (wider 95% credible interval) in the trajectory of x1(t)
(see S1 Fig for the trajectories of x2(t)). In both of these experiments, the proposed uncertainty

quantification framework qualitatively and quantitatively confirmed that increasing the noise

or sparsity level increases estimation uncertainty.

2.2 Parameter estimation for a model of the MAPK cascade

We chose a simplified model of the highly conserved mitogen-activated protein kinase

(MAPK; also known as the MEK/ERK cascade) signaling pathway [86] as a second test case for

our parameter estimation framework. This pathway is known to exhibit bifurcations in its

dynamical behavior [85, 87]; the system can reach a stable steady state or exhibit limit cycle
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Fig 4. Parameter estimation for a simplified MAPK cascade that exhibits multistability. (A) Network diagram of the model of the core MAPK

signaling cascade. The red line indicates inhibition; the black lines indicate activation. (B) Trajectories of x3(t) with the sets of nominal parameters that

produce bistability (top) and limit cycle oscillations (bottom). The two dynamical regimes correspond to two different sets of nominal parameter values.

The low (black dashed line) and high (solid green line) steady states are reached by manipulating the initial condition x0. The initial condition for the

high steady state is x0;high ¼ ½0:1245; 2:4870; 31:2623�
>

and that for the low steady state is x0;low ¼ ½0:0015; 3:6678; 28:7307�
>

. (C and D) Sobol

sensitivity for the MAPK model parameters. All parameters except the total concentrations, S1t, S2t and S3t, exponents, n1 and n2, and locally identifiable

K1 and K2, are varied uniformly over the identified ranges (see S2 Table). We use 5,000 and 15,000 samples for the bistable and limit cycle regimes,

respectively. (C) Sensitivity indices for bistable behavior dynamics. We use the steady state value of x2(t) and x3(t) for both the high and low steady

states as quantities of interest. By selecting the two most sensitive parameters for the four quantities of interest, we reduce the set of free parameters to

θf ¼ ½k2; k4; k5; k6�
>

. (D) Sobol sensitivity indices for a set of free parameters that contribute to limit cycle behavior. We show the first-order

sensitivity indices Si and the total-order indices STi for the limit cycle amplitude and period of x3(t). We reduce the number of free parameters by

selecting those with Si> 10−3 across both output quantities, that is, θf ¼ ½k2; k6; k4; a�
>

.

https://doi.org/10.1371/journal.pcbi.1010651.g004
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oscillations. We focused on a phenomenological model of the MAPK pathway from [56] (see

diagram in Fig 4A) that includes the mixed feedback (negative and positive feedback) neces-

sary to predict the range of dynamical behavior observed in experiments. This model has three

states, x1(t), x2(t), x3(t) that correspond to phosphorylated RAF, MEK, and MAPK/ERK,

respectively [88, 89] and 14 model parameters. The differential equations are

dx1ðtÞ
dt

¼ k1 � S1t � x1ðtÞð Þ �
Kn1

1

Kn1
1 þ x3ðtÞ

n1

� �

� k2 � x1ðtÞ ð32aÞ

dx2ðtÞ
dt

¼ k3 � S2t � x2ðtÞð Þ � x1ðtÞ � 1þ
a � x3ðtÞ

n2

Kn2
2 þ x3ðtÞ

n2

� �

� k4 � x2ðtÞ ð32bÞ

dx3ðtÞ
dt

¼ k5 � ðS3t � x3ðtÞÞ � x2ðtÞ � k6 � x3ðtÞ; ð32cÞ

with the biological model parameters θf ¼ ½k1, k2, k3, k4, k5, k6, K1, K2 S1t, S2t, S3t, α, n1, n2]>. A

previous analysis of the model in [56] found that it can predict three regimes of dynamical

behavior that depend on the model parameters; these regimes are limit cycle oscillations, bist-

ability and mixed multistability. Here we focus on using CIUKF-MCMC to estimate model

parameters that produce two of the three dynamical regimes–bistability and limit cycle oscilla-

tions (see Fig 4B for example trajectories). S2 and S3 Tables list the nominal parameter values

and initial conditions (as defined in [56]) used to produce each of these dynamics.

First, we performed identifiability and sensitivity analysis to find the subsets of relevant

parameters to estimate each dynamical regime. The SIAN software [52] (see Section 1.3)

showed that 12 of the 14 biological model parameters are structurally identifiable from mea-

surements of all three state variables; however, K1 and K2 are only locally structurally identifi-

able. SIAN cannot assess parameters that appear in an exponent [36, 52], so we fixed n1 and n2

to their nominal values listed in S2 Table. To avoid global versus local identifiability complica-

tions, we fixed K1 and K2 to their nominal values. Additionally, we omitted the total concentra-

tion parameters, S1t, S2t, and S3t, from further analysis because we assume they would be

specified according to the cell type that corresponds to the available data. As a result, we nar-

rowed the free parameters down to a set of 9 parameters, from a set of 14 originally.

Next, we used global sensitivity analysis as described in Section 1.4 to further reduce the

number of free parameters. We choose the quantities of interest for sensitivity analysis for the

bistable and oscillatory regimes separately. The quantities of interest for the bistable regime are

the steady state values of x2 and x3 (the values at t = 30 min). Those for the oscillatory regime

are the limit cycle amplitude and limit cycle period (computed following Section 1.13). In the

computations, we allowed the biological model parameters to vary uniformly over the ranges

listed in S2 Table with 5,000 samples for the bistable cases and 15,000 samples for the limit

cycle regime. Fig 4C and 4D show the computed Sobol sensitivity indices for the parameters

ranked by decreasing sensitivity index. We selected the parameters with the greatest sensitivity

indices, that is, the parameters to which the output quantities of interest are most sensitive. For

the bistable case, we selected the four most sensitive parameters, which were k2, k4, k5, and k6.

For the oscillatory case, we selected the parameters with a first-order sensitivity index Si greater

than 10−3, which were k2, k4, k6, and α. All remaining biological model parameters were fixed

to the nominal values listed in S2 Table. Sensitivity analysis highlighted that k2, k4, and k6 are

important in predicting both dynamical regimes. Meanwhile, parameters such as k5 and α are

only important for the bistable and oscillatory regimes, respectively.

After identifiability and sensitivity analyses, we applied the CIUKF-MCMC method to esti-

mate model parameters that predict the correct steady state in the bistable case. To simulate
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noisy experimental data, we generated two synthetic datasets (see Section 1.12), sampled from

the high steady state and the low steady state (circle and square markers in Fig 4B). Each data-

set had 30 full-state measurements evenly spaced over 0� t� 30 (min) with measurement

noise covariances set to 2.5% of the variances of the true trajectories. The prior assumptions

were specified according to Section 1.8 for all model parameters with the bounds listed in S2

Table. Using the CIUKF-MCMC algorithm with AIES (Section 1.9.3), we ran an ensemble of

150 Markov chains with 3,500 samples per chain (525,000 total samples) for each of the data-

sets (as shown in S10 Fig). The maximum integrated autocorrelation times (Section 1.9.5)

were 120.06 for the low steady state and 169.03 for the high steady state, leading us to discard

840 samples for the low steady state and 1,183 samples for the high steady state as burn-in.

The estimated marginal posterior distributions (solid black line; Fig 5A and 5B for the low

and high steady states, respectively) indicated varying levels of uncertainty between the model

Fig 5. Varying levels of uncertainty in the parameters associated with the MAPK model impact steady state prediction. (A) Marginal posterior

distributions of the model parameters for parameter estimation from noisy data of the low steady state. Posterior distributions are visualized by fitting a

kernel density estimator to 325,200 (150 walkers with 2,660 steps each) MCMC samples obtained using CIUKF-MCMC with the affine invariant

ensemble sampler (AIES) for MCMC after discarding the first 840 samples per walker as burn-in. (B) Marginal posterior distributions of the model

parameters for parameter estimation from noisy data of the high steady state reveal larger uncertainty in the model parameters when compared to the

low steady state. We visualize distributions by fitting a kernel density estimator to 347,700 (150 walkers with 2,644 steps each) MCMC samples obtained

using CIUKF-MCMC with the affine invariant ensemble sampler (AIES) for MCMC after discarding the first 856 samples per walker as burn-in. (C)

Posterior distribution of the trajectory of x3(t) with initial conditions that yield the low steady state highlights low uncertainty in the predicted

dynamics. The true trajectory (dashed black line) shows the dynamics with the nominal parameters, the dotted blue line shows the trajectory evaluated

at the MAP point, and the empty circles show the noisy data (covariance is 50% of the standard deviation of the true trajectory). The 95% credible

interval shows the region between the 2.5th and 97.5th percentiles that contains 95% of 30,000 posterior trajectories. (D) Posterior distribution of the

trajectory of x3(t) with initial conditions that yield the high steady state highlights the ambiguity between which steady state is reached. All lines and

computations are the same as in panel (A), except simulations were run using an initial condition that results in the high steady state.

https://doi.org/10.1371/journal.pcbi.1010651.g005

PLOS COMPUTATIONAL BIOLOGY Bayesian parameter estimation for systems biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010651 October 21, 2022 29 / 48

https://doi.org/10.1371/journal.pcbi.1010651.g005
https://doi.org/10.1371/journal.pcbi.1010651


parameters and across the two steady states. For example, in both the low and high steady

states, the marginal posterior for k2 has most of its probability mass centered around the nomi-

nal value (dashed black lines), while that for k6 has probability mass spread over a broader

range of the prior support (range of the prior bounds). Additionally, the MAP points (dotted

blue line) for the low steady state closely correspond to the nominal values for all model

parameters, whereas there is a significant discrepancy between the MAP and the nominal val-

ues for k4, k5 and k6 in the high steady state case.

An ensemble of 30,000 simulations with randomly selected posterior samples (see Section

1.10) represented the posterior distributions of the dynamics for both steady states. For the

low steady state, the trajectory evaluated at the MAP point (dotted blue line in Fig 5C) closely

matches the true trajectory (dashed black line) and the 95% credible interval (green shaded

region) tightly constrains these trajectories. However, the trajectory at the MAP point for the

high steady state (Fig 5D) reaches the low steady state rather than the high steady state (solid

green line). Furthermore, the 95% credible interval for the high steady state closely follows the

initial transient (0� t� 10 (min)), but it covers both steady states by the end of the simulation,

e.g., for 10� t (min). The considerable uncertainty and bias in the estimated dynamics of the

high steady state are unsurprising, given the uncertainty observed in the marginal posterior

distributions. This comprehensive uncertainty analysis of the bistable MAPK dynamics

showed that the presence of multiple steady states makes parameter estimation harder for the

same set of parameters and governing equations. In particular, the estimation uncertainty is

much lower when data from the low steady state is supplied for estimation than when data

from the high steady state is used.

Next, we used CIUKF-MCMC to estimate posterior distributions for the reduced set of

model parameters that predict limit cycle oscillations in x3(t). Synthetic data with 15 samples

evenly spaced over 30� t� 60 (min) simulated noisy measurements from the oscillating tra-

jectory at a noise level of 1% of the variance of the true trajectory (green points in Fig 6B). We

refer to this data as the oscillations only data, because it only includes samples from the limit

cycle and not from the initial transient. Using CIUKF-MCMC with AIES, we ran 30 Markov

chains (shown in S11 Fig) with 51,000 steps per chain to sample the parameter posterior distri-

butions. We discarded 7,477 samples per chain, seven times the integrated autocorrelation

time of 1,068, to account for burn-in. The marginal posterior distributions estimated from the

remaining posterior samples (Fig 6A) tightly concentrate the probability around the nominal

parameter values. This high level of certainty in the parameter values leads to a posterior distri-

bution of x3(t) (represented with an ensemble of 30,000 simulations in Fig 6B) that closely fol-

lows the true limit cycle oscillations (see S4 Fig for those of x1(t) and x2(t)). Additionally, the

trajectory evaluated at the MAP point (dotted blue line) follows the true trajectory (dashed

black line) and shows very similar oscillations.

Closer examination of a subset of 50 out of the 30,000 posterior trajectories (green lines in

Fig 6C) revealed that the 95% credible interval includes many limit cycles that are similar to

the true trajectory (dashed black lines), a smaller number of limit cycles that do not match the

true oscillations, and yet an even smaller number of trajectories that reach fixed points (for

example, the dotted blue line in Fig 6C). We further leveraged the posterior samples to quan-

tify the variability in the predicted limit cycles. First, we characterized all of the trajectories in

the ensemble (Fig 6D) and found that 90.6% (27,182 samples) correctly produce limit cycle

oscillations while 9.6% (2,818 samples) reach a fixed point. Quantification of the limit cycle

amplitude and period for each of the 27,182 oscillating trajectories showed that despite the

small uncertainties in model parameters, we still observe variability in the characteristics of

predicted limit cycles. We find that the most probable limit cycle amplitude and period (see

histograms in Fig 6E) are close to the true values (26.12 for the amplitude and 13.04 for the
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period; indicated by vertical dashed black lines). However, we still observe variability in these

quantities despite the high level of certainty in the parameter estimates. Specifically, we find

that the limit cycle amplitude often deviates by up to 30% (10 nM) from the true amplitude.

While the period deviates by a smaller amount, up to 15% (2 min), we find that its distribution

is skewed to periods that are shorter than the true period. Based on these findings, we conclude

that small uncertainties in the model parameters result in limit cycles with varied amplitudes

and periods, but do not strongly affect our ability to predict oscillatory dynamics.

Next, we investigated whether the nature of the data supplied for estimation affects our abil-

ity to predict limit cycle oscillations. To investigate this, we repeated parameter estimation

Fig 6. Parameter estimation results for the MAPK model in the limit cycle regime with data only sampled from the oscillations. (A) Marginal

posterior distributions of the model parameters. Distributions are visualized by fitting a kernel density estimator to 1,305,720 (30 walkers with 43,524

steps each) MCMC samples obtained using CIUKF-MCMC with the affine invariant ensemble sampler (AIES) after discarding the first 7,447 samples

per walker as burn-in. (B) Posterior distribution of the trajectory of x3(t) in the limit cycle regime. The true trajectory (dashed black line) shows the

dynamics with the nominal parameters, the dotted blue line shows the trajectory evaluated at the MAP point, and the points show the noisy data

(covariance is 1% of the variance of the true trajectory). The 95% credible interval shows the region between the 2.5th and 97.5th percentiles that

contains 95% of 30,000 posterior trajectories. (C) Sample posterior trajectories (50 out of 30,000 total) reveal that most trajectories closely match the

true limit cycles. Additionally, several trajectories that reach a fixed point are shown. (D) Quantification of the fraction of the 30,000 sample trajectories

that produce limit cycles oscillations, 90.6% (27,182 samples), or reach a fixed point, 9.4% (2,818 samples). (E) Histograms quantify the variability in

limit cycle amplitude and period for the 27,182 trajectories that show limit cycle oscillations. We define the limit cycle amplitude as the peak-to-peak

difference for one oscillation, and the period is the time to complete an oscillation. The vertical black lines show these quantities for the true trajectory.

https://doi.org/10.1371/journal.pcbi.1010651.g006
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with two additional noisy limit cycle data sets (shown in Fig 7A with the noise level set to 1%

of the variance of the true trajectory). We refer to these new data as the equidistant sampling
data and the non-equidistant sampling data. The equidistant sampling data includes 20 samples

taken every two minutes over 0< t� 60 minutes and covers the initial transient and several

periods of oscillations (see Fig 7A). The non-equidistant sampling data also covers the first 60

minutes, however it only has five samples taken every five minutes for the initial transient (the

first 30 minutes) and the same 15 samples taken every two minutes for the remaining 30 min-

utes (20 samples in total). We compared this to the results for the oscillations only data (Fig 6)

to investigate how samples from the initial transient affects estimation. We performed MCMC

with 150 walkers for 22,500 steps for the equidistant sampling data (S12 Fig) and 30 AIES

walkers for 36,500 steps for the non-equidistant sampling data (S13 Fig). To account for the

MCMC burn in, we discarded the first 5,669 samples per chain for the equidistant data and

11,065 samples for the non-equidistant data. Additionally, we simulated ensembles of 30,000

trajectories with random posterior samples for the two new data sets; S5 Fig shows the result-

ing posterior distributions of the dynamics.

Comparison of the fraction of the 30,000 simulated trajectories that show oscillations clearly

indicates that the input data affects our ability to predict limit cycles (see Fig 7B). As a baseline,

we compare the three data sets to simulations with samples from the prior distribution, which

we think of as the setting where no data are provided. Fig 7B shows that all cases with data pre-

dict a higher faction of limit cycle trajectories than the prior samples, where only 17.6% of sim-

ulations oscillated. We found that only 45.9% (13,794 samples) of the simulations

corresponding to the equidistant sampling data show sustained oscillations. However as the

number of samples from the initial transient (data from 0 to 30 minutes) is decreased, the frac-

tion of oscillating simulations increased; 63.1% (18,921 samples) and 90.6% (27,182 samples)

of the simulations corresponding to the non-equidistant sampling and the oscillation only

data, respectively, showed limit cycle oscillations.

We additionally found that uncertainty in the nature of the dynamics is closely tied to the

uncertainty in the model parameters. Fig 7C, 7D, and 7E show the marginal posterior distribu-

tions corresponding to the equidistant sampling, non-equidistant sampling, and oscillations

only data, respectively. Specifically, we observed that we can always predict k2 with high cer-

tainty, but the amount of uncertainty in k4, k6 and α varies between the three data sets. For

example, for the equidistant sampling data, the marginal distribution for k4 (Fig 7C) has three

distinct peaks of high probability (modes); one concentrated at very small values, another cen-

tered near the nominal value and a wider mode at higher values. The k4 marginal distribution

for the non-equidistant sampling data in Fig 7D places less probability at the two modes far

from the nominal value, but the mode near the nominal value is shifted towards higher values

of k4. Lastly, for the oscillations only data, we see only one prominent mode for k4 that is very

close to the nominal value (Fig 7F). Similar trends are seen for the α marginal distributions.

The posterior distribution of dynamics in S5 Fig and the distributions of the limit cycle charac-

teristics in S6 Fig show that the increased uncertainty in these model parameters increases var-

iability in the predicted dynamics. In cases with high uncertainty in the model parameters, the

95% credible intervals for x3(t), for example in S5 Fig, do not tightly constrain the dynamics,

and the limit cycle characteristics vary more (S6 Fig).

Lastly, we used the results of our Bayesian analysis to discover relationships between param-

eter pairs and the nature of the corresponding predicted dynamics. Based on observations that

increased uncertainty in both k4 and α results in higher fractions of incorrectly predicted fixed

point trajectories and prior knowledge of how the model parameters interact to control the

interplay of positive and negative feedback [56], we hypothesized that we might observe corre-

lations between pairs of model parameters and the predicted dynamics. To test this, we plotted
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Fig 7. Parameter estimation results for the MAPK model in the limit cycle regime with varied sampling strategies. (A) The equidistant
sampling data includes 30 samples taken every 2 minutes over 0< t� 60 (min). The non-equidistant sampling data includes 20 total samples

with two sampling rates; there are 5 samples taken every 5 minute for the first 30 minutes and 15 samples taken every 2 minutes for 30

additional minutes. The oscillations only data set only includes samples from the oscillations with 15 samples taken every two minutes over the

interval t 2 (30, 60]. (B) The fraction of the 30,000 simulations that yield limit cycle or fixed point trajectories, with parameter samples from the

prior, and the posterior distribution associated with each data set. (C–E) Marginal posterior distributions of the model parameters.

Distributions are visualized by fitting a kernel density estimator to 2,524,800 samples for the equidistant sampling data, 763,080 for the non-

equidistant sampling data, and 1,305,720 for the oscillations only data. (F–H) Two-dimensional scatter plots reveal relationships between k4

and α that are necessary to produce limit oscillations. Simulations with blue points produce limit cycle oscillations, and those with red points

produce fixed points. Darker regions indicate a higher probability of observing the corresponding parameter values.

https://doi.org/10.1371/journal.pcbi.1010651.g007

PLOS COMPUTATIONAL BIOLOGY Bayesian parameter estimation for systems biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010651 October 21, 2022 33 / 48

https://doi.org/10.1371/journal.pcbi.1010651.g007
https://doi.org/10.1371/journal.pcbi.1010651


two-dimensional scatter plots of all pairs of parameters for each data set in S7–S9 Figs, and for

k4 and α in Fig 7F, 7G, and 7H. The points are colored blue if the corresponding trajectory pro-

duced a limit cycle and red if the trajectory reached a fixed point. We observed the strongest

correlation between k4 and α, where, for the equidistant sampling data, (see Fig 7F), the values

of both parameters needed to be above the smallest values, but not too large, to produce oscil-

lations. The plots for the non-equidistant sampling data (Fig 7G) and oscillations only data

(Fig 7H) further highlight the relationship between k4 and α. Based on these results, we con-

clude that k4 and α are correlated such that their values must be within specific ranges to pro-

duce limit cycles. We note that we were able to discover this correlation through a Bayesian

analysis; while, it is visually most apparent for the equidistant sampling data due to the high

estimation uncertainty, it is a property of the model itself and not of the data.

In summary, comprehensive UQ for the MAPK model highlighted how the existence of

multistability introduces additional uncertainties into parameter estimation. Specifically, sen-

sitivity analysis identified two parameters of the MAPK model, k5 and α, that were only impor-

tant for the bistable dynamics and the oscillatory dynamics, respectively. In both cases,

Bayesian parameter estimation was able to predict the correct type of dynamics but showed

remaining uncertainty in the specific characteristics of the dynamics. By varying the data sup-

plied for estimation, we found that the nature of the data set provided to CIUKF-MCMC

affects our ability to predict limit cycles. Interestingly, we found that more data does not always

improve estimation and that having less data that is more focused on the limit cycles reduced

estimation uncertainties and gave better posterior parameter distributions. Additionally, we

discovered that the values of both k4 and α need to be within a certain range to predict oscil-

latory MAPK dynamics. Overall, the proposed framework for comprehensive UQ found

parameters that were important to each dynamical regime and directly quantified how uncer-

tainties in these parameters contributes to uncertainty in the dynamics.

2.3 Parameter estimation in a phenomenological model of long-term

potentiation/depression

A phenomenological model of coupled kinase and phosphatase switches whose activities affect

the level of membrane-bound AMPAR (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropio-

nic acid receptor) as a reporter of synaptic plasticity was proposed in [57] to capture the key

events in synaptic plasticity. This kinase-phosphatase model has three states pK(t), P(t), and

A(t) that correspond to active forms of kinase (CaMKII in [57]), phosphatase (PP2A in [57]),

and membrane-bound AMPAR, respectively. The differential equations are

dpKðtÞ
dt

¼ k1 � pKðtÞ �
Ktot � pKðtÞ

Km1
þ ðKtot � pKðtÞÞ

� k2 � PðtÞ þ P0ð Þ �
pKðtÞ

Km2
þ pKðtÞ

þk3 � K0 þ k4 � Ktot � pKðtÞð Þ �
Ca2þðtÞ4

K4
m3
þ Ca2þðtÞ4

ð33aÞ

dPðtÞ
dt

¼ k5 � PðtÞ
Ptot � PðtÞ

Km4
þ ðPtot � PðtÞÞ

� k6 � pKðtÞ þ K0ð Þ �
PðtÞ

Km5
þ PðtÞ

þ k7 � P0 � k8 � Ptot � PðtÞð Þ �
Ca2þðtÞ3

K3
m3
þ Ca2þðtÞ3

ð33bÞ

dAðtÞ
dt

¼ ðc1 � pKðtÞ þ c3Þ � ðAtot � AðtÞÞ � ðc2 � PðtÞ þ c4Þ � AðtÞ; ð33cÞ
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where the 24 biological model parameters are θf ¼ ½k1, k2, k3, k4, k5, k6, k7, k8, Km1
, Km2

, Km3
,

Km4
, Km5

, K0, P0, Ktot, Ptot, Atot, c1, c2, c3, c4]>. The nominal values and physiological ranges for

these parameters are listed in S4 Table.

This model predicts tristability (three steady states) in the level of excitatory postsynaptic

potential (EPSP) as a function of the calcium Ca2+(t) input. The normalized EPSP is the mem-

brane-bound AMPAR A(t) level, normalized to the initial condition, e.g., normalized EPSP =

A(t)/A(t = 0), as defined in [57]. Fig 8B shows simulations of the three expected responses with

the nominal parameter values from [57]. The initial condition x0 = [0.0228, 0.0017, 0.4294]>

used for all simulations was determined by allowing the system to reach steady state with the

baseline Ca2+(t) level of Ca2+(t)� 0.1 [μM]. The three steady states are the initial baseline, the

higher long-term potentiation state (LTP; trajectory depicted in dashed black Fig 8B), and the

lower long-term depression state (LTD; trajectory depicted in solid green Fig 8B). The LTP

state is obtained by applying a constant stimulus of Ca2+(t)� 4.0 [μM] from 1� t� 3 (sec),

while the LTD state is reached by applying a constant stimulus of Ca2+(t)� 2.2 [μM] in the

same time interval; Ca2+(t) is set to the baseline level before (t< 1 (sec)) and after (t> 3 (sec))

the stimulus is applied. We investigated how well the proposed uncertainty quantification

framework could estimate the model parameters for LTP and LTD from synthetic data of an

LTP-inducing calcium input.

Following the proposed framework, the parameter space is reduced by performing iden-

tifiability and sensitivity analysis. First, identifiability analysis showed that all model parame-

ters are globally structurally identifiable from full-state measurements. Next, global sensitivity

analysis of the steady states in response to an LTP-inducing and an LTD-inducing input

ranked the 22 globally identifiable model parameters. All free parameters were uniformly var-

ied over two orders of magnitude centered around the nominal values, y
�

i , for each parameter,

e.g. yi � Uð0:1 � y�i ; 10 � y
�

i Þ. In order to maintain conservation of mass, the lower bounds of

the total concentration parameters, Ktot, Ptot, Atot, were chosen to be greater than or equal to

the initial condition. Fig 8C shows the computed Sobol sensitivity indices for the LTP-induc-

ing input and Fig 8D shows those for the LTD-inducing input. The sensitivity analyses point

to the same group of seven model parameters for both the LTP-inducing and LTD-inducing

inputs. These are θf ¼ ½k2, k6, K0, P0, Ktot, Ptot, Atot]
>, whose first-order indices were greater

than 0.05, e.g., Si> 0.05. We chose to estimate these seven parameters and fix the remaining

model parameters to the nominal values listed in S4 Table.

Next, we used the CIUKF-MCMC algorithm with AIES to estimate the posterior distribu-

tion for the reduced set of parameters. The parameters were estimated from noisy synthetic

data with 36 full-state measurements of the LTP response. The data are spread uniformly over

the domain 0� t� 9 (sec) at a noise level of 1% of the variance of the true trajectory for the

respective states. The maximum integrated autocorrelation time of the ensemble of 150 Mar-

kov chains with 8,000 steps per chain was 621.58, leading us to discard 4,351 samples as burn-

in. Traces of the ensemble of Markov chains for all parameters are shown in S14 Fig. Fig 9A

shows the estimated marginal posterior distributions for the free model parameters, k2, k6, P0,

K0, Ptot, Ktot, Atot. We observed different levels of uncertainty across the estimated parameters.

For instance, the marginal posterior for Atot indicated a very high level of certainty with almost

all of the probability mass, and thus the MAP point, aligned to the nominal value. However,

the marginal posterior distributions for P0 and K0 show much more significant uncertainty

because we observe posterior probability spread over the entire support of the prior. Addition-

ally, the marginal posterior distributions for k2, k6, Ptot, and Ktot show a large mode around the

MAP point that is shifted from the nominal value and a smaller mode at the nominal value.
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Fig 8. Parameter estimation for a coupled kinase-phosphatase switch for long-term potentiation and long-term depression in neurons as a

function of calcium input. (A) Network diagram of the simplified coupled kinase-phosphatase signaling model where calcium Ca2+(t) acts as the

input. (B) Trajectories of the three state variables in response to long-term potentiation (LTP; pulse of Ca2+(t)� 4.0 [μM] from 2� t� 3 (sec)) and

long-term depression (LTD; pulse of Ca2+(t)� 2.2 [μM] from 2� t� 3 (sec)) inducing calcium inputs. The calcium level is set to a baseline of Ca2+(t)
� 0.1 [μM] before and after stimulus. We compute normalized EPSP by normalizing A(t) to its initial condition as described in [57]. The synthetic

noisy data for the LTP and LTD cases are indicated by the black square and green circle marks, respectively, with the noise covariance equal to 1% of the

variance of the data. (C and D) Sobol sensitivity indices for all free model parameters in response to LTP-inducing and LTD-inducing inputs,

respectively. The quantities of interest are the steady state values of each state variable. We show both the first-order sensitivity indices Si and the total-

order indices STi . We select a reduced set of free parameters by choosing the parameters whose first-order sensitivity index is greater than 0.05, e.g., Si>
0.05. This gives us the same set of free parameters, θf ¼ ½k2, k6, K0, P0, Ktot, Ptot, Atot]

>, for both the LTP and LTD cases. Remaining model parameters

are fixed to the nominal values in S4 Table.

https://doi.org/10.1371/journal.pcbi.1010651.g008
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Using the posterior samples, an ensemble of 30,000 simulations (see Section 1.10) repre-

sented the posterior distribution of the predicted dynamics in response to an LTP-inducing

input, as shown in Fig 9B. We observed that the 95% credible interval for the normalized EPSP

covered both LTP (normalized EPSP >1) and LTD (normalized EPSP<1) responses even

Fig 9. Comprehensive parameter estimation and uncertainty quantification reveal failures to predict the correct long-term model behavior. (A)

We estimated marginal posterior distributions of the model parameters from noisy data with an LTP-inducing calcium input. Distributions are

visualized by fitting a kernel density estimator to 547,500 (150 walkers with 3,649 steps each) MCMC samples obtained using CIUKF-MCMC with

AIES for MCMC after discarding the first 4,351 samples per walker as burn-in. (B) Posterior distribution of the trajectories of the state variables show

LTP (normalized EPSP>1) and LTD (normalized EPSP<1) responses for an LTP inducing input. The true trajectory (dashed black line) shows the

dynamics with the nominal parameters, the dotted blue line shows the trajectory evaluated at the MAP point, and the points show the noisy data

(covariance is 1% of the variance of the true trajectory). The 95% credible interval shows the region between the 2.5th and 97.5th percentiles that

contains 95% of 30,000 posterior trajectories. (C) Sample posterior trajectories (100 out of 30,000 total) highlight the LTP (blue lines) and LTD (black

lines) in response to the LTP inducing input (top) and the LTD inducing input (bottom). The dashed green lines show the true trajectories for the

respective calcium inputs. (D) Histograms reveal the distribution of the long-term responses to the LTP-inducing input (top) and the LTD-inducing

input (bottom). The dashed black lines show the true response for the respective calcium inputs. (E) Quantifying the percentage of the 30,000 sample

trajectories that produce LTD and LTP responses for each calcium input. The LTP-inducing input yields 76.59% (22,972 samples) of the responses in

the LTP state and 23.41% (7,024 samples) in the LTD state. The LTD inducing input yields 68.93% (20,680 samples) of the responses in the LTP state

and 31.07% (9,320 samples) in the LTD state.

https://doi.org/10.1371/journal.pcbi.1010651.g009
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though the input was LTP-inducing. However, the trajectory evaluated at the MAP point (dot-

ted blue line) matched the true trajectory (dashed black line), indicating that most trajectories

align with the expected LTP response. Examination of the individual trajectories within the

ensemble simulation (Fig 9B, top row) and the normalized EPSP steady state values (Fig 9C,

top row) confirmed that there are both LTP (blue traces) and LTD (black traces) responses

to the LTP-inducing input. Specifically, we found that 76.59% (22,972 samples) of the

responses correctly predict LTP, and 23.41% (7,024 samples) of response incorrectly predict

LTD (Fig 9D). Therefore, despite the high-quality data (many measurements and low noise),

we still observed substantial uncertainty in the predicted normalized EPSP.

Lastly, we investigated if the posterior distribution estimated in the LTP regime can predict

the response to an LTD-inducing input. An initial hypothesis was that in response to an LTD-

inducing input, most trajectories would predict LTD, but a significant subset would predict

the incorrect response, LTP. An additional ensemble of 30,000 simulations, with an LTD-

inducing input of Ca2+(t)� 2.2 [μM] (pulse from 2� t� 3 (sec)) was used to determine the

posterior distribution of the dynamics. Visualization of 100 of the 30,000 trajectories in Fig 9E

(bottom row) again showed both LTP (blue) and LTD (black) responses; however, we unex-

pectedly observed more LTP than LTD in response to the LTD-inducing input. The distribu-

tion of normalized EPSP responses (bottom row of Fig 9D) confirms that there are a large

number of responses in the LTP regime with a minor mode around the correct response.

Quantification of these results highlights that only 31.07% (9,320 samples) of responses are in

the LTD state (expected response) while 68.93% (20,680 samples) of the responses are in the

LTP state (unexpected response). In summary, this model formulation can correctly capture

the same LTP behavior over a range of model parameters while losing the ability to predict

LTD behavior.

Despite the LTP and LTD responses being sensitive to the same set of parameters (see Fig

8C and 8D), the posterior distribution estimated from measurements of LTP places more

probability on parameter sets that robustly predict LTP over those that correctly predict both

responses. From these results, we conclude that for this model, we need to learn the model

parameters with a high degree of certainty in order to disambiguate the LTP versus the LTD

response because sensitivity analyses revealed that the same set of parameters governs these

two different outputs. This finding highlights that sensitivity analyses are not sufficient to dis-

tinguish parameter uncertainty for systems with multistability and a comprehensive frame-

work as outlined here is necessary to shed light on such model complexities.

3 Discussion

In this work, we developed a framework (see Section 1.1) for comprehensive uncertainty quan-

tification of dynamical models in systems biology. The proposed framework leverages iden-

tifiability and sensitivity analysis to reduce the parameter space (Sections 1.3 and 1.4) followed

by Bayesian parameter estimation with CIUKF-MCMC (Section 1.6). We applied this frame-

work to three systems biology models to demonstrate its applicability and highlight how a

focus on uncertainty can transform modeling-based studies. First, we performed two compu-

tational experiments on a simple two-state model that showed how noise and data sparsity

contribute to estimation uncertainty. Next, we applied our framework to two models, the

MAPK and the synaptic plasticity models, which better resemble the models used to capture

biological readouts. Using these models, we highlight how comprehensive uncertainty quanti-

fication enables quantitative analysis of two biologically relevant dynamical behaviors, limit

cycles and steady state responses. We also found that good quality data cannot always over-

come uncertainty due to the model structure. These examples provide an essential starting
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point for applying our framework in practice and interpreting systems biology studies under

uncertainty.

Our results highlight how a focus on uncertainty quantification can give new insights in

modeling-based studies. For example, in Section 2.2 we were able to learn a posterior distribu-

tion for the parameters that predict limit cycles with high probability. The posterior distribu-

tion is our best guess for the distribution of the model parameters after incorporating the

available data into the statistical model. Therefore, the posterior distribution for the dynamics

(approximated via an ensemble simulation as in Section 2.10) provides our best guess for the

dynamics, given everything we know about the model and the data. For the MAPK limit cycle

oscillations, this best guess includes dynamics with a range of limit cycle properties. Additional

analysis of the parameters that produce limit cycle oscillations revealed correlations between

k4 and α and that their values must both be within a certain range to produce the expected

dynamics. Therefore, incorporating uncertainty quantification into modeling provides addi-

tional context and understanding of the system of interest.

We also observe that predictions do not always capture the correct bistability in the example

of high MAPK steady state (Section 2.2) and the LTP/LTD response (Section 2.3). In both

cases, the 95% credible intervals of the ensemble of predicted dynamics cover both the higher

and lower steady states (LTP and LTD in the synaptic plasticity example). These results imply

that the estimated posterior distributions for these models include parameter sets that no lon-

ger show bistability at the specified input (the initial condition for the MAPK model or the cal-

cium level for the synaptic plasticity model). Further analysis of these systems could test if

these parameter sets lead to a complete loss of bistability or merely shift the bifurcation point,

the value of the input that changes which steady state is reached. Overall our results point to a

complex interplay between model parameters and inputs that potentially confounds parameter

estimation of multistable systems.

As highlighted in Sections 2.1 and 2.2, we showed that estimation uncertainty is a result of

the quality, quantity, and nature of the available experimental data. As expected, we demon-

strated, for the simple two state model (Fig 3,) that data with more noise and fewer samples

leads to estimates with wider uncertainty intervals. Furthermore, for the MAPK oscillations

(Fig 7), we found that the sampling strategy, either including data from the initial transient or

focusing on sampling from the oscillations, drastically affects estimation uncertainty. This

finding contradicts the common intuition that more data is always better, as we had the small-

est estimation uncertainty in predictions made using data that had the fewest samples, the

oscillations only data. We suspect that these observations can be understood by considering

that the likelihood function measures the mismatch between the data and estimated trajectory

with an l2-like norm, for example see Eq (12). When we include data from both the initial tran-

sient and oscillations, as in the equidistant and non-equidistant sampling cases in Section 2.2,

the likelihood probability is similar for all trajectories that capture the initial transient, regard-

less of whether they oscillate or reach a fixed point. However, the oscillations only data focuses

the likelihood on the long-time dynamics and places lower probability on trajectories that

reach a fixed point. While l2-norm-based likelihood functions are often used in Bayesian meth-

ods, one can also design a likelihood function to explicitly determine if a trajectory displays the

same features of the data, such as the feature-based approach in [90]. These findings imply that

thoughtful experimental design can reduce unnecessary and potentially costly data collection

and can increase certainty in parameter estimates and model predictions.

In the proposed framework, we stress that global identifiability and sensitivity analyses are

essential to practical parameter estimation and uncertainty quantification. By running varia-

tions of the proposed framework without these analyses in Section 1 in S1 Text, we found that

each analysis reduces estimation uncertainty and leads to an easier estimation problem. In the
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complete framework, we isolate globally identifiable parameters and choose a cutoff value of

the Sobol sensitivity index (see Section 1.4) to select the influential parameter subset. Through-

out this work, we choose a logical sensitivity index threshold that corresponds either to a sharp

drop in or a logical value of the sensitivity index, such as the Si� 0.1 criterion that we apply in

several of the example problems. However, we caution that selecting the subset of influential

parameters is an intricate problem that requires users to decide the acceptable amount of

information to discard from the uncertainty analysis [91, 92]. Alternative methods to the

thresholding approach include those discussed in [91], group sensitivity analysis [37] or lasso

regression [93]. While these methods aim to select a subset of influential parameters, they are

similar to the thresholding approach in that each method hinges upon determining the accept-

able number of degrees of freedom to exclude from the analysis. Future research should

develop methods for fully quantitative parameter subset selection methods.

While the computations remained tractable for the three example models in this paper, it is

essential to consider how complete uncertainty quantification can increase the computational

costs of parameter estimation. In [26], the authors showed that the original UKF-MCMC algo-

rithm required more floating point operations than methods that do not account for all

sources of uncertainty. Similarly, we found (see Section 2 in S1 Text) that a single CIUKF like-

lihood evaluation takes 81 times longer than an evaluation of a similar likelihood function that

does not account for uncertainty in the model form. A deeper look into the execution of the

CIUKF likelihood function revealed that approximately 60% of the runtime was spent on calls

to ode15s(), which we use to discretize the differential equation model. The added compu-

tational cost of CIUKF may be reduced in the future by developing optimized codes for discre-

tizing the differential equation model and evaluating the likelihood function.

Bayesian methods, such as CIUKF-MCMC, enable complete uncertainty quantification;

however, the need for MCMC sampling and the associated repeated likelihood evaluations can

pose an increased computational expense. In particular, as models include greater numbers of

state variables and parameters, the added expense of simulation, the increased dimensionality,

and the potentially complex geometry of the posterior distributions can challenge standard

MCMC approaches. Innovative methods from the broader UQ community, combined with

the increasing accessibility of high-performance computing resources, enable Bayesian analy-

sis of models with large numbers of state variables and parameters [19, 94, 95]. Additionally,

while we showed that identifiability and sensitivity analyses could significantly reduce the

dimensionality of the parameter space, this reduced space may remain relatively high dimen-

sional for specific applications. Many MCMC sampling algorithms that incorporate informa-

tion about the geometry of the distribution or run parallel Markov chains can sample high-

dimensional and possibly complex posterior distributions. These methods include parallel

MCMC samplers [96, 97], Hamiltonian Monte Carlo [27] and dimension independent, likeli-

hood-informed methods [98]. Although comprehensive uncertainty quantification comes

with added computational costs, recent innovations in UQ methods can alleviate some of the

added computational burdens of comprehensive analysis.

Throughout this work, we make several assumptions regarding the availability of the model

equations and the statistical properties of associated errors. First, we assume that the model

equations are known prior to parameter estimation. This assumption reflects standard model-

ing practices where models use biochemical theories that assume equations for the kinetics of

biochemical reactions. In using the CIUKF-MCMC we somewhat weaken this assumption

because it introduces process noise to account for uncertainty in the model form [26]. In real-

ity, all models have some level of uncertainty because they rely on assumptions about the sys-

tem. Therefore, accounting for model form uncertainty regularizes the dynamics to account

for a mismatch between the predicted dynamics and the data [26]. However, in cases where
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the model is not known a priori, it may be necessary to estimate the model structure and

parameters from the data simultaneously. One approach to disambiguate a model structure is

to learn the biochemical reaction network [99, 100] or the mathematical model directly from

data [101–105]. Additionally, it is possible to cast these problems in the Bayesian perspective

to learn the model form and the associated uncertainties [26, 106].

Furthermore, we make several assumptions when choosing statistical models for measure-

ment and process noise and simulating biological measurement data. First, we assume Gauss-

ian measurement and process noises in applying the CIUKF-MCMC method. Standard

Kalman filtering approaches revolve around assumptions of normally distributed noise pro-

cesses [67]. However, we may be better able to describe noise in biological systems and experi-

ments with alternate probability distributions (see, e.g., [46]). Assuming a non-Gaussian

distribution for the measurement noise would require reformulating the likelihood function

(it would alter the distribution in Eq (12)); however, incorporating alternative distributions for

the process noise would require approximations for the marginal likelihood that go beyond

Kalman filtering. Next, this work considers linear measurement functions, e.g., Eq (3), but

CIUKF-MCMC is also well-suited to handle nonlinear measurement functions [26]. Lastly, we

assume that we only have access to a single time series of measurements, e.g., one trial of an

experiment; however, most experiments in biology perform several repeated trials. A straight-

forward approach to incorporate all available data to inform the statistical model would use

the mean of each time point and estimate parameters from the time series of means. Addition-

ally, one could estimate parameters from each time series separately and then analyze several

posterior distributions that one could merge via meta-analysis or information fusion principles

[107–109], or construct a statistical model that accounts for the multiple time series [27]

simultaneously.

The framework introduced in this work can be applied and extended to enable comprehen-

sive uncertainty quantification for most dynamical models encountered in systems biology.

Future research should focus on rigorous methods for parameter subset selection, applying

MCMC samplers that are well suited for complex, high-dimensional distributions to systems

biology, and incorporating more specific statistical models of biological data and noise. In

summary, research at the intersection of uncertainty quantification and systems biology

modeling will strengthen parameter estimation and enable models that more accurately pre-

dict the dynamics observed in experimental measurements.

Supporting information

S1 Fig. Posterior distributions of x2(t) in the two-state model experiments. (A) corresponds

to the measurement noise experiment, Fig 3C. We observe that increasing the data noise level

increased the uncertainty in the predicted dynamics. We control the noise level by setting the

noise covariances to the specified percentage of the standard deviation of each state variable.

The dashed black vertical lines indicate each parameter’s nominal (true) value. (B) corre-

sponds to the data sparsity experiment, Fig 3E. We observe that decreasing the number of

experimental samples supplied for estimation increased estimation uncertainty. The noise

level in the data was fixed to the 2.5% level shown above.

(TIF)

S2 Fig. Markov chains for the two-state model parameters at increasing noise levels in the

measurement noise experiment, Fig 3B and 3C. Each row corresponds to a noise level; noise

increases down the figure. The red boxes indicate samples discarded as burn-in.

(TIF)
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S3 Fig. Markov chains for the two-state model parameters with decreasing samples in the

measurement data sparsity experiment, Fig 3D and 3E. Each row corresponds to a sparsity

level. The red boxes indicate samples discarded as burn-in.

(TIF)

S4 Fig. Posterior distributions of x1(t) and x2(t) for the MAPK model. (A) Trajectories for

the high steady-state; corresponds to Fig 5D. (B) Trajectories for the low steady-state; corre-

sponds to Fig 5C. (C) Trajectories for limit cycle oscillations; corresponds to Fig 6B.

(TIF)

S5 Fig. Posterior distributions of x1(t), x2(t), and x3(t) for the MAPK model with equidis-

tant and non-equidistant sampled data. (A) Distributions for the data with equidistant sam-

pling; corresponds to Fig 7C. (B) Distributions for the data with non-equidistant sampling;

corresponds to Fig 7D.

(TIF)

S6 Fig. Histograms of limit cycle amplitude and period for the oscillating trajectories for

the equidistant sampling (A) and non-equidistant sampling (B) data. (A) Corresponds to

S5 Fig. (B) Corresponds to Fig 7D and S5 Fig

(TIF)

S7 Fig. Two-dimensional scatter plots between all unique pairings of model parameters

estimated from data with oscillations only. Each plot has 30,000 points that are colored

according to the nature of the simulated dynamics with that parameter set. Simulations with

blue points produce limit cycle oscillations, and those with red points produce fixed points.

Darker regions indicate a higher probability of observing the corresponding parameter values.

(TIF)

S8 Fig. Two-dimensional scatter plots between all unique pairings of model parameters

estimated from data with equidistant sampling. Each plot has 30,000 points that are colored

according to the nature of the simulated dynamics with that parameter set. Simulations with

blue points produce limit cycle oscillations, and those with red points produce fixed points.

Darker regions indicate a higher probability of observing the corresponding parameter values.

(TIF)

S9 Fig. Two-dimensional scatter plots between all unique pairings of model parameters

estimated from data with non-equidistant sampling. Each plot has 30,000 points that are col-

ored according to the nature of the simulated dynamics with that parameter set. Simulations

with blue points produce limit cycle oscillations, and those with red points produce fixed points.

Darker regions indicate a higher probability of observing the corresponding parameter values.

(TIF)

S10 Fig. Markov chains for the MAPK model parameters and CIUKF-MCMC noise covari-

ances for bistability. (A) Low steady-state, Fig 5A. (B) High steady-state, Fig 5B. The process

noise covariances are yGi and ySi are the measurement noise covariances. The red boxes indi-

cate samples discarded as burn-in.

(TIF)

S11 Fig. Markov chains for the MAPK model parameters and CIUKF-MCMC noise covari-

ance parameters for limit cycle oscillations with data from oscillations only; corresponds

to Figs 6 and 7E. The process noise covariances are yGi and ySi are the measurement noise

covariances. The red boxes indicate 7,477 samples per chain discarded as burn-in.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Bayesian parameter estimation for systems biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010651 October 21, 2022 42 / 48

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010651.s011
https://doi.org/10.1371/journal.pcbi.1010651


S12 Fig. Markov chains for the MAPK model parameters and CIUKF-MCMC noise covari-

ance parameters for limit cycle oscillations estimated from data with equidistant sampling;

corresponds to Fig 7C. The process noise covariances are yGi and ySi are the measurement

noise covariances. The red boxes indicate 5,669 samples per chain discarded as burn-in.

(TIF)

S13 Fig. Markov chains for the MAPK model parameters and CIUKF-MCMC noise covari-

ances for limit cycle oscillations estimated from data with non-equidistant sampling; cor-

responds to Fig 7D. The process noise covariances are yGi and ySi are the measurement noise

covariances. The red boxes indicate 11,065 samples per chain discarded as burn-in.

(TIF)

S14 Fig. Markov chains for the synaptic plasticity model parameters, Fig 9. The red boxes

indicate samples discarded as burn-in.

(TIF)

S1 Text. Supporting information. Section 1. Structural identifiability and global sensitivity

analyses are key to successful parameter estimation. Section 2. Runtime analysis of the

CIUKF-based likelihood function.

(PDF)

S1 Table. Two-compartment model [55] model parameters and relevant ranges. All listed

values have units of one over time.

(PDF)

S2 Table. MAPK model parameters and relevant ranges from [56]. Note: For the oscillatory

dynamics, the range for k5 is [1 × 10−5, 0.05].

(PDF)

S3 Table. Initial conditions used for simulations of the MAPK model from [56].

(PDF)

S4 Table. Long-term potentiation/depression model parameters from [57] and ranges. The

ranges are given by ½0:1 � y
�

i ; 10 � y
�I�, where y

�

i is the nominal value. Note: we do not include

ranges for n1 and n2 because these parameters are always set to the nominal values.

(PDF)
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67. Särkkä S. Bayesian filtering and smoothing. 3. Cambridge University Press; 2013.

68. Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc IEEE. 2004; 92(3):401–422.

https://doi.org/10.1109/JPROC.2003.823141

69. Vachhani P, Narasimhan S, Rengaswamy R. Robust and reliable estimation via Unscented Recursive

Nonlinear Dynamic Data Reconciliation. J Process Control. 2006; 16(10):1075–1086. https://doi.org/

10.1016/j.jprocont.2006.07.002

70. Simon D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Con-

trol Theory Appl. 2010; 4(8):1303–1318. https://doi.org/10.1049/iet-cta.2009.0032

71. Julier SJ, Uhlmann JK. New extension of the Kalman filter to nonlinear systems. In: Signal processing,

sensor fusion, and target recognition VI. vol. 3068. International Society for Optics and Photonics;

1997. p. 182–193.

72. Tsigkinopoulou A, Hawari A, Uttley M, Breitling R. Defining informative priors for ensemble modeling in

systems biology. Nat Protoc. 2018; 13(11):2643–2663. https://doi.org/10.1038/s41596-018-0056-z

PMID: 30353176

73. Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by

Browne and Draper). Bayesian Analysis. 2006; 1(3):515–534. https://doi.org/10.1214/06-BA117A

74. Gelman A, Roberts G, Gilks W. Efficient Metropolis jumping rules. Bayesian statistics. 1996;.

75. Owen AB. Monte Carlo theory, methods and examples; 2013.

76. Sokal A. Monte Carlo methods in statistical mechanics: Foundations and new algorithms. In: Func-

tional integration. Springer; 1997. p. 131–192.

77. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by

fast computing machines. The journal of chemical physics. 1953; 21(6):1087–1092. https://doi.org/10.

1063/1.1699114

78. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

1970; 57(1):97–109. https://doi.org/10.1093/biomet/57.1.97

79. Tierney L. Markov chains for exploring posterior distributions. the Annals of Statistics. 1994; p. 1701–

1728.

80. Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm. Bernoulli. 2001; p. 223–242.

https://doi.org/10.2307/3318737

81. Wagner PR, Nagel J, Marelli S, Sudret B. UQLab user manual–Bayesian inversion for model calibra-

tion andvalidation. Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich,Switzerland;

2022.

82. Wolff U. Monte Carlo errors with less errors. Comput Phys Commun. 2004; 156(2):143–153. https://

doi.org/10.1016/S0010-4655(03)00467-3
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