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ABSTRACT OF THE THESIS

Devil is in the Tails: Visual Relationship Recognition

by

Alakh Himanshu Desai

Master of Science in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2022

Professor Nuno Vasconcelos, Chair

Significant effort has been recently devoted to modelling visual relations. This has

mostly addressed the design of architectures, typically by adding parameters and increasing

model complexity. However, visual relation learning is a long-tailed problem, due to the

combinatorial nature of joint reasoning about groups of objects. Increasing model complexity

is, in general, ill-suited for long-tailed problems due to their tendency to over-fit. In this thesis,

we explore an alternative hypothesis, denoted the Devil is in the Tails. Under this hypothesis,

better performance is achieved by keeping the model simple but improving its ability to cope

with long-tailed distributions. To test this hypothesis, we devise a new approach for training

visual relationships models. This is based on an iterative decoupled training scheme, denoted

xii



Decoupled Training for Devil in the Tails (DT2). DT2 employs a novel sampling approach,

Alternating Class-Balanced Sampling (ACBS), to capture the interplay between the long-tailed

entity and predicate distributions of visual relations. Results show that, with extremely simple

architecture, DT2-ACBS significantly outperforms much more complex state-of-the-art methods

on scene graph generation tasks. This suggests that the development of sophisticated models

must be considered in tandem with the long-tailed nature of the problem.
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Chapter 1

Scene Graph Generation

1.1 Introduction

Computer vision is concerned with the automatic extraction, analysis and understanding

of useful information from a single image or a sequence of images. It involves the development

of a theoretical and algorithmic basis to achieve automatic visual understanding[2]. As with

most computational tasks, we have attempted to achieve it by subdividing it into smaller tasks

that can be solved with geometry, rules, or representation learning. There are several sub tasks in

which deep learning models have surpassed the human visual system. These, however, belong

to the category of perceptual tasks, such as image classification. In cognitive tasks, such as

image description and question answering, however, computers lag far behind. ”Cognition is

core to tasks that involve not just recognizing, but reasoning about our visual world.”[24] To

achieve this, models must not only localize and detect the key objects in an image, but must also

learn to understand the relationships between the detected objects. While deep learning models

excel in learning representations for real world objects, the understanding of a scene is deeply

embedded in the local and global relationships between the objects that constitute it. Therefore,

understanding the relations in a scene is a major step in the direction of cognition which evades

present day models. For example, “When asked What vehicle is the person riding?, computers

will need to identify the objects in an image as well as the relationships riding(man, carriage)

and pulling(horse, carriage) in order to answer correctly that the person is riding a horse-drawn
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carriage.”[24] To solve such cognitive tasks we can employ scene graphs.

A scene graph is a structured representation of an image, where nodes in a scene graph

correspond to object bounding boxes and their categories; and the directed edges correspond

to the pairwise relationships between objects. Scene graphs were first proposed by [22] as a

data structure that describes the object instances in a scene and the relationships between these

objects. A complete scene graph can represent the detailed semantics of a dataset of scenes, but

not a single image or a video; moreover, it contains powerful representations that encode 2D/3D

images [22], [1] and videos [31], [36] into their abstract semantic elements without restricting

either the types and attributes of objects or the relationships between objects. Related research

into scene graphs greatly promotes the understanding of various tasks such as vision, natural

language, and their cross-domains.

The task of Scene Graph Generation is to generate a visually-grounded scene graph

that most accurately correlates with an image. In the literature, this problem is formulated as a

< sub ject− predicate−ob ject > tuple, wherein the subject and object are two of the detected

objects in the scene and the ”predicate” is the relationship that the ”subject” imposes upon the

”object”. This formulation allows us to answer questions belonging to the ”How is object A

related to object B?” category or ”What object is the object A sitting on?”. Therefore, a graph

containing as nodes, all the objects in a scene and as edges, the relationship between each pair of

objects allows for a much higher level of cognition than a bag of objects approach. Scene graph

generation is therefore a step in the direction of image understanding. Another aspect of scene

graphs is that they create a bridge between the two most important modalities of cognition in

general, visual information and natural language. A model that aims to learn the relationship

between two image patches (each corresponding to a crop of the object), must in turn learn to

understand this relation subject to the two labels of the detected objects. Therefore, the model

must learn both visual relations and label relations as it generates the tuples for the scene.
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1.2 Formulation

The inference of the visual relationships in a scene is usually formulated as a three stage

process. The objects/entities in the scene are detected, classified, and the relationships between

each pair of entities, in the form of predicates, are finally inferred. [21] formulated these stages

with a Scene Graph. Let C and P be the set of entity and predicate classes, respectively. Each

entity e = (eb,ec) ∈ E is composed by a bounding box eb ∈ R4 and a class label ec ∈ C. A

relation r = (s, p,o) is a three-tuple, connecting a subject s and an object o identities (s,o ∈ E ),

through a predicate p ∈ P. For example, person-riding-bike or donkey-on-road. The scene

graph G = (E,R) of an image I contains a set of entities E = {ei}m
i=1 and a set of relations

R = {r j}n
j=1 extracted from the image. This can be further decomposed into a set of bounding

boxes B = {eb
i }m

i=1, a set of class labels Y = {ec
i }m

i=1, and a set of relations R.

The generation of a scene graph G from an image I is naturally mapped into the proba-

bilistic model

Pr(G|I) = Pr(B|I)Pr(Y |B, I)Pr(R|B,Y, I), (1.1)

where Pr(B|I) is a bounding box prediction model, Pr(Y |B, I) an entity class model and

Pr(R|B,Y, I) is a predicate class model.

As bounding box prediction has been widely studied in object detection [32], it is possible

to simply adopt an off-the-shelf detector.

The literature divides the SGG task into three sub tasks based on the joint inference of

the probabilistic model:

• Predicate Classification (PredCls): For this task the input for the model is the bounding

boxes of the objects and their corresponding labels. The model must predict the predicate

that best defines the relationship between the two objects.

• Scene Graph Classification (SGCls): For this task the input for the model is the bounding

3



boxes of the objects. The labels for the objects are not provided. The model must predict

the label for each object and the predicate that best defines the relationship between them.

• Scene Graph Detection (SGDet): For this task the input for the model is the raw image.

The model must localize the objects of interest, classify them and predict the predicate

that best defines the relationship between them.

Now that we have understood what scene graph generation is, we can look into its

applications and the inherent challenges associated with it.

1.3 Applications of Scene Graph Generation

Scene graphs provide a data structure that can be used to extract visual and textual

information about a scene. This forms a useful representation for scene understanding tasks, that

can now query the scene graph to answer semantic questions about the image. Therefore many

cognition tasks, are essentially applications of scene graph generation.

1.3.1 Image generation

Apart from providing the relations between the various entities in an image, scene graphs

also provide a relationship between the textual and visual modalities, that is, they provide a

connection between the description of an image and the image itself. This feature of scene

graphs can be exploited when asking a model to generate an image based on a description. While

current models can generate impressive images for simple text descriptions, they fail to deliver

when the complexity of the description increases. Scene graphs can simplify this problem, by

breaking it down into simpler < sub ject− predicate−ob ject > tuples that the model can now

use to generate the image piece-wise.
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1.3.2 Image or video captioning

Image captioning methods that use RNN or LSTM based natural Language reasoning

models to generate the natural language description or caption of the image cannot model the

semantic relationships between the objects well. Therefore, the descriptions generated by such

models are inaccurate. Scene graphs can help with alleviating these issues by capturing the

semantic relationship between the objects in the image.

1.3.3 Cross-Modal Retrieval

Cross-Modal Retrieval is used for implementing a retrieval task across different modali-

ties. such as image-text, video-text, and audio-text. Cross modal retrieval aims to find a common

representation space, in which the samples from different modalities can be compared directly.

The key to image-text cross-modal retrieval concerns learning a comprehensive and unified

representation to represent the multi-modal data and scene graphs are the ideal choice in this

context.

1.3.4 Visual Question Answering

VQA is also a multi-modal feature learning task. Scene graphs can extract the important

information from a scene in the form of a graph, which enables scene graph-based VQA methods

outperform traditional algorithms. With the help of scene graphs and graph networks that

can encode the scene graph one can reason and answer the questions that require a common

representation between text and images.

1.3.5 Image Understanding and Reasoning

The task of image understanding and reasoning is a very high level computer vision

task. Unlike the low level tasks this cannot be performed by a machine with only pixel level

information. This task is one of cognition and requires objects, relationships, attributes and

other visual feature components to ”understand” the input image. A scene graph provides two
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of the key input features required for this task. The localized and recognized objects and the

relationship between each subject-object pair provides valuable information for a model that is

attempting to solve the highly complex task of understanding a scene.

1.3.6 3D Scene Understanding

Constructing a 3D scene is very important for modeling complex indoor scenes and

extracting useful information about the environment. As with the 2D scene graphs generated

from 2D images, a scene graph can also be constructed from 3D scenes as a 3D scene graph,

which can provide an accurate representation of the object relationships in 3D scenes. A 3D scene

graph succinctly describes the environment by abstracting the objects and their relationships

in 3D space in the form of graphs. To construct a 3D scene graph, it is necessary to locate the

different objects, identify the elements, attributes, and relationships between the objects in 2D

images, and then use all of this information to construct a 3D scene.

1.3.7 Human-Object / Human-Human Interaction

A subset of the generalized scene graph generation problem. the human-object interaction

problem, is one where the subject is always a human. The human is the central entity in the

scene and all the other detected objects are studied in relation to it. This allows the study of how

humans interact with the surrounding and recognizing human actions. This task is very similar

to scene graph generation but differs in one fundamental way in terms of implementation. While

the task of recognizing the relationships between each subject-object pair in an image is O(n2)

problem, the human interaction problem is a linear problem.

1.4 Challenges of Scene Graph Generation

When we consider this approach to Scene Graph Generation, we can observe the chal-

lenges that are a part of the problem description itself.
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1.4.1 SGG is an ill-posed problem

The relationship between two objects in a scene derived from the real world is neither

dis-ambiguous nor distinct. A relationship can be defined in various ways: a man might be with

a child, playing with a child, running with a child, playing soccer with a child and many more

ways, all of which are true albeit from different points of view or with different levels of detail.

As the preceding example exhibits, there are multiple valid descriptions of a scene, which makes

this an ill-posed problem.

1.4.2 Model Evaluation

Since many valid relations can and do exist between a pair of objects, comparing various

models that attempt to solve this task is not a trivial matter. Also, while all the different versions

are valid, not all of them are equal. Some interpretations of the relationship are clearly more

valuable than others. For example, for an automated surveillance system, ”man 1 behind man 2”

and ”man 1 holding man 2 at gunpoint” are two very different scenarios and a model that cannot

differentiate between the two is not appropriate despite being correct about the relationship.

Model evaluation must therefore consider the level of detail that a model provides over being

vaguely correct at all times.

1.4.3 All relationships are not detectable

A pair of bounding boxes and their corresponding labels is not sufficient for a model to

satisfactorily detect the true relationship between the objects. For example, two people far apart

in an image might be waving at each other, but this would not be detected by a model which

cannot consider the larger picture or is looking for local relationships alone. This is a highly non

trivial problem to solve and is largely left unaddressed by the literature.
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Figure 1.1. Entity Class Distribution

1.4.4 Long tailed nature of the problem

Entity Recognition

Entities in the wild are not class balanced. Datasets that are not curated to be well

balanced, reflect this nature of the class distribution. The distribution of entity classes is what is

referred to in statistics as a long-tail distribution. ”In ”long-tailed” distributions a high-frequency

or high-amplitude population is followed by a low-frequency or low-amplitude population

which gradually ”tails off” asymptotically. The events at the far end of the tail have a very low

probability of occurrence. As a rule of thumb, for such population distributions the majority of

occurrences (more than half, and where the Pareto principle applies, 80%) are accounted for

by the first 20% of items in the distribution.” [41] In the case of entity recognition, while some

classes dominate the datasets, a majority of the classes have very low representations in the world.

This inherent bias results in most models trained on such data, being highly biased towards

predicting high frequency, or head classes, since they increase the chances of the prediction

being correct, and to ignore the low frequency tail classes. This would be acceptable if the high

frequency classes represented the useful information that we are looking for. However, more

8



Figure 1.2. Predicate Class Distribution

often than not, the tail classes are much more useful. The long-tailed nature of entity recognition

is a well researched topic and has provided valuable models which can learn to predict both

the tail and the head classes. However, the fundamental concern with any of the single model

methods is that improving the tail class performance for a model, necessarily degrades the head

class performance. Most models attempt to keep this drop in performance as low as possible.

Predicate Classification

The long-tailed nature in the Scene Graph Generation task is not due to the long-tailed

nature of the entity recognition sub-task alone. Predicate classification not only adds onto the

long-tailed distribution, it also exaggerates the problem by being more skewed than the object

distribution. Like with entity recognition, the tail end of the predicate distribution holds the most

informative classes. A complex model, performing well on the overall data, is therefore not very

valuable, because it overfits to the head class data.

Dual long-tailed nature of scene graph generation

The task of generating a scene graph is therefore to learn a distribution that is a joint

distribution of two long-tailed distributions. This makes scene graph generation a joint long tailed

9
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Figure 1.3. The learning process of visual relations need to consider the long-tailed nature of
both entity and predicate class distributions.

problem. While long-tailed entity recognition has been addressed in the literature [29, 3, 8, 23],

the imbalance becomes more prevalent for the SGG tasks, owing to the severe long-tailed nature

of the predicate distribution.

Take Figure 1.3 for example. While the class of the subject (“ball”) is popular, the

class of the object (“robot”) and the predicate (“kicking”) can be infrequent, leading to the

rare occurrence of the tuple “robot-kicking-ball”. This shows that even when the entity class

distribution is balanced, the imbalanced predicate class distribution can lead to a more imbalanced

tuple distribution. Of course, such imbalance issues can be exacerbated if both entity classes and

predicate classes are skewed (e.g. “tripod-mounted-on-donkey”). The combination of long-tailed

entity and predicate classes makes SGG a more challenging problem.

While the long-tailed problem poses a great challenge to SGG tasks, it has not been well

addressed in the SGG literature. Existing works [50, 47, 6, 34, 51] instead focused on designing

more complex models, primarily by adding architectural enhancements that increase model

size. While this has enabled encouraging performance under the Recall@k (R@k) metric, this

10



metric is biased toward the highly populated classes. This suggests that prior works may be

over-fitting on popular predicate classes (e.g. on/has), but their performances could degrade

on the less frequent classes (e.g. eating/riding). Such a bias towards the populated classes is

problematic, because predicates lying in the tails often provide more informative depictions of

scene content. The failure to predict tail classes could lead to a less informative scene graph ,

limiting the effectiveness of scene graphs for intended applications.

In this thesis, we explore the hypothesis that the Devil is in the tails. Under this hypothesis,

visual relation learning is better addressed by a simple model of improved ability to cope with

long-tailed distributions. As seen before, both distributions are heavily skewed, but with different

magnitude. The imbalance in the predicate distribution is more severe than that in the entity

distribution. To address this, we propose a new approach to visual relationship learning, based

on a simpler architecture than those in the literature but a more sophisticated training procedure,

denoted Decoupled Training for Devil in the Tails (DT2).

11



Chapter 2

Visual Relationship Learning

2.1 Background and Related Work

2.1.1 Scene graph generation

Several works have addressed the generation of scene graphs for images [48, 46, 49,

17, 42, 45, 50, 47, 26, 12, 6, 34, 19, 51, 10]. Most approaches focus on either sophisticated

architecture design or contextual feature fusion strategies, such as message passing and recurrent

neural networks [50, 34], to optimize SGG performance on the Visual Genome dataset [24]

under the Recall@K metric. While these approaches achieved gains for highly populated classes,

underrepresented classes tend to have much poorer performance. Recently, [6, 33, 46, 40, 25]

started to address the learning bias induced by the dataset statistics, by using a more suitable

evaluation metric, mRecall@K, which averages recall values across classes. To address the

dataset bias, TDE [33] employed causal inference in the prediction stage , whereas [40] used a

pseudo-siamese network to extract balanced visual features, and PCPL [46] harnessed implicit

correlations among predicate classes and used a complex graph encoding module consisting

of a number of stacked encoders and attention heads. A concurrent work [25] introduces

confidence-based gating with bi-level data resampling to mitigate the training bias. These

methods considered, at most, the long-tailed distribution of either predicates or entities and do

not disentangle the gains of sampling from those of complex architectures. For example, [46]

proposed a contextual feature generator via graph encoding with 6 stacked encoders, each with
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12 attention heads and a feed-forward network. We argue that long-tailed distributions should be

considered for both entities and predicates and show that, when this is done, better results can be

achieved with a much simpler architecture.

2.1.2 Long-tailed recognition

Prior work addresses the long-tailed issue in 3 directions: data re-sampling, cost-sensitive

loss and transfer learning.

Data resampling

[15, 13, 54, 14, 11, 5] is a popular strategy to oversample tail (underrepresented) classes

and undersample head (populated) classes. Oversampling is achieved either by duplicating

samples or by synthesizing data [13, 54, 5]. While producing a more uniform training distribution,

recent works [23, 52] argue that this strategy is unsuitable for deep representation learning like

CNN. [23] decouples the representation learning from the classifier learning, adopting different

sampling strategies in the two stages, whereas [52] proposes a two-stream model with a mixed

sampling strategy. The proposed method lies in this direction, since we consider different

distributions of entity and predicate classes, and adopt different sampling strategies for training

different model components.

Cost-sensitive losses

[9, 8, 3, 28] assign different costs to the incorrect prediction of different samples,

according to class frequency [8, 3] or difficulty [9, 28]. This is implemented by assigning higher

weights or enforcing larger margins for classes with fewer samples. Weights can be proportional

to inverse class frequency or effective number [8] and can be estimated by meta-learning [20].

This re-weighting strategy was recently applied to the scene graph literature [46] to overcome

long-tailed distributions.
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Figure 2.1. Object classes (left) and predicate classes (right) are both long-tailed distributed in
Visual Genome (VG150).

Transfer learning

Transfer learning methods transfer information from head to tail classes. [38, 39] learns

to predict few-shot model parameters from many-shot model parameters, and [29] proposes a

meta-memory for knowledge sharing. [43] leverages a hierarchical classifier to share knowledge

among classes. [44] learn an expert model for each class popularity, and combine them by

knowledge distillation.

2.2 Dataset Overview

Visual Genome (VG) [24] is composed of 108k images across 75k object categories and

37k predicate categories, but 92% of the predicates have less than 10 instances. Following prior

works, we use the original splits of the popular subset (i.e. VG150) for training and evaluation. It

contains the most frequent 150 object classes and 50 predicate classes.The distribution remains

highly long-tailed.

2.2.1 Long-tailed Nature

The long-tail nature of the problem is quite visible in the widely used Visual Genome [24]

dataset. As shown in Figure 2.1, both the distribution of entity and predicate classes are long-

tailed. For entities, the most populated class is 35× larger than the least populated. For predicates,

the former is 12,000× larger than the latter (5,000× if the least frequent predicate class flying
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in, is discarded). Note that this is much larger than the square of the ratio between entity classes

(1,225) suggested by the factorial nature of relationships.

2.3 Choosing Evaluation Metric

Since the ground-truth annotations of relationships are incomplete, it’s improper to use

simple accuracy as the metric. Therefore, Lu et al. transfer it to a retrieve-like problem in their

work [30] and adopted Recall. The relationships are not only required to be correctly classified,

but also required to have the highest score possible, so they can be retrieved from plenty of ‘none’

relationship pairs.

2.3.1 Recall@K (R@K)

This measures the average percentage of ground truth relation triplets that appear in the

top K predictions and, like any average, is dominated by the most frequent relationship classes.

Hence, it does not penalize solutions that simply ignore infrequent relationship classes. Focusing

on designing ever more complex network architectures to optimize R@K performance, it is

unclear whether all that is being accomplished is stronger overfitting to a few dominant classes

(e.g. “on”). This is undesirable for two reasons.

1. The number of infrequent relations is much larger than that of dominant relationships.

2. While dominant relations include many obvious contextual relationships (e.g.“car-has-

wheels”), infrequent ones are potentially more informative (e.g. “monkey-playing-ball”)

of the scene content.

In summary, the long-tailed problem is exacerbated by the evaluation protocol, based on the

Recall@K (R@K) measure and focus on optimizing R@K could lead to systems that are only

capable of detecting a few relationships of relatively low information content.
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Figure 2.2. The model architecture of DT2 is composed of an entity encoder F (right) and a
predicate classifier H.

2.3.2 Mean Recall@K (mR@K)

The main motivation of Mean Recall@K (mR@K) is that the VisualGenome [24] dataset

is biased towards head predicates. If the 10 most frequent predicates are correctly classified,

the accuracy would reach 90% even if the remaining 40 kinds of predicates are all wrong. This

problem has been recognized in the recent literature, where some works [6, 33] have started to

adopt the mRecall@K (mR@K) metric, which first averages the recall of triplets within the same

predicate class and then averages the class recalls over all the predicate classes.

2.3.3 Category-wise mR@K

To zoom in more on the performance of classes with different popularity, we sort the 50

relation classes by their frequencies and divide them into 3 equal parts, head (16), body (17) and

tail (17) and use the mR@K performance on these partitions for each SGG task.

2.4 Proposed Solutions

The solution we propose here leads from an alternative hypothesis: Is the devil in the

tails? Or, in other words, can a simple model designed explicitly to cope with the long-tailed

nature of visual relations outperform existing models, which are much more complex but ignore

this property? To investigate this hypothesis, we introduce a solution that uses a model much

simpler than recently proposed architectures, but is much more sophisticated in its use of

sampling techniques that target the long-tailed nature of visual relationship.
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2.4.1 Notations

For a relation tuple r j = (s j, p j,o j) in image I, p j is the ground truth predicate class,

while s j = (sb
j ,s

c
j) and o j = (ob

j ,o
c
j) are the subject and object entities, composed of its associated

bounding box coordinates (e.g. sb
j) and ground truth entity class (e.g. sc

j). The bounding

boxes of an entity can be either the ground truth coordinates or the predictions from a detection

model, depending on the task of interest (i.e. SGCls or SGDet). With the bounding boxes, the

corresponding image patch Is
j and Io

j for the subject and object can be cropped from the image I.

In addition, we define ρ as a probability vector at the output of the softmax function with

temperature τ , and its ith entry is formulated as

ρi( f ,W,τ) =
exp(wT

i f/τ)

∑k exp(wT
k f/τ)

, (2.1)

where f ∈Rd is a feature vector, W ∈Rd×k is the matrix of k weight parameters wk ∈Rd .

2.4.2 Model architecture

Figure 2.2 summarizes the architecture of the Decoupled Training for Devil in the Tails

(DT2) model. This combines an entity encoder F , as shown in the right part of Figure 2.2, and a

predicate classifier H. DT2 takes the bounding box coordinates sb
j , ob

j [7] and the corresponding

cropped image patches Is
j and Io

j as input. The entity encoder F is then applied to both Is
j and Io

j ,

to extract a pair of subject-object feature vectors f {a,s}s , f {a,s}o that represent both the appearance

and semantics of entities s j and o j. These are then concatenated with an embedding of the

bounding box coordinates sb
j and ob

j , and fed to a predicate classifier H. Implementation details

of the entity encoder and the predicate classifier are elaborated below.

Entity encoder

Entity encoder (F) first maps image patch Ie of entity e through a feature extractor,

implemented with the first three convolutional blocks of a pretrained ResNet101 [16]. We use a
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faster R-CNN pre-trained for object detection on Visual Genome under regular sampling (all

images are sampled uniformly). The resulting feature vector fe is then mapped to two feature

vectors, f s
e and f a

e , that encode semantics and appearance information respectively, through two

different branches sharing identical architecture. The semantic branch Fs(·;θ) of parameter θ is

implemented with a stack of convolution layers (the last convolutional block of ResNet101). Its

output is then fed to a softmax layer that predicts the probability ēc ∈ [0,1]C of the class of the

entity e, i.e.

ēc = ρ(Fs( fe;θ),We,τ = 1) , (2.2)

where We is the matrix of the entity classifier weights and τ of ρ in (2.1) is set to 1. The one-hot

encoding êc can be generated by taking the argmax of ēc, which is then mapped into a semantic

feature vector f s
e ∈ R128 with a single fully connected layer.

While the semantic branch would be, in principle, sufficient to convey the entity identity

to the remainder of the network, this does not suffice to infer visual relationships. For example,

the detection of the “people” and “bike” entities in Figure 2.2 is not enough to infer whether the

relationship is “person-standing by-bike” or “person-riding-bike”. This problem is addressed

by introducing the appearance branch Fa(·;φ) of parameter φ , which outputs a feature vector

f a
e ∈ R128 with no pre-defined semantics, simply encoding entity appearance. Finally, the feature

vectors f a
e and f s

e are concatenated into a vector f {a,s}e ∈ R256 that represents both the appearance

and semantics of entity e.

Predicate classifier

Predicate classifier (H) takes the subject f {a,s}s and object f {a,s}o feature vectors as input.

These vectors are then concatenated with an embedding of subject sb and object ob bounding

boxes produced by a fully-connected layer, to create a joint encoding f {a,s,b}{s,o} ∈ R520 of the

semantics, appearance, and location of the subject-object patches Is and Io. The predicate
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classifier H is implemented with a small feature extractor H(.,ψ), consisting of three layers that

perform dimension reduction. The input f {a,s,b}{s,o} ∈ R520 is first transformed into a 256-dimension

vector with a fully connected layer, followed by a batch normalization and a ReLU layer, the

output of which is finally passed through a fully connected layer with a tanh non-linearity, to

produce a final feature vector fs,o ∈ R128. This is fed to a softmax layer to produce the probability

of the predicate class

p̄ = ρ( fs,o,Wp,τ = 1) (2.3)

where Wp is the weight matrix of the predicate classifier.

Model complexity is quite low for DT2, which has 10× fewer trainable parameters than

most of the recent approaches in the literature. For example, the SGCls model sizes of DT2,

MOTIFS [50], VCTree [34] and TDE-MOTIFS [33] are 224 MB, 1.68 GB, 1.65 GB and 2.1 GB

respectively. This is by design, since our goal is to emphasize the importance of accounting for

long tails during training, as is discussed next.

2.4.3 Training

DT2 is trained with standard cross-entropy losses targeted on entity and predicate classi-

fication. The former is defined as

Lent =
1
n

n

∑
i=1

1
|Ei| ∑

ek∈Ei

Lce(ec
k, ē

c
k) (2.4)

where Lce denotes the cross-entropy loss, ēc
k is the output probability prediction of (2.2) and ec

k is

the ground truth one-hot code of the kth entity in the set Ei from image Ii. This is complemented

by a predicate classification loss

Lpred =
1
n

n

∑
i=1

1
|Ri| ∑

rk=(sk,pk,ok)∈Ri

Lce(pk, p̄k) (2.5)

19



where p̄k is the output probability of (2.3) and pk the ground truth one-hot code for the kth

predicate in the set Ri of visual relations in image Ii. Both (2.4) and (2.5) are important to

guarantee that the network can learn from both entities and predicate relationships.

2.4.4 Sampling strategies

While encapsulating both semantics and appearance information, the proposed training

loss in Sec. 2.4.3 requires a complementary sampling strategy tailored for long-tailed data. This

long-tailed problem has been studied mostly in the object recognition literature, where an image

patch is fed to a feature extractor with the parameter ϕ and the softmax layer ρ of (2.1) with

weight matrix W. A popular training strategy is to use different sampling strategies to train the

two network components [23]. The intuition is that, because the bulk of the network parameters

are in the feature extractor (ϕ), this should be learned with the largest possible amount of data.

Hence, the entire network is first trained with Standard Random Sampling (SRS), which

samples images uniformly, independent of their class labels.

While this produces a good feature extractor, the resulting classifier usually overfits to

the head classes, which are represented by many more images and have a larger weight on the

cost function. The problem is addressed by fine-tuning the network on a balanced distribution,

obtained with Class Balanced Sampling (CBS). This consists of sampling uniformly over

classes, rather than images, and guarantees that all classes are represented with equal frequencies.

However, because images from tail classes are resampled more frequently than those of head

classes, it carries some risk of overfitting to the former. To avoid overfitting, the fine-tuning

is restricted to the weights W of the softmax layer. In summary, the network is trained in two

stages. First, the parameters ϕ and W are jointly learned with SRS. Second, the feature extractor

(ϕ) is fixed and the softmax layer parameters W are relearned with CBS.

20



2.4.5 Sampling for visual relationships

Similar to long-tailed object recognition, it is sensible to train a model for visual relations

in two stages. In the first stage, the goal is to learn the parameters θ ,φ ,ψ of the feature

extractors (see Sec. 2.4.2), which are the overwhelming majority of the network parameters. As

in object recognition, the network should be trained with SRS. In the second stage, the goal is

to fine-tune the softmax parameters We and Wp to avoid overfitting to head classes. However,

unlike long-tailed object recognition, Figure 2.1 shows that predicates and entities can have

very different distributions, which makes the learning of long-tailed visual relations a distinct

problem. This indicates that two class-balanced sampling strategies are required to accommodate

the distribution difference between predicate and entity classes.

A straightforward solution is to introduce a 2-step iterative training procedure, namely

entity-optimization step (E-step) and predicate-optimization step (P-step), to optimize the weight

of We and Wp respectively. In E-step, images are sampled from a distribution Pe that is uniform

with respect to entity classes, which is denoted as Entity-CBS. While in P-step, they are sampled

from a distribution Pp uniform with respect to predicate classes, denoted as Predicate-CBS.

However, since the uniform sampling of Pp is not class-balanced for entity classes, P-step would

lead to the overfitting of the entity classification parameters We.

This is addressed by the novel sampling strategy, Alternating CBS (ACBS), tailored for

long-tailed visual relations.

2.4.6 Alternating Class Balanced Sampling (ACBS)

ACBS contains a memory mechanism to maintain the entity predictions of the P-step,

making sure that what was learned is not forgotten in the E-step. It is implemented with

distillation [18] between the P-step and E-step and an auxiliary teacher entity classifier of

weight matrix Wt . The teacher entity classifier is inserted in parallel with the entity classifier of

weight matrix We in (2.2), which is its student, and produces a second set of entity prediction
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Figure 2.3. ACBS captures the interplay between the long-tailed distributions of entities and
relations by implementing the knowledge distillation between P-step and E-step.

probabilities as

ēt = ρ(Fs( fe;θ),Wt ,τ = 1). (2.6)

With the introduction of the teacher entity classifier, we rewrite (2.4) into Lstu
ent and Ltea

ent , where

the former operates on ēc of (2.2) and the latter operates on ēt . Furthermore, to distill knowledge

from the teacher entity classifier, a Kullback-Leibler divergence (KL) loss (Lkd) is defined as

KL(ρ(Fs( fe;θ),We,τ = τs)||ρ(Fs( fe;θ),Wt ,τ = τs)), (2.7)

where the two inputs to Lkd are the smooth version of (2.2) and (2.6) with temperature τs.

In summary, the P-step updates parameters Wp of the predicate classifier and Wt of the

teacher with (2.5) and Ltea
ent respectively, while the student parameters We are kept fixed. In the

E-step, Wp and Wt (teacher) are kept fixed, and We (student) is optimized with Lstu
ent and (2.7).

This implements learning without forgetting [27] between the two steps, encouraging the student
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Algorithm 1: Training procedure of ACBS
Input: Training dataset D , predicate distribution Pp, entity distribution Pe, ACBS
hyperparameters (α,β ,τs), and model parameters (θ ,φ ,ψ).

Output: Model parameters (Wp, We).
while Not convergence do

// P-Step

Dp← BalancedSample(D , Pp);
while batch in Dp do

Ltotal ← Lpred (2.5)+βLtea
ent (2.4);

Minimize Ltotal with respect to (Wp,Wt)
end
// E-Step

De← BalancedSample(D , Pe);
while batch in De do

Ltotal ← Lstu
ent (2.4)+αLkd (2.7);

Minimize Ltotal with respect to We

end
end

classifier to mimic the predictions of the teacher classifier, and enabling the network to learn the

new parameters for one distribution, e.g. We, without forgetting the one, e.g. Wt , previously

learned for the other. The training procedure is detailed in Algorithm 1.

2.4.7 Implementation

DT2-ACBS is a two-stage training process. While SRS is adopted in the first stage when

training the parameter of θ , φ and ψ , the proposed ACBS is adopted in the second stage to learn

the classifiers. Apart from the differences in sampling strategies, both stages share a similar

optimization scheme, where the Adam optimizer with initial learning rate 10−3 is adopted, with

the learning rate decay of 0.5 for every 5 epochs. The batch size in the first stage is 256, while in

the second stage, objects and predicates are sampled with 2 and 5 samples per class respectively.

The hyperparameters α , β and τs are set to 0.5, 1 and 10 respectively using the validation set.

For evaluation on SGG tasks, we adopt the protocol of [50, 34] to filter out the subject-object

pairs that do not have a relationship.
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Table 2.1. The result (mRecall@K) of SGG tasks (PredCls, SGCls, SGDet) compared to SOTA
in scene graphs. Results for other methods are reported from the corresponding paper in general.
† denotes our reproduced model with ResNet101-FPN backbone.

Predicate Classification Scene Graph Classification Scene Graph Detection
Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

IMP+ [45] - 9.8 10.5 - 5.8 6.0 - 3.8 4.4
FREQ [50] 8.3 13.0 16.0 5.1 7.2 8.5 4.5 6.1 7.1

MOTIFS [50] 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6
MOTIFS [50]† 13.2 16.3 17.5 7.1 8.8 9.3 4.9 6.7 8.2

KERN [6] - 17.7 19.2 - 9.4 10.0 - 6.4 7.3
VCTree [34] 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
GBNet [48] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5

TDE-MOTIFS-SUM [33] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
TDE-MOTIFS-SUM [33]† 17.9 24.8 28.6 9.6 13.0 14.7 5.6 7.7 9.1
TDE-VCTree-SUM [33] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
TDE-VCTree-GATE [33] 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3

PCPL [46] - 35.2 37.8 - 18.6 19.6 - 9.5 11.7
DT2-ACBS (ours) 27.4 35.9 39.7 18.7 24.8 27.5 16.7 22.0 24.4

2.5 Comparison to SOTA

To validate our hypothesis, we compare DT2-ACBS with the state-of-the-art meth-

ods on PredCls, SGCls and SGDet task on the popular subset VG150 of VG [24], under the

mRecall@K metric. As shown in Table 2.1, compared baselines include 1) simple frequency-

based method [50], 2) sophisticated architecture design for contextual representation learn-

ing [45, 6, 34, 48] and 3) recent works that tackle the long-tailed bias of predicate classes [33, 46].

Several observations can be made. First, DT2-ACBS outperforms all baselines in the first two

groups by a large margin (mR@100 gain larger than 15.7%) on the PredCls task, where entity

bounding boxes and categories are given. The baselines in the third group [33, 46], which address

the long-tailed bias of the predicate distribution, are similar in spirit to DT2-ACBS. However, the

latter relies on a simpler model design and a more sophisticated decoupled training scheme to

overcome overfitting. This enables a 1.9% improvement on mR@100 (5% relative improvement),

showing the efficacy of the proposed sampling mechanism for tackling the long-tailed problem

in predicates distribution.

Next, when predicting both predicate and entity class given the ground truth bounding

boxes (SGCls task), DT2-ACBS outperforms all existing methods by a larger mR@100 margin

24



Table 2.2. mR@100 on SGG tasks for head, body, tail classes. † denotes our reproduced models
with ResNet101-FPN backbone.

Predicate Classification Scene Graph Classification Scene Graph Detection
Method Head (16) Body (17) Tail (17) Head (16) Body (17) Tail (17) Head (16) Body (17) Tail (17)

MOTIFS [50]† 42.3 9.8 0.6 24.6 4.0 0.1 20.2 4.6 0.4
TDE-MOTIFS-SUM [33]† 44.9 35.8 6.1 25.6 15.8 3.3 22.2 5.6 0.1

DT2-ACBS (ours) 35.1 45.2 38.6 24.6 29.1 28.6 22.3 26.7 24.0

(1.9% on PredCls vs 7.9% on SGCls, equivalently relative improvement of 5% in PredCls vs 40%

in SGCls). This significant improvement in SGCls performance can be ascribed to the decoupled

training of ACBS, which better captures the interplay between the different distributions of

entities and predicates.

Finally, we also ran DT2-ACBS on proposal boxes generated by a pre-trained Faster-

RCNN for the SGDet task.Table 2.1 shows that DT2-ACBS outperforms existing methods by a

significantly larger mR@100 margin of 12.7% (> 100% relative improvement) on the SGDet

task.

2.5.1 Class-wise performance analysis:

To study the performance of classes with different popularity, we sort the 50 relation

classes by their frequencies and divide them into 3 equal parts, head (16), body (17) and tail

(17). Table 2.2 presents the mR@100 performance on these partitions for each SGG task. As

observed in prior long-tailed recognition work [29, 23], a performance drop in head classes is

hard to avoid while improving tail class performance. The goal, instead, is to achieve the best

balance among all the classes, which DT2-ACBS clearly does with notable improvements in

the body and tail classes. It should also be noted that the drop in head performance can be

deceiving, due to dataset construction problems like “wearing” and “wears” appearing as two

different relationship classes. Most importantly, many VG150 tail categories (e.g. “standing

on”, “sitting on”) are fine-grained versions of a head category (“on”). Some of the degradation

in head class performance is just due to the predicates being pushed to the fine-grained classes,

which is more informative. We notice that one of the high-frequency predicate classes On has a
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Figure 2.4. Comparisons of per class Recall@100 on SGCls. Classes are sorted in decreasing
order of the number of samples.

low recall value (Figure 2.4) and observe that DT2-ACBS often instead predicts its fine-grained

sub-categories, such as standing on, sitting on, mounted on. In particular, there are 41,620

ground truth instances of On predicate in the test set, and DT2-ACBS predicts On-subcategories

14,317 times on PredCls, which constitutes 34% incorrect predictions as per the metric. Overall,

DT2-ACBS performs significantly better in body and tail classes on SGG tasks, and performs

comparably on head classes for SGCls and SGDet, reaching the best balance across all the

classes.

2.6 Ablation Studies

2.6.1 Ablation on Appearance Branch

The goal of appearance branch is to convey the image information not encoded in the

entity labels but relevant to predicate predictions. Hence, appearance labels are difficult to define.
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Table 2.3. Ablations of appearance branch. (subj, obj) Acc. denotes the accuracy of a pair of
subject and object class.

Method PredCls SGCls (subj, obj)
mR@ 20 / 50 / 100 mR@ 20 / 50 / 100 Acc

w/o Fa 18.1 / 24.5 / 26.8 11.0 / 14.7 / 16.3 25.77
w/ Fa (ours) 27.4 / 35.9 / 39.7 18.7 / 24.8 / 27.5 26.26

Table 2.4. Ablations of ACBS with different teachers in SGCls.

Teacher mR@ 20 / 50 / 100
E-step 15.2 / 20.2 / 22.0

P-step (ours) 18.7 / 24.8 / 27.5

We test the effectiveness of the appearance branch Fa by removing it and training the network

with ACBS. Table 2.3 shows that entity classification accuracy remains similar, but PredCls and

SGCls performance drops dramatically. Hence, the appearance branch contributes substantially

to predicate classification. Note that the gains hold even when the ground truth entity labels are

used (PredCls), confirming the argument that simply knowing entity classes is not enough for

predicate prediction.

2.6.2 Ablations on Teacher

An intuitive experiment is to have E-step as the teacher rather than the P-step. In ACBS,

We receives class-balanced entity supervision, so there is no risk of overfitting. The role of

the teacher is to guarantee that the E-step update of We is not incompatible with the P-step

update of Wp. This distillation is exactly how ACBS fuses the knowledge learnt with different

distributions. Using E-step as the teacher has weaker results, as shown in Table 2.4. According

to our experiments, entity CBS is more important for the entity classification, and it should be

the base of the entity classifier and not the other way around.

2.6.3 Ablations on sampling strategies

SGCls performance is affected by the intertwined entity and predicate distributions. In

this section, we conduct ablation studies in Table 2.5 on 1) single-stage vs two-stage training and
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Table 2.5. Ablations on different sampling strategies for SGCls.

Method mR@20 mR@50 mR@100
Single Stage-SRS 6.4 9.6 11.2

Single Stage-Indep. CBS 8.5 11.2 12.4
DT2-Predicate-CBS 10.0 13.0 14.3

DT2-Indep. CBS 17.3 23.9 26.7
DT2-ACBS (ours) 18.7 24.8 27.5

2) different sampling schemes. The first half of the table shows the performances of single-stage

training, where the representation and the classifier are learned together. This clearly under-

performs the two-stage training, which is listed in the second half of the table, where we compare

different sampling strategies in the second stage of DT2. For the predicate classifier, it can be

trained based on either SRS or class-balanced sampling for predicates (Predicate-CBS). Since

each relation comes with a subject and an object, it is possible to train the entity classifier with

respect to Predicate-CBS, indicating the entity classifier can be trained based on SRS, Predicate-

CBS or class-balanced sampling for entities (Entity-CBS). Note that the predicate classifier

can not be trained with Entity-CBS, since an entity does not always belong to a visual relation

tuple. From the second half of the table, we find that considering the distribution differences in

predicates and entities is important, because DT2-Predicate CBS (i.e. Predicate-CBS for both

entity and predicate classifier) does not perform as well as DT2-Indep. CBS (i.e. Entity-CBS

for the entity classifier and Predicate-CBS for the predicate classifier). The observation that

DT2-Indep. CBS already performs better than existing methods (Table 2.1) supports our claim

that visual relations can be effectively modeled with a simple architecture if the long-tailed

aspect of the problem is considered. Nevertheless, the proposed ACBS further improves the

SGCls performance by distilling the knowledge between P-step and E-step (see Algorithm 1).
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man-has-head
man-has-arm
man-has-hand
man-has-leg

man-wearing-shirt

woman-holding-racket
fence-behind-woman
woman-wearing-shirt
woman-wears-shoe

elephant-has-leg/leg
elephant-has-ear/ear

leg-of-elephant
ear-belonging to-elephant
tail-belonging to-elephant

boy-with-hair
boy-holding-racket
boy-wearing-shirt

boy-has-head
arm/leg-belonging to-boy

shoe/sock/sock/short/shirt/arm-of-boy
boy-wears-short/shoe/sock

person-walking on-sidewalk
horse-has-leg
horse-has-leg

horse-has-face
person-wears-shirt

tree-covered in-branch

girl-wears-hat/shoe
horse-has-ear/ear/nose

girl-riding-horse
girl-wearing-shirt/shirt

building-has-window
woman-wearing-jacket

woman-walking on-sidewalk

boy-wearing-sneaker
fence-behind-boy
bag-against-fence
boy-wearing-shirt

Figure 2.5. Qualitative results of PredCls and SGCls. Bounding box colors in image correspond
to entities in triplets. Correct/incorrect predicates have green/orange background. In graphs,
correct/incorrect entities are in purple/blue and predicates are in green/orange. Ground truth is in
brackets.
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2.7 Qualitative results

Figure 2.5 presents qualitative results of DT2-ACBS. In PredCls task, DT2-ACBS can

correctly predict populated predicate classes (has & wearing) as well as non-populated predicate

classes (walking on). Not only robust to long-tailed predicate classes, DT2-ACBS is also able

to classify entities ranging from more populated classes (boy and head) to tail classes (sneaker,

racket and sock).

We can observe that while the predicted predicates can be different from the ground

truth, the relation can still be reasonable (e.g. a subclass or a synonym of the ground truth). For

example, the predicted predicate “walking on” is actually a subclass of the ground truth predicate

“on”. These examples show that DT2-ACBS is able to predict more fine-grained predicates in

tail classes and provide more exciting descriptions.

Chapter 2, in part, contains material from A. Desai, TY Wu, S Tripathi, N Vasconce-

los,“Learning of Visual Relations:The Devil is in the Tails”, 2021 IEEE International Conference

on Computer Vision (ICCV), Montreal, Canada, 2021. The thesis author was the primary

investigator and author of this paper.
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Chapter 3

Future Work

While DT2 ACBS learns the interplay between the joint long tailed distribution of the

entities and predicates, it’s inference time is of the order of O(n2). This makes the use of this

method prohibitive for real time scene graph generation. The model, however, emphasizes the

importance of taking the long tailed nature of the distribution into consideration.

With this in mind we explore a DETR based model that provides an O(n) inference time

solution.

3.1 Scene Graph Generation with DETR

Transformers have changed the landscape of Deep Learning since their introduction in

2017 by [35]. Initially designed with sequence-to-sequence problems in mind, transformers have

come a long way since their inception. Object detection is a task where a model learns to localize

and classify the foreground objects from the background. Most deep learning approaches attempt

to solve the task of object detection either as a classification problem or as a regression problem

or both.

Facebook’s DEtection TRansformer or DETR is “a method that views object detection as

a direct set prediction problem.”[4] Their approach removes the need for hand-designed compo-

nents like a non-maximum suppression or anchor generation. The essence of the framework is

a set-based global loss that forces unique predictions via bipartite matching and a transformer
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Figure 3.1. The model architecture DETR based basline

encoder-decoder architecture.

The task of scene graph generation involves three sub tasks: entity detection, entity

recognition and predicate recognition. While entity recognition and predicate recognition are

long-tailed problems, entity detection, that is, bounding box detection is not. Therefore, while

SGG on the whole, is a joint long-tailed problem, entity detection combined with predicate

recognition is long tailed only on the predicate distribution. We leverage this idea along with the

understanding that training predicate recognition on entity labels does not allow the model to

learn good “visual” features. We call the task of predicting the <object bounding box, predicate

label, subject bounding box> tuple Predicate Detection and we train a DETR model to perform

this task.

3.2 Baseline model

To test our hypothesis we train the model on a task that is not a standard Scene Graph

Generation Task in the literature. The model is trained to “detect” the relationship between the

objects in the images. In essence it detects the objects and classifies the relationship between

them, without classifying the objects themselves, previously defined as Predicate Detection.

This is important because the problem remains a single long tailed problem, that of predicate

classification combined with the simpler detection problem. Since this is not a standard task in

32



Table 3.1. The result (Recall@K, mRecall@K) of Predicate Detection.

Predicate Detection
Method R@20 R@50 R@100 mR@20 mR@50 mR@100

DETR based baseline (ours) 32.7 46.1 55.9 17.2 18.0 18.1

the literature, a head to head comparison of various methods is not possible. We can however,

consider this task to be close in meaning to the scene graph generation task if it did not have to

predict the object labels.

As shown in Figure 3.1 the baseline model consists of a single branch, the predicate

detection branch. It is trained to predict the bounding boxes of the subject and the object along

with the predicate class label.

3.2.1 Training

DETR is known for taking very long amounts of time to converge and is notoriously

resource-intensive. There are newer variants of DETR like the Deformable-DETR [53] and

PnP-DETR [37] which converge much faster and are easier to train. We use one of these variants

to conclude baseline experiments.

Predicate Detection: A PnP-DETR model with an encoder, decoder and three feed

forward networks is trained with 200 queries to predict the <subject bounding box, object

bounding box, predicate label> tuples given an image.

3.2.2 Results and Discussion

The results of the baseline support the hypothesis. The results of predicate detection

show that the model learns the visual “definition” of a relationship. While previous models

train the predicate classifier on both image features and the labels, the labels overpower the

image features and the models can never truly converge to their potential. Also, since this is

now long-tailed only in terms of the predicate distribution, this can be fine-tuned for improved

mRecall performance, by fine tuning for the long tailed nature of the distribution.
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The scene graph generation results show that even though the model was not trained with

object labels at all it performed well in terms of recall.

Moreover, the results show another benefit of allowing the model to learn “visual relations”

and that is the confidence of the models in its predictions. As can be seen in Table 3.1, the mean

recall values do not drop as drastically from mR@100 to mR@20. This shows that the training

is more stable and the model generalizes better.

This method learns to predict the nodes of the predicate detection in the form of a set and

therefore can perform in O(n) time. However, as can be seen in the results, the mean recall of

any method not exclusively designed to learn the effect of the long-tailed distribution is always

lagging far behind a method that takes that into consideration. The next steps in this direction is

to incorporate a form of class balancing suitable to the DETR architecture that can help with

modelling the underlying long-tailed distribution.

Chapter 3, in part is currently being prepared for submission for publication by A. Desai,

TY Wu, S Tripathi, N Vasconcelos. The thesis author was the primary investigator and author of

this material.
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Chapter 4

Conclusion

Learning visual relations is inherently a long-tailed problem. Existing approaches have

mostly proposed complex models to learn visual relations. However, complex models are ill-

suited for long-tailed problems, due to their tendency to overfit. In this thesis, we consider

the uniqueness of visual relations, where entities and relations have skewed distributions. We

propose a simple model, namely DT2, along with an alternating sampling strategy (ACBS) to

tackle the long-tailed visual relation problem. Extensive experiments on the benchmark VG150

dataset show that DT2-ACBS significantly outperforms the state-of-the-art methods of more

complex architectures.

We then explore a set detection method for the SGG problem and use it to generate

a model that learns relationships independently from the entities that constitute it, thereby

decoupling the two long-tailed distributions. We train a model to prove the validity of this

statement. Further research is required to incorporate the effect of the long tailed distribution in

the new DETR based baseline.

Scene graph generation is a joint long tailed problem and has two primary modalities,

one inherently stronger than the other. In order to design models that can “understand” a scene

by looking at it, we must consider both these properties.
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