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ABSTRACT OF THE DISSERTATION

Exploiting Heterogeneity in Peer-to-Peer Systems

by

Kiran Tati

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Geoffrey M. Voelker, Chair

Peer-to-peer overlay networks provide a distributed, fault-tolerant, scalable

architecture on which wide-area distributed systems and applications can be built. Two

fundamental services provided by peer-to-peer overlay networks are a routing protocol

to map keys in a large, virtual ID space to values associated with individual hosts in the

overlay network, and a storage service to maintain data objects on behalf of higher-level

services, applications, and users. In existing peer-to-peer routing protocols and object

maintenance strategies, the system typically gives each host equal responsibilities in

terms of routing messages and storing object data and metadata. In reality, however,

hosts in the system have unequal capabilities.

In this thesis, we propose enhancements to peer-to-peer routing protocols and

object maintenance strategies that tailor them to take advantage of resource heterogene-

ity. Using an approach called “ShortCuts”, we use three caching techniques to improve

routing performance while adjusting the overhead of maintaining consistent state to the

available bandwidth of individual hosts. Combined, these caches achieve routing per-

formance that approaches the aggressive performance of one-hop schemes, but with an

order of magnitude less communication overhead on average.

Compared to previous approaches that place data randomly among hosts, we

explored refining object maintenance strategies according to host uptimes and lifetimes.

As a first step, we performed an extensive measurement study of permanent host failures

xii



in the KAD peer-to-peer file sharing system. Our analysis have shown that, while a sig-

nificant fraction of the entire population has a very short lifetime (e.g., one connection

for a few hours), the network contains a very stable subpopulation of peers with life-

times of months. As a second step, we propose new object maintenance strategies that

bias the placement of redundant data on hosts with longer lifetimes and higher avail-

abilities. Using trace-driven simulation of a peer-to-peer storage system and our trace of

hosts in the KAD network, we show that peer-to-peer storage systems can reduce object

maintenance overheads by biasing placement on long-lived and highly-available hosts.
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Chapter 1

Introduction

This dissertation proposes that peer-to-peer storage systems can take advan-

tage of heterogeneity in host availability and lifetime characteristics to improve per-

formance and reduce overhead. Peer-to-peer overlay networks provide a distributed,

fault-tolerant, scalable architecture on which wide-area distributed systems and appli-

cations can be built. An increasing trend has been to design Internet-based services on

peer-to-peer overlays, including cooperative Web caches [30], Web indexing and search-

ing [29, 41, 45], content delivery systems [87, 20, 36, 9], Usenet news [17], archival

storage systems [15, 12, 65, 54, 31, 28], digital research library [75], event notification

services [10, 63, 21, 59], version control repository [85], Email service [51, 22] and

Domain name service (DNS) [81, 56, 61].

Popular designs of these overlay networks implement a distributed hash table

(DHT) interface to higher level software. DHTs map keys in a large, virtual ID space

to associated values stored and managed by individual hosts in the overlay network.

DHTs divide this functionality into two layers. As described in more detail in Chap-

ter 2, the lower layer implements a lookup operation, and the upper layer implements

data storage. For example, the Squirrel Web cache [30] uses the Pastry [70] lookup func-

tionality to locate the host that is responsible for a given HTTP object. The NextGen

DNS service [61] uses the Beehive [60] lookup functionality to find the name server that

is responsible for a given domain name. Archival storage systems [12, 54, 65] use the

1
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DHT storage subsystem to reliably store file data. Similarly, the email service Post [51]

uses the Glacier overlay [28] to reliably store email messages.

The traditional client-server architecture assumes that the server is reliable

and always available, whereas clients are unreliable. Peer-to-peer overlays try to provide

similarly reliable services, but using only cooperating clients which contribute resources

to the system only when the clients are online and connected to the system. As a result,

the number of failures in the peer-to-peer environments are an order of magnitude larger

than server failures in client-server systems [78, 40]. Hence, a critical challenge for

designing DHTs is to provide services with high availability in spite of the large number

of failures.

DHTs use a distributed routing protocol to implement the lookup operation.

Each host in the overlay network maintains a routing table. When a host receives a

request for a particular key, it forwards the request to another host in its routing table

that brings the request closer to its destination. The routing table needs to be consistent

with the system current state to provide a highly available lookup service. Hence, DHTs

continuously update their routing tables to add hosts that arrive in the system and remove

hosts that leave. These updates are frequent and consume bandwidth. A natural tradeoff

in the design of these routing protocols is the size of the routing table and the latency of

routing requests. Larger routing tables can reduce routing latency in terms of the number

of hops to reach a destination, but at the cost of additional route maintenance overhead.

Because the performance and overhead of DHT overlay networks fundamentally depend

upon the distributed routing protocol, significant work has focused on the problem of

balancing the degree of routing state and maintenance with route performance.

Similarly, a primary challenge for DHT storage sub systems is to efficiently

maintain object availability and reliability in the face of host failures. Hosts in peer-

to-peer systems exhibit both temporary and permanent failures, requiring the use of

redundancy to mask and cope with such failures (e.g., [84, 1, 38, 73, 5]). The cost of

redundancy, however, is additional storage and bandwidth for creating and replenishing

redundancy on hosts that leave the system. Since bandwidth is typically a much more
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scarce resource than storage in peer-to-peer systems, strategies for efficiently maintain-

ing objects focus on reducing the bandwidth overhead of managing redundancy, trading

off storage as a result. Typically, these strategies create redundant versions of object

data using either replication or erasure coding as redundancy mechanisms, and either

react to host failures immediately or lazily as a repair policy.

In existing peer-to-peer routing protocols and object maintenance strategies,

the system typically gives each host equal responsibilities in terms of routing messages,

storing data and metadata, maintaining system structure, handling client requests, etc.

In practice, however, hosts in the system have unequal capabilities. Network delay,

available bandwidth, host availability, host lifetime, storage capacity, and memory and

CPU resources among hosts have distributions that range across orders of magnitude.

For instance, in file sharing systems such as OverNet, the availability of hosts vary from

few hours a day to an entire day [4]; in the KAD network, host lifetime varies from a

few hours to hundreds of days (Chapter 4). Similarly, the upstream and downstream

bottleneck bandwidth of hosts in Gnutella vary from 10 Kbps to 100 Mbps [71].

The goal of this thesis is to acknowledge resource heterogeneity among hosts

and tailor systems to take advantage of it. We make three contributions: (1) reducing

lookup latency using extra state in routing tables, adjusting the overhead of maintaining

consistent state to the available bandwidth of individual hosts; (2) understanding the

interaction of hosts availabilities, lifetimes, and storage capacities on object maintenance

overhead; and (3) reducing object maintenance overhead by allocating objects according

to host availability and lifetime.

In Chapter 3, we describe three caching techniques to improve routing per-

formance while adjusting the overhead of maintaining consistent state to the available

bandwidth of individual hosts. Local hint caches use large successor lists to short cut

final hops. Path hint caches store a moderate number of effective route entries gathered

while performing lookups for other hosts. And global hint caches store direct routes

to peers distributed across the ID space. Combined, these hint caches achieve routing

performance that approaches the aggressive performance of one-hop schemes, but with
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an order of magnitude less communication overhead on average.

Next we explored refining previous object maintenance strategies that place

data randomly among hosts to place data according to host availabilities and lifetimes.

As a first step, Chapter 4 performs an extensive measurement study of permanent host

failures in the KAD peer-to-peer file sharing system. Previous studies of peer behavior

in such systems have been relatively short in duration (1–2 weeks), and consequently

have focused on the temporary churn characteristics of peers. However, the long-term

overhead of object maintenance in such systems depends more on the permanent failures

of peers. To observe such behavior, we have monitored hosts in a region of the KAD

identifier space for over six months. Our analysis of peers over such a long time scale

have shown that, while a significant fraction of the entire population has a very short

lifetime (e.g., one session for a few hours), the network contains a very stable subpopu-

lation of peers with lifetimes of months. This stable subpopulation accounts for most of

the uptime of peers in the entire network.

As a second step, Chapter 5 uses insight gained from the KAD trace analysis

to refine the object maintenance strategy used in peer-to-peer storage systems like Total-

Recall. Cleanly separating how temporary and permanent churn impact the overheads

associated with object maintenance, we demonstrate how different environments exhibit

different degrees of temporary and permanent churn, and show how churn in different

environments affects the tuning of object maintenance strategies. Using redundancy to

mask temporary churn has three implications: (1) an object maintenance strategy can

determine a sufficient degree of redundancy to completely mask temporary churn; (2)

the amount of redundancy required to mask temporary churn is inversely proportional

to the fraction of simultaneously available hosts storing object data; and (3) the band-

width overhead for coping with temporary churn is dominated by object creation, not

by repairs. Once a system has a sufficient degree of redundancy to mask temporary

churn, permanent churn drives repairs. When the system permanently loses hosts stor-

ing redundant object data, the system must eventually repair the redundancy to ensure

data reliability. As a result, in these environments tuning repair strategies to deal with
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permanent churn will have the greatest impact on minimizing bandwidth overhead.

When a system decides to repair object data, it must decide how much redun-

dancy to restore. The more redundancy a system restores during a repair the longer it

can delay the next repair, thereby trading off storage to reduce the frequency of repairs.

In terms of bandwidth overhead, though, it is not immediately clear what the best choice

is. An object maintenance strategy can either make “smaller” repairs more frequently,

or “larger” repairs less frequently. We show that there exists an optimal balance between

the amount of redundancy restored at each repair and the frequency of repair, and that

a storage system system like TotalRecall can dynamically measure system behavior to

determine this optimal balance when making repairs. Interestingly, the amount of re-

dundancy to restore on a repair that minimizes bandwidth overhead depends upon the

degree of temporary churn in the system, but not on the degree of permanent churn; the

bandwidth overhead certainly scales with the rate of permanent churn, but the rate does

not affect the choice of how much redundancy to repair.

Using trace-driven simulation of a peer-to-peer storage system and our trace

of hosts in the KAD network, we confirm our analytic results for determining an op-

timal amount of redundancy to use at each repair. Further, we explore variants of this

object maintenance strategy that bias the placement of redundant data on those hosts

with high availability, high lifetimes, or both. We then use simulation to show that,

using our trace of KAD hosts as input, peer-to-peer storage systems can reduce object

maintenance overhead to 58% of a random strategy by placing on high-available hosts,

49% of random by placing on long-lived hosts, and only 33% of random by placing on

both highly-available and long-lived hosts.

In practice, using a placement strategy that biases towards hosts with high

availability and/or lifetimes will causes the storage on those hosts to reach capacity at

a faster rate. Indeed, even in the uniform random policy, hosts with longer uptimes

will be selected more often than hosts with shorter uptimes and, as a result, store more

blocks over time. Object maintenance strategies will need to explicitly respect host

storage capacities when making placement decisions. Respecting capacities has two
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consequences: (1) since object maintenance strategies bias towards hosts with higher

uptimes and/or high lifetime, data for newer objects gets placed on hosts with lower

uptimes and/or lower lifetime; and as a result, (2) repair overhead increases more than

linearly as system storage grows towards capacity. We show that the bandwidth over-

head of various object maintenance strategies converge towards each other as the system

reaches full capacity.

Finally, Chapter 6 summarizes the contributions of this dissertation and outline

future work in the area.



Chapter 2

Background and Related Work

This chapter provides background on the operation of DHT routing protocols

and summarizes the various protocols that have been proposed for DHTs, as well as the

tradeoffs they make in terms of lookup performance and route maintenance overhead.

It also provides background on peer-to-peer storage systems and object maintenance

strategies, as well as a survey of various approaches to providing highly-available stor-

age in these systems in the face of failures.

2.1 DHT Routing

Distributed hash tables (DHTs) assign IDs to objects as well as hosts from the

same ID space; these ID typically range in size from 128 bits (e.g., Kademlia [48] and

the KAD network) to 168 bits (e.g., Chord). Each online host is the “owner” for the IDs

for the range between its ID to the next host ID, and is responsible for handling requests

addressed to IDs in that range. The lookup operation takes an ID as input and returns

the ID of the owner. In the following section we describe the general strategy used to

implement the DHT lookup operation as exemplified, for example, by Chord.

Every host in the DHT maintains addresses of other hosts in the system and

these entries are referred to as routing entries and, collectively, as routing state or the

routing table.

Whenever a host receives a lookup operation for an ID x, it finds the closest

7
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Figure 2.1: DHT lookup operation.

host in its routing table to x and forwards the lookup request to that host. This process

continues until the request reaches the owner host. Figure 2.1 is an example DHT with

hosts A, B, D, G, L, Q, T, U, W, and Y ; we are using simple alphabets instead of 128 bit

IDs for illustration purposes. This figure also shows the routing tables for hosts A, L,

and U . When a host A receives a lookup operation for ID X , it first looks into its routing

table and forwards the lookup operation to host L since L is the closest host ID to X in

its table. The host L performs the same algorithm, forwarding the lookup operation to

host U which, in turn, forwards to the owner W .

The number of hops the lookup operation requires depends on the amount of

state each host maintains in its routing table. In the simple case, if each host maintain just

its successor or predecessor in the ID space, then the number of hops a lookup requires

is proportional to the number of hosts in the system. On the other extreme, if each host

maintains full information about all other hosts in the system, then a lookup requires

only one hop. As we mentioned earlier, more state information requires more bandwidth

to maintain due to host churn in the system (host arrivals or departures). Ideally we
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would like to reduce the number of hops as much as possible while maintaining as little

state as possible. In the following section we describe some of the DHTs described in

the literature and how they improve lookup performance.

2.2 DHT Routing Survey

A number of algorithms seek to minimize route maintenance overhead by us-

ing only constant-size O(1) routing tables per host. A set of randomized algorithms

have O(1) degree and achieve scalable routing performance on average. Viceroy [46]

organizes peers into a ring, and uses O(log n) additional concentric rings that roughly

correspond to layers in Butterfly networks. Peers belong to one of these additional con-

centric rings, and maintain O(1) routes to its neighboring peers in the primary ring, its

concentric ring, two peers in a lower ring, and one peer in a higher ring. On average,

Viceroy routes requests in O(log n) hops up and down the rings.

Symphony [47] is another randomized algorithm that builds upon the work of

Kleinberg [35] that models the Small World phenomenon. In Symphony, peers maintain

routes to their immediate neighbors, known as short links, as well as k long-distance

links to other peers in the system. Since k is a small fixed parameter in the system,

each peer has O(1) degree. Each host chooses its long-distance links randomly from a

well-chosen probability distribution so that, on average, the system routes requests in

O(log log n) hops.

For deterministic routing algorithms, Kaashoek and Karger [32] prove that,

for a constant-size k routing table per peer, θ(log n) hops is optimal. They then present

a tunable routing algorithm Koorde that combines features of Chord and de Bruijn

graphs [8]. Koorde is a tunable algorithm. It can be configured such that peers have only

degree 2 and route optimally in O(log n) hops. In addition, to provide fault-tolerance,

Koorde peers can have O(log n) degree and route in an optimal O(log n/ log log n) num-

ber of hops.

Several efforts have been made to achieve constant-time O(1) hops to route
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requests at the cost of high-degree routing tables. Kelips [27] divides all peers into

affinity groups. Every peer maintains a route to every other peer in its affinity group, plus

a route to at least one peer in every other affinity group. Kelips uses a gossip protocol to

propagate route updates among hosts to maintain consistency. Requests from one peer

to another in the same group require only a single hop, and requests to peers in another

group require two hops. Kelips partitions peers into O(
√

n) affinity groups with O(
√

n)

peers per group. As a result, each peer has degree O(
√

n).

Mizrak et al. [52] introduced a hierarchical routing algorithm for DHTs. They

observe that host resources in a peer-to-peer overlay network are heterogeneous in terms

of capacity, and propose that high-capacity peers serve as structured superpeers and

handle additional request load in the system. Each superpeer manages a subset of all

peers in the system, and all superpeers have a complete mapping of the ID space to other

superpeers to achieve one hop routing among superpeers. To route, a peer forwards its

request to its superpeer, which can either route it directly to another peer it manages

or indirectly through one other superpeer. Each peer has degree O(1). With O(
√

n)

superpeers, each superpeer has degree O(
√

n).

Gupta et al. [26] propose a design in which each host maintains a local copy

of the complete routing table with degree n. With a complete table, any host can route a

request in a single hop. The cost of this approach is the overhead in keeping the routing

tables on all hosts consistent. To reduce this overhead, they propose a hierarchical up-

date protocol that enables the system to scale to 106 hosts with tolerable update traffic

overhead. Peers are divided into slices, and each slice is further subdivided into units.

Every slice and unit has a leader. Peers send updates to their slice and all unit leaders

of their slice. Slice leaders both aggregate and pace update logs to all other slices in

the system, which in turn propagate the updates to their unit leaders and finally to their

peers.

Chord/DHash++ [13] exploits the fact that lookups for replicated values only

need to reach a peer near the owner of the key associated with the value (since the peer

will have a replica). Although this is appropriate for locating any one of a number
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of replicas, many applications require exact lookup. Beehive exploits the power-law

property of lookup traffic distributions [60] to achieve constant-time lookups. However,

a large class of applications induce different types of lookup traffic. Li et al. [42] exploits

heterogeneity in the hosts availability to reduce the state maintenances bandwidth.

Roussopolis and Baker introduce the Controlled Update Protocol (CUP) for

managing path caches on peers [69]. CUP uses a query and update protocol to keep

path caches consistent with peer arrivals and departures. CUP was implemented in

the context of the CAN overlay network, and evaluated relative to straightforward path

caches with expiration. Although the CUP path caches are analogous to the path hint

caches in our work, our work differs in a number of ways with the CUP approach. Rather

than providing an update mechanism to keep caches consistent, we instead combine

the use of local hint caches with path and global hint caches to improve performance

and tolerate inconsistency. We also evaluate hint caches with a baseline DHT routing

algorithm that routes in O(logn) hops (rather than a range of coordinate dimensions).

2.3 Peer-to-Peer Storage Systems

Peer-to-peer (P2P) storage systems use some form of redundancy (either sim-

ple replication or encoding) and continuous replenishment (repair) to cope with failures.

We describe two such systems, DHash [12] and TotalRecall [5], in detail and we then

summarize other P2P storage systems in the following section.

DHash and TotalRecall are both based on the Chord [73] DHT. Chord arranges

all hosts in the system into a circular ID space with each host having a successor. A

successor of a host x is online host whose ID is the successor to x in the ID space

(except for the highest ID host, whose successor is the lowest ID host). DHash uses

simple replication and stores blocks on the owner of the block ID (also known as the

master) as well as on four successors of the owner. Finding an object is straightforward

in this system. Performing a lookup on the object ID using the Chord DHT will return

the owner. DHash also eagerly copies stored data onto new hosts if the successor list
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changes, either due to a new host arriving into the system or a host leaving the system

whose ID is in the successor list range. We refer to this strategy of maintaining object

availability as eager repair.

TotalRecall uses rateless coding to encode object data to reduce storage over-

head while achieving high availability. It first encodes the object and then divides the

object into n (usually 32) fragments, and stores these fragments onto randomly chosen

online hosts. It also stores a metadata object with information about hosts on which

it stored the fragments; this metadata uses the DHash eager repair mechanism as ex-

plained above for availability. To find an object, the system first gets the metadata ob-

ject of the object using DHash, and then it gets enough fragments to decode the object.

The owner/master of the metadata object continuously monitors the object fragments

for their availability. Whenever the number of fragments falls below a specified thresh-

old (typically 16 fragments), TotalRecall creates additional fragments to increase the

number of available fragments.

Figure 2.2 shows an example storage layout using TotalRecall. The Master

host in the Figure stores the metadata object and replicates the metadata object on the

successors; again, these fragments are maintained using the DHash eager repair mecha-

nism. The encoded object is divided into the four fragments (H1 · · ·H4) and stored on

random hosts in the system. The metadata object stores pointers to the hosts on which

the fragments have been placed so that a lookup on the metadata returns the information

for reaching these fragments.

2.4 Peer-to-Peer Storage Survey

FarSite [1, 19] is a distributed storage system for corporate environments

where the amount of churn is less than churn in the file sharing environments. It uses

simple replication, and the number of replicas is determined by the mean time to per-

manent failure. It does not actively monitor and does not replenish the replicas because

permanent failures happen at a very slow rate in these corporate environment.
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PASIS [84, 57] is another survivable storage system and uses encoding to pro-

vide high availability at a reduced storage cost. They studied the tradeoffs between

security, availability, and performance. It also does not have an active storage replenish-

ment mechanism, which is essential to the peer-to-peer environment.

Rowstron proposed a P2P storage system, Past [15, 16], at the same time as

DHash. All the files in Past are immutable and the system stores k copies near the owner;

k is calculated depending on the expected number of failures. Past does not replace lost

copies, though it aggressively caches the replicas onto other hosts to reduce the access

time.

Glacier [28] is another distributed storage system aimed at providing high

availability even in the presence of correlated failures. It uses abundant storage to protect

against correlated failures. It encodes the data using erasure coding. It operates in a

corporate or university environment and stores fragments in a fixed position based on the

number of hosts in the system. It actively replenishes the lost fragments continuously,

and it moves fragments to the proper host as new hosts join or dead hosts leave the

system.

OceanStore [38, 65, 55] is a distributed storage system that takes advantage

of continuous reduction in storage costs (dollar/byte). The environment consists of sta-

ble core servers augmented with home users connected to the Internet with huge disks

(similar to the hosts in peer-to-peer environments). It uses erasure codes to reduce the

storage costs while providing high availability as well as simple block copies to provide

fast access time by eliminating the decoding cost. It has a mechanism to add new hosts

to replace old failed hosts. However, it does not specify the policy about when to replace

the failed hosts and how often to do it.

Finally, the load balancing mechanisms [62, 34, 24, 25, 39] proposed for

DHTs to address the load imbalances due to consistent hashing are similar in spirit

to our work since they focus on mechanisms to exploit heterogeneity. We on the other

hand are focused identifying which characteristics we should choose to balance and how

these different characteristics interact with each other.



Chapter 3

ShortCuts: Using Soft State To

Improve DHT Routing

Peer-to-peer overlay networks provide a distributed, fault-tolerant, scalable

architecture on which wide-area distributed systems and applications can be built. An

increasing trend has been to propose content delivery services on peer-to-peer networks,

including cooperative Web caches [30], Web indexing and searching [41, 45], content

delivery systems [36, 9], and Usenet news [17]. Popular designs of these overlay net-

works implement a distributed hash table (DHT) interface to higher level software.

DHTs map keys in a large, virtual ID space to associated values stored and managed

by individual hosts in the overlay network. DHTs use a distributed routing protocol to

implement this mapping. Each host in the overlay network maintains a routing table.

When a host receives a request for a particular key, it forwards the request to another

host in its routing table that brings the request closer to its destination.

A natural trade off in the design of these routing protocols is the size of the

routing table and the latency of routing requests. Larger routing tables can reduce rout-

ing latency in terms of the number of hops to reach a destination, but at the cost of ad-

ditional route maintenance overhead. Because the performance and overhead of DHT

overlay networks fundamentally depend upon the distributed routing protocol, signif-

icant work has focused on the problem of balancing the degree of routing state and

15
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maintenance with route performance.

Early systems like Chord [73], Pastry [70], Tapestry [86], and CAN [64] use

routing tables of degree O(log n) to route requests in O(log n)) hops, where n is the

number of hosts in the network. Newer algorithms improve the theoretical bounds on

routing state and hops. Randomized algorithms like Viceroy [46] and Symphony [47]

achieve small, constant-degree routing tables to route requests on average in O(log n)

and O(log log n) hops, respectively. Koorde [32] is a tunable protocol that can route

requests with a latency ranging from O(log n) to O(log n/ log log n) hops for routing

tables of constant size to O(log n)) size, respectively. Other approaches, such as Ke-

lips [27], Structured Superpeers [52], Beehive [60], and CUP [69] focus on achieving

constant-time O(1) hops to route requests at the expense of high degree routing tables,

hierarchical routing, tailoring to traffic distributions, or aggressive update protocols to

maintain consistency among the large routing tables in each peer.

In this chapter, we argue that the appropriate use of cached routing state within

the routing protocol can provide competitive improvements in performance while using

a simple baseline routing algorithm. We describe and evaluate the use of three kinds

of hint caches containing route hints to improve the routing performance of distributed

hash tables (DHTs): local hint caches store direct routes to successors in the ID space;

path hint caches store direct routes to peers accumulated during the natural processing

of lookup requests; and global hint caches store direct routes to a set of peers roughly

uniformly distributed across the ID space.

These hint caches require state similar to previous approaches that route re-

quests in constant-time hops, but they do not require the complexity and communica-

tion overhead of a distributed update mechanism to maintain consistency among cached

routes. Instead, the hint caches do not explicitly maintain consistency in response to

peer arrivals and departures other than as straightforward extensions of the standard op-

erations of the overlay network. We show that hint cache inconsistency does not degrade

their performance benefits.

We evaluate the use of these hint caches by simulating the latest version of the
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Chord DHT [13] and extending it to use the three hint caches. We evaluate the effec-

tiveness of the hint caches under a variety of conditions, including highly volatile peer

turnover rates and relatively large network sizes. Based upon our simulation results, we

find that the combination of the hint caches significantly improves Chord routing perfor-

mance. In networks of 4,096 peers, the hint caches enable Chord to route requests with

average latencies only 6% more than algorithms like “OneHop” that use complete rout-

ing tables, while requiring an order of magnitude less bandwidth to maintain the caches

and without the complexity of a distributed update mechanism to maintain consistency.

The remainder of the chapter is organized as follows. Section 3.1 describes

how we extend Chord to use the local, path, and global hint caches. Section 3.2 de-

scribes the use of detour routes to take advantage of asymmetries in Internet routing to

reduce lookup latency further. Section 3.3 describes our simulation methodology for

evaluating the hint caches, and presents the results of our evaluations. Finally, Sec-

tion 3.4 summarizes our results and concludes.

3.1 Design

Distributed hash tables (DHT) increasingly serve as the foundation for a wide

range of content delivery systems and applications. The DHT lookup operation is the

fundamental operation on which applications base their communication. As a result, the

performance of these applications directly depends on the performance of the lookup

operation, and improving lookup performance improves performance for all applications

layered on DHTs.

The primary goal of our work is to reduce lookup performance as close to

direct routing with much less overhead than previous approaches and without relying

upon specific traffic patterns. We also integrate the cache update mechanism to refresh

cached route entries into the routing protocol to minimize the update complexity as well

as overhead. To achieve this goal, each peer employs three hint caches. Local hint

caches store direct routes to neighbors in the ID space. Path hint caches store direct
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routes to peers accumulated during the natural processing of lookup requests. Finally,

global hint caches store direct routes to a set of peers roughly uniformly distributed

across the ID space. We call them hint caches since the cached routes are hints that may

potentially be stale or inconsistent. We also consider them soft-state hints since they can

be reconstructed quickly at any time and they are not necessary for the correctness of

the routing algorithm.

The following sections describe the behavior of each of the three hint caches.

Although these caches are applicable to DHTs in general, we describe them in the con-

text of integrating them into the Chord DHT as a concrete example. So we start with a

brief overview of the Chord lookup operation and routing algorithm as background.

3.1.1 The Chord DHT

In Chord, all peers in the overlay form a circular linked list. Each peer has

one successor and one predecessor. Each peer also maintains O(logn) successors and

O(log n) additional peers called fingers. The owner of a key is defined as a peer for

which the key is in between the peer’s predecessor’s ID and its ID. The lookup operation

for a given key returns the owner peer by successively traversing the overlay. Peers

construct their finger tables such that the lookup operation traverses progressively closer

to the owner in each step. In recursive lookup, the initiator peer uses its routing table to

contact the closest peer to the key. This closest peer then recursively forwards the lookup

request using its routing table. Included in the request is the IP address of the initiating

peer. When the request reaches the peer that owns the key, that peer responds directly

to the initiator. This lookup operation contacts O(log n) application level intermediate

peers to reach the owner for a given key.

We augment Chord with the three hint caches. Chord uses these hint caches

as simple extensions to its original routing table. When determining the next best hop

to forward a request, Chord considers the entries in its original finger table as well as all

entries in the hint caches.
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3.1.2 Local Hint Caches

Local hints are direct routes to neighbors in the ID space. They are extensions

of successor lists in Chord and leaf hosts in Pastry, except that their purpose is to improve

routing performance. With a cache of local hints, a peer can directly reach a small

fraction of peers directly and peers can short cut the final hops of request routing.

Local hints are straightforward to implement in a system like Chord using its

successor lists. Normally, each peer maintains a small list of its successors to support

fault-tolerance within Chord and upper layer applications. Peers request successor lists

when they join the network. As part of a process called stabilization in Chord, each peer

also periodically pings its successor to determine liveness and to receive updates of new

successors in its list. This stabilization process is fundamental for maintaining lookup

routing correctness, and most DHT designs perform similar processes to maintain suc-

cessor liveness.

We propose enlarging these lists significantly — on the order of a thousand

entries — to become local hint caches. Growing the successor lists does not introduce

any additional updates, but it does consume additional bandwidth. The additional band-

width required is S
H

entries per second where S is the number of entries in local hint

cache, and H is the half life time of peers in the system. Each peer change, either join-

ing or leaving, requires two entries to update. Similar to [44], we define the half life as

the time in seconds for half of the peers in the system to either leave or join the DHT.

For perspective, a study of the Overnet peer-to-peer file sharing system measured a half

life of four hours [4].

The overhead of maintaining the local hint cache is quite small. For example,

when S is 1000 entries and H is four hours, then each peer will receive 0.07 extra entries

per second during stabilization. Since entries are relatively small (e.g., 64 bytes), this

corresponds to only a couple of bytes/sec of overhead.

Local hint caches can be inconsistent due to peer arrivals and departures.

When a peer fails or a new peer joins, for example, its immediate predecessor will

detect the failure or join event during stabilization. It will then update its successor list,
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and start propagating this update backwards along the ring during subsequent rounds of

stabilization. Consequently, the further one peer is from one its successors, the longer it

takes that peer to learn that the successor has failed or joined.

The average amount of stale data in the local hint cache is R∗S∗(S+1)
4∗H

, where

R is the stabilization period in seconds (typically one second). On average a peer ac-

cumulates 1
2∗H

peers per second of stale data. Since a peer updates its x’th successor

every x ∗ R seconds, it accumulates x∗R
2∗H

stale entries from its x’th successor. If a peer

has S successors, then on average the total amount of stale data is
∑S

i=1
i∗R
2∗H

. If the sys-

tem half life time H is four hours and the local hint cache size is 1000 peers, then each

peer only has 1.7% stale entries. Of course, a peer can further reduce the stale data by

using additional update mechanisms, introducing additional bandwidth and complexity.

Given the small impact on routing, we argue that such additions are unnecessary.

3.1.3 Path Hint Caches

The distributed nature of routing lookup requests requires each peer to process

the lookup requests of other peers. These lookup requests are generated both by the

application layered on top of the DHT as well as the DHT itself to maintain the overlay

structure. In the process of handling a lookup request, a given peer can get information

about other peers that contact it as well as the peer that initiated the lookup.

With Path Caching with Expiration (PCX) [69], peers cache path entries when

handling lookup requests, expiring them after a time threshold. PCX caches entries to

the initiator of the request as well as the result of the lookup, and the initiator caches the

results of the lookup. In PCX, a peer stores routes to other peers without considering

the latency between itself and these new peers. In many cases, these extra peers are

far away in terms latency. Using these cached routes to peers can significantly add to

the overall latency of lookups (Figure 3.6(a)). Hence PCX, although it reduces hops

(Figure 3.6(b)), can also counter-intuitively increase lookup latency.

Instead, peers should be selective in terms of caching information about routes

to other peers learned while handling lookups. We propose a selection criteria based on
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the latency to select a peer to cache it. A peer x caches a peer y if the latency to y from

x is less than the latency from x to peer z, where (1) z is in x’s finger table already and

(2) its ID comes immediately before y’s ID if x orders the IDs of its finger table peers.

For example, assume y falls between a and b in x’s finger table and then peer x contacts

a to perform the lookup request for an ID between (a, b]. If we insert y, then x would

contact y for the ID between (y, b]. Since the latency to y from x is less than the latency

a from x, the lookup latency may reduce for IDs between (y, b]. As a result, x will cache

the hop to y. We call the cache that collects such hints the path hint cache.

We would like to maintain the path hint cache without the cost of keeping

entries consistent. The following cache eviction mechanism tries to achieve this goal.

Since a small amount of stale data will not affect lookup performance significantly (Fig-

ure 3.4), a peer tries to choose a time period to evict entries in the path hint cache such

that amount of stale data in its path cache is small, around 1%. The average time to

accumulate d percentage of stale data in the path hint cache is 2 ∗ d ∗ h seconds, where

h is the halving time [44]. Hence a peer can use this time period as the eviction time

period.

Although the improvement provided by path hint caches is somewhat marginal

(1–2%), we still use this information since it takes advantage of existing communication

and comes free of cost.

3.1.4 Global Hint Caches

The goal of the global hint cache is to approximate two-hop route coverage of

the entire overlay network using a set of direct routes to low-latency, or nearby, peers.

Ideally, entries in the global hint cache provide routes to roughly equally distributed

points in the ID space; for Chord, these nearby routes are to peers roughly equally

distributed around the ring.

These nearby peers work particularly well in combination with the local hint

caches at peers. When routing a request, a peer can forward a lookup to one of its

global cache entries whose local hint cache has a direct route to the destination. With
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a local hint cache with 1000 entries, a global hint cache with a few thousand hosts will

approximately cover an entire system of few million peers in two hops.

A peer populates its global hint cache by collecting route entries to low-latency

hosts by walking the ID space. A peer x contacts a peer y from its routing table to

request a peer z from y’s local hint cache. The peer x can repeat this process from z

until it reaches one of its local hint cache peers. We call this process space walking.

While choosing peer z, we have three requirements: minimizing the latency

from x, minimizing x’s global hint cache size, and preventing gaps in coverage due to

new peer arrivals. Hence, we would like to have a large set of peers to choose from to

find the closest peer, to choose the farthest peer in the y’s local hint cache to minimize

the global hint cache size, and to choose the closer peer in y’s local hint cache to prevent

gaps. To balance these three requirements, when doing a space walk to fill the global

hint cache we use the second half of the successor peers in the local hint cache.

Each peer uses the following algorithm to maintain the global hint cache. Each

peer maintains an index pointer into the global hint cache called the refresh pointer.

Initially, the refresh pointer points to the first entry in the global hint cache. The peer

then periodically walks through the cache and examines cache entries for staleness. The

peer only refreshes a cache entry if the entry has not been used in the previous half life

time period. The rate at which the peer examines entries in the global hint cache is g
2∗d∗h

,

where d is targeted percentage of stale data in the global hint cache, g is the global hint

cache size, and h is the halving time. This formula is based on the formula for stale data

in the path hint cache (Section 3.1.3).

The value d is a system configuration parameter, and peers can estimate h

based upon peer leave events in the local hint cache. For example, if the halving time

h is four hours, the global hint cache size g is 1000, and the maximum staleness d

is 0.125%, then the refresh time period is 3.6 seconds. Note that if a peer uses an

entry in the global hint cache to perform a lookup, it implicitly refreshes it as well and

consequently reduces the overhead of maintaining the hint cache.

Scaling the system to a very large number of hosts, such as two million peers,
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the global hint cache would have around 4000 entries and peers would require one ping

message per second to maintain 0.5% stale data in very high churn situations like one-

hour halving times. Such overheads are small, even in large networks.

Peers continually maintain the local and path hint caches after they join the

DHT. In contrast, a peer will only start space walking to populate its global hint cache

if it receives a threshold explicit lookup requests directly from the application layer (as

opposed to routing requests from other peers). The global hint cache is only useful for

the lookups made by the peer itself. Hence, it is unnecessary to maintain this cache for

a peer that is not making any lookup requests. Since a peer can build this cache very

quickly (Figure 3.9), it benefits from this cache soon after it starts making application

level lookups. A peer maintains the global hint cache using the above algorithm as long

as it receives lookups from applications on the peer.

3.1.5 Discussion

Our goal is to achieve near-minimal request routing performance with signifi-

cantly less overhead than previous approaches. Local hint caches require S
H

entries/sec

additional stabilization bandwidth, where S is the number of entries in the local hint

cache and H is the half life of the system. Path hint caches require no extra bandwidth

since they incorporate information from requests sent to the peer. And, in the worst case,

global hint caches require one ping message per 2∗d∗h
g

seconds to refresh stale entries.

For comparison, in the “OneHop” approach [26] each peer periodically com-

municates N
2∗H

entries to update its routing table, an order of magnitude more overhead.

With one million peers at four hour half life time, for example, peers in “OneHop”

would need to communicate at least 35 entries per second to maintain the state consis-

tently, whereas the local hint cache requires 0.07 entries per second and one ping per 28

seconds to maintain the global hint cache.
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3.2 Shun Pikes

The direct route provided by the Internet between two peers may not be the

best route [72]. According to a recent study, 17% of pairs of peers reduce 25 millisec-

onds in latency if we use alternate paths [37] with some intermediate hops. Our goal is

to reduce the DHT lookup latency by exploiting the alternate paths that are better than

the direct paths. Each peer tries to forward the lookup request to a peer that is closest to

the lookup key from its routing table until the lookup request reaches the owner. We try

to use these alternate paths to reach these intermediate hops if alternative paths reduce

latency.

The simplest approach to find alternate shortest paths is to run the single

source shortest paths algorithm (either Dijkstra or Bellman-Ford) at each peer using

the local hint cache and global hint cache as the intermediate hops. The shortest paths

from a single host to all other hosts in a complete graph can be approximated closely

by the shortest paths that are constructed from a few random subsets of hosts in the

graph similar to Internet [79]. In other words, the shortest paths constructed for a single

host with some random hosts and edges to these random hosts are almost as good as

the shortest paths constructed from the same host to all other hosts in the graph with the

complete graph. In our case, the local hint cache has a small set of random subset of

peers in the DHT and the global hint cache has the closest peers for a given peer. Hence,

the shortest path constructed from a peer x to any other peer y in the DHT using just

peers in x’s local and global hint caches as intermediate hops is within a constant factor

from shortest path from x to y if x uses all other peers in the DHT as intermediate hops

to construct the shortest path.

Each peer constructs the shortest paths to all other peers in its caches and tries

to uses this information in forwarding the lookup operation. As previously mentioned,

a peer x tries to forward the lookup request to the closest peer y in the identifier space.

However, if there is a better path from x to y through peer z, then peer x forwards the

lookup to peer z, instead of directly forwarding to y, to forward the lookup request to y.
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Overall this new lookup algorithm combining with the local and global hint

cache performs better than the “OneHop” approach with significantly less overhead.

However, “OneHop” could be modified to take advantages of detours to improve the

lookup operation and can achieve similar lookup performance.

3.3 Methodology and Results

In this section we describe our DHT simulator and our simulation methodol-

ogy. We also define our performance metric, average space walk time, to evaluate the

benefits of our hint caches on DHT routing performance.

3.3.1 Chord Simulator

Although the caching techniques are applicable to DHTs in general, we chose

to implement and evaluate them in the context of Chord [73] due to its relative simplicity.

Although the Chord group at MIT makes its simulator available for external use [14],

we chose to implement our own Chord simulator together with our hint caching exten-

sions. We implemented a Chord simulator according to the recent design in [13] that

optimizes the lookup latency by choosing nearest fingers. It is an event-driven simulator

that models network latencies, but assumes infinite bandwidth and no queuing in the

network. Since our experiments had small bandwidth requirements, these assumptions

have a negligible effect on the simulation results.

We separated the successor list and finger tables to simplify the implementa-

tion of the hint caches. During stabilization, each peer periodically pings its successor

and predecessor. If it does not receive an acknowledgment to its ping, then it simply

removes that peer from it tables. Each peer also periodically requests a successor list

update from its immediate successor, and issues lookup requests to keep its finger table

consistent. When the lookup reaches the key’s owner, the initiating peer chooses as a

finger the peer with the lowest latency among the peers in the owner’s successor list.

For our experiments, we used a period of one second to ping the successor and
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predecessor and a 15 minute time period to refresh the fingers. A finger is refreshed im-

mediately if a peer detects that the finger has left the DHT while performing the lookup

operation. These time periods are same as ones used in the Chord implementation [14].

To compare different approaches, we want to evaluate the potential perfor-

mance of a peer’s routing table for a given approach. We do this by defining a new

metric called space walk latency. The space walk latency for a peer is the average time

it takes to perform a lookup to any other peer on the DHT at a given point of time. We

define a similar metric, space walk hops, in terms of hops rather than latency. The space

walk time is a more complete measurement than a few thousands of random sample

lookups because space walk time represent lookup times to all peers in the network.

We simulate experiments in three phases: an initial phase, a stabilization

phase, and an experiment phase. The initial phase builds the Chord ring of a specified

number of hosts, where hosts join the ring at the rate of 50 hosts per second. The sta-

bilization phase settles the Chord ring over 15 minutes and establishes a stable baseline

for the Chord routing data structures. The experimental phase simulates the peer request

workload and peer arrival and departure patterns for a specified duration. The simula-

tor collects results to evaluate the hint caching techniques only during the experimental

phase.

Because membership churn is an important aspect of overlay networks, we

study the performance of the hint caches using three different churn scenarios: twenty-

four-hour, four-hour, and one-hour half life times. The twenty-four-hour half life time

represent the churn in a distributed file system with many stable corporate/university

peers [7]. The four-hour half life time represent the churn in a file sharing peer-to-peer

network with many home users [49]. And the one-hour half life time represent extremely

aggressive worst-case churn scenarios [26].

For the simulations in this chapter, we use an overlay network of 8,192 peers

with latency characteristics derived from real measurements. We start with the laten-

cies measured as part of the Vivaldi [11] evaluation using the King [37] measurement

technique. This data set has approximately 1,700 DNS servers, but only has complete
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all-pair latency information for 468 of the DNS servers. To simulate a larger network,

for each one of these 468 DNS servers we create roughly 16 additional peers to repre-

sent peers in the same stub networks as the DNS servers. We create these additional

peers to form a network of 8,192 peers. We model the latency among hosts within the

group as zero to correspond to the minimal latency among hosts in the same network.

We model the latency among hosts between groups according to the measured latencies

from the Vivaldi data set and we refer this data set as a “King”. The minimum, average,

and maximum latencies among groups are 2, 165, and 795 milliseconds, respectively.

As a timeout value for detecting failed peers, we use a single round trip time to that peer

(according to the optimizations in [13]).

Using measurements to create the network model adds realism to the evalu-

ation. At the same time, though, the evaluation only scales to the limits of the mea-

surements. To study the hint caches on systems of much larger scale, we also performed

experiments using another network model. We have two different data sets in this model

and both of them are significantly larger than above data set. First, we created a matrix

of network latency among 8,192 groups by randomly assigning a latency between two

groups from the range of 10 to 500 milliseconds and a latency within a group from the

range of 1 to 5 milliseconds. We then created an overlay network of 262,144 peers by

randomly assigning each peer to one group, keeping the groups balanced. We also cre-

ated another data set with same latencies among groups and with in a group for 65536

peers that are randomly distributed into 2,048 groups. We refer these data sets as a

“Random”.

The goal of “Random” data set is to show the performance of various caches

at large scale networks that we can simulate on the resources that are available to us.

We used two different clusters [50, 80] to scale the computational resources. However,

in some of the experiments we couldn’t parallelize our simulation easily hence we used

smaller “Random” data set with 65,536 peers.
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Figure 3.1: Sensitivity of local hint cache size on lookup performance for “King” data

set.

3.3.2 Local Hint Caches

In this experiment we evaluate the performance of the local hint cache com-

pared with two baseline routing algorithms, “Standard” and “OneHop.” “Standard”

is the default routing algorithm in Chord++ [13] that optimized for lookup latency by

choosing nearest fingers. “OneHop” maintains complete routing tables on all peers [26].

Figures 3.1(a) and 3.1(b) show the cumulative distributions for the space walk

latencies and hops, respectively, across all peers in the system. Since there is no churn

in this experiment, we calculate the latencies and hops after the network stabilizes when

reaching the experimental phase; we address churn in the next experiment. Figure 3.1(a)

shows results for “Standard” and “OneHop” and local hint cache sizes ranging from 64–

1024 successors; Figure 3.1(b) omits “OneHop” since it only requires one hop for all

lookups with stable routing tables.

Figure 3.1(a) shows that the local hint caches improve routing performance

over the Chord baseline, and that doubling the cache size roughly improves space walk

latency by a linear amount. The median space walk latency drops from 432 ms in Chord

to 355 ms with 1024 successors in the local hint cache (a decrease of 18%). Although

an improvement, the local hint cache alone is still substantially slower than “OneHop”,



29

0

10

20

30

40

50

60

70

80

90

100

450 500 550 600 650 700 750

Space Walk Latency (in Milliseconds)

P
er

ce
n

ta
ge

 o
f P

ee
rs

OneHop

Standard

64-Successors

256-Successors

1024-Successors

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6

Space Walk Hops

P
er

ce
n

ta
g

e 
o

f 
P

ee
rs

Standard

64-Successors

256-Successors

1024-Successors

(b) Hop count distributions

Figure 3.2: Sensitivity of local hint cache size on lookup performance for “Random”

data set.

which has a median space walk latency of 273 ms (a decrease of 37% is needed).

Figure 3.1(b) shows similar behavior for local hint caches in terms of hops. A

local hint cache with 1024 successors decreases median space walk latency by 2.5 hops,

although using such a cache still requires one more hop than “OneHop”.

The performance local hint cache for “Random” data set in Figure 3.2(a) and

Figure 3.2(b) is similar to the performance of local hint cache for “King” data set in

Figure 3.1(a) and Figure 3.1(b) respectively. We used 65,536 peers for the “Random”

data set to be consistent with other Figures in this section.

From the graph, we see that doubling the local hint cache size improves the

number of hops by at most 0.5. Doubling the local hint cache size reduces hop count by

one for half of the peers, and the remaining half does not benefit from the increase. For

example, consider a network of 100 peers where each peer maintains 50 other peers in

its local hint cache. For each peer, 50 peers are one hop away and the other 50 peers are

two hops away. As a result, the space walk hop distance is 1.5 hops. If we increase the

local hint cache to 100 peers, then each peer reduces the hop distance for only the 50

peers that were two hops away in the original scenario. In this case, the space walk hop

distance is 1.

When there is no churn in the system, the lookup performance when measured
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Figure 3.3: Stale data distribution under various churn situations for King and Random

data sets.

in terms of hops either remains the same or improves when we double the local hint

cache size. The results are more complicated when we measure lookup performance

in terms of latency. Most peers improves their lookup latencies to other peers and,

on average, increasing local hint cache improves the space walk latency. However,

lookup latency to individual peers can increase when we double the local hint cache

size in some cases. This is because Internet routing does not necessarily follow the

triangular inequality: routing through multiple hops may have lower latency than a direct

route between two peers. Since we derive our network latency model from Internet

measurements, our latency results reflect this characteristic of Internet routing.

3.3.3 Staleness in Local Hint Caches

The previous experiment measured the benefit of using the local hint cache in

a stable network, and we now measure the staleness in terms of stale entries in the local

hint cache and the effect of staleness on lookup performance.

In this experiment, we use a local hint cache size of 1024 successors. To

calculate stale data in local hint caches, we ran the simulator with King data set and

Random data set with 65,536 peers for an experimental phase of 30 minutes. During the

experimental phase, the network experiences churn in terms of peer joins and leaves.
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Figure 3.4: Space walk latency distributions under various churn situations.

We vary peer churn in the network by varying the half life of peers in the system from

one hour to one day; we select hosts to join or leave from a uniform distribution.

Figure 3.3 shows the fraction of stale entries in local hint caches for various

system half life times as a cumulative distribution across all peers. We calculated the

fraction of stale entries by sampling each peer’s local hint cache every second and de-

termining the number of stale entries. We then averaged the samples across the entire

simulation run. Each point (x, y) on a curve indicates that y percentage of peers have at

most x% stale data in their local hint caches. As expected, the amount of stale data in-

creases as the churn increases. Note that the amount of stale data is always less than the

amount calculated from our analysis in Section 3.1.2 since the analysis conservatively

assumes worst case update synchronization.

Figure 3.4 shows the effect of stale local hint cache entries on lookup per-

formance across all peers for King data set and Random data set with 32768 peers. It

shows results for the same system half life times as Figure 3.3 and adds results for an

“Infinite” half life time. An “Infinite” half life means that there is no churn, no stale

entries in the hint cache, and therefore represents the best-case latency. At the end of

the experiment phase in the simulation, we used the state of each peer’s routing table to

calculate the distribution of space walk latencies across all peers. Each point (x, y) in

the figure indicates that y percentage of peers have at most x space walk latency. We cut
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off the y-axis at 75% of peers to highlight the difference between the various curves.

The space walk latencies for a four hour half life time are similar to the la-

tencies from the ideal case with no churn (medians differ by only 1.35%). From these

results we conclude that the small amount of stale data (1–2%) does not significantly

degrade lookup performance, and that the local hint cache update mechanism maintains

fresh entries well. As the churn rate increases, stale data increases and lookup perfor-

mance also suffers. At an one hour half life, lookup performance increases moderately.

Note that the “Infinite” half life time curves in Figure 3.4(a) and Figure 3.4(b)

performs better than the 1024 successors curve in Figure 3.1(a) and Figure 3.2(a) even

though one would expect them to be the same. The reason they differ is that the finger

table entries in these two cases are different. When we evaluated the local hint cache,

we used a routing table with 13 successors and added the remaining successors to create

the local hint cache without changing the finger table. When we evaluated the stale data

effects in the local hint cache we have 1024 successors from which to choose “nearest”

fingers. As a result, the performance is better.

3.3.4 Update Traffic

In the previous section we evaluated the effect of stale data on lookup perfor-

mance under various churn scenarios. In this section we evaluate the update traffic load

under various churn scenarios to evaluate the update traffic bandwidth required by large

local hint caches.

We performed a similar experiment as in Section 3.3.3 for King data set and

Random data set with 65536 peers. However, instead of measuring stale data entries we

measured the update traffic size. We calculated the average of all update samples per

second for each peer over its lifetime in terms of the number of entries communicated.

Figure 3.5 presents this average for all peers as cumulative distributions. Each curve in

Figure 3.5 corresponds to a different churn scenario. A point (x, y) on each curve repre-

sent the y percentage of peers that have at most x entries of average update traffic. The

average update traffic closely matches the estimate from our analysis in Section3.1.2.
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Figure 3.5: Update traffic distribution under various churn situations.

The average update traffic (0.4 entries/second) is extremely low even under worst case

conditions. Hence, this traffic does not impose a burden on the system.

3.3.5 Path Hint Caches

Next we evaluate the performance of the path hint cache (PHC) described in

Section 3.1.3 compared to path caching with expiration (PCX) as well as Chord. PCX is

the technique of caching path entries described in [69]. When handling lookup requests

on behalf of other hosts, PCX caches route entries to the initiator of the request as well

as the result of the lookup.
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Figure 3.6: Lookup performance of path caching with expiration (PCX), path hint cache

(PHC), and standard Chord for “King” data set.
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Figure 3.7: Lookup performance of path caching with expiration (PCX), path hint cache

(PHC), and standard Chord for “Random” data set.

In this experiment, we simulate a network of “King” data set with a 30-minute

experimental phase. We study the lower-bound effect of the path hint caches in that we

do not perform any application level lookups. Instead, the path hint caches are only pop-

ulated by traffic resulting from network stabilization. We did not simulate application

level lookup traffic to separate its effects on cache performance; with applications per-

forming lookups, the path hint caches may provide more benefit, although it will likely

be application-dependent. Since there is no churn, cache entries never expire. To focus
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on the effect of path caches only, we used a local hint cache size of 13, the size of the

standard Chord successor list, and no global hint cache. We collected the routing tables

for all peers at the end of the simulations and calculated the space walk latencies and

hops.

Figure 3.6(a) shows the cumulative distribution of space walk latencies across

all peers at the end of the simulation for the various path caches and standard Chord.

Each point (x, y) in this figure indicates that y percent peers have at most x space

walk latency. From these results we see that, as expected, the path hint cache improves

latency only marginally. However, the path hint cache is essentially free, requiring no

communication overhead and a small amount of memory to maintain.

We also see that PCX performs worse even than Chord. The reason for this is

that PCX optimizes for hops and caches routing information independent of the latency

between the caching peer and the peer being cached. The latest version of Chord and

our path hint caches use latency to determine what entries to place and use in the caches

and in the routing tables. For peers with high latency, it is often better to use additional

hops through low-latency peers than fewer hops through high-latency peers.

Figure 3.6(b) shows this effect as well by presenting the cumulative distribu-

tion of space walk hops across all peers for the various algorithms. Each point (x, y)

in this figure indicates that y percent peers have at most x space walk hops. Using the

metric of hops, PCX performs better than both Chord and PHC. Similar to results in

previous work incorporating latency into the analysis, these results again demonstrate

that improving hop count does not necessarily improve latency. Choosing routing table

and cache entries in terms of latency is important for improving performance.

We did the same experiment replacing the ”King” data set with the “Random”

data set with 65,536 peers and Figures 3.7 shows the results of this experiment. These

results are qualitatively similar to the results of above “King” data set.

The path hint cache are small and each peer aggressively evicts the cache

entries to minimize the stale data. Hence the effects of stale data on lookup request

performance is marginal.
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Figure 3.8: Global hint cache performance in different network models.

3.3.6 Global Hint Caches

Finally, we evaluate the performance of using the global hint cache together

with the local and path hint caches. We compare its performance with “Standard” Chord

and “OneHop”. In this experiment, we simulated 8,192 peers with both 32 and 256

entries in their local hint caches. We have two different configurations of local hint

caches to compare the extent to which the global hint cache benefits from having more

candidate peers from which to select nearby peers to place in the global hint cache.

(Note that the global hint cache uses only the second half of the hosts in the local hint

cache to select nearest hosts; hence, the global hint cache uses only 16 and 128 entries to

choose nearest peers in the above two cases.) Each peer constructs its global cache when

it joined the network as described in Section 3.1.4. We collected the peer’s routing tables

once the network reached a stable state during the experimentation phase, and calculated

the space walk latencies for each peer from the tables.

Figure 3.8(a) shows the cumulative distributions of space walk latencies

across all peers for the various algorithms. The “Standard”, “OneHop”, “LocalCache”,

“GlobalCache-32”, and “GlobalCache-256” curves represent Chord, the “OneHop” ap-

proach, a 1024-entry local hint cache, a 32-entry global hint cache with a 256-entry local

hint cache, and a 256-entry global hint cache with a 32-entry local hint cache. Compar-
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ing the size of local hint caches used to populate the global hint cache, we find that the

median space walk latency of “GlobalCache-256”is 287 ms and “GlobalCache-32” is

305 ms; the performance of the global hint cache improved only 6% when it has more

peers in the local hint cache to choose the nearest peer.

We also did same experiment with Random data set for 262,144 peers. We

set the local hint cache size to 128 instead of 1024 to grow the global hint caches to

few thousand peers which is the expected global hint cache size when the network has

few million peers. This is the maximum network size we could able to simulate on our

cluster machines. At this point, the main memory becomes the bottle-neck for our sim-

ulation. The results are presented in Figure 3.8(b) and the global hint cache performed

close to the “OneHop” approach (the median space walk latency of global hint cache is

2% more than the median space walk latency of “OneHop” approach).

Comparing algorithms, we find that the median latency of the global hint cache

comes within 6% of the “OneHop” approach when the global hint cache uses 128 of 256

entries in the local hint cache to choose nearby peers. Although these results are from

a stable system without churn, the amount of stale data in the global hint cache under

churn is similar to the local hint cache under churn because both of them use a similar

update mechanism. Hence, the global hint cache performance under churn is same or

a little better than the local hint cache performance under churn because global hint

cache is filled with the nearest peers as opposed to the random peers in local hint cache.

As a result, the effect of stale data in the global hint cache is negligible for a one-day

system half life time and four-hour system half life time. Overall, our soft-state approach

approaches the lookup latency of algorithms like “OneHop” that use significantly more

communication overhead to maintain complete routing tables.

Global Hint Cache Build Time

Since we contact closer peers while constructing the global hint cache, one

can build this cache within a few minutes. To demonstrate this, we calculated the time

to build the global hint cache for King data set with 8,192 peers and Random data set



38

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time to Build Global Hint Cache (in seconds)

P
er

ce
nt

ag
e 

of
 P

ee
rs

One

Two

Four

Eight

(a) King data set

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40

Time to Build Global Hint Cache (in seconds)

P
er

ce
n

ta
g

e 
o

f 
P

ee
rs

One

Two

Four

Eight

(b) Random data set

Figure 3.9: Global hint cache build time

with 262,144 peers. Figure 3.9 presents the results of this experiment as a distribution of

cache build times. Each point (x, y) on a curve indicates that y percentage of peers needs

at most x seconds to build the cache. Each peer has around 500 peers in its the global

hint caches and 16 peers in its local hint cache for King data set and in the Random data

set each peer has around 1500 peers in the global hint cache and 128 peers in the local

hint cache.

In the King data set, on the average it took 45 seconds to build the global hint

cache. A peer can speed up this process by initiating walks from multiple peers from its

routing table in parallel. The curves labeled “Two”, “Four”, and “Eight” represent the

cache build times with two, four, and eight parallel walks, respectively. As expected,

cache build time reduces as we increase the number of parallel walks. The median

reduces from 32 seconds for single walk to 12 seconds for four parallel walks. We see

only a small benefit of increasing the parallel walks after four parallel walks.

The global hint cache build times for Random data set has similar trends as the

global hint cache build times for King data set. Even though global hint cache sizes are

bigger in the Random data set the build time is less comparing with the King data set.

The Random data set has more peers in the local hint cache which improve the chances

of finding a nearest peer for a given peer which in turn improves the build time.
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Figure 3.10: Effects of Network Coordinates

Network Coordinates

So far we have assumed that, when populating the global hint caches, peers

are aware of the latencies among all other peers in the system. As a result, the results

represent upper bounds. In practice, peers will likely only track the latencies of other

peers they communicate with, and not have detailed knowledge of latencies among ar-

bitrary peers. One way to solve this problem is to use a distributed network coordinate

system such as Vivaldi [11]. Of course, network coordinate systems introduce some

error in the latency prediction. To study the effect of coordinate systems for populating

global hint caches, we next use Vivaldi to estimate peer latencies.

In our simulation we selected the nearest host according to network latency

estimated according to the Vivaldi network coordinate system, but calculated the space

walk time using actual network latency. We did this for the “GlobalCache-32” and

“GlobalCache-256” curves in Figure 3.8. Figure 3.10 shows these curves and the results

using Vivaldi coordinates as “Vivaldi-32” and “Vivaldi-256”. The performance using the

coordinate system decreases 6% on average in both cases, showing that the coordinate

system performs well in practice.

3.3.7 Shun Pikes

In section 3.2 we described ways to exploit the detours to improve the lookup

performance even further than the “OneHop” approach. In this section we evaluated



40

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

Latency (in Milliseconds)

P
er

ce
n

ta
g

e 
o

f 
P

ee
rs

OneHop

Apprx

Optimal

(a) Latency distributions

0

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600 650

Space Walk Latency (in Milliseconds)

P
er

ce
n

ta
g

e 
o

f 
P

ee
rs

OneHop

Apprx

Optimal

GHC

(b) Space walk latency distributions

Figure 3.11: Effects of shun pikes

the shun pikes for the King data set. The latency distributions between all pairs are

presented in Figure 3.11(a) and Figure 3.11(b) shows the performance results of our

new lookup algorithm.

First we calculated the shortest path between all pair of peers in the data set

assuming that each peer has full knowledge of other peers. We just simply ran the

shortest path algorithm on network latency matrix. The result of this is presented in

Figure 3.11(a) as the “Optimal” labeled curve. We then calculated the shortest paths

from each peer to all other peers assuming each peer has 64 peers in its local hint cache

and approximately 64 peers in the global hint cache. The resultant latency distributed

is represented as “Apprx” curve in Figure 3.11(a). The curve “OneHop” shows the

network latency distribution. Overall for 40% of pairs shorest path latency improved

over the one hop latency. The “Apprx” and “Optimal” performed similarly for smaller

latencies and differ a bit at higher latencies. Though theoretically the “Apprx” should

be constant factor away from the optimal case in general Internet like graphs. However,

in this case we got similar performance as the optimal case when each host has partial

information about the entire graph.

The Figure 3.11(b) shows the space walk latency for one hop, shortest path la-

tencies, our new lookup algorithm and our global and local hint caches . The “OneHop”

and “Optimal” curves represent the one hop and shortest path latency approaches. The
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“GHC” curve represents the space walk latency of our global hint cache along with the

local hint cache that is same as the “GlobalCache-256” curve in Figure 3.8(a). The “Ap-

prx” curve represents the space walk latency of our approach where each peer has only

partial information about the entire network and each peer tries to optimize the lookup

as described in section 3.2. The median space latency for our caches, one hop, our new

lookup algorithm and shortest paths is 287, 271, 262 and 228 milliseconds. Our new

lookup algorithm improved approximately 10% over our global and local hint caches

and it improved around 3% over one hop approach. As expected our lookup algorithm

performed approximately 15% slower than the optimal because we need one extra hop

to complete the lookup. Overall our new lookup algorithm performed a little better than

the one hop approach.

3.4 Conclusion

In this chapter, we describe and evaluate the use of three kinds of hint caches

containing route hints to improve the routing performance of distributed hash tables

(DHTs): local hint caches store direct routes to neighbors in the ID space; path hint

caches store direct routes to peers accumulated during the natural processing of lookup

requests; and global hint caches store direct routes to a set of peers roughly uniformly

distributed across the ID space.

We simulate the effectiveness of these hint caches as extensions to the Chord

DHT. Based upon our simulation results, we find that the combination of hint caches

significantly improves Chord routing performance with little overhead. For example,

in networks of 4,096 peers, the hint caches enable Chord to route requests with average

latencies only 6% more than algorithms like “OneHop” that use complete routing tables,

while requiring an order of magnitude less bandwidth to maintain the caches and without

the complexity of a distributed update mechanism to maintain consistency.
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Chapter 4

Trace Collection

In this chapter, we present the long-term failure characteristics of hosts in a

large-scale peer-to-peer file sharing system spanning over six months, as well as the

methodology we used to gather such traces.

Object maintenance strategies depend on the general characteristics of peer-

to-peer environments, such as the availability of hosts, the rate at which they temporarily

depart and arrive back into the system, and their overall lifetime and rate at which they

leave the system permanently. The behavior and performance of object maintenance

strategies fundamentally depend upon these availability and failure characteristics. In

particular, for environments with high permanent churn, object maintenance strategies

incur much of their overhead repairing object redundancy to maintain availability. Un-

fortunately, however, we know little about the long-term permanent failure characteris-

tics of hosts in environments with high permanent churn, such as large-scale cooperative

file sharing and storage systems.

Previous work trace peer-to-peer host availability and failures study systems

for only a short duration of one day to two weeks [4, 76] that are available ranging from

one day to two weeks. From such data, we can measure some failure characteristics

of these systems, such as average host availability and the degree of temporary failures

over a short time span. However, these traces are not long enough to characterize the

permanent failures in the system, as well as the stability of various characteristics such

43
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as average host availability and temporary failures over a long period of time.

To design improved object maintenance strategies, we need characteristics de-

rived from long-term (at least a hundred days) P2P traces with host arrival and leave

events. Consequently, we performed a long-term study of a peer-to-peer file sharing

system to measure such failure characteristics. In this chapter, we describe the structure

of the P2P system we trace, our trace collection methodology, and a validation of our

trace collection methodology. We present the long-term failure characteristics that we

use to design and evaluate our object maintenance strategies in Chapter 5. Finally, we

describe how we used this trace to generate a synthetic trace that extrapolates to two

years of host behavior with the same availability and permanent failure characteristics

required to evaluate the various object maintenance strategies.

4.1 KAD Network

We trace hosts on the KAD network. KAD is a typical P2P system that is cur-

rently actively used by millions of people. The network has approximately 1.5 million to

3 million online hosts at any given point of time [33, 76]. KAD is a P2P network based

on Kademlia protocol. eMule [18], aMule [2] and MLdonkey [53] are popular open

source clients for the KAD network. We use the aMule Linux-based client to connect to

the network and perform our measurements.

When the system has a population of n hosts, each host maintains log(n)

routing entries to other hosts in the system, enabling it to route any request in log(n)

hops. Each host has a unique 128-bit ID and it always uses this ID whenever it connects

to the system, unless the user explicitly regenerates a new ID or reinstalls the client

software. We consider each ID as a separate host. Each host maintain this information

as a binary tree, with the left edge labeled as ’0’ and the right edge labeled as ’1’. Only

the leaf nodes in the tree, referred to as bins, store routing entries to hosts. Each bin may

have at most 10 entries.

A host is inserted into a bin traversing from the root according to the XOR-
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Figure 4.1: A sample routing table for a host.

distance between the ID of host being inserted and the ID of the host whose routing

table is being updated. For example, if a host A trying to add host B into its routing

table, host A first calculates the distance between A’s ID and B’s ID (Aid ⊕Bid). It then

traverses from the root using the distance in binary form as a path to the leaf node. It

inserts an entry for the host into a bin if the bin is not full. Otherwise, it will split the

bin by creating children, move the previous hosts to appropriate new bins, and continue

until it B fits into a bin.

Figure 4.1 shows an example routing tree for a host. In this routing tree,

the bins are A, B, C, D, E, F and store entries representing routes to other hosts. The

internal nodes do not store any entries. All the entries in the bin D have distance 010...

(XOR with the host’s ID). This path label from the root to the bin forms a binary number

referred to as the index. A bin splits only if the index is less than 5. In this sample routing

tree, if bin F is full then the node will not split bin F and it will not insert new entries

into this bin. This mechanism tries to expand left side of tree as much as possible to get

as many closest hosts as possible into the routing table, and also limits the number of

right bins (at most 5 bins once it moved to right).

A host uses three mechanisms to maintain its routing table. It periodically
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(once in every one hour) pings the hosts in each bin to minimize the staleness of the

routing entry. It periodically (once in every hour) makes a lookup request to fill the bins

that have few entries (less than four entries). Finally, it also looks for itself periodically

(once in every four hours) to discover nearby hosts (in ID space) to expand the left side

of the routing tree.

Note that a host cannot join the KAD network fully if it is unable to received

unsolicited packets from the other hosts in the system. This situation is true for the hosts

behind firewalls. The firewalled hosts cannot be seen by other hosts in the system even

though they can contact other hosts. Hence, these hosts are not fully integrated into the

KAD network, acting solely as clients, and we neither see them in our traces or consider

them as true KAD hosts.

4.2 Methodology

Ideally we would like to capture the join and leave events of all the hosts in the

system. There is no central point, however, where we can conveniently monitor all of

these events because of the peer-to-peer nature of the environment. To capture all such

events we would need to periodically download the routing tables of each and every host

in the system, requiring an infeasible amount of bandwidth. Fortunately, the system

uniformly distributes hosts across the ID space. As a result, we can choose a certain

portion of ID space and monitor all the host join and leave events in this region [76]. We

can then extrapolate from this ID region to the full ID space without significant loss of

information. We will present evidence to support this claim later in the results section.

We start with a set of a few hosts in the region we are interested in. From each

of these hosts routing tables, we download their entries to collect the IDs of all the hosts

in the region that we are interested in. We continue this process until we discover no

new hosts in the region. This process captures all the host join events in the region we

are interested in if (1) we can get all the routing tree entries in a given region from each

known host in this region, and (2) each host in the region has a routing entry to it in at
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least one another host in the region (i.e., this other host has the host in its routing tree).

We repeatedly ping the hosts we are interested in to capture the leave events.

4.2.1 Routing Entries From a Host

We use lookup requests to obtain the routing tree from a host. The lookup

request returns the closest entries in a host routing tree for the ID sent in the lookup

request. As an example, say host A’s routing tree is as shown in Figure 4.1 and its ID

is 0000 in binary form. It then receives a lookup request for 0111. It will first calculate

the distance (XOR with its ID) and use this distance to find the closest entries in the

routing tree. The distance in this example is 0111, hence all the entries in the bin F will

be closest to the lookup request ID, then entries in the bin E, and the next bins will be

D, C, B and A. It will return the entries from the bin F first, then from bins E, D, C, B

and A until it finds 11 entries. Given that each bin in the routing tree stores at most 10

entries, if we carefully craft the lookup requests we can get the entire routing tree in

b lookups, where b is the number of bins. We can deduce which bins we got fully by

examining the last entry returned in a lookup request. In the above example, if we made

a request that matches bin F and the response has an entry returned from bin C, then

we know we have all of the entries from bins F, E and D.

Unfortunately, some of the earlier eMule and aMule client versions have a bug

in the lookup request processing that returns less than 11 entries even though the routing

tree has more than 11 entries. In the worst case, a host will return only one entry. In this

case, to get all entries in a bin we need to go deeper in the routing tree, thereby requiring

more than one lookup per bin. The worst case is exhaustively searching all the nodes

(128 nodes in the 128-bit ID space) in the routing tree, requiring 128 lookups to get one

entry from a bin. In this worst case we always get the same entry for all 128 lookup

requests.

In this case, as an optimization, we prune the lookup requests when we cross

the 28th level (28th bit position). We know that the system has at most 2 million online

hosts, and we need only 21 bits to represent such a population. Hence, if we use lookups
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that differ in at most the first 28 bits, and we find that there are no other hosts that match

the 28 bit prefix, with very high probability we will not obtain new hosts from this bin

from further searches. At this point, we stop the bin search and continue probing the

rest of a host’s routing table.

To understand the implications of this assumption, we allowed our algorithm

to continue until it reaches the 40th level (40 bits of ID prefix) and collected hosts for

four hours. We also record all the lookup requests we sent and the corresponding replies.

We then calculate the number of hosts we might miss if we prune our search at the 28th

level. No hosts were missed. Repeating the analysis for pruning at the 24th level,

again no hosts were missed. Pruning at smaller prefixes, however, starts to lose routing

information. Although 24 levels are enough for this situation, we choose to prune at

28 levels to be conservative. We submitted a patch to the client developers, and newer

versions of the client fix the bug and our tracer can work with both cases.

4.2.2 Routing Entries From a Region

At this stage, we have algorithm to obtain the routing table from an individual

host. We can get all the routing tree entries in a region by obtaining the entries from

only bins that match the required number of bits. In the above sample routing tree in

Figure 4.1, if we want to get all the entries that match the first three bits of the host then

we need to get bins A and B only.

The second criteria for capturing all the hosts in a region is that each host

in the region have a routing entry in the tree of at least one other host in the region

being monitored. This criteria depends on how quickly a host builds its routing table

so that other hosts in the system take notice of it. To determine the range of times it

takes hosts to appear in a routing table of another host in the region, we measured the

routing table build time of a few hosts in the system. To estimate the extent to which our

methodology might miss hosts as they become settled in the system, we also simulated

the dissemination of routing information for thousands of hosts.

We collected routing table build time measurements for 19 aMule clients. We
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ran each aMule client for 5 hours between February 21 to March 1st, 2006 while record-

ing changes to their routing table entries. To be conservative, none of the clients have

any connection history and they contact well-known servers to bootstrap their routing

table; the client stores randomly selected hosts from its routing table to a history file

so that it does not have to depend on well-known servers on subsequent executions.

Overall, 17 clients have entries in level 9 within 10 minutes, one client took one hour

to populate the 9th level, and another one took four hours. The two clients that took a

lot of time are on a day when a huge number of well-known servers were shutdown by

the RIAA. These measurements indicate that, under stable conditions, clients can very

quickly populate its routing table.

Next we determined the extent to which other hosts in an ID region have point-

ers in their routing tables to a particular host. We simulated the routing maintenance

protocol of thousands of hosts to understand the impact of various factors (initial boot-

strap hosts, number of hosts with above mentioned bug, and network connectivity) on

when one host is noticed by another host in a region. We took an aMule client and

replaced all the network code with a network simulator, and then we ran thousands of

aMule clients in a single process. We recorded into a file whenever a host adds another

host to its routing table to analyze it later.

First we looked at the impact of the client routing bug by varying the percent-

age of hosts that have the bug from 10–95%; there was no churn in the system, and all

hosts are reachable from each other. We then calculate the time for a host to appear

in the 9th level of the routing table of at least one other host. All 32,000 hosts in the

simulation appeared in the routing table of another host within two hours, even when

95% of hosts have the bug.

We then examined the impact of network loss. We simulated 100,000 hosts

and for each host we uniformly assigned a loss rate from 0–90%. A host with x% loss

rate could not reach x% of hosts during the simulation. The network connections are

asymmetric (i.e., host A can reach host B but host B cannot reach host A). There is

no churn in the system, and no hosts have the bug. The results of this simulation are
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Figure 4.2: Histogram of time to reach 9th level while varying host network loss rate.

presented in Figure 4.2. Only 1821 (1.8%) hosts do not appear in the routing table of

any other hosts at the 9th level, and all of these hosts have more than 60% loss rate.

Except for a few hosts, all hosts whose loss rate is less than 40% appeared in a routing

table at the 9th level within two hours. If a host has good reachability, it will appear in

other hosts routing table within an hour.

We then simulated a more realistic, yet still conservative, scenario where each

host has a 4% loss rate, 90% of the hosts are buggy, and there is host churn in the system.

We initially simulate hosts without any churn for two hours to stabilize the system, and

then 50% of the hosts leave at once so that the remaining hosts’ routing tables contain

approximately 50% stale data. From this point onwards we add and delete one host at a

regular interval so that half of the hosts leave within four hours.

Figure 4.3 shows the results of this experiment. This graph is a CDF of the

time to appear in the 9th level of all hosts whose lifetime is more than 30 minutes. The
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Figure 4.3: CDF of time to reach 9th level of all hosts whose lifetime is more than 30

minutes in a simulation with churn, buggy hosts and network loss.

x-axis is the time in minutes and y-axis is the percentage of hosts that reached 9th level.

Only few hosts (463 hosts out of 41,357 hosts, just 1.1%) did not appear in the 9th level

at the end of simulation. About 95% of the hosts required just 30 minutes to appear at

9th level in some other host. We also performed a similar experiment for hosts whose

lifetime is four hours, and only one host out of 9,706 hosts did not appear in the 9th

level of some other host. Hence, if hosts stay long enough they will eventually appear

in 9th level of some other host.

Overall, if a host stays only 30 minutes it will appear in a routing table with

0.96 probability. If a host comes twice with 30 minutes session time, the probability

improves to 0.998; and if it stays in the system for more than four hours, the probability

is 0.9998. Hence, most hosts in the system will appear at the appropriate level in the

routing table of at least one other host in an ID region even if it connects to the system
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twice with just 30 minute session times.

4.3 Analysis

We implemented the routing table capturing methodology as a separate thread

in the aMule client. We randomly chose a 9-bit prefix (101100000) for collecting hosts

in the region from 0xC000 . . . 000 to 0xC07F . . . FFF (1/512th of the entire ID space).

We repeatedly collected routing table entries in this range from all the hosts we discover

in this range. We collected routing table entries once every 10 minutes. In the routing

table, we collected the IDs of hosts from level 9 and below that match the prefix.

We ran this instrumented aMule client on a machine in our cluster starting on

April 24th, 2006. We collected more than 160 days of trace, and we continue to collect

data. The machine has a 2.8 GHz CPU with 2 GB main memory and a 1 Gbps Ethernet

card. The aMule client used on average 40 - 60% of user CPU load. It takes 50 MB

memory at the start and the memory usage increases as it acquires new host information,

peaking at 400 MB. On average, it consumed around 600 Kbps bandwidth continuously,

including the bandwidth for writing traces files to an NSF server.

For reliability, we also run a watchdog program that constantly monitors the

instrument aMule client and restarts it after sleeping for 60 seconds if the aMule client

dies for any reason. Our aMule client dies regularly (the time period ranges from few

hours to one month) and our watchdog program restarted automatically in all cases. The

aMule client stores information about all the hosts that are online in the last four hours

into a file and restarts with these hosts in its routing table if it restart from a failure.

Hence, it just takes only one round to recapture all the online hosts. This round typically

takes 10 minutes to recover from a failure, minimizing data loss due to failures. This

state is also used to generate a trace file that consists of host join and leave events. The

aMule client also aborts if it loses more than 50% of hosts in its routing table within

10 minutes; this situation accounts for most of our client failures. During the trace

period, we lost data just five times for more than one hour due to network and power
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Table 4.1: aMule outages that last more than one hour.
Date Duration Cause
06/08/2006 60 minutes Recovery took more than one hour
07/28/2006 80 minutes No data is written to log
07/31/2006 3 hours UCSD Network Outage
08/24/2006 75 minutes No data is written to log
09/04/2006 14 hours Power Outage

interruptions. We list these outages in Table 4.1 along with the causes of data loss. We

introduced a bug that puts the trace collection thread asleep for more than one hour, and

this situation happened twice in the entire trace on July 28th and August 24th. In these

two occasions, we calculated the sleep times incorrectly.

4.3.1 Churn in the System

As a first step, we examine the size of the host population in KAD over time

and characterize the global churn characteristics. Across the entire trace, we observed

148,333 unique host IDs in the trace, with 74,186 hosts (50% of all hosts) in the top half

of the monitored ID space and 74,147 hosts (50% of all hosts) in bottom half of the ID

space.

Figure 4.4 shows the number of hosts online connected to KAD whose IDs fall

within our monitored ID range at each timestamp in our trace. It shows the number of

online hosts in two graphs corresponding to two time scales. In each graph we present

three curves, one for the entire ID range we monitored (“All”), and two others for the

top (“Top”) and bottom (“Bottom”) halves of the monitored ID range (a 10-bit prefix).

Figure 4.4(a) shows the first 14 days to show daily churn characteristics with

a clear diurnal pattern. Figure 4.4(b) shows the overall trend for entire trace period (168

days). The maximum number of hosts seen each day stayed around 3,500 until the end

of May, 2006, falls to around 3,250 for 75 days during the summer (around middle of

Aug, 2006), and then continues to increase after summer ends. The maximum number

of hosts observed in a day is 4,284 hosts in the monitored ID range, and 2,177 and 2,136

hosts in the top and bottom halves of the ID range, respectively. (In the next chapter,
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Figure 4.4: Overall churn in the system.
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Figure 4.5: New host arrivals in the trace.

we show more high-level trace characteristics in the context of traces of other systems

in Table 5.1.)

4.3.2 Arrival and Departure Rates

We created a trace file from the snapshots of current online hosts that are taken

every 10 minutes. We define a host as a new host if we did not see it in the first 30 days

of the trace, and a host has left the system (permanently failed) if we did not see it in the

last 30 days of the trace.

Figure 4.5 shows when hosts appear for the first time in the trace. The x-axis

is the time in days and y-axis is the percentage of new hosts seen so far. Note that we

do not see any new hosts during the initial 30 day period because of our definition of

new hosts. Overall, we saw 114,530 new hosts in the system during the entire trace.

We also show the same kind of curve when we halve the collection ID range. The “All”

curve represent the new host information from entire ID range, the “Bottom”-labeled

curve represent the new host information when we consider only bottom half of the ID
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Figure 4.6: Host departures from the system (permanent failures) in the trace.

range, and similarly the “Top”-labeled curve represents the new host information when

we consider the hosts from the top half of the ID range. We present these two additional

curves to show that the characteristics we observe in a smaller sample space hold for the

larger ID range. The curves are so similar that they overlap on the graph.

The slopes of the curves are piece-wise linear with a change in slope at 113

days. At this time, the number of new hosts per day doubled. Even though the magnitude

changed after 113 days, the characteristic that the number of new hosts is proportional

to the time period, remains the same. This behavior holds for the smaller ID ranges as

well, suggesting that this characteristic holds for hosts in other portions of the ID space.

Figure 4.6 shows the characteristics of host departures from the system (per-

manent failures) in our trace for the entire ID range that we monitored (“All”), as well

as the two sub-ranges (“Bottom” and “Top”); again, the curves are so similar that they

overlap in the graph. We define that a host has left the system forever (permanent fail-

ure) if we do not see the host ID in the last 30 days of the trace; its last departure time is

the host death time. The x-axis is the time in days and y-axis is the percentage of dead
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Figure 4.7: Number of dead hosts in a group of all hosts.

hosts so far. As with host arrivals, hosts die at a constant rate over time, and this rate

doubles on the 113th day. Overall 94,865 hosts remain in the ID range after 160 days.

4.3.3 Dead Hosts in a Group

In the previous section, we presented characteristics of all hosts in the system.

However, the overhead of object maintenance in peer-to-peer storage systems funda-

mentally depends on the characteristics (especially permanent failures) of the hosts on

which an object is stored. Hence, in this section we present the permanent failure char-

acteristics of specific groups of hosts over the lifetime of the trace.

Figures 4.7–4.10 show the number of dead hosts over time in four different

groups representing different categories of hosts. In each graph, the x-axis is the time in

days and the y-axis is the number of dead hosts in a group. We selected all online hosts

at the start of 7th day in the trace and tracked the number of dead hosts in this group

(Figure 4.7). This group corresponds to the TotalRecall strategy for randomly choosing

hosts to store an object. As with the previous two figures, we show three curves in each
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Figure 4.8: Number of dead hosts in a group of highly-available hosts (availability

greater than 0.5).
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Figure 4.9: Number of dead hosts in a group of long-lived hosts (lifetime greater than

120 days).
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Figure 4.10: Number of dead hosts in a group of long-lived (lifetime greater than 120

days) and highly-available hosts (availability greater than 0.5).

graph: one one for all of the hosts in the ID range we monitored (“All”), another for the

bottom half of the ID range where the 10th bit is zero (“Bottom”), and a third for the top

half of the ID range where the 10th bit is one (“Top”). The number of hosts at the start

is presented as the first row in the Table 4.2 for the three curves with the same column

labels. Overall, there are two different phases and both of them are roughly linear. The

first phase lasts from the 7th day to the 50th day. In this phase the groups lost hosts with

a higher rate than the remaining phase, which lasts from the 50th day to the end of trace.

The number of hosts at the start is approximately half when we divided the ID range into

halves, and both of the subrange curves have similar shapes. These results suggest that

characteristics scale across magnitudes of ID ranges, and that characteristics we find of

portions of the ID space we monitor will apply to hosts in other portions of the ID space.

Note that, even after four months only 53% (1,537 out of 2,837 hosts) of hosts

in the group are dead. The number of failures per host and per day is 1/247, much

smaller than the entire population as previously reported (1/27) in Li’s study [40] and



60

Table 4.2: Number of hosts at the start.
All Top Bottom

Online Dead Online Dead Online Dead
All hosts 2770 1439 1407 707 1363 732
Long-lived 1437 106 763 63 674 43
(≥ 120 days) (52%) (7%) (54%) (9%) (49%) (6%)

Highly-available (999) 598 496 298 503 300
(≥ 0.5) (36%) (42%) (35%) (42%) (37%) (41%)

Combined 436 35 219 21 217 14
(16%) (2%) (16%) (3%) (16%) (2%)

(1/9) in Tati’s study [78] — both of which are based on a 2-week trace of the Overnet

file sharing system [4]. The permanent failure rate is, however, similar to PlanetLab’s

failure rate (1/314) as reported previously in [40] or (1/200) as reported in [78].

In the next chapter we are proposing various ways to select hosts on which to

store an object. We would like to know the characteristic of dead hosts in these groups

as a basis for analyzing object maintenance overhead. One way of selecting hosts is to

choose the long-lived hosts among all online hosts at object creation time. To explore

the permanent failure rates of this category of hosts, we selected all online hosts at

the start of the 7th day whose lifetime is more than 120 days and tracked the number

of dead hosts from this group over time. As before, we tracked dead hosts for both

halves of the monitored ID range. The second row in the Table 4.2 shows the number

of hosts at the start on the 7th day. Figure 4.9 shows the number of dead hosts in the

ID ranges over time. The axis labels and curve labels are same as in the Figure 4.7. We

show results from the 120th day onwards because, by definition, there are no dead hosts

before that day. The number of dead hosts in all groups is linearly proportional to the

time, suggesting that the permanent failure rate is constant over time.

As our third category, we performed a similar experiment by selecting only

highly-available hosts (availability is more than 0.5), and Figure 4.8 shows the results.

The characteristics are similar to the previous group categories.

Finally, we selected hosts based on both lifetime and availability. We selected
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Figure 4.11: Host session durations.

all online hosts at the start of 7th day whose lifetime is more than 120 days and whose

availability is higher than 0.5 and tracked the number of dead hosts in this group. We

did same for the top half and bottom half of ID range in our trace. Table 4.2 shows the

number of hosts in this category at the start in the third row, and Figure 4.10 presents

these results over time. The characteristics (constant permanent failure rate) are similar

to the previous curves in Figures 4.7 and 4.9. The number of failures per day and per

host is 1/1615, which is similar to the disk failure rate reported for PlanetLab hosts

(1/1825) [40]. Overall, the number of dead hosts is approximately linearly proportional

to the time irrespective of how we selected (all, long-lived, highly-available, or long-

lived and highly-available) online hosts at a given time.

4.3.4 Sessions

Lastly, we examine the distribution of host session durations to illustrate the

range of client participation in the system. Figure 4.11 shows the CDF of host session

durations for all hosts in the trace. A point (x, y) on a curve indicates that y percentage
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of hosts or less have at most x number of sessions. As we did in the previous figures,

we show the distributions for all hosts in the monitored ID range (“All”) as well as the

top (“Top”) and bottom (“Bottom”) halves of the ID range. From the graph, we see that

45% of the hosts have only one session, although the distribution has a long tail; 10%

of the hosts have at least 50 sessions. And, as with previous analysis, the distributions

of the ID subranges have the same shape as the entire range.

4.4 Conclusions

In this chapter, we describe a study of the availability and lifetime character-

istics of hosts in a portion of the KAD peer-to-peer file sharing network over a span

of six months. We describe our methodology for performing the active measurement

study, analyze the ability of our methodology to capture sufficiently complete data, and

show that peer-to-peer systems like KAD have substantial heterogeneity in host avail-

ability and lifetime characteristics. In the next chapter, we present object maintenance

strategies that take advantage of this heterogeneity to reduce bandwidth overhead.



Chapter 5

Object Maintenance Strategies

Storage is often a fundamental service provided by peer-to-peer systems,

where the system stores data objects on behalf of higher-level services, applications,

and users. A primary challenge in peer-to-peer storage systems is to efficiently maintain

object availability and reliability in the face of host churn. Hosts in peer-to-peer systems

exhibit both temporary and permanent failures, requiring the use of redundancy to mask

and cope with such failures (e.g., [84, 1, 38, 73, 5]). The cost of redundancy, however,

is additional storage and bandwidth for creating and repairing stored data.

Since bandwidth is typically a much more scarce resource than storage in

peer-to-peer systems, strategies for efficiently maintaining objects focus on reducing

the bandwidth overhead of managing redundancy, trading off storage as a result. Typi-

cally, these strategies create redundant versions of object data using either replication or

erasure coding as redundancy mechanisms, and either react to host failures immediately

or lazily as a repair policy.

In this chapter, we revisit object maintenance in peer-to-peer systems, focus-

ing on how temporary and permanent churn impact the overheads associated with object

maintenance. We have a number of goals: to highlight how different environments ex-

hibit different degrees of temporary and permanent churn; to provide further insight into

how churn in different environments affects the tuning of object maintenance strategies;

and to examine how object maintenance and churn interact with other constraints such

63
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as storage capacity. When possible, we highlight behavior independent of particular

object maintenance strategies. When an issue depends on a particular strategy, though,

we explore it in the context of a strategy in essence similar to TotalRecall [5], which

uses erasure coding, lazy repair of data blocks, and random indirect placement (we also

assume that repairs incorporate remaining blocks rather than regenerating redundancy

from scratch).1

Overall, we emphasize that the degrees of both temporary and permanent

churn depend heavily on the environment of the hosts comprising the system. Previ-

ous work has highlighted how ranges of churn affect object lookup algorithms [66]; in

this paper, we explore how these differences impact the source of overheads for object

maintenance strategies. In environments with low permanent churn, object maintenance

strategies incur much of their overhead when initially storing object data to account for

temporary churn. In environments with high permanent churn, however, object mainte-

nance strategies incur most of their overhead dealing with repairs — even if the system

experiences high temporary churn. We also present various strategies to reduce the ob-

ject maintenance overhead. Finally, we highlight additional practical issues that object

maintenance strategies must face, in particular dealing with storage capacity constraints.

Random placement, for example, unbalances storage load in proportion to the distribu-

tion of host uptimes, with both positive and negative consequences.

5.1 Churn

Peer-to-peer systems experience churn as a result of a combination of tempo-

rary and permanent failures. A temporary failure occurs when a host departs the system

for a period of time and then comes back. Any data stored on the host becomes unavail-

able during this period, but is not permanently lost. Examples of temporary failures are

when home users login to systems in the evening, or when business users use systems

during the day but logoff overnight. A permanent failure corresponds to a loss of data on
1We choose one strategy to be illustrative more than to advocate a particular approach, and choose this strategy

because of familiarity; the tradeoffs between replication and erasure coding, for example, have been well studied [82,
49, 3, 6, 67], and each has its strengths and weaknesses.
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Table 5.1: Churn in representative systems.
System OverNet KAD Network PlanetLab FarSite
Start Jan 15th Apr 24th Apr 1st Jul 1st
Date 2003 2006 2004 1999
Duration 7 days 163 days 406 days 35 days
Total Hosts 1,469 148,333 655 60,000
Average Hosts Per Day 1,028 8,334 318 45,000

Temporary Failures
Total 33,084 2,500,353 13,633 87,500
Per Day 4,736 15,339 34 2,500
Per Host 4.61 1.8 0.11 0.05

Permanent Failures
Total 107 94,865 593 7,000
Per Day 107 713 1.6 200
Per Host 1/9.6 1/11.8 1/200 1/250

a host, such as when a disk or machine fails, or when a user leaves a file sharing system

permanently. Temporary failures directly impact availability, and permanent failures

directly impact reliability.

The degrees of both temporary and permanent churn depend heavily on the

environment of the hosts comprising the system. Systems incorporating home and busi-

ness hosts tend to experience much higher levels of churn than systems incorporating

server hosts maintained in machine rooms. For example, Table 5.1 illustrates the churn

characteristics taken from traces of four different host populations, the Overnet file shar-

ing system [4], the KAD Network file sharing system [33], the PlanetLab testbed [74],

and hosts in a large corporation [7].

The observation that different environments experience different degrees of

churn is not new, although characterizations of churn tend to focus just on temporary

churn (e.g., [66]). Characterizing permanent churn in deployed systems has remained

an open question, in part because doing so requires long-term measurement as well as

assumptions about host behavior; deciding that a host has left permanently within a

finite trace essentially requires a threshold for assuming that observing that a host has

left the system means that it has left permanently. For the Overnet trace, we consider

host departures where the host leaves for more than six days a permanent failure; all

other host departures are temporary failures. Given the short period of the trace, using



66

a larger threshold would result in little permanent churn. As a result, we consider this

threshold an upper bound on permanent churn for this population. For the PlanetLab

and KAD Network trace, we consider host departures where the host leaves for more

than thirty days a permanent failure; all other host departures are temporary failures.

For the FarSite study, we use numbers reported in the paper.

Comparing the churn in the different environments, we see that the environ-

ments have very different degrees of both temporary and permanent churn. We normal-

ize the metrics per day since user and host behavior tends to be diurnal. The “Ave Hosts

Per Day” metric is the number of hosts in a system per day, averaged across all days in

the trace. Normalized per day per host in the system, the file sharing trace exhibits an

order of magnitude more temporary and permanent churn than the other environments.

The wide-area population exhibits twice as much temporary churn as the corporate pop-

ulation, with roughly equivalent permanent churn.

Another way to compare churn in different environments is to consider the

impact of churn from the perspective of object maintenance strategies. Systems maintain

objects by storing redundant versions of object data among multiple hosts. As a result,

the behavior of a maintenance strategy depends on the churn of a set of hosts selected at

a particular point in time, such as when the object is initially stored. Figure 5.1 shows

the effects of churn on a fixed set of hosts over time in the Overnet, PlanetLab, and KAD

traces. We examined all hosts in each trace that were available 24 hours into the trace

(530 for Overnet, 300 for PlanetLab, 2643 for KAD), and tracked their availability over

six days. The graph plots the percentage of hosts in the original set that are available in

the system over time.

The Overnet and KAD hosts exhibit a dramatic drop in availability in the first

24 hours; this drop is due to the high temporary churn in the environment, particularly

hosts with short uptimes. All groups of hosts experience daily variations in availability,

also due to temporary churn. Both Overnet and KAD exhibit a slow decay in host

availability over time. This slow decay is due to permanent host failures slowly reducing

the original set of hosts.
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Figure 5.1: Tracking host availability among a set of hosts over time. The monitored set

of hosts are those hosts that were in the system at 24 hours into the trace.

Sections 5.2 and 5.3 discuss the consequences of temporary and permanent

churn in different environments in more detail. By comparing the characteristics of

churn in different environments, we want to emphasize to degree to which environment

matters. As we discuss in more detail later in the chapter, differences in environment

impact the focus of object maintenance strategies.

5.2 Temporary Churn

In this section we focus on the approach of using redundancy to handle tem-

porary churn. Since our goal is to provide insight into the problem, rather than advocate

a particular algorithm, we make some simplifying assumptions to highlight temporary

churn issues. In particular, in this section we assume that the host population has no

permanent churn, only temporary churn, and that a host’s availability characteristics do

not significantly vary during its lifetime. Of course, in an actual system these assump-
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tions are not realistic: any population experiences permanent churn, and host availability

varies over time. Such shifts in host availability over time change the steady-state dy-

namics of the group of hosts storing object data. A maintenance strategy can detect and

adapt to these changes over longer time scales.

Consider the events that occur immediately after storing object data in a sys-

tem with only temporary churn. A maintenance strategy selects (typically randomly) a

set of hosts on which to store the blocks comprising an object. One coincidental char-

acteristic these hosts share is that they are all available at the time of object placement.

These hosts, however, vary both in their uptime durations as well as how long they have

been active in their current session. As a result, over time a fraction of these hosts will

become unavailable due to temporary churn. Eventually, though, the number of simul-

taneously available hosts will stabilize in a diurnal pattern as hosts depart and arrive on

a daily basis.

Given this behavior, a maintenance strategy can create sufficient redundancy

to sustain the availability of an object on the minimum set of available hosts during a

day. By “minimum”, we mean that a sufficient number of hosts are available at any

point in time such that the data they store is available for use; reducing the set by a

host implies that at some time the data is not available. For strategies that use replica-

tion, unavailability occurs when all replicas are simultaneously unavailable; for those

that use erasure coding, it occurs when an insufficient number of hosts are available to

reconstruct object data. An object maintenance strategy can proactively estimate this

amount of redundancy when initially storing the object (e.g., based on past behavior).

Or, it can reactively add redundancy as hosts temporarily depart the system until the

amount of redundancy is sufficient to mask temporary failures. Either way, eventually

the set of hosts storing object data for a particular file will stabilize into a random process

where a number of simultaneously available hosts storing data is sufficient to maintain

object availability with high probability (although which hosts are simultaneously avail-

able varies over time). We call this state “masking” temporary churn, where an object

maintenance strategy is using sufficient redundancy such that temporary churn will not
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Figure 5.2: Relationship between temporary churn and redundancy (storage overhead)

required to mask it.

induce repairs (in our idealized model), and result in only infrequent repairs in practice

(due to changing host availabilities, etc.).

We also note that the data availability these hosts provide is probabilistic. Ob-

ject maintenance strategies estimate the amount of redundancy required to provide ob-

ject availability with a high probability based upon host availability characteristics (e.g.,

[12], [5]). If hosts in the system experience a sudden shift in availability (e.g., catas-

trophic simultaneous failures), the probabilistic availability guarantees will not hold.

We also note that placement strategies typically assume that failures are not correlated.

There are clear examples when failures are correlated (e.g., [31, 83]); however, even

with noticeable diurnal patterns, correlation coefficients of host availabilities indicate

that correlation of hosts in the system is not strong [4].

Figure 5.2 illustrates the relationship between temporary churn and the amount

of redundancy required to mask it. By amount of redundancy, we mean the storage

overhead used by a redundancy technique such as replication or erasure coding; a re-
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dundancy of three, for example, means that the storage overhead is three times the file

size. For a given group of hosts storing object data, the x-axis varies the percentage of

hosts remaining available in the group after one day has passed since storing the object

in the system. The y-axis shows the degree of redundancy required to keep the object

available. Again, we focus only on temporary churn and assume that no hosts fail per-

manently. At a high level, it is a straightforward inverse relationship. For example, if

any 50% of the original group of hosts are available in steady state and host arrivals are

uniformly distributed, then the maintenance strategy will need to store the object with

a minimum redundancy factor of two to maintain object availability in the face of just

temporary churn.

Once the set of hosts storing object data stabilizes, a system will not need to

frequently react to host departures or create further redundancy on additional hosts. As a

result, a system incurs primary bandwidth overhead for masking temporary churn when

it initially places the object in the system. With only temporary churn, no repairs are

necessary. In environments with little permanent churn, tuning redundancy for masking

temporary churn will have the greatest impact on minimizing bandwidth overhead. Of

course, an actual system will still occasionally have to repair data redundancy due to

temporary churn as, for example, host availabilities vary over time; such repairs will

likely be incorporated naturally in the handling of permanent failures, discussed below.

In summary, using redundancy to deal with temporary churn has three im-

plications: (1) an object maintenance strategy can determine a sufficient degree of re-

dundancy to minimize repairs due to temporary churn, or “mask” temporary churn; (2)

the amount of redundancy required to mask temporary churn is inversely proportional

to the fraction of simultaneously available hosts storing object data; and (3) the band-

width overhead for coping with temporary churn is dominated by object creation, not by

repairs induced by temporary churn.
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5.3 Permanent Churn

Permanent churn drives repairs. When the system permanently loses hosts

storing redundant object data, the system must eventually repair the redundancy to en-

sure data reliability. The frequency with which the system repairs object data depends

on the degree of permanent churn and the amount of redundancy restored during repair

for long-lived objects. In environments with substantial permanent churn, like those that

incorporate business and home hosts, the overhead for repairing long-lived object data

dominates the overhead of establishing sufficient redundancy to mask temporary fail-

ures. As a result, in these environments tuning repair strategies to deal with permanent

churn will have the greatest impact on minimizing bandwidth overhead.

When a system decides to repair object data, it must decide how much redun-

dancy to restore. The more redundancy a system restores during a repair the longer it

can delay the next repair, thereby trading off storage to reduce the frequency of repairs.

In terms of bandwidth overhead, though, it is not immediately clear what the best choice

is. An object maintenance strategy can either make “smaller” repairs more frequently,

or “larger” repairs less frequently.

The choice depends upon the distribution of permanent host failures. We show

that there exists an optimal balance between the amount of redundancy restored at each

repair and the frequency of repair under the following model. Assume that the object

maintenance strategy uses erasure coding and lazy repair [5], and that a repair replen-

ishes any remaining data with new redundant data to maintain reliability (as opposed to

regenerating it from scratch). Let x be the threshold at which the system triggers repair

in terms of the number of hosts storing object data. An object maintenance strategy will

restore redundancy by creating new coded blocks of data on N additional hosts (encod-

ing with a large encoding graph enables the creation of incremental encoded blocks over

time to supply repairs). Immediately after a repair, an object has blocks stored on x+N

hosts. Since the repair threshold is x hosts, from one repair to the next N hosts will fail

permanently. This process takes 2Nd
N+x

time, where d is the average rate of permanent
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failures measured in terms of half death time (similar to half life time [43]), the amount

of time it takes for half of the hosts to fail permanently; if we have N hosts, then it

takes d time for N/2 hosts to fail permanently. The number of permanent failures in a

group is linearly proportional to time Figures 4.7–4.10 in Section 4.3.3 show that the

number of permanent failures in a group is reasonably modeled as linearly proportional

to time. The half death time represents this relationship independent of group size, or

group category of interest.

Our goal is to minimize bandwidth requirements for performing repairs. When

using erasure coding, for example, the system must first read the object. Doing so

requires f bytes, where f is the object size.2 We also store new encoded blocks on N

new hosts, requiring another Nf/a bytes, where a is the number of hosts an object gets

fragmented onto. Overall each repair consumes f + Nf/a bytes. The total bandwidth

needed for a repair is f(1+N/a)(x+N)
2Nd

bytes per second, averaged over the interval of time

between repairs. The minimum value occurs at
√

ax and is f(1+
√

x/a)
2

2d
. A system will

typically keep a, object fragmentation, constant. The value of x, the repair threshold,

will depend on the amount of redundancy needed to mask temporary churn since the

object needs to be immediately available at the time of repair.

Interestingly, the amount of redundancy to restore on a repair that minimizes

bandwidth overhead depends upon the degree of temporary churn in the system, but not

on the degree of permanent churn; the bandwidth overhead certainly scales with the rate

of permanent churn, but the rate does not affect the choice of how much redundancy to

repair. Figure 5.3 illustrates the relationship between the temporary churn experienced

by a system and the amount of redundancy to restore on a repair that minimizes repair

bandwidth overhead. As an example parameterization, we assume that files have a uni-

form size (f ) of 1 MB, the repair threshold is twice the redundancy required to mask

temporary churn, each file is fragmented (a) into 16 blocks, and the hosts in the system

permanently fail (d) according to the Overnet trace (which contains both temporary and
2Optimizations are possible, such as storing a full replica at one host to eliminate the read [67], although we note

that such optimizations increase storage cost and may not be practical for very large objects. We could modify our
analysis to incorporate them, but our goal is to understand the trends more than absolute overheads.
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Figure 5.3: Optimal bandwidth required to mask permanent churn depending on degree

of temporary churn (number of hosts required to mask temporary failures).

permanent churn). The x-axis shows the repair threshold (x) in terms of the number of

hosts remaining that are storing object data; again, think of x as the number of hosts

(amount of redundancy) needed to mask temporary churn. The y-axis shows the amount

of redundancy restored on each repair that minimizes repair overhead.

In the above section we computed the object maintenance overhead analyti-

cally for a typical strategy using the permanent failures characteristics. We achieve an

optimal bandwidth overhead if we choose to add small amounts of redundancy at each

and repair and perform more repairs (consistent with similar results for a system model

focused on permanent churn [58]). The optimal bandwidth for a strategy is f(1+
√

x/a)
2

2d
,

hence the optimal bandwidth proportional to the amount of redundancy to cope up with

the temporary churn and inversely proportional to the permanent churn. These two en-

tities depends on the group of hosts on which an object is stored. In other words, if we

have two groups of hosts where one group requires less amount of redundancy to cope

up with temporary churn than the other group and both groups have similar amounts
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of permanent churn then we could reduce the optimal object maintenance overhead by

choosing the first group to store an object. Similarly, if one group of hosts has less

permanent churn comparing with permanent churn of another group of hosts and both

group of hosts has similar temporary churn then we could reduce the optimal object

overhead maintenance by selecting the first group of hosts to store an object. We could

get even lower the optimal object maintenance overhead if we could find a group of host

that lower the temporary churn as well as permanent churn at the same time.

5.3.1 Exploiting Heterogeneity in Availability

The amount of redundancy required to cope with the temporary churn de-

pends on the availabilities of hosts on which we store an object. We could reduce the

redundancy required to cope with temporary churn by picking highly available hosts to

store an object, which in turn reduces the object maintenance overhead according to the

above analysis. This opportunity is possible only if the system has enough variation in

host availabilities. For example, the availability of most hosts in the cluster environ-

ment [23, 7] is both similar and very high. In this environment picking any group of

hosts would yield similar average availability. As a result, there would not be an op-

portunity to reduce object maintenance overhead by choosing hosts one way or another.

However, host availability varies substantially in wide-area peer-to-peer file sharing sys-

tems, as observed in Overnet [4], KAD [76], and Gnutella and Napster [71].

Figure 5.4 shows the availability of hosts in KAD Network, OverNet and,

PlanetLab. We define availability as the ratio of the amount of time a host is online

and the difference between its first and last appearance in the trace. Note that the single

session hosts (hosts that appear only once in the entire trace) will have availability 1.0

from this definition. The point (x, y) on a curve in the figure corresponds to y% of hosts

have availability x or less. The curve labeled “KAD” shows the availability of KAD

Network hosts from the trace described in the previous chapter, “OverNet” shows the

availability of OverNet hosts from [4], and “PlanetLab” shows PlanetLab host avail-

ability from [74]. Over 45% hosts in the KAD network has availability 1.0, and are all
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Figure 5.4: Host availability in KAD, OverNet and PlanetLab.

single-session hosts. The curve labeled “KAD*” is availability of KAD hosts with these

single-session hosts removed.

The PlanetLab hosts have greater availability than hosts in the file sharing

system. In the KAD network, 60% of hosts have availability less than 0.3, whereas only

15% of PlanetLab hosts have availability less than 0.3. The file-sharing environments

have more variety in hosts availability compared with PlanetLab. Hence, file sharing

systems might exploit the heterogeneity in availability more than PlanetLab hosts.

Next we would like to evaluate how much benefit, if any, we can achieve if

we select highly available hosts when we store an object in file sharing (KAD) and

PlanetLab environments. We evaluated this opportunity by keeping track of the number

of online hosts after selecting hosts based on their availability at a given point of time

for both the KAD and PlanetLab traces.

Figure 5.5 shows the results for the KAD trace in two graphs. We selected

different sets of hosts depending upon their availability: all the online hosts at the start

of the trace (“All”); all online hosts at the start whose availability is greater than 0.5
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Figure 5.5: Exploiting host availability heterogeneity in KAD.
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(“Avail-0.5”); and all online hosts whose availability is greater than 0.75. A point (x, y)

in Figure 5.5(a) indicates that y% of hosts among all the hosts selected at the start of the

trace are online at xth hour in the trace. We also show the number of hosts that are dead

from the groups over time in Figure 5.5(b) to measure the amount permanent churn in

these groups.

We make two observations from these results. First, choosing highly-available

hosts reduces the amount of redundancy required to mask temporary failures. In this ex-

ample, a redundancy of 8.3 masks failures when hosts are chosen randomly, but with

highly-available hosts only a redundancy of 5 is needed. Although the amount of redun-

dancy required to cope with failures is reduced when we choose highly-available hosts,

there is no difference between the group of hosts whose availability is more than 0.5 and

group of hosts whose availability is more than 0.75.

Second, the amount of permanent churn among these three groups is not the

same as shown in Figure 5.5(b). We actually increased permanent churn by choosing

highly-available hosts. From our analysis, this result should reduce the benefit we are

getting from choosing highly available hosts. However, the benefits (from reducing the

amount of churn required to cope with temporary churn) are outweighing the overhead

due to more permanent churn when we choose the highly availability hosts. We also ex-

perimented with other availability thresholds (0.33 and 0.66), and found that the benefit

of choosing highly available hosts levels off after the 0.5 threshold.

Figure 5.6 shows the result of the same experiment for the PlanetLab trace

for the same period of time. The trace has 256 hosts that are online at the start; 243

hosts have availability more than 0.5, and 220 of these hosts have availability greater

than 0.75. The amount of redundancy required to mask failures for all groups is similar

because most of the online hosts have similar availability. The amount of permanent

churn is also same for all three groups, as show in Figure 5.6(b). The improvements in

reducing object maintenance overhead by exploiting heterogeneity in host availability is

marginal in the PlanetLab environment.
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Figure 5.7: Amount of permanent churn in KAD and PlanetLab.

5.3.2 Exploiting Permanent Churn Heterogeneity

An object maintenance strategy can reduce bandwidth overhead to cope with

failures by choosing a set of hosts that have less permanent churn. The benefits of doing

so depend upon the degree of variation in permanent churn among hosts in the system.

To determine the amount of permanent churn among the KAD and PlanetLab hosts, we

calculate the remaining lifetime of hosts from the start of the traces. The remaining

lifetime of a host is defined as the time difference between its last appearance in the

trace and the start time of the group. If the host is online at the end of trace we consider

trace end time as its last appearance. We selected all online hosts at a given point of

time (7th day) and calculated the remaining lifetimes for these hosts.

Figure 5.7 shows the distributions of these lifetimes as CDFs. The x-axis is

the number of days and the y-axis is the percentage of hosts. A point (x, y) on a curve

indicates that y% of hosts have a remaining lifetime of x days or less. In the PlanetLab

trace, 70% of hosts are online until the end of the trace. In KAD, only 12% of hosts

are online at the end. This indicates that hosts in the KAD network experience more



80

variation in permanent churn for a group of hosts compared host groups in PlanetLab.

Host lifetime is another metric for characterizing the amount of permanent

churn among hosts in the system. We define a host as leaving the system (a permanent

failure) if it does not appear in the trace for 30 days. A host is newly joined the system

if it does not appear in the first 30 days of the trace; we did not include any hosts that

appear in the first 30 days in the trace because we do not know the exact joining time

for these hosts.

We then divided the remaining trace into equal parts, and we consider only the

hosts in the first half of the trace. This approach to measuring host lifetime is similar to

the creation-based block life time as defined in [68]. With this approach, all hosts that

appear in the first half but did not appear in the second half ([68] refers to this phase

as end margin) has at least end margin minus 30 days lifetime. The observation phase

lasts for 30 days and overall trace covers 163 days. Hence, if a host has not left the

system by the end of the trace, we can say that this host has a lifetime of at least 73 days

(we do not know when these hosts left in the last thirty days, so 163 - 30 (first phase)

- 30 (observation phase) - 30 (last phase)). Using this perspective, in the KAD trace

we observed 38,722 new hosts and, of those, 4,597 (12%) hosts remain alive at the end

of trace. 2802 (7%) hosts have a gap (time between leaving the system and their next

appearance) of more than 30 days.

We also measured the lifetimes for hosts in the PlanetLab trace. We looked at

the 378 hosts that appeared in the first 30 days of the PlanetLab trace, and 257 of them

remain at the end of 400-day trace; 145 hosts have a gap of 30 days or more.

Figure 5.8 shows the distributions of lifetimes for these hosts in the KAD and

PlanetLab traces. The x-axis is the lifetime in days in log scale. A very large percentage

of hosts (59%) have a lifetime less than one day, and 5% hosts have a lifetime is more

than 100 days in the KAD trace. On the other hand, in the PlanetLab trace only 9%

of hosts had a lifetime less than even one month, and 34% of hosts have a lifetime

of more than one year. Overall, KAD hosts experience substantially more permanent

churn than PlanetLab hosts, and we can expect that an object maintenance strategy that
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Figure 5.8: Host lifetimes in KAD and PlanetLab traces.

exploits heterogeneity in permanent churn will have more benefit for hosts in a KAD

environment.

In previous sections, we see that hosts in a KAD environment experience sub-

stantial permanent churn. We could bias data placement towards high lifetime hosts (or

high remaining lifetime) when we store object data to reduce object maintenance over-

head when dealing with churn. We selected hosts starting on the 7th day whose lifetimes

are more than 60 and 120 days in the KAD trace. We then tracked the number of those

hosts online over time to determine the benefits of selecting hosts with high lifetimes

over selecting hosts randomly.

We could expect benefits if we select high lifetime hosts over random hosts

given that the two groups have similar availability distributions.

Figure 5.9(a) shows these results. The x-axis is the time in days and the y-

axis is the percentage of hosts that are online at a given point of time. The “All” curve

represents the group of all online hosts at the 7th day; the “LT-60” and “LT-120” curves

represent the groups of online hosts whose lifetimes are at least 60 and 120 days, re-
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Figure 5.9: Exploiting permanent churn heterogeneity in KAD.
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spectively; and the last curve labeled “LTHA-120” represents the group of online hosts

whose lifetime is more than 120 days as well as whose availability is at least 0.5. Even

though no hosts were permanently lost in the first 60 days, the “LT-60” and “LT-120”

group availability gradually decreases along with the “All” curve. Both groups “LT-60”

and “LT-120” reduced the amount of redundancy required to cope with permanent fail-

ures, from a factor of 7.7 (“All”) to 5.5 (“LT-60”) and 4 (“LT-120”). We can reduce the

object maintenance cost even further if we choose hosts based on lifetime as well as

availability. Placing object data on the “LTHA-120” group reduces redundancy from 4

for “LT-120” to just a factor of 2.

We also present the availability CDF of high lifetime hosts selected at the 7th

day in Figure 5.9(b). The curve labeling is same to the Figure 5.9(a). The “LT-60”

and “LT-120” groups have similar availability and slightly lower availability than the

general population, the “All” curve. Overall, choosing high lifetime hosts over random

hosts reduces the object maintenance costs even though the availability of high lifetime

hosts is slightly less than availability of all online hosts at the selection time.

From this experiment, object maintenance overhead can be reduced if we

choose higher lifetime hosts at object creation time in a file sharing P2P environment.

We would like know whether the same is true for the PlanetLab environment, which

have hosts with high lifetimes, little variance in lifetime, and high availability. We per-

formed the same experiment: at a given point of time (on 30th day), choose all online

hosts and all online hosts with higher lifetimes and keep track of the number of online

hosts until the end of the trace.

Figure 5.10(a) shows the results of this experiment. The x-axis is the time in

days and y-axis is the percentage of hosts that are online at a given point of time. The

“All” labeled curve presents the group of all online hosts (256 hosts), the “LT-180” curve

represents all online hosts (237 hosts) whose lifetime is more than 180 days, and “LT-

360” represents all online hosts (190 hosts) whose lifetime is more than 360 days. The

“All” group required 2.5 redundancy cope with the permanent failures, and the “LT-360”

group required only 1.8 redundancy to cope with the failures. As expected the benefits
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of selecting high lifetime hosts is small (only 28%) for reducing the object maintenance

overhead. Figure 5.10(b) shows the availability CDF for these groups. The availability

characteristics are similar for all groups.

5.3.3 Synthetic Trace

From Section 5.3, the object maintenance overhead in terms of bandwidth for

a given amount of temporary churn (a) and permanent churn (d) is f(1+N/a)(x+N)
2Nd

bytes

per second. Under our assumptions, we know from this formula that the minimum

overhead is achieved by adding a small amount of redundancy at each repair. We would

like to confirm this result from our trace by varying the amount of redundancy at repair

time. We can cope with all permanent failures for the entire KAD trace time period if

we store objects with a factor of 8 redundancy, even though our trace very long (163

days) (Figure 5.9(a)).

We can only increase the redundancy factor up to 8 for the KAD trace. Hence,

we could not confirm the observation that using small redundancy factor at each re-

pair yields an optimum object maintenance overheard using this trace because the trace

is still not long enough. We could exploit the heterogeneity in temporary churn as

shown in the Figure 5.5 or the heterogeneity in permanent churn as shown in the Fig-

ure 5.9 to reduce the object maintenance overhead. However, changing the temporary

churn characteristics for a group also changes the characteristics of permanent churn, as

shown in the Figure 5.5. Ideally we would like measure the relative benefit of changing

the temporary churn characteristics for a group without changing the permanent churn

characteristics. To accomplish this, we generated a synthetic trace based on the KAD

traffic representing a longer period of time, while maintaining the similar temporary

and permanent characteristics as the original KAD traffic. We make the temporary and

permanent churn characteristics independent of each other in the synthetic trace, even

though these two characteristics depend on each other in the original trace, so that we

can study the effects of exploiting temporary churn or permanent churn individually.

In the synthetic trace, each day we introduce new hosts uniformly random
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throughout the day as a parameter. In the original trace, this value is 600–1200 from

Figure 4.5. We generate host availability and host lifetime using the availability CDF

of the original KAD trace, as shown in Figure 5.4, and lifetime CDFs of original KAD

trace, as shown in Figure 5.8. We randomly assign these values from these two CDFs to

the new hosts. Each host comes into the system and stays for the number of hours that

matches its availability. The host lifetime determines the number of days it stays in the

system. We assumed all hosts are dead at the end of the original trace (actually there are

11% hosts are still alive in the original trace) and we added 0.16 availability for each host

to ensure the synthetic trace has hosts online all the time in the system. The synthetic

trace required 120 days to stabilize the number of hosts in the system because more hosts

join initially. We generated a trace for two years (730 days) using 150 new hosts per day.

We use this trace for the following experiments in this chapter. Although not a perfect

reflection of the actual trace, it captures host behavior sufficiently to provide insight into

relative performance if not absolute performance of object maintenance strategies.

We wrote a simulator that implements the object maintenance strategy for a

given trace with host arrival and departure events. This simulator does not simulate the

network, and assumes everybody is connected and each host has infinite bandwidth. We

did not simulate the network because we are more interested in measuring the overhead

due to host churn. Hence, these overheads represents only a minimum value. We imple-

mented an object maintenance strategy based on TotalRecall [5]. The strategy initially

places the encoded object with a specified replication factor (the default is 3) onto se-

lected hosts, and keeps track of the number of online hosts for each object. The user also

specifies the number of hosts on which an object should be placed for one redundancy

factor (parameter a in our object maintenance overhead formula from above; the default

is 16). The strategy adds the specified amount of redundancy whenever the number on-

line hosts for an object falls below a threshold (currently a redundancy factor of two

(twice a), or 32 hosts). We inserted 1,024 objects at a specified point into the trace (de-

fault is 150 days) and then simulated the object maintenance strategy while varying the

amount of redundancy added at each repair from one to forty. We calculated the number
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of bytes we used to maintain these objects in the system and from this we calculated the

bandwidth required to maintain an object by dividing the number of bytes by the time

(we maintained objects for 250 days).

Figure 5.11 presents the results of this experiment in two graphs. Fig-

ure 5.11(a) shows the median object maintenance overhead of 1,024 objects while vary-

ing the redundancy added at each repair. The x-axis is the redundancy factor added

at each repair and the y-axis is the overhead to maintain an object. We measured the

object overhead from simulation and it is represented as “Trace” curve in the figure.

The “Formula” curve represents the overhead calculated from the formula. We used the

same object size and number of hosts to store an object with one redundancy factor. We

measured the half death time from the trace and it is 880 hours.

The object maintenance overhead initially starts at infinite at a redundancy

factor of zero, and gradually decreases as we increase the amount of redundancy added

at each repair. The overhead reaches a minimum value, then it increases toward infinite

if we increase the amount of redundancy further. Both curves show this trend and our

formula-based calculation closely follows the simulation-based measurement. The mea-

surement shows the minimum overhead is 3.95 at a redundancy factor of three, while

the formula predicted the minimum overhead at 4.13 at a redundancy factor of four

(overhead is within 4.7%).

Figure 5.11(b) shows the object maintenance overhead for 1,024 objects as a

cumulative distribution using different redundancy factors at repair time. A point (x, y)

on any curve indicates that y% of objects have overhead x or less. The “R-r” curves

represent the strategy where we added r redundancy factor at repair. Most of the objects

for a given strategy have similar overhead. The minimum overhead occurs at redundancy

factor of 3. This experiment confirms the result from our analysis that adding a small

redundancy factor yields an optimum overhead under the failures experienced in file

sharing environments. Next, we would like to measure the benefits of biasing hosts with

high availability and/or high remaining lifetime over selecting random hosts at repair

time.
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We implemented a strategy that greedily chooses highly-available hosts when

selecting hosts on which to store redundant object data at repair time. This strategy

selects hosts whose availability is more than a user-specified value. We varied this value

from 0.25 to 0.5. We also measured the lifetime of selected hosts while adding the same

number of hosts. We presented the object maintenance overhead with this modified

strategy and the lifetime of selected hosts as CDFs in Figure 5.12.

Figure 5.12(a) shows all selected host’s lifetimes as a cumulative distribution

for each experiment. A point (x, y) on any curve indicates that y% of hosts have life-

time x or less days. The “A-a” curves show the object maintenance overhead when we

selected hosts whose availability is more than or equal to a. This figure shows that we

did not modify the hosts’ permanent churn characteristics when biasing towards highly

available hosts. This experiment shows the benefits of selecting highly-available hosts

while all other factors remain constant.

Figure 5.12(b) shows the distribution of object maintenance overheads per

host for the various availability choices. The median overhead is reduced from 3.95 for

unbiased case, to 1.74 when we selected hosts whose availability is at least 0.5. Overall,

selecting hosts with high availability reduces the overhead around 56%.

Next, we fixed the availability of hosts while selecting high remaining lifetime

hosts at each repair. We modified our simulator to implement this new strategy. We

simulated this strategy by randomly selecting hosts whose remaining lifetime is more

than 15, 30, 45 and, 60 days.

Figure 5.13 presents the object maintenance overhead along with the avail-

abilities of the hosts. Figure 5.13(a) shows the availabilities of the selected host during

the repair time in each experiment. A point (x, y) on an curve in this graph indicates

that y% of the selected hosts have x availability or less. The “LT-l” curves are the CDFs

of availability when selecting hosts that have at least l days of remaining lifetime. We

also included a curve, “LT-00”, where we do not bias selecting hosts based on remaining

lifetime. All the curves have similar characteristics, indicating that we did not change

the availability characteristics even though we biased selecting high remaining lifetime
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high remaining lifetime hosts.

hosts. This experiment measures the benefits of selecting low permanent churn set of

hosts at each repair without any changes in temporary churn characteristics.

Figure 5.13(b) shows the object maintenance costs for the strategy that biases

the high remaining lifetime hosts at each repair. The curve labeling is the same as in Fig-

ure 5.13(a). As expected, the object maintenance overhead decreases as we increase the

remaining lifetime of selected hosts. We did not see any further benefits by increasing

the remaining lifetime any further than 60 days. This strategy decreased the median ob-

ject maintenance cost from 3.95, when we did not bias towards long remaining lifetime

hosts, to 2.35 (41% improvement) when we selected hosts that have more than 60 days

of remaining lifetime. Overall, we will see benefit when we choose hosts to decrease

their permanent churn while fixing the temporary churn, and this benefit is less than the

benefit we would get if we fix the permanent churn and decrease the temporary churn of

the selected hosts.

Finally, we changed the strategy to choose hosts that have both high availabil-
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ity and high remaining lifetimes. We ran the simulator with this new strategy with host

availability greater than 0.5 and remaining lifetime is more than 45 days. Figure 5.14

shows the results of this experiment. The “All” curve is the object maintenance over-

head when we selected hosts without any bias; it is the same as the “LT-00” curve in

Figure 5.13(b) and the “A-0.00” curve in Figure 5.12(b). The “Avail” curve is the ob-

ject maintenance overhead when we selected hosts with high availability (more than 0.5

availability) and it is the same as the “A-0.5” curve in Figure 5.12(b). The “Lifetime”

curve is the object maintenance overhead when we select hosts with high remaining

lifetime (more than 60 days); it is the same as the “LT-60” curve in Figure 5.13(b).

The “Both” curve is the object maintenance overhead when we selected hosts with high

availability (more than 0.5) and high remaining lifetime (more than 45 days). This strat-

egy provides the maximum benefit. As expected, when placing redundant data on hosts

hosts with low temporary churn as well as low permanent churn, we can reduce the me-

dian object maintenance cost substantially: 1.09 bytes per second per host compared to

3.95 when randomly selecting among all hosts.

Overall, we can exploit the heterogeneity in temporary churn and permanent

churn individually and combined in the file sharing environment to reduce object main-

tenance costs. We halve the median object maintenance cost when we exploit either the

heterogeneity in temporary churn or permanent churn individually. We further reduce

the median object maintenance costs to one fourth of the uniformly random case when

we exploit heterogeneity in both temporary and permanent churn.

5.4 Capacity Constraints

A primary goal of object maintenance strategies is to reduce the bandwidth

overhead of making data available and reliable in the face of churn. The strategies trade-

off storage to achieve these goals, but they typically still strive to be storage-efficient.

Previous work has evaluated the insertion failures rates of peer-to-peer storage systems

as the system reaches capacity [15]. Even so, the constraints of both system and host
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storage capacity on object maintenance strategies and their overheads have not been

given much attention, particularly as host availability and churn varies. In this last sec-

tion, we motivate the need for maintenance strategies to also consider the constraints of

capacity.

Object maintenance strategies that use indirect block placement with lazy re-

pair, as in TotalRecall [5], randomly place object data on hosts in the system. A con-

sequence of random placement is that it unbalances storage load in proportion to the

distribution of host uptimes. To illustrate this effect, we simulated placing 1,024 1-MB

objects into a system of 2,000 hosts paced evenly throughout a day. We then measured

the number blocks each host stores at the end of the day when using a redundancy factor

of three to store objects. We used the Overnet trace to simulate host arrivals and depar-

tures and determine host uptimes; the effect is similar in other environments, although

the distribution of uptimes will change. Figure 5.15 shows the results of this experiment

in a scatter plot. Note that each object is divided into encoded blocks (the parameter a

in Section 5.3). In this experiment we divided objects into 32 blocks (if the replication
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factor is 3, the systems stores 96 encoded blocks for a file). For each host in the system,

the graph shows the number of blocks stored on the host according to its uptime. The

diagonal cluster shows the correlation of host uptime and storage load (outliers, such

as in the lower right corner, correspond to hosts entering the system as the simulation

ends).

This effect is due to the random selection of hosts when placing object data

— both when the object is initially created, as well as during repair. Hosts with longer

uptimes will be selected more often than hosts with shorter uptimes and, as a result,

store more blocks over time. Storage is a comparatively plentiful resource, but hosts

still have finite capacities (particularly if only a small fraction of storage on a host is

available for use by other hosts). Consequently, over time hosts with longer uptimes

will fill to capacity faster than hosts with shorter uptimes.

This effect has both positive and negative consequences. On the positive side,

it is a natural mechanism by which the system will favor storing object data on hosts

with good availability. Favoring hosts with long uptimes reduces the amount of storage,

and hence bandwidth overhead, required to mask temporary churn. (Note, though, that

if permanent failures are independent of host uptimes, this effect does not reduce the

rate of repairs.) This effect is somewhat similar to the natural formation of stable cores

of supernodes in unstructured networks, also due to the bias of host uptimes [77].

On the negative side, object maintenance strategies will need to explicitly re-

spect host storage capacities when making placement decisions. Strategies that use in-

direct placement can adapt to storage capacity constraints by simply removing hosts at

capacity from random selection. Respecting capacities has two consequences: (1) since

indirect placement biases towards hosts with higher uptimes, data for newer objects gets

placed on hosts with lower uptimes; and as a result, (2) repair overhead increases more

than linearly as system storage grows towards capacity.

To illustrate this effect, we repeat the object maintenance simulation and ex-

tend it so that all hosts have equivalent capacity constraints. Figure 5.16 shows the

results of capacity constraints on repair overhead. The y-axis shows the average ob-
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Figure 5.16: Normalized repair cost as a function of used capacity.

ject maintenance overhead per object. The x-axis varies capacity as a percentage of

used system capacity. The “All” curve is the object maintenance strategy when we se-

lected hosts without any bias. The “Avail” curve is the object maintenance strategy that

greedily selects hosts with highest availability. The “Lifetime” curve is the object main-

tenance strategy that greedily selects hosts that have the highest remaining lifetime. The

“Both” curve is the strategy that selects hosts with the highest product of availability and

remaining lifetime. The strategies are greedily selecting the “good” hosts. The per ob-

ject maintenance cost increases as the system utilization increases for all strategies. The

difference between the strategies that bias selection and the standard policy is highest

when the system is lightly loaded (up to 20%), and this difference slowly diminishes as

the system fills up. The strategy that biases either the availability or remaining lifetime

approaches the overhead of the standard strategy when the system capacity is around

90%. However, the strategy that biases availability as well as remaining lifetime per-

forms better than random even when the system is at full capacity, though the difference

between these two strategies is reduced from 66% to 33%.
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Object maintenance strategies that eagerly repair on successors (e.g., CFS) or

leaf sets (e.g., PAST) will not exhibit this bias since hosts store data relative to their

position in the ID space, and not relative to uptime. Such placement implicitly assumes

that nearby hosts in the ID space can always store data given to it, although in practice

some hosts in the middle of a successor list, for instance, may reach capacity before

other hosts. One approach to this problem is to use replica diversion [15] to introduce

a level of indirection, effectively implementing indirect placement. Alternatively, suc-

cessor placement can skip successors at full capacity when propagating redundant data

down the successor list, effectively treating those successors as “failed” hosts with re-

spect to placement. Doing so, however, will likely require either direct or indirect book-

keeping to track which successors store redundant object data, evolving such placement

strategies from direct towards indirect placement.

5.5 Conclusion

In this section, we revisit object maintenance in peer-to-peer systems, focusing

on how temporary and permanent churn impact the overheads associated with object

maintenance. Overall, we emphasize that the degrees of both temporary and permanent

churn depend heavily on the environment of the hosts comprising the system. These

differences impact the source of overheads for object maintenance strategies.

A system with permanent failures much repair lost redundancy regardless of

the initial redundancy. We formulated the object maintenance bandwidth overhead using

observations from our KAD trace. Adding small amounts of redundancy at each repair

reduces the bandwidth overhead. Interestingly, the amount of redundancy to restore

on a repair that minimizes bandwidth overhead depends upon the degree of temporary

churn in the system, but not on the degree of permanent churn; the bandwidth overhead

certainly scales with the rate of permanent churn, but the rate does not affect the choice

of how much redundancy to repair. We validated these results from the simulation based

on the trace collected in the KAD file sharing environment.
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Hosts in file sharing environments exhibits wide variation in terms of resources

(availability and lifetime) that they contribute to the system. The system can exploit

these variations to reduce object maintenance overhead. In the KAD environment, at

least, we show that object maintenance overhead is reduced to 58% of the standard ran-

dom policy if the system selects highly-available hosts at each repair. Similarly, the

object maintenance overhead reduces to 49% of the random policy if the system selects

long-lived hosts at each repair when hosts capacity is unlimited. The system further re-

duces the object maintenance overhead by combining highly-available and high lifetime

hosts. We also confirmed these results from simulations using a synthetic trace derived

from the actual trace.

Finally, we highlight additional practical issues object maintenance strategies

must face, in particular dealing with storage capacity constraints. Experience with de-

ployments of peer-to-peer storage systems will undoubtedly raise a number of additional

practical constraints that object maintenance strategies will need to address.
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Chapter 6

Summary and Future Work

To improve the lookup performance of distributed hash tables (DHTs) while

minimizing update overhead, we propose and evaluate the use of three kinds of hint

caches containing route hints: local hint caches store direct routes to neighbors in the

ID space; path hint caches store direct routes to peers accumulated during the natural

processing of lookup requests; and global hint caches store direct routes to a set of peers

roughly uniformly distributed across the ID space. Combined, these hint caches achieve

routing performance that approaches the aggressive performance of one-hop schemes,

but with an order of magnitude less communication overhead on average.

To design improved object maintenance strategies, we need to understand the

availability and lifetime characteristics derived from long-term (at least a hundred days)

traces of peer-to-peer systems with host arrival and departure events. As a result, we

performed a 6-month study of the KAD peer-to-peer file sharing system to measure

such failure characteristics of a portion of the hosts in the system. We evaluated our

measurement methodology to capture sufficiently complete data, and demonstrated that

peer-to-peer systems like KAD have substantial heterogeneity in host availability and

lifetime characteristics. We found that hosts join and leave the system at roughly a

constant rate, the permanent failure rates of hosts are constant and independent of host

availability and lifetime, and that a substantial percentage of hosts (around 40%) have

lifetimes longer than 150 days.

99



100

We then revisit object maintenance strategies in peer-to-peer systems, focusing

on how temporary and permanent churn impact the overheads associated with object

maintenance. Overall, we emphasize that the degrees of both temporary and permanent

churn depend heavily on the environment of the hosts comprising the system. These

differences impact the source of overheads for object maintenance strategies.

Using trace-driven simulation of a peer-to-peer storage system and our trace

of hosts in the KAD network, we confirm our analytic results for determining an op-

timal amount of redundancy to use at each repair. Further, we explore variants of this

object maintenance strategy that bias the placement of redundant data on those hosts

with high availability, high lifetimes, or both. We then use simulation to show that,

using our trace of KAD hosts as input, peer-to-peer storage systems can reduce object

maintenance overhead to 58% of a random strategy by placing on high-available hosts,

49% of random by placing on long-lived hosts, and only 33% of random by placing on

both highly-available and long-lived hosts. Finally, we highlight additional practical is-

sues object maintenance strategies must face, in particular dealing with storage capacity

constraints.

In summary, this dissertation shows that peer-to-peer systems based on dis-

tributed hash tables (DHTs) can take advantage of heterogeneous availability and life-

time characteristics of hosts in the system.

6.1 Future Work

Experience with deployments of peer-to-peer storage systems will undoubt-

edly raise a number of additional practical constraints that object maintenance strategies

will need to address. Hosts have other characteristics that vary as well, including access

bandwidth and capacity. Measuring both characteristics of peer-to-peer host popula-

tions at large scale remain open and interesting problems. Adapting object maintenance

strategies that take these heterogeneous aspects of peers could further improve the task

of maintaining object data with high availability and reliability. Also, other possible op-
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timizations for improving object maintenance strategies include placing redundant data

closer to the hosts using it, and adapting the amount and kinds of redundancy to the

application workloads that access the data.
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